GMCLIB User's Guide

ARM® Cortex® MO+

Document Number: CMOGMCLIBUG
Rev. 4, 11/2016

h
V"

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

Contents
Section number Title Page

Chapter 1

Library

L 51 13 (e Ta L Uo7 5 o | OO OO TP 5
1.2 Library integration into project (MCUXPIESSO IDE)cocoiiiiiiiiiiriiniiiieeiienecee ettt e 7
1.3 Library integration into project (Kinetis Design StUAIo)ceevueiiiiiiiiiiiiiiieieieeite ettt 17
1.4 Library integration into project (Keil LVISION)cccuirieriirieriiieite ettt ettt et et e et st e bt esee st estesbeenteneeens 25
1.5 Library integration into project (IAR Embedded Workbench)cccccoieiiniiiiiniiniiiiiniiicceicneccseeeseeeeeeee 33

Chapter 2

Algorithms in detail

2.1 GMCLIB_CIATK. ...ttt ettt etttk a et b et eb e bbbt sttt ae e nes 41
2.2 GMCLIB_CIATKINV....ouiiiiiiiiiiiieeee ettt st s ee 42
2.3 GMCLIB_PAIK ...ttt ettt sttt h ettt b et bbbt st h et b e a sttt b ettt b et b et be e b 44
24 GIMOCLIB _PaATKINV.. .ottt ettt ettt e eeeeeeeeeeeeesesesas s e aaasasasasaseeeeeeeaeaseseesesesessssesssnssssssassaens 45
2.5 GMCLIB_DeCOUPINZEPIMSM......ciiiiiiiiiiiiiiieiiteeit ettt sttt st ettt e b e et e bt e s ab e e bt esate e bt e eabeeabeesabesabeesabeenseens 47
2.6 GMCLIB_EIMDCBUSRIPFOCc.ooiiiiiiiiitiiiictnte ettt sttt ettt 51
2.7 GMCLIB_EHMDCBUSRIP. c..cutitiitiiteitctt ettt ettt ettt sb et bttt sbt et sbaenbesbnenbeeanenbeean 56
2.8 GMOCLIB_SVINSA. ..ottt sttt sttt et a et b et 61
2.9 GMCLIB_SVIMICL..c..cuttiiiiteiiiteiietet ettt ettt sttt ettt bbbt b et b et b bbbt bbb e st b et e bt ebe e ebe e ene 76
2,10 GMCLIB_SVINUODN. ...ttt ettt ettt ettt sttt ettt ettt b et b et b et bt be e b e bt sne e sne st ene 80
2,11 GMCLIB_SVIMUTN ..ttt sttt sttt st ne 84
2,12 GMCLIB_SVIMDPWITL ...ttt ettt sttt ettt b et b et b et b et s ettt b et b et b et b et e b et e b et ebena bt st bt stesene 88
2.13 GMCLIB_SVINEXDPWINL....c.citiiitiieiiieiiiciinietrie ettt ettt ettt ettt sttt b et st be e b e e nnene 91

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 3

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Motor Control Library (GMCLIB) for the family
of ARM Cortex M0+ core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

GMCLIB supports several data types: (un)signed integer, fractional, and accumulator.
The integer data types are useful for general-purpose computation; they are familiar to
the MPU and MCU programmers. The fractional data types enable powerful numeric and
digital-signal-processing algorithms to be implemented. The accumulator data type is a
combination of both; that means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1

 Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1

e Unsigned 32-bit integer —<O0 ; 4294967295> with the minimum resolution of 1

 Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution
of 1

The following list shows the fractional types defined in the libraries:

* Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 213
» Fixed-point 32-bit fractional —<-1; 1 - 2-315 with the minimum resolution of 2-3!

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 5

Introduction
The following list shows the accumulator types defined in the libraries:

* Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 27> with the minimum

resolution of 27
» Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2°15> with the minimum
resolution of 2°1°

1.1.3 API definition

GMCLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB Mac_F32lss(f32Accum, flé6Multl, fleMult2);
where the function is compiled from four parts:

e MLIB—this is the library prefix
* Mac—the function name—Multiply-Accumulate

» F32—the function output type
* Iss—the types of the function inputs; if all the inputs have the same type as the
output, the inputs are not marked

The input and output types are described in the following table:
Table 1-1. Input/output types

Type Output Input
frac16_t F16 s
frac32_t F32 |
acc32_t A32 a

1.1.4 Supported compilers

GMCLIB for the ARM Cortex M0+ core is written in C language or assembly language
with C-callable interface depending on the specific function. The library is built and
tested using the following compilers:

* Kinetis Design Studio

* MCUXpresso IDE

* JAR Embedded Workbench

e Keil uVision

GMCLIB User's Guide, Rev. 4, 11/2016
6 NXP Semiconductors

4
Chapter 1 Library

For the MCUXpresso IDE, the library is delivered in the gmclib.a file.

For the Kinetis Design Studio, the library is delivered in the gmclib.a file.

For the IAR Embedded Workbench, the library is delivered in the gmclib.a file.
For the Keil pVision, the library is delivered in the gmclib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gmclib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

GMCLIB for the ARM Cortex MO+ core is written in C language or assembly language
with C-callable interface depending on the specific function. Some functions from this
library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It
can cause an issue especially when high optimization level is set. Therefore the
optimization level for all inline assembly written functions is defined by compiler
pragmas using macros. The configuration header file RTCESL_cfg.h is located in:

specific library folder\MLIB\Include. The optimization level can be changed by
modifying the macro value for specific compiler. In case of any change the library
functionality is not guaranteed.

Similarly as optimization level the Memory-mapped divide and square root module
support can be disable or enable if it has not been done by defined symbol
RTCESL_MMDVSQ_ON or RTCESL_MMDVSQ_OFF in project setting described in
Memory-mapped divide and square root support cheaper for specific compiler.

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the
number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

1.2 Library integration into project (MCUXpresso IDE)

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 7

Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GMCLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL

\CMO_RTCESL_4.5_MCUX). If you have a different installation path, use that path
instead.

1.2.1 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square

root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the MCUXpresso SDK project name node or in the left-hand part, click Properties
or select Project > Properties from the menu. A project properties dialog appears.
2. Expand the C/C++ Build node and select Settings. See Figure 1-1.

. In the right-hand part, under the MCU C Compiler node, click the Preprocessor node.
See Figure 1-1.

(98]

M ™
m Properties for twrkv31f120m_demo_apps_hello_world [-:' =] éj
type filter text Settings & v v -

> Resource
Builders
4 C/C++ Build Configuration: ’Debug [Active]

'] ’Manage Configurations...]

Build Variables
Environment

Run/Debug Settings

4

(# Optimization

(2 Debugging

(# Warnings

@ Miscellanecus

@ Architecture
4 B MCU Assembler

@ General

@ Architecture & Headers
a4 B MCU Linker

@ General

@ Libraries

@ Miscellanecus

(2 Shared Library Settings

@ Architecture

(2 Managed Linker Script

@ Multicore

Logging) Tool Settings | 4 Build steps | Build Artifact | Binary Parsers | @ Error Parsers|
MCU settings
Settings 4 53 MCU C Compiler [[] Do not search system directories (-nostdinc)
Tool Chain Editor @ Dialect | Preprocess only (-E)
. C/C++ General (2 Preprocessor) .
Defined symbols (-D) & w E & =
Project References (2 Includes Y £ a8 C S

DEBUG
PRINTF_FLOAT_ENABLE=0
SCANF_FLOAT ENABLE=0
PRINTF_ADVANCED_ENABLE=0
SCANF_ADVANCED_ENABLE=0
TWR_KV31F120M

TOWER
SDK_DEBUGCONSOLE=0
_MCUXPRESSO

_USE_CMSIS
CPU_MKV31FS12VLL12
CPU_MKV31FS12VLL12_cmd
REDLIB

Undefined symbols (-U) &

I

o]

Cancel

Figure 1-1. Defined symbols

4. In the right-hand part of the dialog, click the Add... icon located next to the Defined
symbols (-D) title.

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

4
Chapter 1 Library
5. In the dialog that appears (see Figure 1-2), type the following:
e RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on
« RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off
If neither of these two defines is defined, the hardware division and square root
support is turned off by default.
ﬂ Enter Value Jp— ;_- @

Defined symbols (-0

RTCESL_MMDVSQ_OMN

[ok || Cancel

5 = e eee—e— |

Figure 1-2. Symbol definition
6. Click OK in the dialog.
7. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.2.2 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-3.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 9

Library integration into project (MCUXpresso IDE)

Mo s e .
type filter text Linked Resources oY w
4 Resource -
Linked Resources Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "S${VAR}".
Builders The locations of linked resources may be specified relative to these path variables,
[C/C++ Build Defined path variables for resource 'twrkv31f120m_demo_apps_hello_world':
[C.’C.++ General Name Value Mew...
Project References .
Run/Debug Settings (= ECLIPSE_HOME CAMXPAMCUXpressolDE_10.0.0_344%ide\ Edit..
= PARENT_LOC Diternp3
= PROJECT_LOC Dvternp3titwri31f120m_demo_apps_hello_world Remove
(= WORKSPACE_LOC Ditermnp3

Figure 1-3. Project properties
3. Click the New... button in the right-hand side.
4. In the dialog that appears (see Figure 1-4), type this variable name into the Name
box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CMO_RTCESL_4.5_MCUX. Click OK.

GMCLIB User's Guide, Rev. 4, 11/2016
10 NXP Semiconductors

4
Chapter 1 Library

|
Define a New Path Variable

Enter a new variable name and its associated location.

F k]
= T e
B0 New Varisble e =

MName: RTCESL_LOC

Location: ICA\NXPARTCESLAC File.. || Folder. || Variable..
Resolved Location: C:\NXP\RTCESL\CMO_RTCESL_4.5_MCUX

® [oK] ’ Cancel

Figure 1-4. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click
Environment.

7. Click the Add... button in the right-hand side.

In the dialog that appears (see Figure 1-5), type this variable name into the Name

box: RTCESL_LOC.

9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CMO_RTCESL_4.5_MCUX.

10. Tick the Add to all configurations box to use this variable in all configurations. See
Figure 1-5.

11. Click OK.

12. In the previous dialog, click OK.

*®

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 11

Library integration into project (MCUXpresso IDE)

Linked Resources
Resource Filters
Builders
4 C/C++ Build
Build Variables
Environment

n Properties for twrkv31f120m_demo_apps_hello_world | = £2
type filter text Environment =l v -
4 Resource

Configuration: |Debug [Active]

'] [Manage Conﬁgurations...l

Environment variables to set

)

Logging Variable Value Origin Select
Elect...
MCU settings CWD Di\ternp3itwries31£120... BUILD SYSTEM
Seftings PATH CANXPAMCUXpressolD... BUILD SYSTEM Edit...
Tool Chain Editor PWD D:\ternp3twrky31f120... BUILD SYSTEM
» C/C++ General | Delete
Project A’ . . -
d) New variable " Undefine
Run/Deb [
Mame: RTCESL_LOC
Value: CAMNXPV\RTCESLVCMO_RTCESL 4.5_MCUX Variables
[V] Add to all configurations
[OK] ’ Cancel
S ——
@ Append variables to native environment
W () Replace native environment with specified one
[Restore Defaultsl l Apply
® [QK] [Cancel]

Figure 1-5. Environment variable

1.2.3 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.
2. Click Advanced to show the advanced options.

(98]

option.

To link the library source, select the Link to alternate location (Linked Folder)

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-6.
5. Click Finish, and the library folder is linked in the project. See Figure 1-7.

GMCLIB User's Guide, Rev. 4, 11/2016

12

NXP Semiconductors

Chapter 1 Library

o

Folder —

Create a new folder resource. Ii .n_“

Enter or select the parent folder

twrkv31f120m_demo_apps_hello_world
[y
| =3 twrkw31f120m_demo_apps_hello_world

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (% Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. || Variables.. | I

Figure 1-6. Folder link

a5 twrkv31f120m_demo_apps_hello_world
s g’;ﬁ Binariez
> [t Includes
- 2 CMSIS

- 2 board
- 2 drivers

- 2 source
» [startup
- A2 utilities

> [= Debug
» = doc
> |y RTCESL_LOC

Figure 1-7. Projects libraries paths

1.2.4 Library path setup

GMCLIB requires MLIB and GFLIB to be included too. These steps show how to
include all dependent modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

In the right-hand dialog, select the Library Paths tab. See Figure 1-9.

4. Click the Add... button on the right, and a dialog appears.

(O8]

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 13

A ————
Library integration into project (MCUXpresso IDE)

5.

N o

*®

10.

11.

12.
13.
14.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-8): ${RTCESL_LOC}\MLIB.
Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GFLIB.

Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC}\GMCLIB.

Click OK, you will see the paths added into the list. See Figure 1-9.
& Add.. =3
- e e — -

Directory:

S{RTCESL_LOCHAMLIE|

[7] Add te all configurations _‘u’ariables...

[T Add to all languages -

[= Is a workspace path
[oK] [Cancel]

Figure 1-8. Library path inclusion

n Properties for twrkv31f120m_demo_apps_hello_world L . @ i » a . “m l@ﬂg
type filter text Paths and Symbols =l v
. Resource
Builders —
. C/C++ Build Configuration: ’Debug [Active] V] lManage Configurations...l
a CfC++ General
I » Code Analysis
I Documentation | (sl Includesl # Symbols | =1 Libraries| (B Library Paths |[B Source Location | Bl References|
File Types
: Formatter = S{RTCESL_LOCAMLIB | Add. | |7
Indlexer = SIRTCESL LOCNGFLIE :
Language Mappings ® ${RTCESL_LOCNGMCLIB
Paths and Symbols
Delete
I Preprocessor Include Pz
Project References - |4
i Run/Debug Settings
@ "Preprocessor Include Paths, Macros etc.” property page may define additicnal entries <
| —
a = o ' 1 | »
@ [OK] [Cancel] [

Figure 1-9. Library paths
After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-11.
Click the Add... button on the right, and a dialog appears.
Type the following into the File text box (see Figure 1-10): :mlib.a
Click OK, and then click the Add... button.

GMCLIB User's Guide, Rev. 4, 11/2016

14

NXP Semiconductors

Chapter 1 Library

15. Type the following into the File text box: :gflib.a

16. Click OK, and then click the Add... button.

17. Type the following into the File text box: :gmclib.a

18. Click OK, and you will see the libraries added in the list. See Figure 1-11.

19.

20.
21.

22.
23.

24.
25.

26.

i Add.. = |
File:
mlib.a
[T Add to all configurations
[T Add te all languages
[T = Is a workspace path
[0K] [Cancel]

Figure 1-10. Library file inclusion

| (el Includesl # S}rmbols| =h Libraries |[E,- Library Pathsl =]

T mlib.a
= :gflib.a
T :gmclib.a

Figure 1-11. Libraries
In the right-hand dialog, select the Includes tab, and click GNU C in the Languages
list. See Figure 1-13.
Click the Add... button on the right, and a dialog appears. See Figure 1-12.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include
Click OK, and then click the Add... button.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GFLIB\Include
Click OK, and then click the Add... button.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GMCLIB\Include
Click OK, and you will see the paths added in the list. See Figure 1-13. Click OK.

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 15

Library integration into project (MCUXpresso IDE)

,

Directony:

S{RTCESL_LOC }\MUB\incIudEl

[T Add to all configurations
[T Add te all languages
[T = Is a workspace path

Variables...

ih

Workspace...

File system...

Cancel

Figure 1-12. Library include path addition

e e e R =

type filter text

[» Resource
Builders
[» C/C++ Build
a C/C++ General
[Code Analysis
Documentation

File Types

Formatter

Indexer

Language Mappings

Paths and Symbols

Preprocessor Include P:
Project References
Run/Debug Settings

Paths and Symbols

= A=V

b

Configuration: ’ Debug [Active]

'] ’ Manage Configurations...]

