
GFLIB User's Guide
ARM® Cortex® M0+

Document Number: CM0GFLIBUG
Rev. 4, 11/2016

GFLIB User's Guide, Rev. 4, 11/2016

2 NXP Semiconductors

Contents

Section number Title Page

Chapter 1
Library

1.1 Introduction.. 5

1.2 Library integration into project (MCUXpresso IDE) ..7

1.3 Library integration into project (Kinetis Design Studio) .. 16

1.4 Library integration into project (Keil µVision) ... 24

1.5 Library integration into project (IAR Embedded Workbench) ... 32

Chapter 2
Algorithms in detail

2.1 GFLIB_Sin... 41

2.2 GFLIB_Cos.. 43

2.3 GFLIB_Atan...44

2.4 GFLIB_AtanYX... 46

2.5 GFLIB_Sqrt..48

2.6 GFLIB_Limit..50

2.7 GFLIB_LowerLimit... 51

2.8 GFLIB_UpperLimit..52

2.9 GFLIB_VectorLimit1...53

2.10 GFLIB_Hyst... 56

2.11 GFLIB_Lut1D.. 58

2.12 GFLIB_LutPer1D...61

2.13 GFLIB_Ramp... 63

2.14 GFLIB_DRamp.. 66

2.15 GFLIB_FlexRamp..70

2.16 GFLIB_DFlexRamp... 74

2.17 GFLIB_Integrator...80

2.18 GFLIB_CtrlBetaIPpAW...83

2.19 GFLIB_CtrlPIpAW.. 88

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 3

GFLIB User's Guide, Rev. 4, 11/2016

4 NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Functions Library (GFLIB) for the family of
ARM Cortex M0+ core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

GFLIB supports several data types: (un)signed integer, fractional, and accumulator. The
integer data types are useful for general-purpose computation; they are familiar to the
MPU and MCU programmers. The fractional data types enable powerful numeric and
digital-signal-processing algorithms to be implemented. The accumulator data type is a
combination of both; that means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

• Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1
• Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1
• Unsigned 32-bit integer —<0 ; 4294967295> with the minimum resolution of 1
• Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution

of 1

The following list shows the fractional types defined in the libraries:

• Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 2-15

• Fixed-point 32-bit fractional —<-1 ; 1 - 2-31> with the minimum resolution of 2-31

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 5

The following list shows the accumulator types defined in the libraries:

• Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 2-7> with the minimum
resolution of 2-7

• Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2-15> with the minimum
resolution of 2-15

1.1.3 API definition

GFLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB_Mac_F32lss(f32Accum, f16Mult1, f16Mult2);

where the function is compiled from four parts:

• MLIB—this is the library prefix
• Mac—the function name—Multiply-Accumulate
• F32—the function output type
• lss—the types of the function inputs; if all the inputs have the same type as the

output, the inputs are not marked

The input and output types are described in the following table:

Table 1-1. Input/output types

Type Output Input

frac16_t F16 s

frac32_t F32 l

acc32_t A32 a

1.1.4 Supported compilers
GFLIB for the ARM Cortex M0+ core is written in C language or assembly language
with C-callable interface depending on the specific function. The library is built and
tested using the following compilers:

• Kinetis Design Studio
• MCUXpresso IDE
• IAR Embedded Workbench
• Keil µVision

Introduction

GFLIB User's Guide, Rev. 4, 11/2016

6 NXP Semiconductors

For the MCUXpresso IDE, the library is delivered in the gflib.a file.

For the Kinetis Design Studio, the library is delivered in the gflib.a file.

For the IAR Embedded Workbench, the library is delivered in the gflib.a file.

For the Keil µVision, the library is delivered in the gflib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gflib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

GFLIB for the ARM Cortex M0+ core is written in C language or assembly language
with C-callable interface depending on the specific function. Some functions from this
library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It
can cause an issue especially when high optimization level is set. Therefore the
optimization level for all inline assembly written functions is defined by compiler
pragmas using macros. The configuration header file RTCESL_cfg.h is located in:
specific library folder\MLIB\Include. The optimization level can be changed by
modifying the macro value for specific compiler. In case of any change the library
functionality is not guaranteed.

Similarly as optimization level the Memory-mapped divide and square root module
support can be disable or enable if it has not been done by defined symbol
RTCESL_MMDVSQ_ON or RTCESL_MMDVSQ_OFF in project setting described in
Memory-mapped divide and square root support cheaper for specific compiler.

1.1.6 Special issues
1. The equations describing the algorithms are symbolic. If there is positive 1, the

number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

1.2 Library integration into project (MCUXpresso IDE)

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 7

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL
\CM0_RTCESL_4.5_MCUX). If you have a different installation path, use that path
instead.

1.2.1 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the MCUXpresso SDK project name node or in the left-hand part, click Properties
or select Project > Properties from the menu. A project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See Figure 1-1.
3. In the right-hand part, under the MCU C Compiler node, click the Preprocessor node.

See Figure 1-1.

Figure 1-1. Defined symbols
4. In the right-hand part of the dialog, click the Add... icon located next to the Defined

symbols (-D) title.

Library integration into project (MCUXpresso IDE)

GFLIB User's Guide, Rev. 4, 11/2016

8 NXP Semiconductors

5. In the dialog that appears (see Figure 1-2), type the following:
• RTCESL_MMDVSQ_ON—to turn the hardware division and square root

support on
• RTCESL_MMDVSQ_OFF—to turn the hardware division and square root

support off
If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Figure 1-2. Symbol definition
6. Click OK in the dialog.
7. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.2.2 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-3.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 9

Figure 1-3. Project properties
3. Click the New… button in the right-hand side.
4. In the dialog that appears (see Figure 1-4), type this variable name into the Name

box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder…, or just type the following path

into the Location box: C:\NXP\RTCESL\CM0_RTCESL_4.5_MCUX. Click OK.

Library integration into project (MCUXpresso IDE)

GFLIB User's Guide, Rev. 4, 11/2016

10 NXP Semiconductors

Figure 1-4. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click

Environment.
7. Click the Add… button in the right-hand side.
8. In the dialog that appears (see Figure 1-5), type this variable name into the Name

box: RTCESL_LOC.
9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CM0_RTCESL_4.5_MCUX.
10. Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-5.
11. Click OK.
12. In the previous dialog, click OK.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 11

Figure 1-5. Environment variable

1.2.3 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.

2. Click Advanced to show the advanced options.
3. To link the library source, select the Link to alternate location (Linked Folder)

option.
4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or

type the variable name into the box. See Figure 1-6.
5. Click Finish, and the library folder is linked in the project. See Figure 1-7.

Library integration into project (MCUXpresso IDE)

GFLIB User's Guide, Rev. 4, 11/2016

12 NXP Semiconductors

Figure 1-6. Folder link

Figure 1-7. Projects libraries paths

1.2.4 Library path setup

GFLIB requires MLIB to be included too. These steps show how to include all dependent
modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.
3. In the right-hand dialog, select the Library Paths tab. See Figure 1-9.
4. Click the Add… button on the right, and a dialog appears.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 13

5. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the
path in the box by adding the following (see Figure 1-8): ${RTCESL_LOC}\MLIB.

6. Click OK, and then click the Add… button.
7. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following: ${RTCESL_LOC}\GFLIB.
8. Click OK, you will see the paths added into the list. See Figure 1-9.

Figure 1-8. Library path inclusion

Figure 1-9. Library paths
9. After adding the library paths, add the library files. Click the Libraries tab. See

Figure 1-11.
10. Click the Add… button on the right, and a dialog appears.
11. Type the following into the File text box (see Figure 1-10): :mlib.a
12. Click OK, and then click the Add… button.
13. Type the following into the File text box: :gflib.a
14. Click OK, and you will see the libraries added in the list. See Figure 1-11.

Library integration into project (MCUXpresso IDE)

GFLIB User's Guide, Rev. 4, 11/2016

14 NXP Semiconductors

Figure 1-10. Library file inclusion

Figure 1-11. Libraries
15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-13.
16. Click the Add… button on the right, and a dialog appears. See Figure 1-12.
17. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\MLIB\Include
18. Click OK, and then click the Add… button.
19. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\GFLIB\Include
20. Click OK, and you will see the paths added in the list. See Figure 1-13. Click OK.

Figure 1-12. Library include path addition

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 15

Figure 1-13. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib.h"
#include "gflib.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Kinetis Design Studio)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Kinetis Design Studio. This example uses the default installation path (C:\NXP
\RTCESL\CM0_RTCESL_4.5_KDS). If you have a different installation path, use that
path instead. If you want to use an existing MCUXpresso SDK project (for example the
hello_world project) see Memory-mapped divide and square root support . If not,
continue with the next section.

Library integration into project (Kinetis Design Studio)

GFLIB User's Guide, Rev. 4, 11/2016

16 NXP Semiconductors

1.3.1 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. Right-click the MyProject01 or MCUXpresso SDK project name node or in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See Figure 1-14.
3. In the right-hand part, under the Cross ARM C compiler node, click the Preprocessor

node. See Figure 1-14.

Figure 1-14. Defined symbols
4. In the right-hand part of the dialog, click the Add... icon located next to the Defined

symbols (-D) title.
5. In the dialog that appears (see Figure 1-15), type the following:

• RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on

• RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 17

Figure 1-15. Symbol definition
6. Click OK in the dialog.
7. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.3.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-16.

Library integration into project (Kinetis Design Studio)

GFLIB User's Guide, Rev. 4, 11/2016

18 NXP Semiconductors

Figure 1-16. Project properties
3. Click the New… button in the right-hand side.
4. In the dialog that appears (see Figure 1-17), type this variable name into the Name

box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder…, or just type the following path

into the Location box: C:\NXP\RTCESL\CM0_RTCESL_4.5_KDS. Click OK.

Figure 1-17. New variable

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 19

6. Create such variable for the environment. Expand the C/C++ Build node and click
Environment.

7. Click the Add… button in the right-hand side.
8. In the dialog that appears (see Figure 1-18), type this variable name into the Name

box: RTCESL_LOC.
9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CM0_RTCESL_4.5_KDS.
10. Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-18.
11. Click OK.
12. In the previous dialog, click OK.

Figure 1-18. Environment variable

1.3.3 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click New > Folder, or select File > New > Folder from the menu. A
dialog appears.

2. Click Advanced to show the advanced options.
3. To link the library source, select the option Link to alternate location (Linked

Folder).
4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or

type the variable name into the box. See Figure 1-19.

Library integration into project (Kinetis Design Studio)

GFLIB User's Guide, Rev. 4, 11/2016

20 NXP Semiconductors

5. Click Finish, and you will see the library folder linked in the project. See Figure
1-20.

Figure 1-19. Folder link

Figure 1-20. Projects libraries paths

1.3.4 Library path setup

GFLIB requires MLIB to be included too. These steps show how to include all dependent
modules:

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.
3. In the right-hand dialog, select the Library Paths tab. See Figure 1-22.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 21

4. Click the Add… button on the right, and a dialog appears.
5. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following (see Figure 1-21): ${RTCESL_LOC}\MLIB.
6. Click OK, and then click the Add… button.
7. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following: ${RTCESL_LOC}\GFLIB.
8. Click OK, and the paths will be visible in the list. See Figure 1-22.

Figure 1-21. Library path inclusion

Figure 1-22. Library paths
9. After adding the library paths, add the library files. Click the Libraries tab. See

Figure 1-24.
10. Click the Add… button on the right, and a dialog appears.
11. Type the following into the File text box (see Figure 1-23): :mlib.a
12. Click OK, and then click the Add… button.
13. Type the following into the File text box: :gflib.a
14. Click OK, and you will see the libraries added in the list. See Figure 1-24.

Library integration into project (Kinetis Design Studio)

GFLIB User's Guide, Rev. 4, 11/2016

22 NXP Semiconductors

Figure 1-23. Library file inclusion

Figure 1-24. Libraries
15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-26.
16. Click the Add… button on the right, and a dialog appears. See Figure 1-25.
17. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\MLIB\Include
18. Click OK, and then click the Add… button.
19. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\GFLIB\Include
20. Click OK, and you will see the paths added in the list. See Figure 1-26. Click OK.

Figure 1-25. Library include path addition

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 23

Figure 1-26. Compiler setting

Type the #include syntax into the code. Include the library into the main.c file. In the left-
hand dialog, open the Sources folder of the project, and double-click the main.c file.
After the main.c file opens up, include the following lines in the #include section:

#include "mlib.h"
#include "gflib.h"

When you click the Build icon (hammer), the project will be compiled without errors.

1.4 Library integration into project (Keil µVision)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil µVision. This example uses the default installation path (C:\NXP\RTCESL
\CM0_RTCESL_4.5_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Memory-mapped divide and square root support chapter otherwise read
next chapter.

1.4.1 NXP pack installation for new project (without MCUXpresso
SDK)

This example uses the NXP MKV10Z32xxx7 part, and the default installation path (C:
\NXP\RTCESL\CM0_RTCESL_4.5_KEIL) is supposed. If the compiler has never been
used to create any NXP MCU-based projects before, check whether the NXP MCU pack
for the particular device is installed. Follow these steps:

1. Launch Keil µVision.

Library integration into project (Keil µVision)

GFLIB User's Guide, Rev. 4, 11/2016

24 NXP Semiconductors

2. In the main menu, go to Project > Manage > Pack Installer….
3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale

(NXP) node.
4. Look for a line called "KVxx Series" and click it.
5. In the right-hand dialog (under the Packs tab), expand the Device Specific node.
6. Look for a node called "Keil::Kinetis_KVxx_DFP." If there are the Install or Update

options, click the button to install/update the package. See Figure 1-27.
7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

Figure 1-27. Pack Installer

1.4.2 New project (without MCUXpresso SDK)
To start working on an application, create a new project. If the project already exists and
is opened, skip to the next section. Follow these steps to create a new project:

1. Launch Keil µVision.
2. In the main menu, select Project > New µVision Project…, and the Create New

Project dialog appears.
3. Navigate to the folder where you want to create the project, for example C:

\KeilProjects\MyProject01. Type the name of the project, for example MyProject01.
Click Save. See Figure 1-28.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 25

Figure 1-28. Create New Project dialog
4. In the next dialog, select the Software Packs in the very first box.
5. Type 'kv10' into the Search box, so that the device list is reduced to the KV10

devices.
6. Expand the KV10 node.
7. Click the MKV10Z32xxx7 node, and then click OK. See Figure 1-29.

Figure 1-29. Select Device dialog
8. In the next dialog, expand the Device node, and tick the box next to the Startup node.

See Figure 1-30.
9. Expand the CMSIS node, and tick the box next to the CORE node.

Library integration into project (Keil µVision)

GFLIB User's Guide, Rev. 4, 11/2016

26 NXP Semiconductors

Figure 1-30. Manage Run-Time Environment dialog
10. Click OK, and a new project is created. The new project is now visible in the left-

hand part of Keil µVision. See Figure 1-31.

Figure 1-31. Project

1.4.3 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog
appears.

2. Select the C/C++ tab. See Figure 1-32.
3. In the Include Preprocessor Symbols text box, type the following:

• RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on

• RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 27

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Figure 1-32. Preprocessor symbols
4. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.4.4 Linking the files into the project

GFLIB requires MLIB to be included too. The following steps show how to include all
dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group… from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.
3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'…

from the menu.
4. Navigate into the library installation folder C:\NXP\RTCESL

\CM0_RTCESL_4.5_KEIL\MLIB\Include, and select the mlib.h file. If the file does
not appear, set the Files of type filter to Text file. Click Add. See Figure 1-33.

Library integration into project (Keil µVision)

GFLIB User's Guide, Rev. 4, 11/2016

28 NXP Semiconductors

Figure 1-33. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESL\CM0_RTCESL_4.5_KEIL\MLIB,

and select the mlib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add. See Figure 1-34.

Figure 1-34. Adding .lib files dialog
6. Navigate into the library installation folder C:\NXP\RTCESL

\CM0_RTCESL_4.5_KEIL\GFLIB\Include, and select the gflib.h file. If the file does
not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CM0_RTCESL_4.5_KEIL\GFLIB,
and select the gflib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add.

8. Now, all necessary files are in the project tree; see Figure 1-35. Click Close.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 29

Figure 1-35. Project workspace

1.4.5 Library path setup

The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog
appears.

2. Select the C/C++ tab. See Figure 1-36.
3. In the Include Paths text box, type the following paths (if there are more paths, they

must be separated by ';') or add them by clicking the … button next to the text box:
• "C:\NXP\RTCESL\CM0_RTCESL_4.5_KEIL\MLIB\Include"
• "C:\NXP\RTCESL\CM0_RTCESL_4.5_KEIL\GFLIB\Include"

4. Click OK.
5. Click OK in the main dialog.

Library integration into project (Keil µVision)

GFLIB User's Guide, Rev. 4, 11/2016

30 NXP Semiconductors

Figure 1-36. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
1'… from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-37.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 31

Figure 1-37. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and

create a main function:

#include "mlib.h"
#include "gflib.h"

int main(void)
{
 while(1);
}

When you click the Build (F7) icon, the project will be compiled without errors.

1.5 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
GFLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CM0_RTCESL_4.5_IAR). If you have a different installation
path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Memory-mapped divide and square root support
chapter otherwise read next chapter.

Library integration into project (IAR Embedded Workbench)

GFLIB User's Guide, Rev. 4, 11/2016

32 NXP Semiconductors

1.5.1 New project (without MCUXpresso SDK)
This example uses the NXP MKV10Z32xxx7 part, and the default installation path (C:
\NXP\RTCESL\CM0_RTCESL_4.5_IAR) is supposed. To start working on an
application, create a new project. If the project already exists and is opened, skip to the
next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.
2. In the main menu, select Project > Create New Project… so that the "Create New

Project" dialog appears. See Figure 1-38.

Figure 1-38. Create New Project dialog
3. Expand the C node in the tree, and select the "main" node. Click OK.
4. Navigate to the folder where you want to create the project, for example, C:

\IARProjects\MyProject01. Type the name of the project, for example, MyProject01.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-39.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 33

Figure 1-39. New project
5. In the main menu, go to Project > Options…, and a dialog appears.
6. In the Target tab, select the Device option, and click the button next to the dialog to

select the MCU. In this example, select NXP > KV1x > NXP MKV10Z32xxx7 Click
OK. See Figure 1-40.

Figure 1-40. Options dialog

Library integration into project (IAR Embedded Workbench)

GFLIB User's Guide, Rev. 4, 11/2016

34 NXP Semiconductors

1.5.2 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated to division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the main menu, go to Project > Options…, and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the

right; use the arrow icons for navigation).
4. In the text box (at the Defined symbols: (one per line)), type the following (See

Figure 1-41):
• RTCESL_MMDVSQ_ON—to turn the hardware division and square root

support on
• RTCESL_MMDVSQ_OFF—to turn the hardware division and square root

support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Figure 1-41. Defined symbols
5. Click OK in the main dialog.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 35

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.5.3 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. In the main menu, go to Tools > Configure Custom Argument Variables…, and a
dialog appears.

2. Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-42.

Figure 1-42. New Group
3. Click on the newly created group, and click the Add Variable button. A dialog

appears.
4. Type this name: RTCESL_LOC
5. To set up the value, look for the library by clicking the '…' button, or just type the

installation path into the box: C:\NXP\RTCESL\CM0_RTCESL_4.5_IAR. Click
OK.

6. In the main dialog, click OK. See Figure 1-43.

Library integration into project (IAR Embedded Workbench)

GFLIB User's Guide, Rev. 4, 11/2016

36 NXP Semiconductors

Figure 1-43. New variable

1.5.4 Linking the files into the project

GFLIB requires MLIB to be included too. The following steps show the inclusion of all
dependent modules.

To include the library files into the project, create groups and add them.

1. Go to the main menu Project > Add Group…
2. Type RTCESL, and click OK.
3. Click on the newly created node RTCESL, go to Project > Add Group…, and create

a MLIB subgroup.
4. Click on the newly created node MLIB, and go to the main menu Project > Add

Files… See Figure 1-45.
5. Navigate into the library installation folder C:\NXP\RTCESL

\CM0_RTCESL_4.5_IAR\MLIB\Include, and select the mlib.h file. (If the file does
not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-44.

6. Navigate into the library installation folder C:\NXP\RTCESL
\CM0_RTCESL_4.5_IAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Figure 1-44. Add Files dialog
7. Click on the RTCESL node, go to Project > Add Group…, and create a GFLIB

subgroup.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 37

8. Click on the newly created node GFLIB, and go to the main menu Project > Add
Files….

9. Navigate into the library installation folder C:\NXP\RTCESL
\CM0_RTCESL_4.5_IAR\GFLIB\Include, and select the gflib.h file. (If the file does
not appear, set the file-type filter to Source Files.) Click Open.

10. Navigate into the library installation folder C:\NXP\RTCESL
\CM0_RTCESL_4.5_IAR\GFLIB, and select the gflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

11. Now you will see the files added in the workspace. See Figure 1-45.

Figure 1-45. Project workspace

1.5.5 Library path setup

The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options…, and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in

the right; use the arrow icons for navigation).
4. In the text box (at the Additional include directories title), type the following folder

(using the created variable):
• $RTCESL_LOC$\MLIB\Include
• $RTCESL_LOC$\GFLIB\Include

5. Click OK in the main dialog. See Figure 1-46.

Library integration into project (IAR Embedded Workbench)

GFLIB User's Guide, Rev. 4, 11/2016

38 NXP Semiconductors

Figure 1-46. Library path adition

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib.h"
#include "gflib.h"

When you click the Make icon, the project will be compiled without errors.

Chapter 1 Library

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 39

Library integration into project (IAR Embedded Workbench)

GFLIB User's Guide, Rev. 4, 11/2016

40 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GFLIB_Sin

The GFLIB_Sin function implements the polynomial approximation of the sine function.
It provides a computational method for the calculation of a standard trigonometric sine
function sin(x), using the 9th order Taylor polynomial approximation. The Taylor
polynomial approximation of a sine function is expressed as follows:

Equation 1.

Equation 2.

where the constants are:

The fractional arithmetic is limited to the range <-1 ; 1), so the input argument can only
be within this range. The input argument is the multiplier of π: sin(π · x), where the user
passes the x argument. Example: if the input is -0.5, it corresponds to -0.5π.

The fractional function sin(π · x) is expressed using the 9th order Taylor polynomial as
follows:

Equation 3.

where:

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 41

2.1.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_Sin function are shown in the following table:

Table 2-1. Function versions

Function name Input type Result type Description

GFLIB_Sin_F16 frac16_t frac16_t Calculation of the sin(π · x), where the input argument is a 16-bit fractional
value normalized to the range <-1 ; 1) that represents an angle in radians
within the range <-π; π). The output is a 16-bit fractional value within the
range <-1 ; 1).

2.1.2 Declaration

The available GFLIB_Sin functions have the following declarations:

frac16_t GFLIB_Sin_F16(frac16_t f16Angle)

2.1.3 Function use

The use of the GFLIB_Sin function is shown in the following example:

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Angle;

void main(void)
{
 f16Angle = FRAC16(0.333333); /* f16Angle = 0.333333 [60°] */

 /* f16Result = sin(f16Angle); (π * f16Angle[rad]) = deg * (π / 180) */
 f16Result = GFLIB_Sin_F16(f16Angle);
}

GFLIB_Sin

GFLIB User's Guide, Rev. 4, 11/2016

42 NXP Semiconductors

2.2 GFLIB_Cos

The GFLIB_Cos function implements the polynomial approximation of the cosine
function. This function computes the cos(x) using the ninth-order Taylor polynomial
approximation of the sine function, and its equation is as follows:

Equation 4.

Because the fractional arithmetic is limited to the range <-1 ; 1), the input argument can
only be within this range. The input argument is the multiplier of π: cos(π · x), where the
user passes the x argument. For example, if the input is -0.5, it corresponds to -0.5π.

2.2.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_Cos function are shown in the following table:

Table 2-2. Function versions

Function name Input type Result type Description

GFLIB_Cos_F16 frac16_t frac16_t Calculation of cos(π · x), where the input argument is a 16-bit fractional
value, normalized to the range <-1 ; 1) that represents an angle in radians
within the range <- π; π). The output is a 16-bit fractional value within the
range <-1 ; 1).