(= Includes | # Symbols | = Li.brariﬁl ™ Library Paths | 2 Source Lucatiunl 2 Re‘ferenc5|

Languages Include directories - Add...
Additional Assem || {2 /${ProjName}/startup Edit
Assembly (=L /${ProjNamel/utilities
GNU C @IHProjHame}fboard § Delete

(=l ${RTCESL_LOCAMLIB\Include
- Export
(= ${RTCESL_LOCNGFLIB\Include 3
(= ${RTCESL_LOCNGMCLIB\Include
;[¢ /nxp/mcuxpressoide_10.0.0 344/ide/tools/redlibfinclude | Move Up
@c:,."nxp,."mcuxpressoide_lﬂ.ﬂ.U_344,.-‘ideftool s/features/include =
Maove Down
@ "Preprocessor Include Paths, Macros etc.” prope age may define additional entries
P property pag i
Show built-in values
l E.Ej Impaort Settings... l ’ ?& Export Settings...

[Restare Defaulisl ’

Apply

)

[ok

|

Cancel

Figure 1-13. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib.h"
#include "gflib.h"
#include "gmclib.h"

When you click the Build icon (hammer), the project is compiled without errors.

GMCLIB User's Guide, Rev. 4, 11/2016

16

NXP Semiconductors

4
Chapter 1 Library

1.3 Library integration into project (Kinetis Design Studio)

This section provides a step-by-step guide on how to quickly and easily include GMCLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Kinetis Design Studio. This example uses the default installation path (C:\NXP
\RTCESL\CMO_RTCESL_4.5_KDS). If you have a different installation path, use that
path instead. If you want to use an existing MCUXpresso SDK project (for example the
hello_world project) see Memory-mapped divide and square root support . If not,
continue with the next section.

1.3.1 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. Right-click the MyProjectO1 or MCUXpresso SDK project name node or in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See Figure 1-14.

3. In the right-hand part, under the Cross ARM C compiler node, click the Preprocessor
node. See Figure 1-14.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 17

Library integration into project (Kinetis Design Studio)

-
“ Properties for MyProject01

B N

-

o 5 S |

type filter text

» Resource
Builders
4 CfC++ Build
Build Variables
Environment
Legging
Settings
Tool Chain Editor
s C/C++ General
Project References
Run/Debug Settings
» Task Repository
WikiText

Settings

Gw v -

B Tool Settings | 5] Toolchainsl A Build Stepsl

Build Artifact | Binary Parsers | @ Ermror Parsers| i

(2 Target Processor
(# Optimization
2 Warnings
(2 Debugging
4 1% Cross ARM GNU Assembler
Preprocessor
@ Includes
@ Warnings
@ Miscellanecus
4 13 Cross ARM C Compiler

Defined symbols (-0

[7] Do not search systern directories (-nostdinc)

[Preprocess only (-E)

&

@ Preprocessor
@ Includes
@ Optimization
(# Warnings
(# Miscellaneous
4 B3 Cross ARM C++ Compiler
(2 Preprocessor
(2 Includes
(# Optimization
(# Warnings
(2 Miscellaneous
4 1%y Cross ARM C++ Linker
2 General
Libraries
@ Miscellanecus

m

Undefined symbols (-U) &)

Figure 1-14. Defined symbols
4. In the right-hand part of the dialog, click the Add... icon located next to the Defined
symbols (-D) title.
5. In the dialog that appears (see Figure 1-15), type the following:
* RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on

 RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

= e
% Enter Val
o, Erter Value

Defined symbels (-0)

RTCESL_MMDVSQ_ON|

ok]|

Cancel

.

Figure 1-15. Symbol definition

=

6. Click OK in the dialog.

7. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

GMCLIB User's Guide, Rev. 4, 11/2016

18

NXP Semiconductors

4
Chapter 1 Library

1.3.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-16.

P, EEEEESS = B
% Properties for MyProject01 ‘ E@ﬂ

type filter text Linked Resources Nl T

4 Resource

linkerl B i Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "S${VAR}".
Builders The locations of linked rescurces may be specified relative to these path variables,
> C/C++ Build Defined path variables for resource "WMyProject01":
> C/C++ General
Mew...
Linux Tools Path f_\lame Value =
Project References (= ECLIPSE_HOME CANKPMEDS_3.0.00eclipsel Edit
Run/Debug Settings = PARENT_LOC CAKDSProjects\workspace.kds
- Task Repository = PROJECT_LOC CAKDSProjects\MyProject0l Remove
WikiText == WORKSPACE_LOC CAKDSProjects\workspace.kds
@ OK l [Cancel
=
Figure 1-16. Project properties
3. Click the New... button in the right-hand side.

4. In the dialog that appears (see Figure 1-17), type this variable name into the Name
box: RTCESL_LOC.

5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CMO0O RTCESL 4.5 KDS. Click OK.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 19

Library integration into project (Kinetis Design Studio)

Define a New Path Variable

Enter a new variable name and its associated location.

r_ R

MName: RTCESL_LOC
Location: ICA\NXPARTCESLAC File.. || Folder. || Variable..
Resolved Location: CANXPARTCESLNCMO_RTCESL 4.3_KDS

@ [ok || Concel

Figure 1-17. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click

Environment.
7. Click the Add... button in the right-hand side.

*®

box: RTCESL_LOC.

In the dialog that appears (see Figure 1-18), type this variable name into the Name

9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CMO_RTCESL_4.5_KDS.

10. Tick the Add to all configurations box to use this variable in all configurations. See
Figure 1-18.
11. Click OK.
12. In the previous dialog, click OK.
rl‘.ﬁ Properties for MyPﬂ:g'ECM . - a A M A PMP
type filter text Environment L oy
 Resource
Builders
a4 C/C++ Build Configuration: |debug [Active | '] lManage Configurations...]

Build Variables
Envirenment

RTCESL_LOC

Loggmg Envirenment variables to set

Settings

Toel Chain Editor Variable Value Origin

To ERd

Select...

SE)

Edit...

HEk

Delete

CANKPVRTCESLVCMO_RTCESL 4.3_KDS

| Undefine

Variables

x|

Figure 1-18. Environment variable

GMCLIB User's Guide, Rev. 4, 11/2016

20

NXP Semiconductors

1.3.3 Library folder addition

To use the library, add it into the Project tree dialog.

Chapter 1 Library

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click New > Folder, or select File > New > Folder from the menu. A
dialog appears.

2. Click Advanced to show the advanced options.

(98]

Folder).

. To link the library source, select the option Link to alternate location (Linked

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-19.
5. Click Finish, and you will see the library folder linked in the project. See Figure

1-20.

e

:
PRISTRIRRS @ ——

Folder

—
Create a new folder resocurce, i .-_’

Enter or select the parent folder
MyProject0l
o

> 5 MyProject01
=+ RernoteSystemsTempFiles

Folder name: RTCESL_LOC

) = Use default location
[y Folder is not located in the file system (Virtual Folder)
@ (g Link te alternate lecation (Linked Folder)

RTCESL_LOC | Browse.. || Variables.. |

Cheoose file system:
Figure 1-19. Folder link

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

21

Library integration into project (Kinetis Design Studio)

a 25 MyProject01
> [a)! Includes
¢ = Includes
» [= Project_Settings
> [Fg RTCESL_LOC
4 = Sources

+ [main.c

Figure 1-20. Projects libraries paths

1.3.4 Library path setup

GMCLIB requires MLIB and GFLIB to be included too. These steps show how to
include all dependent modules:

1.

AN

*

10.

Right-click the MyProjectO1 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

Expand the C/C++ General node, and click Paths and Symbols.

In the right-hand dialog, select the Library Paths tab. See Figure 1-22.

Click the Add... button on the right, and a dialog appears.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-21): ${RTCESL_LOC \MLIB.
Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GFLIB.

Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GMCLIB.

Click OK, and the paths will be visible in the list. See Figure 1-22.

" Add.. 5
Directory:
S{RTCESL_LOCHMLIE|
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
[oK] [Cancel]

Figure 1-21. Library path inclusion

GMCLIB User's Guide, Rev. 4, 11/2016

22

NXP Semiconductors

4
Chapter 1 Library

type filter text Paths and Symbols (=l v
» Resource
Builders
. C/C++ Build Configuratien: IDEbUg [Active] 'l lManage Configurations...]
4 C/C++ General
> Code Analysis
Documentation | @ Includesl # Symbols | |8 Libraries| (B Library Paths |@ Source Location I ¥ References|
File Types
Formatter (B ${ProjDirPath}/Praject_Settings/Linker_Files Add...
Indexer (B ${RTCESL_LOCAMLIB
Language Mappings (B ${RTCESL_LOCNGFLIB
Paths and Symbols f B STRTCESL L
Preprocessor Include P: — OGN . ﬂ]
Profiling Categories
Linux Tools Path I

Figure 1-22. Library paths
11. After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-24.
12. Click the Add... button on the right, and a dialog appears.
13. Type the following into the File text box (see Figure 1-23): :mlib.a
14. Click OK, and then click the Add... button.
15. Type the following into the File text box: :gflib.a
16. Click OK, and then click the Add... button.
17. Type the following into the File text box: :gmclib.a
18. Click OK, and you will see the libraries added in the list. See Figure 1-24.

B Add..

File:
:mlib.a
[7] Add te all configurations

[T Add to all languages
[= Is a workspace path

Variables...

Workspace...

I“ [

File systern...

_ox |

Cancel

|

Figure 1-23. Library file inclusion

| (el Includesl # 5ymbo|s| = Libraries |[E,- Library Pathsl B

=L :mlib.a
T gflib.a
T2 :gmclib.a

Figure 1-24. Libraries
19. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages
list. See Figure 1-26.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 23

A ————

Library integration into project (Kinetis Design Studio)

20. Click the Add... button on the right, and a dialog appears. See Figure 1-25.

21. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include

22. Click OK, and then click the Add... button.

23. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GFLIB\Include

24. Click OK, and then click the Add... button.

25. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GMCLIB\Include

26. Click OK, and you will see the paths added in the list. See Figure 1-26. Click OK.

-
i Add directory path M
Directory:
S{RTCESL_LOCAMLIBinclude]
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
[oK l ’ Cancel l

Figure 1-25. Library include path addition

= hropertes for NyProy

type filter text Paths and Symbols G~ v w
> Resource
Builders
» CfC++ Build Configuration: ’Debug [Active] v] lMar‘lageConfigurations...]
a C/C++ General
» Code Analysis
I Docurnentation @ Includes | # Symbols | = Libraries | B Library Paths | 2 Source Location | @ References|
File Types
Formatter Languages Include directeries Add...
Indexer T8
Language Mappings gsterbly Zéf:;:::;
E::::cneiiyrr;nbcillscle P: oY G (= S(RTCESL_LOCAMLIB\include
Profiling Categories .@1$(RTCESL_LDC}\GFLIB\incIude |
Linux Tools Path (1= SIRTCESL_LOCNGMCLIBinclude I

Figure 1-26. Compiler setting

Type the #include syntax into the code. Include the library into the main.c file. In the left-
hand dialog, open the Sources folder of the project, and double-click the main.c file.
After the main.c file opens up, include the following lines in the #include section:

#include "mlib.h"
#include "gflib.h"
#include "gmclib.h"

When you click the Build icon (hammer), the project will be compiled without errors.

GMCLIB User's Guide, Rev. 4, 11/2016
24 NXP Semiconductors

4
Chapter 1 Library

1.4 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include GMCLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil pVision. This example uses the default installation path (C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Memory-mapped divide and square root support chapter otherwise read
next chapter.

1.4.1 NXP pack installation for new project (without MCUXpresso
SDK)

This example uses the NXP MKV 10Z32xxx7 part, and the default installation path (C:
\WXP\RTCESL\CMO_RTCESL_4.5_KEIL) is supposed. If the compiler has never been
used to create any NXP MCU-based projects before, check whether the NXP MCU pack
for the particular device is installed. Follow these steps:

1. Launch Keil uVision.

2. In the main menu, go to Project > Manage > Pack Installer....

3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale
(NXP) node.

Look for a line called "KVxx Series" and click it.

In the right-hand dialog (under the Packs tab), expand the Device Specific node.
Look for a node called "Keil::Kinetis_ KVxx_DFP." If there are the Install or Update
options, click the button to install/update the package. See Figure 1-27.

7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

A

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 25

Library integration into project (Keil pVision)

i) Pack Installer - C:AKeil yS\ARM\PACK P - ([=/=] =]
File Packs Window Help
[2 | Device: Freeseale - KVixx Series
ﬂi Devices r Boards] ﬂ ﬂ Packs r Examples] ﬂ
| Search: - X Pack Action Description
I Toim /| Summary [Device Specific 1 Pack
% Atmel 257 Devices ||| e keiliKinetis kv OFP |G Tnstall Freescale Kinetis KViox Series Device Support
El- @ Freescale 234 Devices & -Generic 10 Packs
5% K Series T Device s ARM::CMSIS & Up to date || CMSIS (Cortex Microcontroller Software Interface Standard)
% KDO Series 2 Devices [+ Keil: ARM_Compiler Up to date | Keil ARM Compiler extensions
%8 K10 Series 23 Devices #l-Keil:Jansson & _Install Jansson is a C library for encoding, decoding and manipulal
v{g K20 Series 41 Devices [+ Keil:MDK-Middleware 1 Update Keil MDK-ARM Professional Middleware for ARM Cortex-M
5% K30 Series 6 Devices sl Keil:MDK-Network_DS | _Install Keil MDK-ARM Professional Middleware Dual-Stack IPvl/I>
% K40 Series 6 Devices [lwiIP::hwIP & Install IwIP is a light-weight implementation of the TCP/IP protoc
%8 K50 Series 11 Devices [+l Micrium:RTOS & _Install Micrium software components
% KBO Series 18 Devices [+ Oryx-Embedded:Midd... € Install Middleware Package (CycloneTCP, CycloneSSL and Cyclon
% K70 Series 1 Devices - wolfSSL:CyaSsL & _Install Light weight SSL/TLS and Crypt Library for Embedded Syste
% KBO Series 2 Devices = - YOGITECH:ARSTL AR... |43 Install VOGITECH fRSTL Functional Safety EVAL Software Pack for
7 KE A Series 6 Devices
A Kb Series 11 Devices
7 Ko Series 54 Devices
% KMo Series 14 Devices
7 Ko Series 26 Devices
% Kot Series 8 Devices
Lo fibe | | »
Output 2 x
Refresh Pack descriptions
Update available for Keil:: MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta)
| Ready lonume

Figure 1-27. Pack Installer

1.4.2 New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and
is opened, skip to the next section. Follow these steps to create a new project:
1. Launch Keil pVision.
2. In the main menu, select Project > New uVision Project..., and the Create New
Project dialog appears.
3. Navigate to the folder where you want to create the project, for example C:
\KeilProjects\MyProjectO1. Type the name of the project, for example MyProjectO1.
Click Save. See Figure 1-28.

Create New Project

W search MyProject(l

File name: MyProject0l

Save as type: IProj.ect Files (*.uvproj; *.uvprojx)

¥ Browse Folders

Figure 1-28. Create New Project dialog
In the next dialog, select the Software Packs in the very first box.
Type 'kv10' into the Search box, so that the device list is reduced to the KV10
devices.
6. Expand the KV10 node.

il

GMCLIB User's Guide, Rev. 4, 11/2016
26 NXP Semiconductors

4
Chapter 1 Library

7. Click the MKV 10Z32xxx7 node, and then click OK. See Figure 1-29.

~ - B
Select Device for Target ‘Target 1. “

cru |
ISoﬂware Packs ;I
Vendor: Freescale
Device: MKV10Z320007
Toolset: ARM
Search:
Description:

@ ARM a || |The Kinetis KV Tx family is the entry point of the W Series. -
0% F I Buitt upon the ARM Cortex-M0+ core running at 75 MHz with hardware
reescale square root and divide capability, it delivers a 35% increase in
= “3[3 K\ Series performance in math-intensive applications versus blz MCUs,

allowing it to target BLOC as well as more computationally demanding
=% K FMSM motars.
] MKVL071 28007 Additional features include integrated FlexCAN, dual 16bit analogto-
a digital controllers {ADCs) sampling at up to 1.2 mega samples per
MKV10Z16x07 second {MS/s)in 12+t mode, multiple motor control timers, up to 128
=l MKVL0Z2250aT KB of flash memary and a comprehensive enablement suite from
Freescale and third-party resources, including reference designs,
€1 MKV10Z641007 software libraries and motor corfiguration tools.
€] MKVL17128w007
1 b i

Figure 1-29. Select Device dialog
8. In the next dialog, expand the Device node, and tick the box next to the Startup node.
See Figure 1-30.
9. Expand the CMSIS node, and tick the box next to the CORE node.