2.2.2 Declaration

The available GFLIB_Cos functions have the following declarations:

frac16_t GFLIB_Cos_F16(frac16_t f16Angle)

2.2.3 Function use

The use of the GFLIB_Cos function is shown in the following example:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 43

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Angle;

void main(void)
{
 f16Angle = FRAC16(0.333333); /* f16Angle = 0.333333 [60°] */

 /* f16Result = cos(f16Angle); (π * f16Angle[rad]) = deg * (π / 180) */
 f16Result = GFLIB_Cos_F16(f16Angle);
}

2.3 GFLIB_Atan

The GFLIB_Atan function implements the polynomial approximation of the arctangent
function. It provides a computational method for calculating the standard trigonometric
arctangent function arctan(x), using the piece-wise minimax polynomial approximation.
Function arctan(x) takes a ratio, and returns the angle of two sides of a right-angled
triangle. The ratio is the length of the side opposite to the angle divided by the length of
the side adjacent to the angle. The graph of the arctan(x) is shown in the following figure:

Figure 2-1. Course of the GFLIB_Atan function

The fractional arithmetic version of the GFLIB_Atan function is limited to a certain
range of inputs <-1 ; 1). Because the arctangent values are the same, with just an opposite
sign for the input ranges <-1 ; 0) and <0 ; 1), the approximation of the arctangent function

GFLIB_Atan

GFLIB User's Guide, Rev. 4, 11/2016

44 NXP Semiconductors

over the entire defined range of input ratios can be simplified to the approximation for a
ratio in the range <0 ; 1). After that, the result will be negated, depending on the input
ratio.

2.3.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-0.25 ; 0.25), which corresponds to the angle <-π / 4 ; π / 4).

The available versions of the GFLIB_Atan function are shown in the following table:

Table 2-3. Function versions

Function name Input type Result type Description

GFLIB_Atan_F16 frac16_t frac16_t Input argument is a 16-bit fractional value within the range <-1 ; 1). The
output is the arctangent of the input as a 16-bit fractional value, normalized
within the range <-0.25 ; 0.25), which represents an angle (in radians) in
the range <-π / 4 ; π / 4) <-45° ; 45°).

2.3.2 Declaration

The available GFLIB_Atan functions have the following declarations:

frac16_t GFLIB_Atan_F16(frac16_t f16Val)

2.3.3 Function use

The use of the GFLIB_Atan function is shown in the following example:

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.57735026918962576450914878050196); /* f16Val = tan(30°) */

 /* f16Result = atan(f16Val); f16Result * 180 => angle[degree] */
 f16Result = GFLIB_Atan_F16(f16Val);
}

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 45

2.4 GFLIB_AtanYX

The GFLIB_AtanYX function computes the angle, where its tangent is y / x (see the
figure below). This calculation is based on the input argument division (y divided by x),
and the piece-wise polynomial approximation.

Figure 2-2. Course of the GFLIB_AtanYX function

The first parameter Y is the ordinate (the x coordinate), and the second parameter X is the
abscissa (the x coordinate). The counter-clockwise direction is assumed to be positive,
and thus a positive angle is computed if the provided ordinate (Y) is positive. Similarly, a
negative angle is computed for the negative ordinate. The calculations are performed in
several steps. In the first step, the angle is positioned within the correct half-quarter of the
circumference of a circle by dividing the angle into two parts: the integral multiple of 45o

(half-quarter), and the remaining offset within the 45o range. Simple geometric properties
of the Cartesian coordinate system are used to calculate the coordinates of the vector with

GFLIB_AtanYX

GFLIB User's Guide, Rev. 4, 11/2016

46 NXP Semiconductors

the calculated angle offset. In the second step, the vector ordinate is divided by the vector
abscissa (y / x) to obtain the tangent value of the angle offset. The angle offset is
computed by applying the GFLIB_Atan function. The sum of the integral multiple of
half-quarters and the angle offset within a single halfquarter form the angle is computed.

The function returns 0 if both input arguments equal 0, and sets the output error flag; in
other cases, the output flag is cleared. When compared to the GFLIB_Atan function, the
GFLIB_AtanYX function places the calculated angle correctly within the fractional range
<-π ; π>.

In the fractional arithmetic, both input parameters are assumed to be in the fractional
range <-1 ; 1). The output is within the range <-1 ; 1), which corresponds to the real
range <-π ; π).

2.4.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1), which corresponds to the angle <-π ; π).

The available versions of the GFLIB_AtanYX function are shown in the following table:

Table 2-4. Function versions

Function name Input type Output type Result type

Y X Error flag

GFLIB_AtanYX_F16 frac16_t frac16_t bool_t * frac16_t

The first input argument is a 16-bit fractional value that contains the ordinate of the input vector (y
coordinate). The second input argument is a 16-bit fractional value that contains the abscissa of the
input vector (x coordinate). The result is the arctangent of the input arguments as a 16-bit fractional
value within the range <-1 ; 1), which corresponds to the real angle range <- π; π). The function sets
the boolean error flag pointed to by the output parameter if both inputs are zero; in other cases, the
output flag is cleared.

NOTE
This algorithm can use the MMDVSQ peripheral module. See
the following chapters for more details:

• Memory-mapped divide and square root support in Kinetis
Design Studio

• Memory-mapped divide and square root support in Keil
µVision

• Memory-mapped divide and square root support in IAR
Embedded Workbench

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 47

2.4.2 Declaration

The available GFLIB_AtanYX functions have the following declarations:

frac16_t GFLIB_AtanYX_F16(frac16_t f16Y, frac16_t f16X, bool_t *pbErrFlag)

2.4.3 Function use

The use of the GFLIB_AtanYX function is shown in the following example:

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Y, f16X;
static bool_t bErrFlag;

void main(void)
{
 f16Y = FRAC16(0.9); /* f16Y = 0.9 */
 f16X = FRAC16(0.3); /* f16X = 0.3 */

 /* f16Result = atan(f16Y / f16X); f16Result * 180 => angle [degree] */
 f16Result = GFLIB_AtanYX_F16(f16Y, f16X, &bErrFlag);
}

2.5 GFLIB_Sqrt

The GFLIB_Sqrt function returns the square root of the input value. The input must be a
non-negative number, otherwise the function returns undefined results. See the following
equation:

Equation 5. Algorithm formula

2.5.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The function is only defined for non-negative inputs. The
function returns undefined results out of this condition.

GFLIB_Sqrt

GFLIB User's Guide, Rev. 4, 11/2016

48 NXP Semiconductors

The available versions of the GFLIB_Sqrt function are shown in the following table:

Table 2-5. Function versions

Function name Input
type

Result
type

Description

GFLIB_Sqrt_F16 frac16_t frac16_t The input value is a 16-bit fractional value, limited to the range <0 ; 1). The
function is not defined out of this range. The output is a 16-bit fractional value
within the range <0 ; 1).

GFLIB_Sqrt_F16l frac32_t frac16_t The input value is a 32-bit fractional value, limited to the range <0 ; 1). The
function is not defined out of this range. The output is a 16-bit fractional value
within the range <0 ; 1).

NOTE
This algorithm can use the MMDVSQ peripheral module. See
the following chapters for more details:

• Memory-mapped divide and square root support in Kinetis
Design Studio

• Memory-mapped divide and square root support in Keil
µVision

• Memory-mapped divide and square root support in IAR
Embedded Workbench

2.5.2 Declaration

The available GFLIB_Sqrt functions have the following declarations:

frac16_t GFLIB_Sqrt_F16(frac16_t f16Val)
frac16_t GFLIB_Sqrt_F16l(frac32_t f32Val)

2.5.3 Function use

The use of the GFLIB_Sqrt function is shown in the following example:

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.5); /* f16Val = 0.5 */

 /* f16Result = sqrt(f16Val) */
 f16Result = GFLIB_Sqrt_F16(f16Val);
}

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 49

2.6 GFLIB_Limit

The GFLIB_Limit function returns the value limited by the upper and lower limits. See
the following equation:

Equation 6. Algorithm formula

2.6.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_Limit functions are shown in the following table:

Table 2-6. Function versions

Function name Input type Result
type

Description

Input Lower
limit

Upper
limit

GFLIB_Limit_F16 frac16_t frac16_t frac16_t frac16_t The inputs are 16-bit fractional values within the range
<-1 ; 1). The function returns a 16-bit fractional value in
the range <f16LLim ; f16ULim>.

GFLIB_Limit_F32 frac32_t frac32_t frac32_t frac32_t The inputs are 32-bit fractional values within the range
<-1 ; 1). The function returns a 32-bit fractional value in
the range <f32LLim ; f32ULim>.

2.6.2 Declaration

The available GFLIB_Limit functions have the following declarations:

frac16_t GFLIB_Limit_F16(frac16_t f16Val, frac16_t f16LLim, frac16_t f16ULim)
frac32_t GFLIB_Limit_F32(frac32_t f32Val, frac32_t f32LLim, frac32_t f32ULim)

2.6.3 Function use

The use of the GFLIB_Limit function is shown in the following example:

GFLIB_Limit

GFLIB User's Guide, Rev. 4, 11/2016

50 NXP Semiconductors

#include "gflib.h"

static frac16_t f16Val, f16ULim, f16LLim, f16Result;

void main(void)
{
 f16ULim = FRAC16(0.8);
 f16LLim = FRAC16(-0.3);
 f16Val = FRAC16(0.9);

 f16Result = GFLIB_Limit_F16(f16Val, f16LLim, f16ULim);
}

2.7 GFLIB_LowerLimit

The GFLIB_LowerLimit function returns the value limited by the lower limit. See the
following equation:

Equation 7. Algorithm formula

2.7.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_LowerLimit functions are shown in the following
table:

Table 2-7. Function versions

Function name Input type Result
type

Description

Input Lower
limit

GFLIB_LowerLimit_F16 frac16_t frac16_t frac16_t The inputs are 16-bit fractional values within the range <-1 ;
1). The function returns a 16-bit fractional value in the range
<f16LLim ; 1).

GFLIB_LowerLimit_F32 frac32_t frac32_t frac32_t The inputs are 32-bit fractional values within the range <-1 ;
1). The function returns a 32-bit fractional value in the range
<f32LLim ; 1).

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 51

2.7.2 Declaration

The available GFLIB_LowerLimit functions have the following declarations:

frac16_t GFLIB_LowerLimit_F16(frac16_t f16Val, frac16_t f16LLim)
frac32_t GFLIB_LowerLimit_F32(frac32_t f32Val, frac32_t f32LLim)

2.7.3 Function use

The use of the GFLIB_LowerLimit function is shown in the following example:

#include "gflib.h"

static frac16_t f16Val, f16LLim, f16Result;

void main(void)
{
 f16LLim = FRAC16(0.3);
 f16Val = FRAC16(0.1);

 f16Result = GFLIB_LowerLimit_F16(f16Val, f16LLim);
}

2.8 GFLIB_UpperLimit

The GFLIB_UpperLimit function returns the value limited by the upper limit. See the
following equation:

Equation 8. Algorithm formula

2.8.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

GFLIB_UpperLimit

GFLIB User's Guide, Rev. 4, 11/2016

52 NXP Semiconductors

The available versions of the GFLIB_UpperLimit functions are shown in the following
table:

Table 2-8. Function versions

Function name Input type Result
type

Description

Input Upper
limit

GFLIB_UpperLimit_F16 frac16_t frac16_t frac16_t The inputs are 16-bit fractional values within the range <-1 ;
1). The function returns a 16-bit fractional value in the range
<-1 ; f16ULim>.

GFLIB_UpperLimit_F32 frac32_t frac32_t frac32_t The inputs are 32-bit fractional values within the range <-1 ;
1). The function returns a 32-bit fractional value in the range
<-1 ; f32ULim>.

2.8.2 Declaration

The available GFLIB_UpperLimit functions have the following declarations:

frac16_t GFLIB_UpperLimit_F16(frac16_t f16Val, frac16_t f16ULim)
frac32_t GFLIB_UpperLimit_F32(frac32_t f32Val, frac32_t f32ULim)

2.8.3 Function use

The use of the GFLIB_UpperLimit function is shown in the following example:

#include "gflib.h"

static frac16_t f16Val, f16ULim, f16Result;

void main(void)
{
 f16ULim = FRAC16(0.3);
 f16Val = FRAC16(0.9);

 f16Result = GFLIB_UpperLimit_F16(f16Val, f16ULim);
}

2.9 GFLIB_VectorLimit1

The GFLIB_VectorLimit1 function returns the limited vector by an amplitude. This
limitation is calculated to achieve that the first component remains unchanged (if the
limitation factor allows).

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 53

Figure 2-3. Input and releated output

The GFLIB_VectorLimit1 function limits the amplitude of the input vector. The input
vector a, b components are passed to the function as the input arguments. The resulting
limited vector is transformed back into the a, b components. The limitation is performed
according to the following equations:

Equation 9

Equation 10

where:

• a, b are the vector coordinates
• a*, b* are the vector coordinates after limitation
• lim is the maximum amplitude

The relationship between the input and limited output vectors is shown in Figure 2-3.

GFLIB_VectorLimit1

GFLIB User's Guide, Rev. 4, 11/2016

54 NXP Semiconductors

If the amplitude of the input vector is greater than the input Lim value, the function
calculates the new coordinates from the Lim value; otherwise the function copies the
input values to the output.

2.9.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_VectorLimit1 function are shown in the following
table:

Table 2-9. Function versions

Function name Input type Output type Result
typeInput Limit

GFLIB_VectorLimit1_F16 GFLIB_VECTORLIMIT_T_F16 * frac16_t GFLIB_VECTORLIMIT_T_F16 * void

Limitation of a two-component 16-bit fractional vector within the range <-1 ; 1) with a 16-bit
fractional limitation amplitude. The function returns a two-component 16-bit fractional vector.

NOTE
This algorithm can use the MMDVSQ peripheral module. See
the following sections for more details:

• Memory-mapped divide and square root support in Kinetis
Design Studio

• Memory-mapped divide and square root support in Keil
µVision

• Memory-mapped divide and square root support in IAR
Embedded Workbench

2.9.2 GFLIB_VECTORLIMIT_T_F16 type description

Variable name Input type Description

f16A frac16_t A-component; 16-bit fractional type.

f16B frac16_t B-component; 16-bit fractional type.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 55

2.9.3 Declaration

The available GFLIB_VectorLimit1 functions have the following declarations:

frac16_t GFLIB_VectorLimit1_F16(const GFLIB_VECTORLIMIT_T_F16 *psVectorIn, frac16_t f16Lim,
GFLIB_VECTORLIMIT_T_F16 *psVectorOut)

2.9.4 Function use

The use of the GFLIB_VectorLimit1 function is shown in the following example:

#include "gflib.h"

static GFLIB_VECTORLIMIT_T_F16 sVector, sResult;
static frac16_t f16MaxAmpl;

void main(void)
{
 f16MaxAmpl = FRAC16(0.5);
 sVector.f16A = FRAC16(-0.4);
 sVector.f16B = FRAC16(0.2);

 GFLIB_VectorLimit1_F16(&sVector, f16MaxAmpl, &sResult);
}

2.10 GFLIB_Hyst

The GFLIB_Hyst function represents a hysteresis (relay) function. The function switches
the output between two predefined values. When the input is higher than the upper
threshold, the output is high; when the input is lower than the lower threshold, the output
is low. When the input is between the two thresholds, the output retains its value. See the
following figure:

GFLIB_Hyst

GFLIB User's Guide, Rev. 4, 11/2016

56 NXP Semiconductors

Figure 2-4. GFLIB_Hyst functionality

The four points in the figure are to be set up in the parameters structure of the function.
For a proper functionality, the HystOn point must be greater than the HystOff point.

2.10.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result, and the result is
within the range <-1 ; 1).

The available versions of the GFLIB_Hyst function are shown in the following table.

Table 2-10. Function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_Hyst_F16 frac16_t GFLIB_HYST_T_F16 * frac16_t The input is a 16-bit fractional value within
the range <-1 ; 1). The output is a two-
state 16-bit fractional value.

2.10.2 GFLIB_HYST_T_F16

Variable name Input
type

Description

f16HystOn frac16_t The point where the output sets the output to the f16OutValOn value when the input rises.
Set by the user.

Table continues on the next page...

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 57

Variable name Input
type

Description

f16HystOff frac16_t The point where the output sets the output to the f16OutValOff value when the input falls.
Set by the user.

f16OutValOn frac16_t The ON value. Set by the user.

f16OutValOff frac16_t The OFF value. Set by the user.

f16OutState frac16_t The output state. Set by the algorithm. Must be initialized by the user.

2.10.3 Declaration

The available GFLIB_Hyst functions have the following declarations:

frac16_t GFLIB_Hyst_F16(frac16_t f16Val, GFLIB_HYST_T_F16 *psParam)

2.10.4 Function use

The use of the GFLIB_Hyst function is shown in the following example:

#include "gflib.h"

static frac16_t f16Result, f16InVal;
static GFLIB_HYST_T_F16 sParam;

void main(void)
{
 f16InVal = FRAC16(-0.11);
 sParam.f16HystOn = FRAC16(0.5);
 sParam.f16HystOff = FRAC16(-0.1);
 sParam.f16OutValOn = FRAC16(0.7);
 sParam.f16OutValOff = FRAC16(0.3);
 sParam.f16OutState = FRAC16(0.0);

 f16Result = GFLIB_Hyst_F16(f16InVal, &sParam);
}

2.11 GFLIB_Lut1D

The GFLIB_Lut1D function implements the one-dimensional look-up table.

Equation 11.

where:

GFLIB_Lut1D

GFLIB User's Guide, Rev. 4, 11/2016

58 NXP Semiconductors

• y is the interpolated value
• y1 and y2 are the ordinate values at the beginning and end of the interpolating

interval, respectively
• x1 and x2 are the abscissa values at the beginning and end of the interpolating

interval, respectively
• x is the input value provided to the function in the X input argument

Figure 2-5. Algorithm diagram - fractional version

The GFLIB_Lut1D function fuses a table of the precalculated function points. These
points are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range
<-1 ; 1>. The last table point is intended for the real value of 1, not the value of 1 from
the fraction numbers, which is lower than the real value of 1. The calculations are based
on the same intervals among the table points. The number of points must be 2n + 1, where
n can range from 1 through to 15.

The function finds two nearest precalculated points of the input argument, and calculates
the output value using the linear interpolation between these two points.

2.11.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 59

The available versions of the GFLIB_Lut1D function are shown in the following table:

Table 2-11. Function versions

Function name Input type Parameters Result type

Table Table size

GFLIB_Lut1D_F16 frac16_t frac16_t * uint16_t frac16_t

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 16-bit fractional values of the
look-up table, and the size of the look-up table. The table size parameter can be in the range <1 ;
15> (that means the parameter is log2 of the number of points + 1). The output is the interpolated 16-
bit fractional value computed from the look-up table.

GFLIB_Lut1D_F32 frac32_t frac32_t * uint16_t frac32_t

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the
look-up table, and the size of the look-up table. The table size parameter can be in the range <1 ;
15> (that means the parameter is log2 of the number of points + 1). The output is the interpolated 32-
bit fractional value computed from the look-up table.

2.11.2 Declaration

The available GFLIB_Lut1D functions have the following declarations:

frac16_t GFLIB_Lut1D_F16(frac16_t f16X, const frac16_t *pf16Table, uint16_t u16TableSize)

2.11.3 Function use

The use of the GFLIB_Lut1D function is shown in the following example:

#include "gflib.h"

static frac16_t f16Result, f16X;
static uint16_t u16TableSize;
static frac16_t f16Table[9] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
FRAC16(0.2), FRAC16(-0.3), FRAC16(-0.8), FRAC16(0.91), FRAC16(0.99)};

void main(void)
{
 u16TableSize = 3; /* size of table = 2 ^ 3 + 1 */
 f16X = FRAC16(0.625); /* f16X = 0.625 */

 /* f16Result = value from look-up table between 7th and 8th position */
 f16Result = GFLIB_Lut1D_F16(f16X, f16Table, u16TableSize);
}

GFLIB_Lut1D

GFLIB User's Guide, Rev. 4, 11/2016

60 NXP Semiconductors

2.12 GFLIB_LutPer1D

The GFLIB_LutPer1D function approximates the one-dimensional arbitrary user function
using the interpolation look-up method. It is periodic.

Equation 12.

where:

• y is the interpolated value
• y1 and y2 are the ordinate values at the beginning and end of the interpolating

interval, respectively
• x1 and x2 are the abscissa values at the beginning and end of the interpolating

interval, respectively
• x is the input value provided to the function in the X input argument

Figure 2-6. Algorithm diagram - fractional version

The GFLIB_LutPer1D fuses a table of the pre-calculated function points. These points
are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range
<-1 ; 1>. The last table point is intended for the real value of 1 not the value of 1 from the
fraction numbers, which is lower than the real value of 1. The calculations are based on
the same intervals among the table points. The floating-point version of the algorithm has

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 61

a defined interval of inputs within the range <min ; max>, where the min and max values
are the parameters of the algorithms. The number of points is within the range <2 ;
65535>, where the first point lies at the min position, and the last point lies at the max
position.

The function finds two nearest precalculated points of the input argument, and calculates
the output value using the linear interpolation between these two points. This algorithm
serves for periodical functions. That means that when the input argument lies behind the
last pre-calculated point of the function, the interpolation is calculated between the last
and first points of the table.

2.12.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

The available versions of the GFLIB_LutPer1D function are shown in the following
table:

Table 2-12. Function versions

Function name Input type Parameters Result type

Table Table size

GFLIB_LutPer1D_F16 frac16_t frac16_t * uint16_t frac16_t

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a structure which contains the 16-bit fractional values of
the periodic look-up table, and the size of the look-up table. The table size parameter can be in
the range <1 ; 15> (that means the parameter is log2 of the number of points). The output is the
interpolated 16-bit fractional value computed from the periodic look-up table.

GFLIB_LutPer1D_F32 frac32_t frac32_t * uint16_t frac32_t

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the
periodic look-up table, and the size of the periodic look-up table. The table size parameter can be
in the range <1 ; 15> (that means the parameter is log2 of the number of points). The output is
the interpolated 32-bit fractional value computed from the periodic look-up table.

2.12.2 Declaration

The available GFLIB_LutPer1D functions have the following declarations:

frac16_t GFLIB_LutPer1D_F16(frac16_t f16X, const frac16_t *pf16Table, uint16_t u16TableSize)

GFLIB_LutPer1D

GFLIB User's Guide, Rev. 4, 11/2016

62 NXP Semiconductors

2.12.3 Function use

The use of the GFLIB_LutPer1D function is shown in the following example:

#include "gflib.h"

static frac16_t f16Result, f16X;
static uint16_t u16TableSize;
static frac16_t f16Table[8] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
FRAC16(0.2), FRAC16(-0.3), FRAC16(-0.8), FRAC16(0.91)};

void main(void)
{
 u16TableSize = 3; /* size of table = 2 ^ 3 */
 f16X = FRAC16(0.25); /* f16X = 0.25 */

 /* f16Result = value from periodic look-up table at 6th position */
 f16Result = GFLIB_LutPer1D_F16(f16X, f16Table, u16TableSize);
}

2.13 GFLIB_Ramp

The GFLIB_Ramp function calculates the up / down ramp with the defined fixed-step
increment / decrement. These two parameters must be set by the user.

For a proper use, it is recommended that the algorithm is initialized by the
GFLIB_RampInit function, before using the GFLIB_Ramp function. The
GFLIB_RampInit function initializes the internal state variable of the GFLIB_Ramp
algorithm with a defined value. You must call the init function when you want the ramp
to be initialized.

The use of the GFLIB_Ramp function is as follows: If the target value is greater than the
ramp state value, the function adds the ramp-up value to the state output value. The
output will not trespass the target value, that means it will stop at the target value. If the
target value is lower than the state value, the function subtracts the ramp-down value
from the state value. The output is limited to the target value, that means it will stop at the
target value. This function returns the actual ramp output value. As time passes, it is
approaching the target value by step increments defined in the algorithm parameters'
structure. The functionality of the implemented ramp algorithm is explained in the next
figure:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 63

Figure 2-7. GFLIB_Ramp functionality

2.13.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_RampInit functions are shown in the following
table:

Table 2-13. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_RampInit_F16 frac16_t GFLIB_RAMP_T_F16 * void Input argument is a 16-bit fractional value that
represents the initialization value. The
parameters' structure is pointed to by a pointer.
The input data value is in the range <-1 ; 1).