Qe e (O O =
| Software Component | Sel. Variant Version Description
= ’ CMSIS Cortex Microcontroller Software Interface Components
CORE i 410 CMSIS-CORE for Cortex-M, SC000, and SC300
@ DsP - 145 CMSIS-DSP Library for Cortex-M, SC000, and SC300
€ RTOS (AP 10 CMSIS-RTOS API for Cortex-M, SC000, and 5C300 I
. CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
@ Compiler ARM Compiler Software Extensions
= . Device Startup, System Setup
@ Startup icd 100 Systern Startup for Kinetis KV10 75MHz devices
’ File System MDK-Pro 640 File Access on various storage devices
. Graphics MDK-Pro 5.26.1 User Interface on graphical LCD displays
0 Network MDK-Pro 640 1P Metworking using Ethernet or Serial protocels
’ UsSE MDE-Pro 640 USE Communication with various device classes

Figure 1-30. Manage Run-Time Environment dialog
10. Click OK, and a new project is created. The new project is now visible in the left-
hand part of Keil uVision. See Figure 1-31.

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 27

Library integration into project (Keil pVision)

—
kA CiKeilProjects\MyProjectD1\MyProject01.uvprojx - p\ision

File Edit Wiew Project Flash Debug Peripherals Toc

- I | |

e §9 | Target1 =] & |
Project 1 @
=% Project MyProject(l
g Targetl
[Source Groupl
& cmsis
=9 Device
Bl startup_MKV10Z7 s (Startup)
Bl system_MKVL0Z7.c (Startup)

Figure 1-31. Project

1.4.3 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog

appears.
2. Select the C/C++ tab. See Figure 1-32.
3. In the Include Preprocessor Symbols text box, type the following:
e RTCESL_MMDVSQ_ON—to turn the hardware division and square root

support on
» RTCESL_MMDVSQ_OFF—to turn the hardware division and square root

support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

GMCLIB User's Guide, Rev. 4, 11/2016
28 NXP Semiconductors

.
k] Options for Target 'Target 1' . E
Device] Target] Output] Listing] User C/Ce+]Asm] Linker] Debug] Utilities]
Preprocessor Symbols
Define: |HTCESL_MMDVSQ_ON
Undefine: |
Language / Code Generation
[~ Executs-only Cods [~ Stict ANSIC Wamings:
Optimization: [Level 0 (00} [~ Enum Cortainer always it Al Wamings -
[Optimize for Time I Plain Char is Signed I
[~ Split Load and Store Muttiple ™ Read-Only Position Independent [Mo Auto Includes
[~ One ELF Section per Function I Bead-Write Position Independent [C99 Mode
Include |
Paths
Misc |
Controls

Compiler |- —cpu Cortex-M4 fp -D__EVAL q 00 —apcs=interwork
contral |- C:\KeilProjects \MyProject 01"RTE
string

Chapter 1 Library

ok | Cancel | Defaults |

Help

Figure 1-32. Preprocessor symbols

4. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ

module.

1.4.4 Linking the files into the project

GMCLIB requires MLIB and GFLIB to be included too. The following steps show how

to include all dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group... from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.
Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'...

W

from the menu.

4. Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL 4.5 KEIL\MLIB\Include, and select the mlib.h file. If the file does
not appear, set the Files of type filter to Text file. Click Add. See Figure 1-33.

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

29

A ————
Library integration into project (Keil pVision)

Look in: | J Include j [=% BB
Marne : Date modified il
T mlib.h 16.10.2014 8:19 iE‘

| MLUEB_Abs_Fl16.h 21.10.2014 3:45 r

_ MLUB_Abs_F32.h 1610.2014 9:19

| MLUB_Add_A32.h 16.10.2014 2:19

_ MLB_Add_Fl16.h 1610.2014 9:19

| MUB_Add_F32.h 16.10.2014 2:19

 MLB_Add4_F16.h 1610.2014 9:19

| MUB_Add4_F32.h 16.10.2014 2:19

_ MLIB_BiShift_F16.h 1610.2014 9:19

| MLUEB_BiShift_F32.h 16.10.2014 2:19 il
< samoen e i 1£ 40 nTa AR .
File name: |m|ib.h

Files of type: |Te:d file (“ta; “h; “inc) j Close

Figure 1-33. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\MLIB,
and select the mlib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add. See Figure 1-34.

Lookin: | J. MLIB ~| & & e B
MName : Date modified Ty
JInclude 20.10.2014 15:37 Fi
|| MLIB.lib 16.10.2014 9:19 LI
4| [| r
File name: |MLIB.Iib

Files of type: | Library file (*ib) <] e |

Figure 1-34. Adding .lib files dialog
6. Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL\GFLIB\Include, and select the gflib.h file. If the file does
not appear, set the Files of type filter to Text file. Click Add.
7. Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GFLIB,
and select the gflib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add.

GMCLIB User's Guide, Rev. 4, 11/2016
30 NXP Semiconductors

4
Chapter 1 Library

8. Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL\GMCLIB\Include, and select the gmclib.h file. If the file
does not appear, set the Files of type filter to Text file. Click Add.

9. Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL
\GMCLIB, and select the gmclib.lib file. If the file does not appear, set the Files of
type filter to Library file. Click Add.

10. Now, all necessary files are in the project tree; see Figure 1-35. Click Close.

|| Project n @
=% Project: MyProject01
=g Targetl
I Source Group 1
=l RTCESL
_1 mlibh
L1 MUB.lib
_1 gflib.h
] GFLBIib
_1 gmclib.h
1 GMCLIB.lib
& cmsis
B@ Device

Figure 1-35. Project workspace

1.4.5 Library path setup
The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog
appears.

2. Select the C/C++ tab. See Figure 1-36.

3. In the Include Paths text box, type the following paths (if there are more paths, they

must be separated by ';') or add them by clicking the ... button next to the text box:
e "C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\MLIB\Include"
e "C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GFLIB\Include"
o "C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GMCLIB\Include"

Click OK.

Click OK in the main dialog.

Nl

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 31

A ————
Library integration into project (Keil pVision)

*]

-
Options for Target 'Target

Device I Targetl Outputl IJstingl User C/Ces |A5m I IJnkerI Debugl |Kilities I

— Preprocessaor Symbols

Diefine: I
Undefine: I

— Language / Code Generation

[~ Strict ANSIC Wamings:
Optimization: Im [Enum Container always int I‘D“" Wamings "I
[Optimize for Time I Plain Charis Signed [Thumb Mode
[Split Load and Store Muttiple [Read-Only Position Independent [No Auto Includes
[~ One ELF Section per Function [~ Read-Write Position Independent [~ C59 Mode

Include ||
Paths

Mizc I
Controls

Compiler |-¢ —cpu Cortex-M0+ -D__EVAL g 00 —apcs=intenwork
control |- C:\KeilProjects \MyProject01\RTE
string

Figure 1-36. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
1'... from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-37.

GMCLIB User's Guide, Rev. 4, 11/2016
32 NXP Semiconductors

4
Chapter 1 Library

Add MNew Item to Group "Source Group 1°

Create a new C source file and add it to the projed
C | CFie ()

@ C++ File (cpp)
\ﬂ Asm File (.5)

\ﬂ Header File (h)
é Teat File (i)
@ Image File (%)
7‘@ User Code Template

Type:
Marme: | i, &
Location: | C:\KeilProjects\MyProjectd1
|
Add Close |
R —

Figure 1-37. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and
create a main function:
#include "mlib.h"

#include "gflib.h"
#include "gmclib.h"

int main(void)

{

while (1) ;

}
When you click the Build (F7) icon, the project will be compiled without errors.

1.5 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
GMCLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CMO_RTCESL_4.5_IAR). If you have a different installation
path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Memory-mapped divide and square root support
chapter otherwise read next chapter.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 33

Library integration into project (IAR Embedded Workbench)

1.5.1 New project (without MCUXpresso SDK)

This example uses the NXP MKV 10Z32xxx7 part, and the default installation path (C:
\NXP\RTCESL\CMO_RTCESL_4.5_IAR) is supposed. To start working on an
application, create a new project. If the project already exists and is opened, skip to the
next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.

2. In the main menu, select Project > Create New Project... so that the "Create New

Project" dialog appears. See Figure 1-38.

Create New Project A ﬁ

Taol chain: [&RM -

Project templates:
- asm P
- C++
Il |75 ‘_

DLIE [C, C++ with exceptions and RTTI] | &
DLIE [C, Extended Embedded C++)

m

1

R e |

Dezcription:
C project uzing default tool gettings inchuding an empty main.c file.

[oK] [Cancel]

Figure 1-38. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:
\[ARProjects\MyProjectO1. Type the name of the project, for example, MyProjectO1.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-39.

GMCLIB User's Guide, Rev. 4, 11/2016
34 NXP Semiconductors

Chapter 1 Library

Eile Edit View Project Simulator JTools Window Help
DI &S| i 2R o ~ 4
Workspace x main.cl

lDebug v]

Files £ B P

E}& JMyProjectd] -Deb__ | v | | return 0;

FrIEin.c *]

L@ 3 Output

Figure 1-39. New project
5. In the main menu, go to Project > Options..., and a dialog appears.
6. In the Target tab, select the Device option, and click the button next to the dialog to
select the MCU. In this example, select NXP > KV1x > NXP MKV10Z32xxx7 Click
OK. See Figure 1-40.

Options for node "MyProject01” | 23 |

Categony:

Static Analysis
Runtime Checking
CJC++ Compiler Target | Qutput | Library Configuration | Library Options | MISRAC.200/ 4 | »
Assembler
Qutput Conwverter
Custom Build
Build Actions) Core Cortex-MD=
Linker -
Debugger @ Device NXP MKV10Z32007
Simulator
Angel
CMSIS DAP
GDE Server
IAR. ROM-maritar @ Little FPU
IHet/TTAGIet Big N
Jink/1-Trace BE1Z [reqisters
TI Stellaris ® BES
Macraigor - =
PE micro
RDI
STLIMNK
Third-Party Driver
TLXDS [0K

Processor variant

Endian mode Floating poirt settings

MNone

Advanced SIMD (NEON)

] [Cancel

Figure 1-40. Options dialog

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 35

A ————
Library integration into project (IAR Embedded Workbench)

1.5.2 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated to division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1.
2.
3.

5.

In the main menu, go to Project > Options..., and a dialog appears.
In the left-hand column, select C/C++ Compiler.
In the right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the
right; use the arrow icons for navigation).
In the text box (at the Defined symbols: (one per line)), type the following (See
Figure 1-41):
* RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on
 RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Options for node "MyProject01” S

Cateqgony: Factory Settings

General Options [T Multi-file Compilation

Static Analysis Discard Unuszed Publics
Runtime Checking
e 2 coe | Opmats | o [| P | 412

Assembler
Qutput Converter [lgnore standard include directories

Custom Build Additional include directories: {one per ling)

Build Actions "

Linker E]

Debugger
Simulator
Angel
CMSIS DAP Preinclude file:
GOB Server E]
IAR. ROM-monitor .
I-et/TTAGjet Defined symbols: {one per line)
Jink/1-Trace RTCESL_MMDVSG_ON . @ Eregrocessor output 1110 file
reserve comments

Generate Hine directives

TI Stellaris
Macraigor I
PE micro

RDI

ST-LIMNK
Third-Party Driver
TLXDS

[Ok] l Cancel

Figure 1-41. Defined symbols
Click OK in the main dialog.

GMCLIB User's Guide, Rev. 4, 11/2016

36

NXP Semiconductors

Chapter 1 Library

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.5.3 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1.

2.

i

In the main menu, go to Tools > Configure Custom Argument Variables..., and a
dialog appears.

Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-42.

B ' Configure Custom Argument Variables %

Workspace | Global

~ahle Grour
Enable Group

MNew Group m

|'\
‘ Flanie. ..
.

Mame: PATH

lable...

OK] l Cancel =

prt...

Expand/Collapse Al

[Hide disabled groups

[OK] [Cancel

Figure 1-42. New Group

. Click on the newly created group, and click the Add Variable button. A dialog

appears.

Type this name: RTCESL_LOC

To set up the value, look for the library by clicking the '..." button, or just type the
installation path into the box: C:\NXP\RTCESL\CMO_RTCESL_4.5_IAR. Click
OK.

In the main dialog, click OK. See Figure 1-43.

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 37

Library integration into project (IAR Embedded Workbench)

i ' Configure Custom Argument Variables P
Workspace | Global
[PATH Disable Group
-
Add Variable 5
Mame: RCTESL_LOC
Value: C:\NXP\RTCESL\CMO_FSLESL_4.3_IAR] B
[oK l [Cancel]
%

Figure 1-43. New variable

1.5.4 Linking the files into the project

GMCLIB requires MLIB and GFLIB to be included too. The following steps show the
inclusion of all dependent modules.

To include the library files into the project, create groups and add them.

1.
2.
3.

Go to the main menu Project > Add Group...

Type RTCESL, and click OK.

Click on the newly created node RTCESL, go to Project > Add Group..., and create
a MLIB subgroup.

Click on the newly created node MLIB, and go to the main menu Project > Add
Files... See Figure 1-45.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\MLIB\Include, and select the m/ib.h file. (If the file does
not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-44.
Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

.
b System (C:) » NXP » RTCESL » CMO_RTCESL 43 IAR » MLIE » Include

———

i Marne Date modified Type
| mlib.h 16.10.2015 9:38 H File
| MLIB_Abs_F16.h 16.10.2015 9:38 H File

Figure 1-44. Add Files dialog
Click on the RTCESL node, go to Project > Add Group..., and create a GFLIB

subgroup.

GMCLIB User's Guide, Rev. 4, 11/2016

38

NXP Semiconductors

8.

9.

10.

1.

12.

13.

14.

15.

Chapter 1 Library

Click on the newly created node GFLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\GFLIB\Include, and select the gflib.h file. (If the file does
not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GFLIB, and select the gflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create a GMCLIB
subgroup.

Click on the newly created node GMCLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\GMCLIB\Include, and select the gmclib.h file. If the file
does not appear, set the file-type filter to Source Files. Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GMCLIB, and select the gmclib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Now you will see the files added in the workspace. See Figure 1-45.

Workspace x
[Debug VI
Files En B
B [MyProjectd1 -Deb_.. v
e CIRTCESL

FaCIGFLUE

| —DGFLUBa

| L— [gflibh

FECGMCLB

| D GMoUBa

| Y— &) gmclib.h

L o [I

— [MLIB.a

— k] mlib.h
FrIdin. c
=1 [Qutput

Figure 1-45. Project workspace

1.5.5 Library path setup

The following steps show the inclusion of all dependent modules:

1.
2.
3.

In the main menu, go to Project > Options..., and a dialog appears.

In the left-hand column, select C/C++ Compiler.

In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in
the right; use the arrow icons for navigation).

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 39

A ————
Library integration into project (IAR Embedded Workbench)
4. In the text box (at the Additional include directories title), type the following folder
(using the created variable):
* SRTCESL_LOCS$\MLIB\Include
» $SRTCESL_LOCS$\GFLIB\Include
« SRTCESL_LOC$\GMCLIB\Include
5. Click OK in the main dialog. See Figure 1-46.