GFLIB_RampInit_F32 frac32_t GFLIB_RAMP_T_F32 * void Input argument is a 32-bit fractional value that
represents the initialization value. The
parameters' structure is pointed to by a pointer.
The input data value is in the range <-1 ; 1).

GFLIB_Ramp

GFLIB User's Guide, Rev. 4, 11/2016

64 NXP Semiconductors

The available versions of the GFLIB_Ramp functions are shown in the following table:

Table 2-14. Function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_Ramp_F16 frac16_t GFLIB_RAMP_T_F16 * frac16_t Input argument is a 16-bit fractional value that
represents the target output value. The
parameters' structure is pointed to by a pointer.
The function returns a 16-bit fractional value,
which represents the actual ramp output value.
The input data value is in the range <-1 ; 1), and
the output data value is in the range <-1 ; 1).

GFLIB_Ramp_F32 frac32_t GFLIB_RAMP_T_F32 * frac32_t Input argument is a 32-bit fractional value that
represents the target output value. The
parameters' structure is pointed to by a pointer.
The function returns a 32-bit fractional value,
which represents the actual ramp output value.
The input data value is in the range <-1 ; 1), and
the output data value is in the range <-1 ; 1).

2.13.2 GFLIB_RAMP_T_F16

Variable name Type Description

f16State frac16_t Actual value - controlled by the algorithm.

f16RampUp frac16_t Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.

f16RampDown frac16_t Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.

2.13.3 GFLIB_RAMP_T_F32

Variable name Type Description

f32State frac32_t Actual value - controlled by the algorithm.

f32RampUp frac32_t Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.

f32RampDown frac32_t Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.

2.13.4 Declaration

The available GFLIB_RampInit functions have the following declarations:

void GFLIB_RampInit_F16(frac16_t f16InitVal, GFLIB_RAMP_T_F16 *psParam)
void GFLIB_RampInit_F32(frac32_t f32InitVal, GFLIB_RAMP_T_F32 *psParam)

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 65

The available GFLIB_Ramp functions have the following declarations:

frac16_t GFLIB_Ramp_F16(frac16_t f16Target, GFLIB_RAMP_T_F16 *psParam)
frac32_t GFLIB_Ramp_F32(frac32_t f32Target, GFLIB_RAMP_T_F32 *psParam)

2.13.5 Function use

The use of the GFLIB_RampInit and GFLIB_Ramp functions is shown in the following
example:

#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_RAMP_T_F16 sParam;
static frac16_t f16Target, f16Result;

void Isr(void);

void main(void)
{
 sParam.f16RampUp = FRAC16(0.1);
 sParam.f16RampDown = FRAC16(0.02);
 f16Target = FRAC16(0.75);
 f16InitVal = FRAC16(0.9);
 GFLIB_RampInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_Ramp_F16(f16Target, &sParam);
}

2.14 GFLIB_DRamp

The GFLIB_DRamp function calculates the up / down ramp with the defined step
increment / decrement. The algorithm approaches the target value when the stop flag is
not set, and/or returns to the instant value when the stop flag is set.

GFLIB_DRamp

GFLIB User's Guide, Rev. 4, 11/2016

66 NXP Semiconductors

Figure 2-8. GFLIB_DRamp functionality

For a proper use, it is recommended that the algorithm is initialized by the
GFLIB_DRampInit function, before using the GFLIB_DRamp function. This function
initializes the internal state variable of GFLIB_DRamp algorithm with the defined value.
You must call this function when you want the ramp to be initialized.

The GFLIB_DRamp function calculates a ramp with a different set of up / down
parameters, depending on the state of the stop flag. If the stop flag is cleared, the function
calculates the ramp of the actual state value towards the target value, using the up or
down increments contained in the parameters' structure. If the stop flag is set, the
function calculates the ramp towards the instant value, using the up or down saturation
increments.

If the target value is greater than the state value, the function adds the ramp-up value to
the state value. The output cannot be greater than the target value (case of the stop flag
being cleared), nor lower than the instant value (case of the stop flag being set).

If the target value is lower than the state value, the function subtracts the ramp-down
value from the state value. The output cannot be lower than the target value (case of the
stop flag being cleared), nor greater than the instant value (case of the stop flag being
set).

If the actual internal state reaches the target value, the reach flag is set.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 67

2.14.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_DRampInit function are shown in the following
table:

Table 2-15. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_DRampInit_F16 frac16_t GFLIB_DRAMP_T_F16 * void Input argument is a 16-bit fractional value
that represents the initialization value. The
parameters' structure is pointed to by a
pointer. The input data value is in the range
<-1 ; 1).

GFLIB_DRampInit_F32 frac32_t GFLIB_DRAMP_T_F32 * void Input argument is a 32-bit fractional value
that represents the initialization value. The
parameters' structure is pointed to by a
pointer. The input data value is in the range
<-1 ; 1).

The available versions of the GFLIB_DRamp function are shown in the following table:

Table 2-16. Function versions

Function name Input type Parameters Result type

Target Instant Stop flag

GFLIB_DRamp_F16 frac16_t frac16_t bool_t * GFLIB_DRAMP_T_F16 * frac16_t

The target and instant arguments are 16-bit fractional values. The parameters' structure is pointed to
by a pointer. The function returns a 16-bit fractional value, which represents the actual ramp output
value. The input data values are in the range of <-1 ; 1), the Stop flag parameter is a pointer to a
boolean value, and the output data value is in the range <-1 ; 1).

GFLIB_DRamp_F32 frac32_t frac32_t bool_t * GFLIB_DRAMP_T_F32 * frac32_t

The target and instant arguments are 32-bit fractional values. The parameters' structure is pointed to
by a pointer. The function returns a 32-bit fractional value, which represents the actual ramp output
value. The input data values are in the range <-1 ; 1), the Stop flag parameter is a pointer to a boolean
value, and the output data value is in the range <-1 ; 1).

GFLIB_DRamp

GFLIB User's Guide, Rev. 4, 11/2016

68 NXP Semiconductors

2.14.2 GFLIB_DRAMP_T_F16

Variable name Type Description

f16State frac16_t Actual value - controlled by the algorithm.

f16RampUp frac16_t Value of non-saturation ramp-up increment. The data value is in the range <0 ; 1). Set by
the user.

f16RampDown frac16_t Value of non-saturation ramp-down increment. The data value is in the range <0 ; 1). Set
by the user.

f16RampUpSat frac16_t Value of saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

f16RampDownSat frac16_t Value of saturation ramp-down increment. The data value is in the range <0 ; 1). Set by the
user.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared.
Set by the algorithm.

2.14.3 GFLIB_DRAMP_T_F32

Variable name Type Description

f32State frac32_t Actual value - controlled by the algorithm.

f32RampUp frac32_t Value of non-saturation ramp-up increment. The data value is in the range <0 ; 1). Set by
the user.

f32RampDown frac32_t Value of non-saturation ramp-down increment. The data value is in the range <0 ; 1). Set
by the user.

f32RampUpSat frac32_t Value of saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

f32RampDownSat frac32_t Value of saturation ramp-down increment. The data value is in the range <0 ; 1). Set by the
user.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared.
Set by the algorithm.

2.14.4 Declaration

The available GFLIB_DRampInit functions have the following declarations:

void GFLIB_DRampInit_F16(frac16_t f16InitVal, GFLIB_DRAMP_T_F16 *psParam)
void GFLIB_DRampInit_F32(frac32_t f32InitVal, GFLIB_DRAMP_T_F32 *psParam)

The available GFLIB_DRamp functions have the following declarations:

frac16_t GFLIB_DRamp_F16(frac16_t f16Target, frac16_t f16Instant, const bool_t *pbStopFlag,
GFLIB_DRAMP_T_F16 *psParam)
frac32_t GFLIB_DRamp_F32(frac32_t f32Target, frac32_t f32Instant, const bool_t *pbStopFlag,
GFLIB_DRAMP_T_F32 *psParam)

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 69

2.14.5 Function use

The use of the GFLIB_DRampInit and GFLIB_DRamp functions is shown in the
following example:

#include "gflib.h"

static frac16_t f16InitVal, f16Target, f16Instant, f16Result;
static GFLIB_DRAMP_T_F16 sParam;
static bool_t bStopFlag;

void Isr(void);

void main(void)
{
 sParam.f16RampUp = FRAC16(0.05);
 sParam.f16RampDown = FRAC16(0.02);
 sParam.f16RampUpSat = FRAC16(0.025);
 sParam.f16RampDownSat = FRAC16(0.01);
 f16Target = FRAC16(0.7);
 f16InitVal = FRAC16(0.3);
 f16Instant = FRAC16(0.6);
 bStopFlag = FALSE;

 GFLIB_DRampInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_DRamp_F16(f16Target, f16Instant, &bStopFlag, &sParam);
}

2.15 GFLIB_FlexRamp

The GFLIB_FlexRamp function calculates the up/down ramp with a fixed-step increment
that is calculated according to the required speed change per a defined duration. These
parameters must be set by the user.

The GFLIB_FlexRamp algorithm consists of three functions that must be used for a
proper functionality of the algorithm:

• GFLIB_FlexRampInit - this function initializes the state variable with a defined
value and clears the reach flag

• GFLIB_FlexRampCalcIncr - this function calculates the increment and clears the
reach flag

• GFLIB_FlexRamp - this function calculates the ramp in the periodically called loop

GFLIB_FlexRamp

GFLIB User's Guide, Rev. 4, 11/2016

70 NXP Semiconductors

For a proper use, it is recommended to initialize the algorithm by the
GFLIB_FlexRampInit function. The GFLIB_FlexRampInit function initializes the
internal state variable of the algorithm with a defined value and clears the reach flag. Call
the init function when you want to initialize the ramp.

To calculate the increment, use the GFLIB_FlexRampCalcIncr function. This function is
called at the point when you want to change the ramp output value. This function's inputs
are the target value and duration. The target value is the destination value that you want
to get to. The duration is the time required to change the ramp output from the actual state
to the target value. To be able to calculate the ramp increment, fill the control structure
with the sample time, that means the period of the loop where the GFLIB_FlexRamp
function is called. The structure also contains a variable which determines the maximum
value of the increment. It is necessary to set it up too. The equation for the increment
calculation is as follows:

Equation 13.

where:

• I is the increment
• Vt is the target value
• Vs is the state (actual) value (in the structure)
• T is the duration of the ramp (to reach the target value starting at the state value)
• Ts is the sample time, that means the period of the loop where the ramp algorithm is

called (set in the structure)

If the increment is greater than the maximum increment (set in the structure), the
increment uses the maximum increment value.

As soon as the new increment is calculated, call the GFLIB_FlexRamp algorithm in the
periodical control loop. The function works as follows: The function adds the increment
to the state value (from the previous step), which results in a new state. The new state is
returned by the function. As the time passes, the algorithm is approaching the target
value. If the new state trespasses the target value, that new state is limited to the target
value and the reach flag is set. The functionality of the implemented algorithm is shown
in this figure:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 71

Figure 2-9. GFLIB_FlexRamp functionality

2.15.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The input parameters are the fractional and accumulator
types.

The available versions of the GFLIB_FlexRampInit function are shown in the following
table:

Table 2-17. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_FlexRampInit_F16 frac16_t GFLIB_FLEXRAMP_T_F32 * void The input argument is a 16-bit
fractional value that represents the
initialization value. The
parameters' structure is pointed to
by a pointer. The input data value
is in the range <-1 ; 1).

GFLIB_FlexRamp

GFLIB User's Guide, Rev. 4, 11/2016

72 NXP Semiconductors

The available versions of the GFLIB_FlexRamp function are shown in the following
table:

Table 2-18. Increment calculation function versions

Function name Input type Parameters Result
typeTarget Duration

GFLIB_FlexRampCalcIncr_F16 frac16_t acc32_t GFLIB_FLEXRAMP_T_F32 * void

The input arguments are a 16-bit fractional value in the range <-1 ; 1) that represents
the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that
represents the duration of the ramp (in seconds) to reach the target value. The
parameters' structure is pointed to by a pointer.

Table 2-19. Function versions

Function name Parameters Result
type

Description

GFLIB_FlexRamp_F16 GFLIB_FLEXRAMP_T_F32 * frac16_t The parameters' structure is pointed to by a
pointer. The function returns a 16-bit fractional
value, which represents the actual ramp
output value. The output data value is in the
range <-1 ; 1).

2.15.2 GFLIB_FLEXRAMP_T_F32

Variable name Type Description

f32State frac32_t The actual value. Controlled by the GFLIB_FlexRampInit_F16 and GFLIB_FlexRamp_F16
algorithms.

f32Incr frac32_t The value of the flex ramp increment. Controlled by the GFLIB_FlexRampCalcIncr_F16
algorithm.

f32Target frac32_t The target value of the flex ramp algorithm. Controlled by the
GFLIB_FlexRampCalcIncr_F16 algorithm.

f32Ts frac32_t The sample time, that means the period of the loop where the GFLIB_FlexRamp_F16
algorithms are periodically called. The data value (in seconds) is in the range (0 ; 1). Set by
the user.

f32IncrMax frac32_t The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set
by the user.

bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_FlexRamp_F16 algorithm. It is cleared
by the GFLIB_FlexRampInit_F16 and GFLIB_FlexRampCalcIncr_F16 algorithms.

2.15.3 Declaration

The available GFLIB_FlexRampInit functions have the following declarations:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 73

void GFLIB_FlexRampInit_F16(frac16_t f16InitVal, GFLIB_FLEXRAMP_T_F32 *psParam)

The available GFLIB_FlexRampCalcIncr functions have the following declarations:

void GFLIB_FlexRampCalcIncr_F16(frac16_t f16Target, acc32_t a32Duration,
GFLIB_FLEXRAMP_T_F32 *psParam)

The available GFLIB_FlexRamp functions have the following declarations:

frac16_t GFLIB_FlexRamp_F16(GFLIB_FLEXRAMP_T_F32 *psParam)

2.15.4 Function use

The use of the GFLIB_FlexRampInit, GFLIB_FlexRampCalcIncr, and
GFLIB_FlexRamp functions is shown in the following example:

#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_FLEXRAMP_T_F32 sFlexRamp;
static frac16_t f16Target, f16RampResult;
static acc32_t a32RampDuration;

void Isr(void);

void main(void)
{
 /* Control loop period is 0.002 s; maximum increment value is 0.15 */
 sFlexRamp.f32Ts = FRAC32(0.002);
 sFlexRamp.f32IncrMax = FRAC32(0.15);

 /* Initial value to 0 */
 f16InitVal = FRAC16(0.0);

 /* Flex ramp initialization */
 GFLIB_FlexRampInit_F16(f16InitVal, &sFlexRamp);

 /* Target value is 0.7 in duration of 5.3 s */
 f16Target = FRAC16(0.7);
 a32RampDuration = ACC32(5.3);;

 /* Flex ramp increment calculation */
 GFLIB_FlexRampCalcIncr_F16(f16Target, a32RampDuration, &sFlexRamp);
}

/* periodically called control loop with a period of 2 ms */
void Isr()
{
 f16RampResult = GFLIB_FlexRamp_F16(&sFlexRamp);
}

2.16 GFLIB_DFlexRamp

GFLIB_DFlexRamp

GFLIB User's Guide, Rev. 4, 11/2016

74 NXP Semiconductors

The GFLIB_DFlexRamp function calculates the up/down ramp with a fixed-step
increment that is calculated according to the required speed change per a defined
duration.These parameters must be set by the user. The algorithm has stop flags. If none
of them is set, the ramp behaves normally. If one of them is set, the ramp can run in the
opposite direction.

The GFLIB_DFlexRamp algorithm consists of three functions that must be used for a
proper functionality of the algorithm:

• GFLIB_DFlexRampInit - this function initializes the state variable with a defined
value and clears the reach flag

• GFLIB_DFlexRampCalcIncr - this function calculates the increment and clears the
reach flag

• GFLIB_DFlexRamp - this function calculates the ramp in the periodically called
loop

For a proper use, initialize the algorithm by the GFLIB_DFlexRampInit function. The
GFLIB_DFlexRampInit function initializes the internal state variable of the algorithm
with a defined value and clears the reach flag. Call the init function when you want to
initialize the ramp.

To calculate the increment, use the GFLIB_DFlexRampCalcIncr function. Call this
function when you want to change the ramp output value. This function's inputs are the
target value and duration, and the ramp increments for motoring and generating
saturation modes. The target value is the destination value that you want to get to. The
duration is the time required to change the ramp output from the actual state to the target
value. To calculate the ramp increment, fill the control structure with the sample time,
that means the period of the loop where the GFLIB_DFlexRamp funciton is called. The
structure also contains a variable which determines the maximum value of the increment.
It is necessary to set it up too. The equation for the increment calculation is as follows:

Equation 14.

where:

• I is the increment
• Vt is the target value
• Vs is the state (actual) value (in the structure)
• T is the duration of the ramp (to reach the target value starting at the state value)
• Ts is the sample time, that means the period of the loop where the ramp algorithm is

called (set in the structure)

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 75

If the increment is greater than the maximum increment (set in the structure), the
increment uses the maximum increment value.

The state, target, and instant values must have the same sign, otherwise the saturation
modes don't work properly.

As soon as the new increment is calculated, you can call the GFLIB_DFlexRamp
algorithm in the periodical control loop. If none of the stop flags is set, the function
works as follows: The function adds the increment to the state value (from the previous
step), which results in a new state. The new state is returned by the function. As time
passes, the algorithm is approaching the target value. If the new state trespasses the target
value that new state is limited to, the target value and the reach flag are set. The
functionality of the implemented algorithm is shown in the following figure:

Figure 2-10. GFLIB_DFlexRamp functionality

If the motoring mode stop flag is set and the absolute value of the target value is greater
than the absolute value of the state value, the function uses the increment for the
motoring saturation mode to return to the instant value. Use case: when the application is
in the saturation mode and cannot supply more power to increase the speed, then a
saturation (motoring mode) flag is generated. To get out of the saturation, the ramp
output value is being reduced.

GFLIB_DFlexRamp

GFLIB User's Guide, Rev. 4, 11/2016

76 NXP Semiconductors

If the generating mode stop flag is set and the absolute value of the target value is lower
than the absolute value of the state value, the funcion uses the increment for the
generating saturation mode to return to the instant value. Use case: when the application
is braking a motor and voltage increases on the DC-bus capacitor, then a saturation
(generating mode) flag is generated. To avoid trespassing the DC-bus safe voltage limit,
the speed requirement is increasing to disipate the energy of the capacitor.

2.16.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The input parameters are the fractional and accumulator
types.

The available versions of the GFLIB_DFlexRampInit functions are shown in the
following table:

Table 2-20. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_FlexRampInit_F16 frac16_t GFLIB_DFLEXRAMP_T_F32 * void The input argument is a 16-bit
fractional value that represents
the initialization value. The
parameters' structure is pointed
to by a pointer. The input data
value is in the range <-1 ; 1).

The available versions of the GFLIB_DFlexRamp functions are shown in the following
table:

Table 2-21. Increment calculation function versions

Function name Input type Parameters Result
typeTarget Duration Incr. sat-

mot
Incr. sat-

gen

GFLIB_DFlexRampCalcIncr_F16 frac16_t acc32_t frac32_t frac32_t GFLIB_DFLEXRAMP_T_
F32 *

void

The input arguments are 16-bit fractional values in the range <-1 ; 1) that represent
the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that
represents the duration (in seconds) of the ramp to reach the target value. The other
two arguments are increments for the saturation mode when in the motoring and
generating modes. The parameters' structure is pointed to by a pointer.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 77

Table 2-22. Function versions

Function name Input type Parameters Result
typeInstant Stop flag-

mot
Stop flag-

gen

GFLIB_DFlexRamp_F16 frac16_t bool_t * bool_t * GFLIB_DFLEXRAMP_T_F32 * frac16_t

The input argument is a 16-bit fractional value in the range <-1 ; 1) that represents
the measured instant value. The stop flags are pointers to the bool_t types. The
parameters' structure is pointed to by a pointer. The function returns a 16-bit
fractional value, which represents the actual ramp output value. The output data
value is in the range <-1 ; 1).

2.16.2 GFLIB_DFLEXRAMP_T_F32

Variable name Type Description

f32State frac32_t The actual value. Controlled by the GFLIB_FlexRampInit_F16 and GFLIB_FlexRamp_F16
algorithms.

f32Incr frac32_t The value of the dyn. flex ramp increment. Controlled by the
GFLIB_FlexRampCalcIncr_F16 algorithm.

f32IncrSatMot frac32_t The value of the dyn. flex ramp increment when in the motoring saturation mode.
Controlled by the GFLIB_DFlexRampCalcIncr_F16 algorithm.

f32IncrSatGen frac32_t The value of the dyn. flex ramp increment when in the generating saturation mode.
Controlled by the GFLIB_DFlexRampCalcIncr_F16 algorithm.

f32Target frac32_t The target value of the flex ramp algorithm. Controlled by the
GFLIB_DFlexRampCalcIncr_F16 algorithm.

f32Ts frac32_t The sample time, that means the period of the loop where the GFLIB_DFlexRamp_F16
algorithm is periodically called. The data value (in seconds) is in the range (0 ; 1). Set by
the user.

f32IncrMax frac32_t The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set
by the user.

bReachFlag bool_t Reach flag. This flag is controlled by the GFLIB_DFlexRamp_F16 algorithm. It is cleared
by the GFLIB_DFlexRampInit_F16 and GFLIB_DFlexRampCalcIncr_F16 algorithms.

2.16.3 Declaration

The available GFLIB_DFlexRampInit functions have the following declarations:

void GFLIB_DFlexRampInit_F16(frac16_t f16InitVal, GFLIB_DFLEXRAMP_T_F32 *psParam)

The available GFLIB_DFlexRampCalcIncr functions have the following declarations:

void GFLIB_DFlexRampCalcIncr_F16(frac16_t f16Target, acc32_t a32Duration, frac32_t
f32IncrSatMot, frac32_t f32IncrSatGen, GFLIB_DFLEXRAMP_T_F32 *psParam)

GFLIB_DFlexRamp

GFLIB User's Guide, Rev. 4, 11/2016

78 NXP Semiconductors

The available GFLIB_DFlexRamp functions have the following declarations:

frac16_t GFLIB_DFlexRamp_F16(frac16_t f16Instant, const bool_t *pbStopFlagMot, const bool_t
*pbStopFlagGen, GFLIB_DFLEXRAMP_T_F32 *psParam)

2.16.4 Function use

The use of the GFLIB_DFlexRampInit, GFLIB_DFlexRampCalcIncr, and
GFLIB_DFlexRamp functions is shown in the following example:

#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_DFLEXRAMP_T_F32 sDFlexRamp;
static frac16_t f16Target, f16RampResult, f16Instant;
static acc32_t a32RampDuration;
static frac32_t f32IncrSatMotMode, f32IncrSatGenMode;
static bool_t bSatMot, bSatGen;

void Isr(void);

void main(void)
{
 /* Control loop period is 0.002 s; maximum increment value is 0.15 */
 sDFlexRamp.f32Ts = FRAC32(0.002);
 sDFlexRamp.f32IncrMax = FRAC32(0.15);

 /* Initial value to 0 */
 f16InitVal = FRAC16(0.0);

 /* Dyn. flex ramp initialization */
 GFLIB_FlexRampInit_F16(f16InitVal, &sDFlexRamp);

 /* Target value is 0.7 in duration of 5.3 s */
 f16Target = FRAC16(0.7);
 a32RampDuration = ACC32(5.3);;

 /* Saturation increments */
 f32IncrSatMotMode = FRAC32(0.000015);
 f32IncrSatGenMode = FRAC32(0.00002);

 /* Saturation flags init */
 bSatMot = FALSE;
 bSatGen = FALSE;

 /* Dyn. flex ramp increment calculation */
 GFLIB_DFlexRampCalcIncr_F16(f16Target, a32RampDuration, f32IncrSatMotMode,
f32IncrSatGenMode, &sDFlexRamp);
}

/* periodically called control loop with a period of 2 ms */
void Isr()
{
 f16RampResult = GFLIB_DFlexRamp_F16(f16Instant, &bSatMot, &bSatGen, &sDFlexRamp);
}

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 79

2.17 GFLIB_Integrator

The GFLIB_Integrator function calculates a discrete implementation of the integrator
(sum), discretized using a trapezoidal rule in Tustin's method (bi-linear transformation).