F hl
Options for node "MyProject01” - u

Categony: Factary Settings

General Options [Multi-file Compilatior

Static Analysis Dizzard Unuzed Publics

Runtime Checking

| Language 1 | Language 2 | Code | Optimizations | Output | List | F+ |
Assembler
Qutput Converter
Custom Build
Build Actions [lanore standard include directories
Linker
Debugger

Additional include directories: (one per ling)

i $RTCESL_LOCS\MLIBinclude ~| &)
Simulator SRTCESL_LOCS\GFLIBNncluds

Angel SRTCESL_LOCS\GMCLIE include]|

CMSIS DAP

GDE Server N

IAR ROM-meniter Preinclude file:

Ijet/ITAGjet E]
J-Link/1-Trace
TI Stellaris Defined symbols: (one per line)

Macraigor L [Preprocessor output to file
PE micro Preserve comments

RDIL Generate Hine directives
ST-LIMK
Third-Party Driver
TI XDS

[Ok] [Cancel

Figure 1-46. Library path adition

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib.h"
#include "gflib.h"
#include "gmclib.h"

When you click the Make icon, the project will be compiled without errors.

GMCLIB User's Guide, Rev. 4, 11/2016
40 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GMCLIB_Clark

The GMCLIB_Clark function calculates the Clarke transformation, which is used to
transform values (flux, voltage, current) from the three-phase coordinate system to the
two-phase (a-3) orthogonal coordinate system, according to the following equations:

a=a

Equation 1

_ 1, 1
NN

Equation 2

2.1.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_Clark function are shown in the following table:

Table 2-1. Function versions

Function name Input type Output type Result type

GMCLIB_Clark_F16 GMCLIB_3COOR_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * void

Clarke transformation of a 16-bit fractional three-phase system input to a 16-bit fractional two-
phase system. The input and output are within the fractional range <-1; 1).

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 41

GMCLIB_Clarkinv

2.1.2 Declaration

The available GMCLIB_Clark functions have the following declarations:

void GMCLIB_Clark F16 (const GMCLIB_3COOR T F16 *psIn, GMCLIB 2COOR ALBE T F16 *psOut)

2.1.3 Function use

The use of the GMCLIB_Clark function is shown in the following example:

#include "gmclib.h"

static GMCLTIB_2COOR_ALBE_ T _F16 sAlphaBeta;
static GMCLIB 3COOR_T F16 sAbc;

void Isr (void) ;
void main (void)

{

/* ABC structure initialization */

sAbc.f16A = FRAC16(0.0) ;
sAbc.f16B = FRAC16(0.0) ;
sAbc.f16C = FRAC16(0.0) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* Clarke Transformation calculation */
GMCLIB Clark F16 (&sAbc, &sAlphaBeta) ;

}

2.2 GMCLIB_Clarkinv

The GMCLIB_ClarkInv function calculates the Clarke transformation, which is used to
transform values (flux, voltage, current) from the two-phase (Q-f3) orthogonal coordinate
system to the three-phase coordinate system, according to the following equations:

Equation 3

b

Equation 4

Equation 5

GMCLIB User's Guide, Rev. 4, 11/2016

42

NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.2.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_ClarkInv function are shown in the following
table:

Table 2-2. Function versions

Function name Input type Output type Result type
GMCLIB_Clarklnv_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * void

Inverse Clarke transformation with a 16-bit fractional two-phase system input and a 16-bit
fractional three-phase output. The input and output are within the fractional range <-1; 1).

2.2.2 Declaration
The available GMCLIB_ClarkInv functions have the following declarations:

void GMCLIB_ ClarkInv_F16 (const GMCLIB_2COOR ALBE T F16 *psIn, GMCLIB_3COOR_T F16 *psOut)

2.2.3 Function use
The use of the GMCLIB_ClarkInv function is shown in the following example:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_ T F16 sAlphaBeta;
static GMCLIB 3COOR_T F16 sAbc;

void Isr (void) ;
void main (void)

/* Alpha, Beta structure initialization */
sAlphaBeta.fl16Alpha = FRAC16(0.0) ;
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Periodical function or interrupt */
void Isr(void)

{

/* Inverse Clarke Transformation calculation */
GMCLIB ClarkInv F16 (&sAlphaBeta, &sAbc);

}

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 43

GMCLIB_Park

2.3 GMCLIB_Park

The GMCLIB_Park function calculates the Park transformation, which transforms values
(flux, voltage, current) from the stationary two-phase (0-f3) orthogonal coordinate system
to the rotating two-phase (d-q) orthogonal coordinate system, according to the following
equations:

d = a-cos(0)+ f-sin(0)
Equation 6
q=p- cos(@) -a sin(@)
Equation 7
where:

* O is the position (angle)

2.3.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_Park function are shown in the following table:

Table 2-3. Function versions

Function name Input type Output type Result type
GMCLIB_Park_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_2COOR_DQ_T_F16 * void
GMCLIB_2COOR_SINCOS_T_F16 *

The Park transformation of a 16-bit fractional two-phase stationary system input to a 16-bit
fractional two-phase rotating system, using a 16-bit fractional angle two-component (sin / cos)
position information. The inputs and the output are within the fractional range <-1 ; 1).

2.3.2 Declaration
The available GMCLIB_Park functions have the following declarations:

void GMCLIB_Park F16 (const GMCLIB_2COOR_ALBE_T_F16 *psIn, const GMCLIB_2COOR_SINCOS_ T F16
*psAnglePos, GMCLIB 2COOR DQ T F16 *psOut)

GMCLIB User's Guide, Rev. 4, 11/2016
44 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.3.3 Function use
The use of the GMCLIB_Park function is shown in the following example:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB 2COOR DQ T F16 sDQ;
static GMCLIB 2COOR_SINCOS T F16 sAngle;

void Isr(void) ;
void main (void)

{

/* Alpha, Beta structure initialization */
sAlphaBeta.fl6Alpha = FRAC16(0.0);
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Angle structure initialization */

sAngle.f16Sin = FRAC16(0.0) ;
sAngle.fl16Cos = FRAC16(1.0) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* Park Transformation calculation */
GMCLIB Park F16 (&sAlphaBeta, &sAngle, &sDQ) ;

}

2.4 GMCLIB Parkinv

The GMCLIB_ParkInv function calculates the Park transformation, which transforms
values (flux, voltage, current) from the rotating two-phase (d-q) orthogonal coordinate
system to the stationary two-phase (a-f8) coordinate system, according to the following
equations:

a=d-cos(#) — g-sin(0)
Equation 8
S =d-sin(6)+ g-cos(6)
Equation 9
where:

* O is the position (angle)

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 45

A
GMCLIB_Parkinv

2.4.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_ParkInv function are shown in the following
table:

Table 2-4. Function versions

Function name Input type Output type Result type
GMCLIB_Parkinv_F16 GMCLIB_2COOR_DQ_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * |void
GMCLIB_2COOR_SINCOS_T_F16 *

Inverse Park transformation of a 16-bit fractional two-phase rotating system input to a 16-bit
fractional two-phase stationary system, using a 16-bit fractional angle two-component (sin / cos)
position information. The inputs and the output are within the fractional range <-1 ; 1).

2.4.2 Declaration
The available GMCLIB_ParkInv functions have the following declarations:

void GMCLIB_ ParkInv F16 (const GMCLIB 2COOR DQ T F16 *psIn, const GMCLIB 2COOR_SINCOS T F16
*psAnglePos, GMCLIB 2COOR ALBE T F16 *psOut)

2.4.3 Function use

The use of the GMCLIB_ParkInv function is shown in the following example:

#include "gmclib.h"

static GMCLIB 2COOR _ALBE T F16 sAlphaBeta;
static GMCLIB 2COOR DQ T F16 sDQ;
static GMCLIB 2COOR_SINCOS T F16 sAngle;

void Isr (void) ;

void main (void)

{
/* D, Q structure initialization */
sDQ.f16D = FRAC16(0.0) ;
sDQ.f16Q = FRAC16(0.0) ;

/* Angle structure initialization */
sAngle.f16Sin = FRAC16(0.0) ;
sAngle.f16Cos = FRAC16(1.0);

}

/* Periodical function or interrupt */

GMCLIB User's Guide, Rev. 4, 11/2016
46 NXP Semiconductors

4
Chapter 2 Algorithms in detail

void Isr (void)

/* Inverse Park Transformation calculation */
GMCLIB ParkInv_F16 (&sDQ, &sAngle, &sAlphaBeta);

}

2.5 GMCLIB_DecouplingPMSM

The GMCLIB_DecouplingPMSM function calculates the cross-coupling voltages to
eliminate the d-q axis coupling that causes nonlinearity of the control.

The d-q model of the motor contains cross-coupling voltage that causes nonlinearity of
the control. Figure 2-1 represents the d-q model of the motor that can be described using
the following equations, where the underlined portion is the cross-coupling voltage:

. d . .
Ug=Rs iyt Lygrigt Lo 0l
. d. .
ug=Rsig+ Logriqg— Ly 0y iyt gy,
Equation 10

where:

* ug, ug are the d and q voltages

* g, iq are the d and q currents

* R, is the stator winding resistance

* Ly, L are the stator winding d and q inductances
* W, 1s the electrical angular speed

* Y, is the rotor flux constant

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 47

GMCLIB_DecouplingPMSM

la + Pl Uq

| g
?_ controller

P

controller

Figure 2-1. The d-q PMSM model

To eliminate the nonlinearity, the cross-coupling voltage is calculated using the
GMCLIB_DecouplingPMSM algorithm, and feedforwarded to the d and q voltages. The
decoupling algorithm is calculated using the following equations:

Ugdee = Ugq — Lq~ @y~ iq
Ugdec = Ug+ Ld F Wy id

Equation 11
where:

* ug, ug are the d and q voltages; inputs to the algorithm
® Ugdecs Ugdec are the d and q decoupled voltages; outputs from the algorithm

The fractional representation of the d-component equation is as follows:

= — .7 q(L,- . imax)
Uddec = Ug — Wy 1 q Coelimux Umax
imax

kq = Lq * Wel max " gy

Uggee = Ug — W iq" kg

Equation 12

The fractional representation of the g-component equation is as follows:

GMCLIB User's Guide, Rev. 4, 11/2016
48 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Imax

Ugdec = Ug twye id(Ld * Wel max uma)c)

- Imax
kd - Ld * Wel max " Umax
Ugdec = Ug+ Wy ig: kd

Equation 13

where:

* kg, kg are the scaling coefficients

* inax 1S the maximum current

* Upax 1S the maximum voltage

* We] max 18 the maximum electrical speed

The k4 and k parameters must be set up properly.

The principle of the algorithm is depicted in Figure 2-2 :

Decoupling PMSM
. . : | Lo
la + Pl Ug ' + ‘Uddec | + 1 la
%_ controller W Rs+ Lgs g i
| 1 : :
b |
| Wetlqlal WelLq |
T >< i
| WerLala: : Weilq E
T :
" : o oo
{ - ! ' . 1 '
qa + Pl | : ! 1 a
controller : ! : Rs + Lgs |
1 1 1 |
| | i i

Figure 2-2. Algorithm diagram

2.5.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate. The parameters use the
accumulator types.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 49

A ————
GMCLIB_DecouplingPMSM

The available versions of the GMCLIB_DecouplingPMSM function are shown in the
following table:

Table 2-5. Function versions

Function name Input/output type Result type
GMCLIB_DecouplingPMSM_F16 Input GMCLIB_2COOR_DQ_T_F16 * void
GMCLIB_2COOR_DQ_T_F16 *
frac16_t
Parameters GMCLIB_DECOUPLINGPMSM_T_A32 *
Output GMCLIB_2COOR_DQ_T_F16 *
The PMSM decoupling with a 16-bit fractional d-q voltage, current inputs, and a 16-
bit fractional electrical speed input. The parameters are 32-bit accumulator types.
The output is a 16-bit fractional decoupled d-q voltage. The inputs and the output are
within the range <-1; 1).

2.5.2 GMCLIB_DECOUPLINGPMSM_T_A32 type description

Variable name Input type Description
a32KdGain acc32_t Direct axis decoupling parameter. The parameter is within the range <0 ; 65536.0)
a32KgGain acc32_t Quadrature axis decoupling parameter. The parameter is within the range <0 ;
65536.0)

2.5.3 Declaration
The available GMCLIB_DecouplingPMSM functions have the following declarations:

void GMCLIB DecouplingPMSM F16 (const GMCLIB 2COOR DQ T F16 *psUDQ, const
GMCLIB 2COOR _DQ T F1l6 *psIDQ, fraclé t fléeéSpeedEl, const GMCLIB DECOUPLINGPMSM T A32
*psParam, GMCLIB 2COOR DQ T F16 *psUDQDec)

2.5.4 Function use
The use of the GMCLIB_DecouplingPMSM function is shown in the following example:

#include "gmclib.h"

static GMCLIB_2COOR _DQ T F16 sVoltageDQ;

static GMCLIB 2COOR DQ T F16 sCurrentDQ;

static fraclé_t fl6AngularSpeed;

static GMCLIB_ DECOUPLINGPMSM T A32 sDecouplingParam;
static GMCLIB 2COOR DQ T F16 sVoltageDQDecoupled;

GMCLIB User's Guide, Rev. 4, 11/2016
50 NXP Semiconductors

4
Chapter 2 Algorithms in detail

void Isr (void) ;

void main (void)

{
/* Voltage D, Q structure initialization */
sVoltageDQ.£f16D FRAC16(0.0) ;
sVoltageDQ.£16Q FRAC16(0.0) ;

/* Current D, Q structure initialization */
sCurrentDQ.f16D = FRAC16(0.0) ;
sCurrentDQ.f16Q = FRAC16(0.0) ;

/* Speed initialization */
fl6AngularSpeed = FRAC16(0.0) ;

/* Motor parameters for decoupling Kd = 40, Kg = 20 */
sDecouplingParam.a32KdGain = ACC32(40.0) ;
sDecouplingParam.a32KgGain = ACC32(20.0) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* Decoupling calculation */
GMCLIB DecouplingPMSM F16 (&sVoltageDQ, &sCurrentDQ, fl6AngularSpeed, &sDecouplingParam,
&sVoltageDQDecoupled) ;

}

2.6 GMCLIB_ElimDcBusRipFOC

The GMCLIB_ElIimDcBusRipFOC function is used for the correct PWM duty cycle
output calculation, based on the measured DC-bus voltage. The side effect is the
elimination of the the DC-bus voltage ripple in the output PWM duty cycle. This function
1s meant to be used with a space vector modulation, whose modulation index (with
respect to the DC-bus voltage) is an inverse square root of 3.