The continuous time domain representation of the integrator is defined as follows:

Equation 15.

In a continuous time domain, the transfer function for this integrator is described using
the Laplace transformation as follows:

Equation 16.

Transforming the above equation into a digital time domain using the bi-linear
transformation leads to the following transfer function:

Equation 17.

where Ts is the sampling period of the system. The discrete implementation of the digital
transfer function in the above equation is expressed as follows:

Equation 18.

Considering integrator gain KI, the transfer function leads to the following equation:

Equation 19.

where:

• uI(k) is the integrator's output in the actual step
• uI(k - 1) is the integrator's output from the previous step
• e(k) is the integrator's input in the actual step
• e(k - 1) is the integrator's input from the previous step

GFLIB_Integrator

GFLIB User's Guide, Rev. 4, 11/2016

80 NXP Semiconductors

• KI is the integrator's gain coefficient
• Ts is the sampling period of the system

Equation 19 on page 80 can be used in the fractional arithmetic as follows:

Equation 20.

where:

• umax is the integrator output scale
• uIsc(k) is the scaled integrator output in the actual step
• uIsc(k - 1) is the scaled integrator output from the previous step
• emax is the integrator input scale
• esc(k) is the scaled integrator input in the actual step
• esc(k - 1) is the scaled integrator input in the previous step

For a proper use of this function, it is recommended to initialize the function's data by the
GFLIB_IntegratorInit functions, before using the GFLIB_Integrator function. You must
call the init function when you want the integrator to be initialized.

2.17.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result, the result is within
the range <-1 ; 1), and it may overflow from one limit to the other. The parameters
use the accumulator types.

The available versions of the GFLIB_IntegratorInit function are shown in the following
table:

Table 2-23. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_IntegratorInit_F16 frac16_t GFLIB_INTEGRATOR_T_A32 * void The inputs are a 16-bit fractional
initial value and a pointer to the
integrator parameters' structure.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 81

The available versions of the GFLIB_Integrator function are shown in the following
table:

Table 2-24. Function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_Integrator_F16 frac16_t GFLIB_INTEGRATOR_T_A32 * frac16_t The inputs are a 16-bit fractional
value to be integrated and a pointer
to the integrator parameters'
structure. The output is limited to
range <-1 ; 1>. When the integrator
reaches the limit, it overflows to the
other limit.

2.17.2 GFLIB_INTEGRATOR_T_A32

Variable name Input
type

Description

a32Gain acc32_t Integrator gain is set up according to Equation 20 on page 81 as follows:

The parameter is a 32-bit accumulator type within the range <-65536.0 ; 65536.0). Set by
the user.

f32IAccK_1 frac32_t Integral portion in the step k - 1. Controlled by the algorithm.

f16InValK_1 frac16_t Input value in the step k - 1. Controlled by the algorithm.

2.17.3 Declaration

The available GFLIB_IntegratorInit functions have the following declarations:

void GFLIB_IntegratorInit_F16(frac16_t f16InitVal, GFLIB_INTEGRATOR_T_A32 *psParam)

The available GFLIB_Integrator functions have the following declarations:

frac16_t GFLIB_Integrator_F16(frac16_t f16InVal, GFLIB_INTEGRATOR_T_A32 *psParam)

2.17.4 Function use

The use of the GFLIB_IntegratorInit and GFLIB_Integrator functions is shown in the
following example:

GFLIB_Integrator

GFLIB User's Guide, Rev. 4, 11/2016

82 NXP Semiconductors

#include "gflib.h"

static frac16_t f16Result, f16InVal, f16InitVal;
static GFLIB_INTEGRATOR_T_A32 sParam;

void Isr(void);

void main(void)
{
 f16InVal = FRAC16(-0.4);
 sParam.a32Gain = ACC32(0.1);

 f16InitVal = FRAC16(0.1);

 GFLIB_IntegratorInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_Integrator_F16(f16InVal, &sParam);
}

2.18 GFLIB_CtrlBetaIPpAW

The GFLIB_CtrlBetaIPpAW function calculates the parallel form of the Beta-Integral-
Proportional (Beta-IP) controller with an implemented integral anti-windup functionality.
The Beta-IP controller is an extended PI controller, which enables to separate the
responses from the setpoint change and the load change (if β = 1, the Beta-IP controller
has the same response as the PI controller). Therefore the Beta-IP controller allows for
reducing the overshoot caused by the change of the setpoint without affecting the load
change response. The B parameter can be set in the range from zero to one, where zero
means the maximal overshoot limitation and one means no limitation.

The Beta-IP controller attempts to correct the error between the measured process
variable (feedback) and the desired set-point by calculating a corrective action that can
adjust the process accordingly. The GFLIB_CtrlBetaIPpAW function calculates the Beta-
IP algorithm according to the equations below. The Beta-IP algorithm is implemented in
the parallel (non-interacting) form, enabling you to define the P, I, and β parameters
independently and without interaction. The controller output is limited and the limit
values (the upper limit and the lower limit) are defined by the user.

The Beta-IP controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the Beta-IP controller output reaches the upper or
lower limits, the limit flag is set to one. Otherwise, it is zero (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state is limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag that is pointed to by the function's API.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 83

The Beta-IP algorithm in the continuous time domain can be expressed as follows:

Equation 21.

where:

• u(t) is the controller output in the continuous time domain
• w(t) is the required value in the continuous time domain
• y(t) is the measured value (feedback) in the continuous time domain
• KP is the proportional gain
• KI is the integral gain
• β is the beta gain (overshoot reduction gain in the range from zero to one)

Equation 21 on page 84 can be expressed using the Laplace transformation as follows:

Equation 22.

The proportional part (uP) of Equation 21 on page 84 is transformed into the discrete time
domain as follows:

Equation 23.

where:

• uP(k) is the proportional action in the actual step
• w(k) is the required value in the actual step
• y(k) is the measured value in the actual step
• KP is the proportional gain coefficient
• β is the beta gain coefficient

Equation 23 on page 84 can be used in the fractional arithmetic as follows:

Equation 24.

where:

• umax is the action output scale
• uPsc(k) is the scaled proportional action in the actual step
• emax is the error input scale

GFLIB_CtrlBetaIPpAW

GFLIB User's Guide, Rev. 4, 11/2016

84 NXP Semiconductors

• wsc(k) is the scale required value in the actual step
• ysc(k) is the scale measured value in the actual step

Transforming the integral part (uI) of Equation 21 on page 84 into a discrete time domain
using the bi-linear method (also known as the trapezoidal approximation) is as follows:

Equation 25.

where:

• uI(k) is the integral action in the actual step
• uI(k - 1) is the integral action from the previous step
• w(k) is the required value in the actual step
• y(k) is the measured value in the actual step
• e(k - 1) is the error in the previous step
• Ts is the sampling period of the system
• KI is the integral gain coefficient

Equation 25 on page 85 can be used in the fractional arithmetic as follows:

Equation 26.

where:

• umax is the action output scale
• uIsc(k) is the scaled integral action in the actual step
• uIsc(k - 1) is the scaled integral action from the previous step
• emax is the error input scale
• esc(k) is the scaled error in the actual step
• esc(k - 1) is the scaled error in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded not to exceed the given limit values UpperLimit and LowerLimit. This is either
due to the bounded power of the actuator or due to the physical constraints of the plant.

Equation 27.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 85

The bounds are described by a limitation element, as shown in Equation 27 on page 85.
When the bounds are exceeded, the non-linear saturation characteristic takes effect and
influences the dynamic behavior. The described limitation is implemented on the integral
part accumulator (limitation during the calculation) and the overall controller output.
Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the
wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrlBetaIPpAWInit function, before using the GFLIB_CtrlBetaIPpAW function.

2.18.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

The available versions of the GFLIB_CtrlBetaIPpAWInit function are shown in the
following table:

Table 2-25. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_CtrlBetaIPpAWInit_F16 frac16_t GFLIB_CTRL_BETA_IP_P_AW_T_A
32 *

void The inputs are a 16-bit
fractional initial value and a
pointer to the controller's
parameters structure.

The available versions of the GFLIB_CtrlBetaIPpAW function are shown in the
following table:

Table 2-26. Function versions

Function name Input type Parameters Result
typerequired

value
measured

value
Stop flag

GFLIB_CtrlBetaIPpAW_F16 frac16_t frac16_t bool_t * GFLIB_CTRL_BETA_IP_P_AW_T
_A32 *

frac16_t

The required value input is a 16-bit fractional value within the range <-1 ; 1). The measured
value input is a 16-bit fractional value within the range <-1 ; 1). The integration of the Beta-
IP controller is suspended if the stop flag is set. When it is cleared, the integration
continues. The parameters are pointed to by an input pointer. The function returns a 16-bit
fractional value in the range <f16LowerLim ; f16UpperLim>.

GFLIB_CtrlBetaIPpAW

GFLIB User's Guide, Rev. 4, 11/2016

86 NXP Semiconductors

2.18.2 GFLIB_CTRL_BETA_IP_P_AW_T_A32

Variable name Input
type

Description

a32PGain acc32_t The proportional gain is set up according to Equation 24 on page 84 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32IGain acc32_t The integral gain is set up according to Equation 26 on page 85 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

f32IAccK_1 frac32_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

f16InErrK_1 frac16_t Input error at the step k - 1. Controlled by the algorithm.

f16UpperLim frac16_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than f16LowerLim. Set by the user.

f16LowerLim frac16_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than f16UpperLim. Set by the user.

f16BetaGain frac16_t The beta gain is a fraction 16-bit type in the range [0 ; 1). The beta gain defines the
reduction overshot when the required value is changed. Set by the user.

bLimFlag bool_t Limitation flag which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.18.3 Declaration

The available GFLIB_CtrlBetaIPpAWInit functions have the following declarations:

void GFLIB_CtrlBetaIPpAWInit_F16(frac16_t f16InitVal, GFLIB_CTRL_BETA_IP_P_AW_T_A32 *psParam)

The available GFLIB_CtrlBetaIPpAW functions have the following declarations:

frac16_t GFLIB_CtrlBetaIPpAW_F16(frac16_t f16InReq, frac16_t f16In, const bool_t
*pbStopIntegFlag, GFLIB_CTRL_BETA_IP_P_AW_T_A32 *psParam)

2.18.4 Function use

The use of the GFLIB_CtrlBetaIPpAWInit and GFLIB_CtrlBetaIPpAW functions is
shown in the following example:

#include "gflib.h"

static frac16_t f16Result, f16InitVal, f16InReq, f16In;

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 87

static bool_t bStopIntegFlag;
static GFLIB_CTRL_BETA_IP_P_AW_T_A32 sParam;

void Isr(void);

void main(void)
{
 f16InReq = FRAC16(-0.3);
 f16In = FRAC16(-0.4);
 sParam.a32PGain = ACC32(0.1);
 sParam.a32IGain = ACC32(0.2);
 sParam.f16UpperLim = FRAC16(0.9);
 sParam.f16LowerLim = FRAC16(-0.9);
 sParam.f16BetaGain = FRAC16(0.5);
 bStopIntegFlag = FALSE;

 f16InitVal = FRAC16(0.0);

 GFLIB_CtrlBetaIPpAWInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_CtrlBetaIPpAW_F16(f16InReq, f16In, &bStopIntegFlag, &sParam);
}

2.19 GFLIB_CtrlPIpAW

The GFLIB_CtrlPIpAW function calculates the parallel form of the Proportional-Integral
(PI) controller with implemented integral anti-windup functionality.

The PI controller attempts to correct the error between the measured process variable and
the desired set-point by calculating a corrective action that can adjust the process
accordingly. The GFLIB_CtrlPIpAW function calculates the PI algorithm according to
the equations below. The PI algorithm is implemented in the parallel (non-interacting)
form, allowing the user to define the P and I parameters independently and without
interaction. The controller output is limited and the limit values (upper limit and lower
limit) are defined by the user.