The general equation to calculate the duty cycle for the above-mentioned space vector
modulation 1s as follows:

_ Yroc
UP WM ™ Udchus

Equation 14

where:

* Upwwm 1s the duty cycle output
* ugoc is the real FOC voltage
* Ugchys 18 the real measured DC-bus voltage

Using the previous equations, the GMCLIB_ElimDcBusRipFOC function compensates
an amplitude of the direct-a and the quadrature-f3 component of the stator-reference
voltage vector, using the formula shown in the following equations:

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 51

A
GMCLIB_ElimDcBusRipFOC

0, Ua=0 A Udcbus=0
L UaEO A ‘Ua|2Udcbus
g
Ug* = U,
‘ -1, U0 A |Ug 2=
Uq
Udcbus) \/57 else
Equation 15
0, Uﬁ:() N Udcbus:()
L Up>0 A |Up|> b
B p g
Uﬂ*z Udcbm‘
-1, Up<0 A |Ug|= g
Yp
Udcbus.\/g’ else
Equation 16

where:

* Ug* is the direct-a duty cycle ratio
* Ug* is the direct-B duty cycle ratio
* Ug is the direct-a voltage

* Ug is the quadrature-f3 voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which
take place in Equation 14 on page 51; the equation is as follows:

U _ UrocUFroc max \/—
PWM Ud‘-bus'Udcbus_max

Equation 17

where:

* Ugoc 1s the scaled FOC voltage

* Ugcbus 18 the scaled measured DC-bus voltage
* Uroc_max 18 the FOC voltage scale

* Ugcbus_max 18 the DC-bus voltage scale

If this algorithm is used with the space vector modulation with the ratio of square root
equal to 3, then the FOC voltage scale is expressed as follows :

_ Udcbusimax
UF OC_max — \I}

Equation 18

The equation can be simplified as follows:

GMCLIB User's Guide, Rev. 4, 11/2016
52 NXP Semiconductors

4
Chapter 2 Algorithms in detail

U Udcbus max
FoC
U _ A [z = Yroc
PWM U dcbus'Udcbusimax Udcbus
Equation 19

The GMCLIB_ElimDcBusRipFOC function compensates an amplitude of the direct-a
and the quadrature-3 component of the stator-reference voltage vector in the fractional
arithmetic, using the formula shown in the following equations:

0, Ua=0 N Ugeps=0
L U,>0 A |Ua|2Udcbus
Uds*=1{ -1 Ua<O0 A Ul Z U jepys
Ugy 1
Udcbus’ ene
Equation 20
0, Up=0 A Ugepus=0
1, Up>0 A Ul Z U yepys
Uﬂ*: '17 Uﬁ<0 AN |Uﬂ|2UdcbuS
Ys
Udcbus’ clse
Equation 21

where:

» Ug™ 1s the direct-a duty cycle ratio
* Ug* is the direct-B duty cycle ratio
* Ug is the direct-a voltage

* Ug is the quadrature-f3 voltage

The GMCLIB_ElimDcBusRipFOC function can be used in general motor-control
applications, and it provides elimination of the voltage ripple on the DC-bus of the power
stage. Figure 2-3 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage using a three-phase uncontrolled rectifier.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 53

A
GMCLIB_ElimDcBusRipFOC

Measured Voltage on the DC-Bus

o 15
[®)]
8 N
© 10
>
5 u
uDcBus
\ \
0
0 0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 009 01
time
Standard Space Vector Modulation with Elimination of the DC-Bus Ripple
1
(]
% /“." "\‘I‘ ,"f \‘. ;“_4’ ‘\\ ff \ J / \ / "\.‘ /.“ \ f‘f \\ ’,/ ‘I“\\I / \\ /,"‘ "\\ ;/ \"‘.‘ j‘/ \ f‘:‘ '\\I i
= 05 ""ua ,rf \'\ / \\\ oy \ N - /WA) / \ / F— Phase A
\/ ‘/J \/ \ “If I“.‘/‘ \ ,.‘“ I\". / \ ;ﬁ \ \"‘.‘ / \‘. :"‘I — /
/\J\,J -/‘\J\VA—/_/L‘] :L,/\)\/\j\/ —)\M NI G E’Ezzz 2
\ \
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time
Angular Velocity of the PMSM with/without Elimination of the DC-Bus Ripple
> 200
S N
?>> 100 « X
0 Angular Velocity of the PMSM with Eliminating of the DC_BUS Ripple —
100 \/ Angular Velocity of the PMSM without Eliminating of the DC_BUS Ripple
} | | | | | | \ \

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 2-3. Results of the DC-bus voltage ripple elimination

2.6.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_ElimDcBusRipFOC function are shown in the
following table:

Table 2-6. Function versions

Function name Input type Output type Result
type
GMCLIB_EIimDcBusRipFOC_F16 frac16_t GMCLIB_2COOR_ALBE_T_F16 * |void
GMCLIB_2COOR_ALBE_T_F16 *

Table continues on the next page...

GMCLIB User's Guide, Rev. 4, 11/2016
54 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Table 2-6. Function versions (continued)

Function name Input type Output type Result
type
Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system, using a 16-bit fractional DC-bus voltage information. The DC-
bus voltage input is within the fractional range <0 ; 1); the stationary (a-B) voltage
input and the output are within the fractional range <-1 ; 1).

NOTE
This algorithm can use the MMDVSQ peripheral module. See
the following chapters for more details:
* Memory-mapped divide and square root support in Kinetis
Design Studio
* Memory-mapped divide and square root support in Keil
uVision
* Memory-mapped divide and square root support in AR
Embedded Workbench

2.6.2 Declaration
The available GMCLIB_ElimDcBusRipFOC functions have the following declarations:

void GMCLIB_ElimDcBusRipFOC_F16 (fraclé_t f£16UDCBus, const GMCLIB 2COOR_ALBE T F16 *psUAlBe,
GMCLIB 2COOR ALBE T F16 *psUAlBeComp)

2.6.3 Function use

The use of the GMCLIB_ElimDcBusRipFOC function is shown in the following
example:

#include "gmclib.h"

static fraclé_t f16UDcBus;
static GMCLIB 2COOR_ALBE T F16 sUAlBe;
static GMCLIB 2COOR_ALBE T F16 sUAlBeComp;

void Isr (void) ;

void main (void)

{

/* Voltage Alpha, Beta structure initialization */
sUAl1Be.f16Alpha = FRAC16(0.0) ;
sUAlBe.fl16Beta = FRAC16(0.0) ;

/* DC bus voltage initialization */
f16DcBus = FRAC16(0.8);

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 55

A
GMCLIB_ElimDcBusRip

/* Periodical function or interrupt */
void Isr(void)

/* FOC Ripple elimination calculation */
GMCLIB ElimDcBusRipFOC_F16 (£16UDcBus, &sUAlBe, &sUAlBeComp) ;

2.7 GMCLIB_ElimDcBusRip

The GMCLIB_ElimDcBusRip function is used for a correct PWM duty cycle output
calculation, based on the measured DC-bus voltage. The side effect is the elimination of
the the DC-bus voltage ripple in the output PWM duty cycle. This function can be used
with any kind of space vector modulation; it has an additional input - the modulation
index (with respect to the DC-bus voltage).

The general equation to calculate the duty cycle is as follows:

U _Yroc .
PWM ™ Ygebus " tmod

Equation 22

where:

Upwwm 1s the duty cycle output

ugoc 1s the real FOC voltage

Ugchus 18 the real measured DC-bus voltage
* 1,04 18 the space vector modulation index

Using the previous equations, the GMCLIB_ElimDcBusRip function compensates an
amplitude of the direct-a and the quadrature-3 component of the stator-reference voltage
vector, using the formula shown in the following equations:

0, Ua=0 A Uddms=() \Y% lmodz()
Udcbus .
L Us>0 A |Ua|2m A o> 0
Uys*= U gebus
’ -1, Uy<O A |Ugl 2ZE2 A g >0
U, .
Ugepus 'Mod Lmod >0
Equation 23
0, U/)’ZO A Udcbus=0 \ imod:O
Udcbus .
L Ug>0 A |Uﬁ|2m A dpea>0
Uﬂ*: Udcbus .
-L Uﬂ<0 A |Uﬁ|2 Lod N lmod>0
Us . .
U gebus “Unod Lmod >0
Equation 24

GMCLIB User's Guide, Rev. 4, 11/2016
56 NXP Semiconductors

4
Chapter 2 Algorithms in detail

where:

» Ug™ 1s the direct-a duty cycle ratio
* Ug* is the direct-B duty cycle ratio
e Uy 1s the direct-a voltage

* Ug is the quadrature-f3 voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which
take place in Equation 22 on page 56; the equation is as follows:

U _UpocUroc max . _ Upoc YFOC max .
PWM U gepusUdcbus max bmod Udcbus Udcbus_max bmod

Equation 25

where:

* Ugoc is the scaled FOC voltage

* Ugcbus 18 the scaled measured DC-bus voltage
* Uroc max 18 the FOC voltage scale

* Ugcbus_max 1S the DC-bus voltage scale

Thus, the modulation index in the fractional representation is expressed as follows :

. _ Uroc_max .
bmod fr = Udcbus max Lmod

Equation 26
where:

* in0d4fr 1 the space vector modulation index in the fractional arithmetic

The GMCLIB_ElimDcBusRip function compensates an amplitude of the direct-a and the
quadrature-3 component of the stator-reference voltage vector in the fractional
arithmetic, using the formula shown in the following equations:

0, Ue=0 N Upyepys=0 Vv imodfr =0
Udcbus .
1, U,>0 A |Ua|2imodfr A lmodfl‘>0
Ua* = Udcbus .
-1, Ua<0 A |Ugl 2705 A imodsr>0
Ug . .
m *Umod fr> mod fr >0
Equation 27

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 57

A
GMCLIB_ElimDcBusRip

0, Uﬁ:O A Udcbus:() v imodfr:()
% Us .
L Uﬁ>0 AN |Uﬁ|2% AN lmodfr>0
Uﬂ*: L Ur,<0 U >Udcbus . >0
- pO N NUp[2700 N imodsr
Ys . .
%'Zmodfrs lmodfr>0
Equation 28

where:

» Uy* is the direct-a duty cycle ratio
* Ug* is the direct-B duty cycle ratio
» Uy is the direct-a voltage

* Ug is the quadrature-f3 voltage

The GMCLIB_ElimDcBusRip function can be used in general motor-control
applications, and it provides elimination of the voltage ripple on the DC-bus of the power
stage. Figure 2-4 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage, using a three-phase uncontrolled rectifier.

GMCLIB User's Guide, Rev. 4, 11/2016
58 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Measured Voltage on the DC-Bus

o 15
[®)]
8 N
© 10
>
5 u
uDcBus
\ \
0
0 0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 009 01
time
Standard Space Vector Modulation with Elimination of the DC-Bus Ripple
1
(]
o ™, A N (N N : (™
_O /O Iy / \\ / \"‘. f' \ / \ /A /' \ /A [\ 7\ VAR \ / [
= 05 l“"-‘ ,rf \'\ / \\ l\ /‘; \/ \ \ / \VAR / “ / \/ = Phase A 7
\/ \/ \/ \/ \/ \/ \/ A \"‘_‘ / ‘\ — /
/\J\"’ _k"VA_'\/L' WN\/ —W—/\}-« M — E’Ezzzg
\ \
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time
Angular Velocity of the PMSM with/without Elimination of the DC-Bus Ripple
> 200
2 ™\
?>> 100 « X
0 Angular Velocity of the PMSM with Eliminating of the DC_BUS Ripple —
100 \/ Angular Velocity of the PMSM without Eliminating of the DC_BUS Ripple
} | | | | | | \ \

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 2-4. Results of the DC-bus voltage ripple elimination

2.7.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate. The modulation index is a non-
negative accumulator type value.

The available versions of the GMCLIB_ElimDcBusRip function are shown in the
following table:

Table 2-7. Function versions

Function name Input type Output type Result
type
GMCLIB_ElimDcBusRip_F16sas frac16_t GMCLIB_2COOR_ALBE_T_F16 * |void
acc32_t

Table continues on the next page...

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 59

GMCLIB_ElimDcBusRip
Table 2-7. Function versions (continued)

Function name Input type Output type Result
type

GMCLIB_2COOR_ALBE_T_F16 *

Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system using a 16-bit fractional DC-bus voltage information and a 32-bit
accumulator modulation index. The DC-bus voltage input is within the fractional
range <0 ; 1); the modulation index is a non-negative value; the stationary (a-p)
voltage input and output are within the fractional range <-1; 1).

NOTE
This algorithm can use the MMDVSQ peripheral module. See
the following chapters for more details:
* Memory-mapped divide and square root support in Kinetis
Design Studio
* Memory-mapped divide and square root support in Keil
uVision
* Memory-mapped divide and square root support in IAR
Embedded Workbench

2.7.2 Declaration
The available GMCLIB_ElimDcBusRip functions have the following declarations:

void GMCLIB_ElimDcBusRip_Flésas(fraclé_t f16UDCBus, acc32_t a32IdxMod, const
GMCLIB 2COOR_ALBE T F16 *psUAlBeComp, GMCLIB 2COOR_ALBE T F16 *psUAlBe)

2.7.3 Function use
The use of the GMCLIB_ElimDcBusRip function is shown in the following example:

#include "gmclib.h"
static fraclé_t £f16UDcBus;
static acc32 t a32IdxMod;

static GMCLIB_2COOR ALBE T F16 sUAlBe;
static GMCLIB 2COOR ALBE T F16 sUAlBeComp;

void Isr (void) ;
void main (void)
/* Voltage Alpha, Beta structure initialization */

sUAlBe.fl6Alpha = FRAC16(0.0);
sUAlBe.fl6Beta = FRAC16(0.0) ;

GMCLIB User's Guide, Rev. 4, 11/2016
60 NXP Semiconductors

4
Chapter 2 Algorithms in detail

/* SVM modulation index */
a32IdxMod = ACC32(1.3);

/* DC bus voltage initialization */
f16UDcBus = FRAC16(0.8) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* Ripple elimination calculation */
GMCLIB ElimDcBusRip Flésas (£16UDcBus, a32IdxMod, &sUAlBe, &sUAlBeComp) ;

}

2.8 GMCLIB_SvmStd

The GMCLIB_SvmStd function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector, using a special
standard space vector modulation technique.

The GMCLIB_SvmStd function for calculating the duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector, using a special space
vector modulation technique, called standard space vector modulation.

The basic principle of the standard space vector modulation technique can be explained
using the power stage diagram shown in Figure 2-5.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 61

GMCLIB_SvmStd

Figure 2-5. Power stage schematic diagram

The top and bottom switches are working in a complementary mode; for example, if the
top switch S, is on, then the corresponding bottom switch Sy, s off, and vice versa.
Considering that the value 1 is assigned to the ON state of the top switch, and value 0 is
assigned to the ON state of the bottom switch, the switching vector [a, b, ¢]T can be
defined. Creating of such vector allows for numerical definition of all possible switching
states. Phase-to-phase voltages can then be expressed in terms of the following states:

Uus 1 -1 0
Upc|=Upcp 0 1 —1 [Z]
UCA _1 0 1 C

Equation 29

where Upcpys 18 the instantaneous voltage measured on the DC-bus.

Assuming that the motor is completely symmetrical, it is possible to write a matrix
equation, which expresses the motor phase voltages shown in Equation 29 on page 62.

2 -1 -1
-1 2 —1-[2]
-1 -1 21%%

Equation 30

Ua
Uy
U,

_ UDC Bus

GMCLIB User's Guide, Rev. 4, 11/2016
62 NXP Semiconductors

In a three-phase power stage configuration (as shown in Figure 2-5), eight possible

switching states (shown in Figure 2-6) are feasible. These states, together with the

resulting instantaneous output line-to-line and phase voltages, are listed in Table 2-8.

Table 2-8. Switching patterns

Chapter 2 Algorithms in detail

A(B|C U, Up U Uas Ugc Uca Vector
0[{0|O0O 0 0 0 0 0 0 Oo00
11010 2Upceus/3 -Upcaus/3 -Upcaus/3 Ubcaus 0 -Ubcaus Uo
11110 Upceus/3 Upcaus/3 -2UpcBus/3 0 UpcBus -Upceus Ugo
0110 -Upceus/3 2Upceus/3 -Upceus/3 -Ubcsus Ubcsus 0 Ui20
0|11 -2UpcBus/3 Ubcaus/3 Ubcaus/3 -Upcsus 0 Ubcsus U240
0(0]|1 -Upceus/3 -Upceus/3 2UpcBus/3 0 -Ubcsus Ubcsus Usoo
1101 Ubceus/3 -2Upcpus/3 Upcaus/3 Ubcaus -Ubcaus 0 Uss0
1111 0 0 0 0 0 0 O111

The quantities of the direct-a and the quadrature-f3 components of the two-phase
orthogonal coordinate system, describing the three-phase stator voltages, are expressed
using the Clark transformation, arranged in a matrix form:

The three-phase stator voltages - U,, Uy, and U, are transformed using the Clark

-4

1
2

&8
2 2

tl

C

Equation 31

transformation into the direct-a and the quadrature-f3 components of the two-phase
orthogonal coordinate system. The transformation results are listed in Table 2-9.

Table 2-9. Switching patterns and space vectors

A B C Uq Ug Vector
0 0 0 0 0 Oooo
1 0o | o 2Upcaus/3 0 Uo

1 1 0 Ubceus/3 Upcaus/v3 Ueo

0 1 0 -Upceus/3 Ubcaus/v3 Ui20
0 1 1 -2Upcaus/3 0 Usao
0 0 1 -Upceus/3 -Upceus/V3 Usoo
1 0 1 Upcaus/3 -Upcaus/v3 Useo
]]] 0 0 O114

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

63

A
GMCLIB_SvmStd

Figure 2-6 depicts the basic feasible switching states (vectors). There are six nonzero
vectors - Ug, Ug,U120, Uigo, Unag, and Uz, and two zero vectors - O;11 and Oy, usable
for switching. Therefore, the principle of the standard space vector modulation lies in
applying the appropriate switching states for a certain time, and thus generating a voltage
vector identical to the reference one.

U120 UGO
(010) (110)
[1/N3,-1] [1/73,1]

U, Il. I u,
(011) Ouo (100)
(000)
[-2/7/3,0] < P [2/13,0]
IV. VI.

U240 USOD

(001) (101)

[-1/73,-1] [-1/3,1]

Figure 2-6. Basic space vectors

Referring to this principle, the objective of the standard space vector modulation is an
approximation of the reference stator voltage vector Ug, with an appropriate combination
of the switching patterns, composed of basic space vectors. The graphical explanation of
this objective is shown in Figure 2-7 and Figure 2-8.

GMCLIB User's Guide, Rev. 4, 11/2016
64 NXP Semiconductors

Chapter 2 Algorithms in detail

Uiz] Ugo
(010) f-axis (110)
[1N3,-1] [1N3,1]
I Sector Number
To/T*Uq, ' Maximal phase
. N A~ | voltage magnitude = 1
' A 4 v -
b o U S \
Usgo UE / i U0
(011) WA (100) a-axis
[-23,0] ~ X [243,0]
u
T/T*U, *
IV. 30 degrees V.
V.
[AN3-1] [1A3,1]
U240 300
(001) (101)

Figure 2-7. Projection of reference voltage vector in the respective sector

The stator reference voltage vector Ug is phase-advanced by 30° from the direct-a, and
thus can be generated with an appropriate combination of the adjacent basic switching
states U and Ug. These figures also indicate the resultant direct-a and quadrature-3
components for space vectors Uy and Ugy.

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

65

GMCLIB_SvmStd

USO
(110)
[1/V3,1]
Il. Sector Number
Teo/ T"Ueo 60 degrees /

2W3*U,

U,
(100) g-axis

/B 7~ [2/7/3,0]

TJ/T*U, 1N3*u,

30 degrees | VI.

Figure 2-8. Detail of the voltage vector projection in the respective sector

In this case, the reference stator voltage vector Ug is located in sector I, and can be
generated using the appropriate duty-cycle ratios of the basic switching states Uy and
Ugo- The principal equations concerning this vector location are as follows:

T=Te+ T+ T

null

_ T Ty
Us=7 Ugot7 - Up

Equation 32

where Tg(and Ty are the respective duty-cycle ratios, for which the basic space vectors
Teo and T should be applied within the time period T. T is the time, for which the null
vectors Ogyp and Oq; are applied. Those duty-cycle ratios can be calculated using the
following equations:

GMCLIB User's Guide, Rev. 4, 11/2016
66 NXP Semiconductors

Chapter 2 Algorithms in detail

=2 |U - sin60°
Uﬂ

T
=T [Ud+ e

Equation 33

Considering that normalized magnitudes of basic space vectors are [Uggl = [Ugl = 2/ 3,
and by the substitution of the trigonometric expressions sin 60° and tan 60° by their
quantities 2 / y/3, and V3, respectively, the Equation 33 on page 67 can be rearranged for
the unknown duty-cycle ratios Tgy / T and Ty / T as follows:

Teo _

T ~ U

T130 To
Us=—7 "Upot7 "Uso

Equation 34

Sector II is depicted in Figure 2-9. In this particular case, the reference stator voltage
vector Ug is generated using the appropriate duty-cycle ratios of the basic switching
states Ty and Ty,. The basic equations describing this sector are as follows:

T=Tiy0t Tt T

T120 Te0
Us=—7 Uit 7 "Uso

null

Equation 35

where Ty, and Ty are the respective duty-cycle ratios, for which the basic space vectors
Uj,0 and Ug(should be applied within the time period T. T, is the time, for which the
null vectors Oy and Oy are applied. These resultant duty-cycle ratios are formed from
the auxiliary components, termed A and B. The graphical representation of the auxiliary
components is shown in Figure 2-10.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 67

GMCLIB_SvmStd

U1ZU U60
(010) B-axis (110)
[1A3,-1] (H3.1]
ug __"; s Sector Number

. /

74 degrees \

Maximal phase
| voltage magnitude = 1

Ugo D }Ten/T*er \ Us
(011) } (100) o-axis
[-23,0] TTU, [2/7/3,0]
uLI
V. VL.
V.
[-1A3,-1] [-13,1]
U240 USOU
(001) (101)

Figure 2-9. Projection of the reference voltage vector in the respective sector

GMCLIB User's Guide, Rev. 4, 11/2016

68

NXP Semiconductors

Chapter 2 Algorithms in detail

60 degrees
U2 -axis Ueo
(010) b-ax (110)
(13, -1] 1. [1A31]
u,
30 degrees
Teo/ T"Ug,

Sector Number
B=u,

A=1N3*u, o-axis

Figure 2-10. Detail of the voltage vector projection in the respective sector

The equations describing those auxiliary time-duration components are as follows:

sin30° _ 4

sin120° ~ Y8
sin60° _ B

sin60° Ha

Equation 36

Equations in Equation 36 on page 69 have been created using the sine rule.

The resultant duty-cycle ratios T,y / T and Ty / T are then expressed in terms of the
auxiliary time-duration components, defined by Equation 37 on page 69 as follows:

I
A—Jg uﬂ
B=u,

Equation 37

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 69

A
GMCLIB_SvmStd

Using these equations, and also considering that the normalized magnitudes of the basic
space vectors are [U gl = [Ugl = 2 / V3 , the equations expressed for the unknown duty-
cycle ratios of basic space vectors Tj5o/ T and Tg / T can be expressed as follows:

TR U g =4~ B)
FUed=4+5)
Equation 38

The duty-cycle ratios in the remaining sectors can be derived using the same approach.
The resulting equations will be similar to those derived for sector I and sector II.

T
=3)
T,
T =303)

Equation 39

To depict the duty-cycle ratios of the basic space vectors for all sectors, we define:

* Three auxiliary variables:
X= uﬁ
Y =43 - ug)
Z=3us—\3)
Equation 40
* Two expressions - t_1 and t_2, which generally represent the duty-cycle ratios of the
basic space vectors in the respective sector (for example, for the first sector, t_1 and
t_2), represent duty-cycle ratios of the basic space vectors Ugy and U; for the second

sector, t_1 and t_2 represent duty-cycle ratios of the basic space vectors Uj,q and
Ugp, and so on.

The expressions t_1 and t_2, in terms of auxiliary variables X, Y, and Z for each sector,
are listed in Table 2-10.

Table 2-10. Determination of t_1 and t_2 expressions

Sectors Uo, Ugo Ugo, U120 U120, U1go U4g0, U240 U240, Usgo Uszg0, U
t 1 X Y -Y Z -Z -X
t 2 -Z Z X -X -Y Y

For the determination of auxiliary variables X, Y, and Z, the sector number is required.
This information can be obtained using several approaches. The approach discussed here
requires the use of modified Inverse Clark transformation to transform the direct-a and
quadrature-3 components into balanced three-phase quantities Uy, Urerr, and Uz, used
for straightforward calculation of the sector number, to be shown later.

GMCLIB User's Guide, Rev. 4, 11/2016
70 NXP Semiconductors

4
Chapter 2 Algorithms in detail
Uref1= Up

- \I”T'“a

Upef2= 2

_ g \Ig'”a
Uref3= 2

Equation 41

The modified Inverse Clark transformation projects the quadrature-ug component into
U1, @S shown in Figure 2-11 and Figure 2-12, whereas voltages generated by the
conventional Inverse Clark transformation project the direct-ug component into Ueg;.

Components of the Stator Reference Voltage Vector

S 08 ~ N 7
= 0.6 / N //
e 041 / N N /
© 02 N X 7
0.2 N\ /
04 N\ N / /
. N N4
3 A==
;1] l

o

60 120 180 240 300 360
angle

Figure 2-11. Direct-u, and quadrature-u, components of the stator reference voltage
Figure 2-11 depicts the direct-ug and quadrature-ug components of the stator reference

voltage vector Ug, which were calculated using equations ug = cos & and ug = sin 9,
respectively.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 71

A
GMCLIB_SvmStd

Sinusoidal Three-Phase Reference Voltage
L N L

1
08 [~ ~_ NI
0.6 >< >< ><
04 77 7N 7N
.0 \
0.2

amplitude

- NIV NS B—
-04 >< >< m—uref1 |
-0.6 m—uref2]
i AN AN — |
0.8 . uref3
-1 |

0 60 120 180 240 300 360

D10 1B D DR

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6
angle

Figure 2-12. Reference voltages U ef1, Urefo, and U esz

The sector identification tree shown in Figure 2-13 can be a numerical solution of the
approach shown in GMCLIB_SvmStd_Img8.

/\

Urer3 <0 Urefz > 0
Uref2 > 0 Uref2 <0 Urefp > 0 Uef2 <0
Urer1 <0 Urert > 0 Uref1 <0 Uref1 > 0
Sector = VI Sector=1 Sector=11 Sector =V Sector =1V Sector = |l

Figure 2-13. Identification of the sector number

In the worst case, at least three simple comparisons are required to precisely identify the
sector of the stator reference voltage vector. For example, if the stator reference voltage
vector is located as shown in Figure 2-7, the stator-reference voltage vector is phase-
advanced by 30° from the direct a-axis, which results in the positive quantities of uf
and u,.p, and the negative quantity of u,g3; see Figure 2-12. If these quantities are used
as the inputs for the sector identification tree, the product of those comparisons will be
sector I. The same approach identifies sector II, if the stator-reference voltage vector is

GMCLIB User's Guide, Rev. 4, 11/2016
72 NXP Semiconductors

L __4
Chapter 2 Algorithms in detail
located as shown in Figure 2-9. The variables t;, t,, and t3, which represent the switching
duty-cycle ratios of the respective three-phase system, are calculated according to the
following equations:
T—t 1-t 2
h=—">
tz = tl + t_ 1
ty=t,+t 2

Equation 42

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors given for the respective sector; Table 2-10, Equation 31 on page 63, and
Equation 42 on page 73 are specific solely to the standard space vector modulation
technique; other space vector modulation techniques discussed later will require deriving
different equations.

The next step is to assign the correct duty-cycle ratios - t;, t,, and t3, to the respective
motor phases. This is a simple task, accomplished in a view of the position of the stator
reference voltage vector; see Table 4.

Table 2-11. Assignment of the duty-cycle ratios to motor phases

Sectors Ug, Ugo

Uso, U120

U120, U1go

U1g0, U240

U240, Usgo

Uszg0, U

pwm_a

t3

ty

to

pwm_b

to

to

t

pwm_c

t4

t3

t3

The principle of the space vector modulation technique consists of applying the basic
voltage vectors Uxxx and Oxxx for certain time, in such a way that the main vector
generated by the pulse width modulation approach for the period T is equal to the original
stator reference voltage vector Ug. This provides a great variability of arrangement of the
basic vectors during the PWM period T. These vectors might be arranged either to lower
the switching losses, or to achieve diverse results, such as center-aligned PWM, edge-
aligned PWM, or a minimal number of switching states. A brief discussion of the widely
used center-aligned PWM follows.

Generating the center-aligned PWM pattern is accomplished by comparing the threshold
levels pwm_a, pwm_b, and pwm_c with a free-running up-down counter. The timer
counts to one, and then down to zero. It is supposed that when a threshold level is larger
than the timer value, the respective PWM output is active. Otherwise, it is inactive; see
Figure 2-14.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 73

A
GMCLIB_SvmStd

Center-Aligned PWM

pwm_a i :

pwm_cC _}

: T :

[
ol
<

-"-

PHASE_A iJrwg) Tej2 | To2

PHASE_B | v T §

el
b 3

PHASE_C i Jr/a

; 0111 UBO UG ODUD OGUO UCI UBO 0111 E
£ (111) | (110)| (100): (000) (000) (100); (110) (111)

Sector I.
Figure 2-14. Standard space vector modulation technique — center-aligned PWM

Figure 2-15 shows the waveforms of the duty-cycle ratios, calculated using standard
space vector modulation.

For the accurate calculation of the duty-cycle ratios, direct-a, and quadrature-[3
components of the stator reference voltage vector, it must be considered that the duty

cycle cannot be higher than one (100 %); in other words, the assumption V2+4° <1 must be
met.

GMCLIB User's Guide, Rev. 4, 11/2016
74 NXP Semiconductors

Chapter 2 Algorithms in detail

Components of the Stator Reference Voltage Vector

1 H -
) N Ny .
E AN N v
a 05 N\ N\ /
0 N N | / /
N\ Vs /
-0.5 N N == alpha
\\ N —1 beta
y L ! —
0 60 120 180 240 300 360

angle

Standard Space Vector Modulation Technique

o 1 ~ [T NP> Ny

© 09 / /

*é 0.8 Y / /f i

o 0.7 / \ / \ /

9 gg / \\ / ; : \ / f :

204 7 T X : .

_g 03 ;"K \ / Phase A H
0.2[7 _ ,, N s Phase B ;
01— VG ﬁ'_‘__‘f‘se C/
0o 60 120 180 240 300 360

angle

Figure 2-15. Standard space vector modulation technique

2.8.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 75

GMCLIB_Svmlict

The available versions of the GMCLIB_SvmStd function are shown in the following

table.
Table 2-12. Function versions
Function name Input type Output type Result type
GMCLIB_SvmStd_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard space vector modulation with a 16-bit fractional stationary (a-B) input and a 16-bit
fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates the
actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the range

<0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.8.2 Declaration
The available GMCLIB_SvmStd functions have the following declarations:

uintlé t GMCLIB_SvmStd F16 (const GMCLIB 2COOR_ALBE T F16 *psIn, GMCLIB 3COOR T F16 *psOut)

2.8.3 Function use

The use of the GMCLIB_SvmStd function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;

void main (void)

/* Alpha, Beta structure initialization */

sAlphaBeta.fl6Alpha
sAlphaBeta.fl6Beta

= FRAC16(0.0) ;

= FRAC16(0.0) ;

/* Periodical function or interrupt */

void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmStd F16 (&sAlphaBeta, &sAbc);

}

2.9 GMCLIB_Svmict

GMCLIB User's Guide, Rev. 4, 11/2016

76

NXP Semiconductors

4
Chapter 2 Algorithms in detail

The GMCLIB_Svmlct function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector using the general
sinusoidal modulation technique.

The GMCLIB_Svmlct function calculates the appropriate duty-cycle ratios, needed for
generation of the given stator reference voltage vector using the conventional Inverse
Clark transformation. Finding the sector in which the reference stator voltage vector Ug
resides is similar to GMCLIB_SvmStd. This is achieved by first converting the direct-a
and the quadrature-3 components of the reference stator voltage vector Ug into the
balanced three-phase quantities U.f;, Ugefr, and u.r3 using the modified Inverse Clark
transformation:

Upe f1 =u B
g

Upref2 = 2

_TupT \I?:'”a
Upef3= 2

Equation 43

The calculation of the sector number is based on comparing the three-phase reference
voltages Uref;, Uger, and u.p3 with zero. This computation is described by the following
set of rules:

L Uref] >0
a {0, else
. {2, Upef2> 0
0, else
4, Uref3 >0
€ {0, else
Equation 44

After passing these rules, the modified sector numbers are then derived using the
following formula:

sector*=a+b+c

Equation 45

The sector numbers determined by this formula must be further transformed to
correspond to those determined by the sector identification tree. The transformation
which meets this requirement is shown in the following table:

Table 2-13. Transformation of the sectors

Sector* 1 2 3 4

Sector 2 6 1 4

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

77

A
GMCLIB_Svmict

Use the Inverse Clark transformation for transforming values such as flux, voltage, and
current from an orthogonal rotating coordination system (ug, ug) to a three-phase rotating
coordination system (u,, u,, and u.). The original equations of the Inverse Clark
transformation are scaled here to provide the duty-cycle ratios in the range <0 ; 1). These
scaled duty cycle ratios pwm_a, pwm_b, and pwm_c can be used directly by the registers

of the PWM block.

U,
pwm_a=0.5+=

—ugty3up

pwm_b=05+—7
“Ug\3upg

pwm_c=05+—F—

Equation 46

The following figure shows the waveforms of the duty-cycle ratios calculated using the
Inverse Clark transformation.

GMCLIB User's Guide, Rev. 4, 11/2016
78 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Components of the Stator Reference Voltage Vector

11— :
@ - - ~{ ~
5 0.5 \\’{\ \\ ////
2 VAR \ /
© / \\ AN //
0
N\, AN / e
N\ \\ // //
-0.5 - § m—— alpha [
\\\ >< — hetg
_1 ™ ~ - - |
0 60 120 180 240 300 360
angle
Inverse Clark Transform Modulation Technique
8 1 x&“\\\\ ////f x\\\‘\\\ /-’/ ‘.\H.‘.\“x\ /"//f
= 08— ,/ N
. N\ / \\
S 06— ZEN AN
O / \ \ / AN
> 04 T
-] / N\ / e Phase A
o] rs ’ L
0.2 Fam s = Phase B |/
/ \\ a — }Phase C
0 S - . - -
0 60 120 180 240 300 360
angle

Figure 2-16. Inverse Clark transform modulation technique

For an accurate calculation of the duty-cycle ratios and the direct-a and quadrature-3
components of the stator reference voltage vector, the duty cycle cannot be higher than

one (100 %); in other words, the assumption Va2+ £ <1 must be met.

2.9.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 79

GMCLIB_SvmUOn

The available versions of the GMCLIB_Svmlct function are shown in the following

table:
Table 2-14. Function versions
Function name Input type Output type Result type
GMCLIB_Svmict_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (a-B) input and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.9.2 Declaration

The available GMCLIB_Svmlct functions have the following declarations:

uintlé t GMCLIB_SvmIct F16 (const GMCLIB 2COOR_ALBE T F16 *psIn, GMCLIB 3COOR T F16 *psOut)

2.9.3 Function use

The use of the GMCLIB_Svmlct function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;

void main (void)

/* Alpha, Beta structure initialization */

sAlphaBeta.fl6Alpha
sAlphaBeta.fl6Beta

= FRAC16(0.0) ;

= FRAC16(0.0) ;

/* Periodical function or interrupt */

void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmIct F16 (&sAlphaBeta, &sAbc);

}

2.10 GMCLIB_SvmUOn

GMCLIB User's Guide, Rev. 4, 11/2016

80

NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
The GMCLIB_SvmUOn function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector using the general
sinusoidal modulation technique.

The GMCLIB_SvmUOn function for calculating of duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with Og, nulls, where only
one type of null vector Oy is used (all bottom switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with Oy nulls is in
many aspects identical to the approach presented in GMCLIB_SvmStd. However, a
distinct difference lies in the definition of the variables t;, t,, and t3 that represent
switching duty-cycle ratios of the respective phases:

t]:0
L=t +t_2

Equation 47

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors that are defined for the respective sector in Table 2-10.

The generally used center-aligned PWM is discussed briefly in the following sections.
Generating the center-aligned PWM pattern is accomplished practically by comparing the
threshold levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The
timer counts up to 1 (Ox7FFF) and then down to 0 (0x0000). It is supposed that when a
threshold level is larger than the timer value, the respective PWM output is active.
Otherwise it is inactive (see Figure 2-17).

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 81

A
GMCLIB_SvmUOn

Centre-Aligned PWM

pwm_a

pwm_b _

pwm_c,

k4

PHASE_A § =23 o2 |

PHASE_B i =12,

PHASE C

UGU UD ODUU ODDD OUOU ODOD U[] UBU
(110)1 (100} (000)| (000)i (000) | (000) } (100){ (110)

Sector |.

Figure 2-17. Space vector modulation technique with Ogygo nulls — center-aligned PWM

Figure Figure 2-17 shows calculated waveforms of the duty cycle ratios using space
vector modulation with O nulls.

For an accurate calculation of the duty-cycle ratios, direct-a, and quadrature-f3
components of the stator reference voltage vector, consider that the duty cycle cannot be

higher than one (100 %); in other words, the assumption V*+4° <1 must be met.

GMCLIB User's Guide, Rev. 4, 11/2016
82 NXP Semiconductors

Chapter 2 Algorithms in detail

Components of the Stator Reference Voltage Vector

Q : : : : :
© : : : : :
=) - : ; f i ;
3
@© 0 oo /
N s - Toha T
i m— heta
1 i i i l — 1
0 60 120 180 240 300 360
angle
Space Vector Modulation Technique with Oy, Nulls
1 ;
3 f
'E 0.8f
3 0.6
@)
> 04r ; :
S : : : Phase A
© V] R s Phase B H
| : | } /| me— Phase C |
0 0 60 120 180 240 300 360

angle

Figure 2-18. Space vector modulation technique with Ogygo nulls

2.10.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 83

GMCLIB_SvmU7n

The available versions of the GMCLIB_SvmUOn function are shown in the following

table:
Table 2-15. Function versions
Function name Input type Output type Result type
GMCLIB_SvmUOn_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (a-B) input, and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.10.2 Declaration
The available GMCLIB_SvmUOn functions have the following declarations:

uintlé_t GMCLIB_SvmUOn_F16 (const GMCLIB 2COOR ALBE T F16 *psIn, GMCLIB 3COOR_T F16 *psOut)

2.10.3 Function use

The use of the GMCLIB_SvmUOn function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;

void main (void)

/* Alpha, Beta structure initialization */

sAlphaBeta.fl6Alpha
sAlphaBeta.fl6Beta

= FRAC16(0.0) ;

= FRAC16(0.0) ;

/* Periodical function or interrupt */

void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmUOn F16 (&sAlphaBeta, &sAbc);

}

2.11 GMCLIB_SvmU7n

GMCLIB User's Guide, Rev. 4, 11/2016

84

NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
The GMCLIB_SvmU7n function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector, using the general
sinusoidal modulation technique.

The GMCLIB_SvmU7n function for calculating the duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with Oy nulls, where only
one type of null vector Oy is used (all top switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with O;; nulls is
identical (in many aspects) to the approach presented in GMCLIB_SvmStd. However, a
distinct difference lies in the definition of variables t;, t,, and t3 that represent switching
duty-cycle ratios of the respective phases:

ti=T-t_1-t_2
L=t+t_1
L=t,+t_ 2

Equation 48

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors defined for the respective sector in Table 2-10.

The generally-used center-aligned PWM is discussed briefly in the following sections.
Generating the center-aligned PWM pattern is accomplished by comparing threshold
levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The timer
counts up to 1 (Ox7FFF) and then down to 0 (0x0000). It is supposed that when a
threshold level is larger than the timer value, the respective PWM output is active.
Otherwise, it is inactive (see Figure 2-19).

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 85

A
GMCLIB_SvmU7n

Centre-Aligned PWM

1
pwm_a
pwm_b
pwm_c
0

£ T _f

PHASE_A |

PHASE_B | wwa | Tewa | T

PHASE_C EJNU"LM: INULLM: i

e NN VRS RN VAR BN VAN MUME N M o

F(11) L (111)[(110)] (100)} (100) | (110)} (111) L (111)

’ Sector I. '

Figure 2-19. Space vector modulation technique with O411 nulls — center-aligned PWM

Figure Figure 2-19 shows calculated waveforms of the duty-cycle ratios using Space
Vector Modulation with O nulls.

For an accurate calculation of the duty-cycle ratios, direct-a, and quadrature-[3
components of the stator reference voltage vector, it must be considered that the duty

cycle cannot be higher than one (100 %); in other words, the assumption V> +4° <1 must be
met.

GMCLIB User's Guide, Rev. 4, 11/2016
86 NXP Semiconductors

Chapter 2 Algorithms in detail

Components of the Stator Reference Voltage Vector

1

amplitude
o
(&)

_ alpha

= hetg

p i i i —
0 60 120 180 240 300 360
angle
Space Vector Modulation Technique with O, Nulls
1
(%3]
L
_.é 08 ... -
o)
(—5)‘ 0.6 ... -
O . .
>‘ .. E. ? =
5 04 : : : i | m— Phase A
' /\ : ‘/\ "] === Phase C
0 \ i i =~ 7
120 180 240 300 360

angle

Figure 2-20. Space vector modulation technique with O411 nulls

2.11.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 87

GMCLIB_SvmDpwm

The available versions of the GMCLIB_SvmU7n function are shown in the following

table:
Table 2-16. Function versions
Function name Input type Output type Result type
GMCLIB_SvmU7n_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (a-B) input and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.11.2 Declaration

The available GMCLIB_SvmU7n functions have the following declarations:

uintlé_t GMCLIB_SvmU7n_F16 (const GMCLIB 2COOR ALBE T F16 *psIn, GMCLIB 3COOR_T F16 *psOut)

2.11.3 Function use

The use of the GMCLIB_SvmU7n function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;

void main (void)

/* Alpha, Beta structure initialization */

sAlphaBeta.fl6Alpha
sAlphaBeta.fl6Beta

= FRAC16(0.0) ;

= FRAC16(0.0) ;

/* Periodical function or interrupt */

void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmU7n_ F16 (&sAlphaBeta, &sAbc);

}

2.12 GMCLIB_SvmDpwm

GMCLIB User's Guide, Rev. 4, 11/2016

88

NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
The GMCLIB_SvmDpwm function calculates the appropriate duty-cycle ratios needed
for the generation of the given stator-reference voltage vector using the general non-
sinusoidal modulation technique. The GMCLIB_SvmDpwm function is a subset of the
GMCLIB_SvmExDpwm function and includes a power factor angle input. Both
functions are identical if ¢ = 0.

The GMCLIB_SvmDpwm function belongs to the discontinuous PWM modulation
techniques for 3-phase voltage inverters. The advantages of the discontinuous PWM
technique are lower switching loses, but, on the other hand, it can cause higher harmonic
distortion at low modulation indexes. The current sensing at low modulation indexes is
more complicated and less precise when compared with the symmetrical modulation
techniques like GMCLIB_SvmStd. Therefore, the discontinuous and continous SVM are
usually combined together.

Finding the sector in which the reference stator voltage vector Ug resides is similar to
GMCLIB_SvmStd. This is achieved by converting the direct-a and quadrature-[3
components of the reference stator voltage vector Ug into the balanced 3-phase quantities
Uref], Urer2, and U3 using the modified Inverse Clarke transformation:

urefl = uﬂ
\Ig-ua—u/;

Uref2 = 2

*\E Ug U

Uref3= "7

Equation 49

The sector calculation is based on comparing the 3-phase reference voltages Uef;, Ugef,
and u,.s3 with zero. This computation is described by the following figure:

/\

Uref3 < 0 Uref3 > 0
Urefr > 0 Uref2 <0 Uref2 > 0 Uref2 <0
Uref1 < 0 Uref1 > 0 Uref1 < 0 Uref1 > 0
Sector = VI Sector =1 Sector =1l Sector =V Sector = IV Sector =l

Figure 2-21. Identification of the sector number

The knowledge of the sector is necessary for the current sensing especially when shunt
resistors are used. The GMCLIB_SvmDpwm function does not require the sector
directly, but it requires the portion identification explained in the following. The Inverse
Clarke transformation converts the ug, ug voltage components of the reference stator

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 89

GMCLIB_SvmDpwm

voltage vector Ug to 3-phase voltage components u,, up, and u.. The portion
identification selects the portion from the u,, uy, and u. voltages, based on the following

conditions.

u* =0

Partion =l/[Partion=]

u* <0

ua* < 0

Partion = JJ Partion=V Partion=]V

u* <0

Partion=[]]

Figure 2-22. Identification of the portion number

Finally, the corresponding duty cycle is selected according to the portion from the
column of the following table.

Table 2-17. Duty cycle calculation from portions

Portions | Il 1} v \) Vi
Voltage Us30,U30 Usq,Ug0 Ugo,U150 U4s0,U210 Uz10,U270 Usz70,U330
boundaries
pwm_a 1 0 - Urer3 1+ Uper2 0 1 - Urerz 0 + Ureto
pwm_b 1 - Uefo 0 + Uper1 = U 1 0 - Upepo 1+ Uerr=1+Ug 0
pwm_cC 1+ Uref3 0 1- Upef1 = 1- ug 0+ Uref3 1 0- Upef1 = 0- ug

2.12.1 Available versions

This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmDpwm function are shown in the following

table:
Table 2-18. Function versions
Function name Input type Output type Result type
GMCLIB_SvmDpwm_F16 |GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard discontinuous PWM with a 16-bit fractional stationary (a-B) input, and a 16-bit fractional
3-phase output. The result type is a 16-bit unsigned integer, which indicates the actual SVM
sector. The input is within the range <-1 ; 1); the output duty cycle is within the range <0 ; 1). The

output sector is an integer value within the range <1 ; 6>.

GMCLIB User's Guide, Rev. 4, 11/2016
90 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.12.2 Declaration

The available GMCLIB_SvmDpwm functions have the following declarations:

uintl6_t GMCLIB_SvmDpwm F16 (const GMCLIB 2COOR_ALBE T F16 *psIn, GMCLIB 3COOR T F16 *psOut)

2.12.3 Function use

The use of the GMCLIB_SvmDpwm function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB 2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr(void) ;
void main (void)

/* Alpha, Beta structure initialization */
sAlphaBeta.fl6Alpha = FRAC16(0.0) ;
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Periodical function or interrupt */
void Isr(void)

/* Standard Discountinues PWM calculation */
uléSector = GMCLIB SvmDpwm F16 (&sAlphaBeta, &sAbc) ;

2.13 GMCLIB_SvmExDpwm

The GMCLIB_SvmExDpwm function calculates the appropriate duty-cycle ratios needed
for the generation of the given stator-reference voltage vector using the general non-
sinusoidal modulation technique. The GMCLIB_SvmExDpwm function is a superset of
the GMCLIB_SvmDpwm function without the power factor angle input.

The GMCLIB_SvmExDpwm function belongs to the discontinuous PWM modulation
techniques for a 3-phase voltage inverter. The advantages of the discontinuous PWM
technique are lower switching loses, but, on the other hand, it can cause higher harmonic
distortion at low modulation indexes. The current sensing at low modulation indexes is
more complicated and less precise when compared to the symmetrical modulation
techniques like GMCLIB_SvmStd. Therefore, the discontinuous and continuous SVM
are usually combined together.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 91

A ————
GMCLIB_SvmExDpwm

Finding the sector in which the reference stator voltage vector Ug resides is similar to
GMCLIB_SvmStd. This is achieved by converting the direct-a and quadrature-[3

components of the reference stator voltage vector Ug into the balanced 3-phase quantities
Uref], Urer2, and U3 using the modified Inverse Clarke transformation:

urefl = uﬂ
\E-ua—uﬂ

Uref2 = 2

*\E Ug U

Uref3= "7

Equation 50

The sector calculation is based on comparing the 3-phase reference voltages Uef;, Ugef,
and u,.s3 with zero. This computation is described by the following figure:

/\

Uref3 <0 Uref3 > 0
Urefp > 0 Urefp < 0 Uref2 > 0 Urefp < 0
Uref1 < 0 Uref1 > 0 Uref1 < 0 Uref1 > 0
Sector = VI Sector =1 Sector =1l Sector =V Sector = IV Sector =l

Figure 2-23. Identification of the sector number

The knowledge of the sector is necessary for the current sensing especially when shunt
resistors are used. The GMCLIB_SvmExDpwm function does not require the sector
directly, but it requires the portion identification explained in following text. The Park
transformation uses the phase shift of the generated phase voltages and currents - ¢ angle
to rotate the reference stator voltage vector Ug to Ug* with the ug™*, ug* components. The
inverse Clarke transformation converts the ug*, ug* voltage components to 3-phase
voltage components u,*, upy*, and u.*. The portion identification selects the portion from
the u,*, up*, and u.* voltages based on the following conditions.

us= 0 us< 0
Uo< 0 ue = 0 Us < () Us = 0
uc = 0 Uc< 0 Uc = 0 uc< 0

Partion =)/] Partion=] Partion=]] Partion=V Partion=]J) Partion=][]]

Figure 2-24. Identification of the portion number

GMCLIB User's Guide, Rev. 4, 11/2016
92 NXP Semiconductors

Chapter 2 Algorithms in detail

Finally, the corresponding duty cycle is selected according to the portion from the
column of the following table.

Table 2-19. Duty cycle calculation from portions

Portions | Il]l v \'} VI
Voltage Us30,Us0 U3o,Ug0 Ugo,U150 U1s0,U210 Uz10,U270 Usz70,U330
boundaries
pwm_a 1 0 - Urer3 1+ Upeo 0 1 - Upefz 0 + Upefo
me_b 1- Urefo 0+ Upef1 = Uﬁ 1 0- Urefo 1+ Upef1 = 1+ UB 0
pwm_c 1 + Upeis 0 1-Uer1=1-Ug 0 + Upefz 1 0- U1 =0-ug

2.13.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmExDpwm function are shown in the
following table:

Table 2-20. Function versions

Function name Input type Output type Result type
GMCLIB_SvmExDpwm_F1 |GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_2COOR_DQ_T_F16 * uint16_t
6 GMCLIB_2COOR_SINCOS_T_F16 *

Extended discontinuous PWM with a 16-bit fractional stationary (a-8) input, the second input
using a 16-bit fractional (sin(p) / cos(9)) structure of @ angle (-1/6 ; 1/6) in fraction corresponding
(-/6 ; n/6) in radians - angle of the power factor, it is a phase shift of the generated phase
voltages and currents and a 16-bit fractional 3-phase output. The result type is a 16-bit unsigned
integer which indicates the actual SVM sector. The input is within the range <-1 ; 1); the output
duty cycle is within the range <0 ; 1). The output sector is an integer value within the range <1 ;
6>.

2.13.2 Declaration
The available GMCLIB_SvmExDpwm functions have the following declarations:

uintl 6_t GMCLIB SvmExDpwm F16 (const GMCLI B 2COOR_ALBE T Flé *pslIn,const
GMCLIB 2COOR_SINCOS T F16 *psAngle, GMCLIB 3COOR_T F16 *psOut)

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 93

A ————
GMCLIB_SvmExDpwm

2.13.3 Function use
The use of the GMCLIB_SvmExDpwm function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;

static GMCLIB 2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 2COOR_SINCOS T F16 sAlphaBeta;
static GMCLIB_ 3COOR T F16 sAbc;

void Isr(void) ;

void main (void)

{
/* Alpha, Beta structure initialization */
sAlphaBeta.fl6Alpha = FRAC16(0.0);
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Power factor angle structure initialization */
sAngle.fl16Cos = FRAC16(1.0);
sAngle.f16Sin = FRAC16(0.0) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* Extended Discountinues PWM calculation */
uléSector = GMCLIB SvmExDpwm F16 (&sAlphaBeta, &sAngle, &sAbc) ;

GMCLIB User's Guide, Rev. 4, 11/2016
94 NXP Semiconductors

Appendix A
Library types

A.1 bool t

The bool_t type 1s a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool t;
The following figure shows the way in which the data is stored by this type:
Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused LC(;?i
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 1
TRUE
0 0 0 1
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 0
FALSE
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8 t;

The following figure shows the way in which the data is stored by this type:

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 95

uint16_t
Table A-2. Data storage
7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1
255
F F
y 0 | 0 | 0 | 0 1 | 0 | 1 | 1
0 B
0 | 1 | 1 | 1 1 | 1 | 0 | 0
124
7 C
156 1 | o | o | A R
9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uintlé t;
The following figure shows the way in which the data is stored by this type:
Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
65535
F F F F
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 1 | 0 | 1
5
0 0 0 5
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
40768
9 F 4 0

A.4 uint32_t

GMCLIB User's Guide, Rev. 4, 11/2016
96 NXP Semiconductors

4
Appendix A Library types

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32 t;
The following figure shows the way in which the data is stored by this type:
Table A-4. Data storage

31 24 23 16 15 87 0
Value Integer
4294967295 F F F F F F F F
2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
3451051828 C D B 2 D F 3 4
A5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;
The following figure shows the way in which the data is stored by this type:
Table A-5. Data storage

7 6 5 4 3 2 1 0
Value Sign Integer
0 1 | 1 | 1 1 | 1 | 1 | 1
127
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
-128
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
60
3 o}
o7 1 | o | o | A R
9 F

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 97

A
int16_t

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short intlé t;
The following figure shows the way in which the data is stored by this type:
Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer
0o | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
32767
7 F F F
1 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | oo | 0 | 0 | 0
-32768
8 0 0 0
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
-24768
9 F 4 0

A.7 Int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32 t;
The following figure shows the way in which the data is stored by this type:
Table A-7. Data storage

31 24 23 16 15 87 0
Value S | Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4

GMCLIB User's Guide, Rev. 4, 11/2016
98 NXP Semiconductors

4
Appendix A Library types

A.8 frac8 t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within

the range <-1 ; 1). Its definition is as follows:

typedef char frac8 t;

The following figure shows the way in which the data is stored by this type:
Table A-8. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0 1 | 1 | 1 1 | 1 | 1 | 1
0.99219
7 F
1 | 0 | 0 | 0 0 | 0 | 0
-1.0
8 0
0 | 0 | 1 | 1 1 | 1 | 0
0.46875
3 c
1 | 0 | 0 | 1 1 | 1 | 1
-0.75781
9 F

To store a real number as frac8_t, use the FRACS8 macro.

A.9 frac16 t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within

the range <-1 ; 1). Its definition is as follows:

typedef short fraclé t;

The following figure shows the way in which the data is stored by this type:
Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Value

0.99997

-1.0

Fractional

1|1|1|1

1|1|1|1

F

F

1|o|o|o o|o|o|o o|o|o|o o|o|o|o

Table continues on the next page...

GMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

99

frac32_t
Table A-9. Data storage (continued)
8 0 0 0
o|o|1|11|1|o|o1|o|o|11|1|1|o
0.47357
3 C 9 E
1|o|o|11|1|1|1o|1|o|o o|o|o|o
-0.75586
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_ t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32 t;
The following figure shows the way in which the data is stored by this type:
Table A-10. Data storage

31 24 23 16 15 87 0
Value S Fractional
0.9999999995 7 F F F F F F F
-1.0 8 0 0 0 0 0 0 0
0.02606645970 0 3 5 6 2 5 5 0
-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acci16_t

The accl6_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acclé t;

The following figure shows the way in which the data is stored by this type:

GMCLIB User's Guide, Rev. 4, 11/2016
100 NXP Semiconductors

4
Appendix A Library types

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional
o1|1|11|1|1|111|1|11|1|1|1
255.9921875
7 F F F
1|o|o|o o|o|o|o o|o|o|o o|o|o|o
-256.0
8 0 0 0
o|o|o|o o|o|o|o1|o|o|o o|o|o|o
1.0
0 0 8 0
o t 1111|111]1]o]lofo]o]o]o]o
F F 8 0
o|o|o|o o|1|1|o1|1|1|o o|1|o|1
13.7890625
0 6 E 5
1|1|o|1o|o|1|1o|o|1|o o|1|o|o
-89.71875
D 3 2 4

To store a real number as accl16_t, use the ACC16 macro.

A.12 acc32_ t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;
The following figure shows the way in which the data is stored by this type:
Table A-12. Data storage

31 24 23 16 15 87 0
Value S Integer | Fractional
65535.999969
-65536.0
1.0
-1.0
23.789734
-1171.306793

Mm|o|m|lo|w| N
U|lo|mn|o|o|m
Wjo|m|lo|o|m
o|m|m|o|o|m
o|m|o|o|o|m
w|lo|lo|lo|o|m
W| —=|o|o|o|m
Olo|lo|o|o|m

To store a real number as acc32_t, use the ACC32 macro.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 101

A
GMCLIB_3COOR_T_F16

A.13 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_FI16 structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the frac16_t
data type. The structure definition is as follows:

typedef struct
fracle t fl6A;
fracle_t f16B;

fracle t f16C;
} GMCLIB 3COOR_T F16;

The structure description is as follows:

Table A-13. GMCLIB_3COOR_T_F16 members description

Type Name Description
frac16_t f16A A component; 16-bit fractional type
frac16_t f16B B component; 16-bit fractional type
frac16_t f16C C component; 16-bit fractional type

A.14 GMCLIB_2COOR_AB_T_F16

The GMCLIB_2COOR_AB_T_FI16 structure type corresponds to the general two-phase
stationary coordinate system, based on the A and B orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:
typedef struct

fracle t f16A;

fracle_t £f16B;
} GMCLIB 2COOR_AB T F16;

The structure description is as follows:

Table A-14. GMCLIB_2COOR_AB_T_F16 members description

Type Name Description
frac16_t f16A A-component; 16-bit fractional type
frac16_t f16B B-component; 16-bit fractional type

GMCLIB User's Guide, Rev. 4, 11/2016
102 NXP Semiconductors

4
Appendix A Library types

A.15 GMCLIB_2COOR_AB_T_F32

The GMCLIB_2COOR_AB_T_F32 structure type corresponds to the general two-phase
stationary coordinate system, based on the A and B orthogonal components. Each
member is of the frac32_t data type. The structure definition is as follows:
typedef struc

frac32 t f£32Alpha;

frac32_t f32Beta;
} GMCLIB 2COOR AB T F32;

The structure description is as follows:

Table A-15. GMCLIB_2COOR_AB_T_F32 members description

Type Name Description
frac32_t f32A A component; 32-bit fractional type
frac32_t f32B B component; 32-bit fractional type

A.16 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase
stationary coordinate system, based on the Alpha and Beta orthogonal components. Each
member is of the fracl16_t data type. The structure definition is as follows:
typedef struct

fracle t fl6Alpha;

fraclé t fléBeta;
} GMCLIB 2COOR_ALBE T F16;

The structure description is as follows:

Table A-16. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description
frac16_t f16Apha a-component; 16-bit fractional type
frac16_t f16Beta B-component; 16-bit fractional type

A.17 GMCLIB_2COOR_DQ_T_F16

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 103

GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac16_t data type. The structure definition is as follows:

typedef struct
fracle t £f16D;

fracle t £f16Q;
} GMCLIB_2COOR DQ T F16;

The structure description is as follows:

Table A-17. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description
frac16_t f16D D-component; 16-bit fractional type
frac16_t f16Q Q-component; 16-bit fractional type

A.18 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac32_t data type. The structure definition is as follows:

typedef struct
frac32 t £32D;

frac32_t £32Q;
} GMCLIB_2COOR DQ T F32;

The structure description is as follows:
Table A-18. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description
frac32_t f32D D-component; 32-bit fractional type
frac32_t f32Q Q-component; 32-bit fractional type

A.19 GMCLIB_2COOR_SINCOS_T_F16

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the fracl16_t data type. The structure definition is as follows:

GMCLIB User's Guide, Rev. 4, 11/2016
104 NXP Semiconductors

4
Appendix A Library types

typedef struct
fracle t fl6Sin;

fracle_t fléCos;
} GMCLIB_2COOR_SINCOS T F16;

The structure description is as follows:

Table A-19. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description
frac16_t f16Sin Sin component; 16-bit fractional type
frac16_t f16Cos Cos component; 16-bit fractional type

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"
static bool_t bval;
void main (void)

{

bval = FALSE; /* bVal = FALSE */

A.21 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool t)1)

#include "mlib.h"
static bool t bval;
void main (void)

bval = TRUE; /* bval = TRUE */

}

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 105

FRACS

A.22 FRACS

The FRACS8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8 (x) ((frac8_t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : O0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; Ox7F>,
which corresponds to <-1.0 ; 1.0-277>.

#include "mlib.h"
static frac8 t f8val;
void main (void)

f8val = FRAC8(0.187); /* f8val = 0.187 */

A.23 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((fraclé t) ((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) :
0x7FFF))

The input is multiplied by 32768 (=213). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-215>,

#include "mlib.h"
static fraclé_t flé6Val;
void main (void)

fleval = FRAC16(0.736) ; /* £16Val = 0.736 */

}

A.24 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

GMCLIB User's Guide, Rev. 4, 11/2016
106 NXP Semiconductors

4
Appendix A Library types

#define FRAC32(x) ((frac32_t) ((x) < 1 ? ((x) »>= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 2147483648 (=23!). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2731>,

#include "mlib.h"
static frac32_t f32val;
void main (void)

f32Val = FRAC32(-0.1735667) ; /* £32Val = -0.1735667 */

}

A.25 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACCle6 (x) ((acclé_t) ((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : OxX7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"
static acclé_t aléVval;
void main (void)

aléVal = ACC16(19.45627); /* aleévVal = 19.45627 *x/

}

A.26 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32_t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : Ox7FFFFFFF))

The input is multiplied by 32768 (=2!°). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2-15>.

GMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 107

#include "mlib.h"
static acc32_t a32val;
void main (void)

a32Val = ACC32(-13.654437); /* a32vVal = -13.654437 */

}

GMCLIB User's Guide, Rev. 4, 11/2016

108 NXP Semiconductors

How to Reach Us: Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated
circuits based on the information in this document. Freescale reserves the right
Web Support: to make changes without further notice to any products herein.
nxp.com/support

Home Page:
nxp.com

Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical’ parameters that may be provided
in Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its
patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following
address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor,
Inc. ARM and Cortex are the registered trademarks of ARM Limited, in EU and/or
elsewhere. ARM logo is the trademark of ARM Limited. All rights reserved. All
other product or service names are the property of their respective owners.

© 2017 NXP B.V.

Document Number CMOGMCLIBUG
Revision 4, 11/2016

r
4\

Yo
)
oc
w
=
<)
a
|

>
X
K4

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	Memory-mapped divide and square root support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Kinetis Design Studio)
	Memory-mapped divide and square root support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	Memory-mapped divide and square root support
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	Memory-mapped divide and square root support
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	GMCLIB_Clark
	Available versions
	Declaration
	Function use

	GMCLIB_ClarkInv
	Available versions
	Declaration
	Function use

	GMCLIB_Park
	Available versions
	Declaration
	Function use

	GMCLIB_ParkInv
	Available versions
	Declaration
	Function use

	GMCLIB_DecouplingPMSM
	Available versions
	GMCLIB_DECOUPLINGPMSM_T_A32 type description
	Declaration
	Function use

	GMCLIB_ElimDcBusRipFOC
	Available versions
	Declaration
	Function use

	GMCLIB_ElimDcBusRip
	Available versions
	Declaration
	Function use

	GMCLIB_SvmStd
	Available versions
	Declaration
	Function use

	GMCLIB_SvmIct
	Available versions
	Declaration
	Function use

	GMCLIB_SvmU0n
	Available versions
	Declaration
	Function use

	GMCLIB_SvmU7n
	Available versions
	Declaration
	Function use

	GMCLIB_SvmDpwm
	Available versions
	Declaration
	Function use

	GMCLIB_SvmExDpwm
	Available versions
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	GMCLIB_3COOR_T_F16
	GMCLIB_2COOR_AB_T_F16
	GMCLIB_2COOR_AB_T_F32
	GMCLIB_2COOR_ALBE_T_F16
	GMCLIB_2COOR_DQ_T_F16
	GMCLIB_2COOR_DQ_T_F32
	GMCLIB_2COOR_SINCOS_T_F16
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