The PI controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the PI controller output reaches the upper or lower
limit, then the limit flag is set to 1, otherwise it is 0 (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state is limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag that is pointed to by the function's API.

The PI algorithm in the continuous time domain can be expressed as follows:

Equation 28.

GFLIB_CtrlPIpAW

GFLIB User's Guide, Rev. 4, 11/2016

88 NXP Semiconductors

where:

• u(t) is the controller output in the continuous time domain
• e(t) is the input error in the continuous time domain
• KP is the proportional gain
• KI is the integral gain

Equation 28 on page 88 can be expressed using the Laplace transformation as follows:

Equation 29.

The proportional part (uP) of Equation 28 on page 88 is transformed into the discrete time
domain as follows:

Equation 30.

where:

• uP(k) is the proportional action in the actual step
• e(k) is the error in the actual step
• KP is the proportional gain coefficient

Equation 30 on page 89 can be used in the fractional arithmetic as follows:

Equation 31.

where:

• umax is the action output scale
• uPsc(k) is the scaled proportional action in the actual step
• emax is the error input scale
• esc(k) is the scale error in the actual step

Transforming the integral part (uI) of Equation 28 on page 88 into a discrete time domain
using the bi-linear method, also known as the trapezoidal approximation, is as follows:

Equation 32.

where:

• uI(k) is the integral action in the actual step

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 89

• uI(k - 1) is the integral action from the previous step
• e(k) is the error in the actual step
• e(k - 1) is the error in the previous step
• Ts is the sampling period of the system
• KI is the integral gain coefficient

Equation 32 on page 89 can be used in the fractional arithmetic as follows:

Equation 33.

where:

• umax is the action output scale
• uIsc(k) is the scaled integral action in the actual step
• uIsc(k - 1) is the scaled integral action from the previous step
• emax is the error input scale
• esc(k) is the scaled error in the actual step
• esc(k - 1) is the scaled error in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded not to exceed the given limit values UpperLimit and LowerLimit. This is due to
either the bounded power of the actuator or due to the physical constraints of the plant.

Equation 34.

The bounds are described by a limitation element, as shown in Equation 34 on page 90.
When the bounds are exceeded, the nonlinear saturation characteristic will take effect and
influence the dynamic behavior. The described limitation is implemented on the integral
part accumulator (limitation during the calculation) and on the overall controller output.
Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the
wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrlPIpAWInit functions, before using the GFLIB_CtrlPIpAW function. You
must call this function when you want the PI controller to be initialized.

2.19.1 Available versions

This function is available in the following versions:

GFLIB_CtrlPIpAW

GFLIB User's Guide, Rev. 4, 11/2016

90 NXP Semiconductors

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

The available versions of the GFLIB_CtrlPIpAWInit function are shown in the following
table:

Table 2-27. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_CtrlPIpAWInit_F16 frac16_t GFLIB_CTRL_PI_P_AW_T_A32 * void The inputs are a 16-bit
fractional initial value and a
pointer to the controller's
parameters structure.

The available versions of the GFLIB_CtrlPIpAW function are shown in the following
table:

Table 2-28. Function versions

Function name Input type Parameters Result type

Error Stop flag

GFLIB_CtrlPIpAW_F16 frac16_t bool_t * GFLIB_CTRL_PI_P_AW_T_A32 * frac16_t

The error input is a 16-bit fractional value within the range <-1 ; 1). The integration of the PI
controller is suspended if the stop flag is set. When it is cleared, the integration continues. The
parameters are pointed to by an input pointer. The function returns a 16-bit fractional value in
the range <f16LowerLim ; f16UpperLim>.

2.19.2 GFLIB_CTRL_PI_P_AW_T_A32

Variable name Input
type

Description

a32PGain acc32_t Proportional gain is set up according to Equation 31 on page 89 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32IGain acc32_t Integral gain is set up according to Equation 33 on page 90 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

f32IAccK_1 frac32_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

f16InErrK_1 frac16_t Input error at the step k - 1. Controlled by the algorithm.

f16UpperLim frac16_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than f16LowerLim. Set by the user.

Table continues on the next page...

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 91

Variable name Input
type

Description

f16LowerLim frac16_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than f16UpperLim. Set by the user.

bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.19.3 Declaration

The available GFLIB_CtrlPIpAWInit functions have the following declarations:

void GFLIB_CtrlPIpAWInit_F16(frac16_t f16InitVal, GFLIB_CTRL_PI_P_AW_T_A32 *psParam)

The available GFLIB_CtrlPIpAW functions have the following declarations:

frac16_t GFLIB_CtrlPIpAW_F16(frac16_t f16InErr, const bool_t *pbStopIntegFlag,
GFLIB_CTRL_PI_P_AW_T_A32 *psParam)

2.19.4 Function use

The use of the GFLIB_CtrlPIpAWInit and GFLIB_CtrlPIpAW functions is shown in the
following example:

#include "gflib.h"

static frac16_t f16Result, f16InitVal, f16InErr;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_PI_P_AW_T_A32 sParam;

void Isr(void);

void main(void)
{
 f16InErr = FRAC16(-0.4);
 sParam.a32PGain = ACC32(0.1);
 sParam.a32IGain = ACC32(0.2);
 sParam.f16UpperLim = FRAC16(0.9);
 sParam.f16LowerLim = FRAC16(-0.9);
 bStopIntegFlag = FALSE;

 f16InitVal = FRAC16(0.0);

 GFLIB_CtrlPIpAWInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_CtrlPIpAW_F16(f16InErr, &bStopIntegFlag, &sParam);
}

GFLIB_CtrlPIpAW

GFLIB User's Guide, Rev. 4, 11/2016

92 NXP Semiconductors

Appendix A
Library types

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool_t;

The following figure shows the way in which the data is stored by this type:

Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused
Logi
cal

TRUE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1

FALSE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 93

Table A-2. Data storage

7 6 5 4 3 2 1 0

Value Integer

255
1 1 1 1 1 1 1 1

F F

11
0 0 0 0 1 0 1 1

0 B

124
0 1 1 1 1 1 0 0

7 C

159
1 0 0 1 1 1 1 1

9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uint16_t;

The following figure shows the way in which the data is stored by this type:

Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Integer

65535
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F F F F

5
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 5

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

40768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.4 uint32_t

uint16_t

GFLIB User's Guide, Rev. 4, 11/2016

94 NXP Semiconductors

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32_t;

The following figure shows the way in which the data is stored by this type:

Table A-4. Data storage

31 24 23 16 15 8 7 0

Value Integer

4294967295 F F F F F F F F

2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

3451051828 C D B 2 D F 3 4

A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8_t;

The following figure shows the way in which the data is stored by this type:

Table A-5. Data storage

7 6 5 4 3 2 1 0

Value Sign Integer

127
0 1 1 1 1 1 1 1

7 F

-128
1 0 0 0 0 0 0 0

8 0

60
0 0 1 1 1 1 0 0

3 C

-97
1 0 0 1 1 1 1 1

9 F

Appendix A Library types

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 95

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short int16_t;

The following figure shows the way in which the data is stored by this type:

Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer

32767
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-32768
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-24768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32_t;

The following figure shows the way in which the data is stored by this type:

Table A-7. Data storage

31 24 23 16 15 8 7 0

Value S Integer

2147483647 7 F F F F F F F

-2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

-843915468 C D B 2 D F 3 4

int16_t

GFLIB User's Guide, Rev. 4, 11/2016

96 NXP Semiconductors

A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;

The following figure shows the way in which the data is stored by this type:

Table A-8. Data storage

7 6 5 4 3 2 1 0

Value Sign Fractional

0.99219
0 1 1 1 1 1 1 1

7 F

-1.0
1 0 0 0 0 0 0 0

8 0

0.46875
0 0 1 1 1 1 0 0

3 C

-0.75781
1 0 0 1 1 1 1 1

9 F

To store a real number as frac8_t, use the FRAC8 macro.

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef short frac16_t;

The following figure shows the way in which the data is stored by this type:

Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Fractional

0.99997
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table continues on the next page...

Appendix A Library types

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 97

Table A-9. Data storage (continued)

8 0 0 0

0.47357
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-0.75586
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32_t;

The following figure shows the way in which the data is stored by this type:

Table A-10. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995 7 F F F F F F F

-1.0 8 0 0 0 0 0 0 0

0.02606645970 0 3 5 6 2 5 5 0

-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acc16_t;

The following figure shows the way in which the data is stored by this type:

frac32_t

GFLIB User's Guide, Rev. 4, 11/2016

98 NXP Semiconductors

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional

255.9921875
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-256.0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

1.0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 8 0

-1.0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

F F 8 0

13.7890625
0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

0 6 E 5

-89.71875
1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0

D 3 2 4

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;

The following figure shows the way in which the data is stored by this type:

Table A-12. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional

65535.999969 7 F F F F F F F

-65536.0 8 0 0 0 0 0 0 0

1.0 0 0 0 0 8 0 0 0

-1.0 F F F F 8 0 0 0

23.789734 0 0 0 B E 5 1 6

-1171.306793 F D B 6 5 8 B C

To store a real number as acc32_t, use the ACC32 macro.

Appendix A Library types

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 99

A.13 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = FALSE; /* bVal = FALSE */
}

A.14 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = TRUE; /* bVal = TRUE */
}

A.15 FRAC8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8(x) ((frac8_t)((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>,
which corresponds to <-1.0 ; 1.0-2-7>.

FALSE

GFLIB User's Guide, Rev. 4, 11/2016

100 NXP Semiconductors

#include "mlib.h"

static frac8_t f8Val;

void main(void)
{
 f8Val = FRAC8(0.187); /* f8Val = 0.187 */
}

A.16 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((frac16_t)((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) :
0x7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-2-15>.

#include "mlib.h"

static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.736); /* f16Val = 0.736 */
}

A.17 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

#define FRAC32(x) ((frac32_t)((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 2147483648 (=231). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2-31>.

#include "mlib.h"

static frac32_t f32Val;

void main(void)
{
 f32Val = FRAC32(-0.1735667); /* f32Val = -0.1735667 */
}

Appendix A Library types

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 101

A.18 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACC16(x) ((acc16_t)((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : 0x7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"

static acc16_t a16Val;

void main(void)
{
 a16Val = ACC16(19.45627); /* a16Val = 19.45627 */
}

A.19 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32_t)((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : 0x7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2-15>.

#include "mlib.h"

static acc32_t a32Val;

void main(void)
{
 a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */
}

ACC16

GFLIB User's Guide, Rev. 4, 11/2016

102 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated
circuits based on the information in this document. Freescale reserves the right
to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided
in Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its
patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following
address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor,
Inc. ARM and Cortex are the registered trademarks of ARM Limited, in EU and/or
elsewhere. ARM logo is the trademark of ARM Limited. All rights reserved. All
other product or service names are the property of their respective owners.

© 2017 NXP B.V.

Document Number CM0GFLIBUG
Revision 4, 11/2016

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	Memory-mapped divide and square root support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Kinetis Design Studio)
	Memory-mapped divide and square root support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	Memory-mapped divide and square root support
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	Memory-mapped divide and square root support
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	GFLIB_Sin
	Available versions
	Declaration
	Function use

	GFLIB_Cos
	Available versions
	Declaration
	Function use

	GFLIB_Atan
	Available versions
	Declaration
	Function use

	GFLIB_AtanYX
	Available versions
	Declaration
	Function use

	GFLIB_Sqrt
	Available versions
	Declaration
	Function use

	GFLIB_Limit
	Available versions
	Declaration
	Function use

	GFLIB_LowerLimit
	Available versions
	Declaration
	Function use

	GFLIB_UpperLimit
	Available versions
	Declaration
	Function use

	GFLIB_VectorLimit1
	Available versions
	GFLIB_VECTORLIMIT_T_F16 type description
	Declaration
	Function use

	GFLIB_Hyst
	Available versions
	GFLIB_HYST_T_F16
	Declaration
	Function use

	GFLIB_Lut1D
	Available versions
	Declaration
	Function use

	GFLIB_LutPer1D
	Available versions
	Declaration
	Function use

	GFLIB_Ramp
	Available versions
	GFLIB_RAMP_T_F16
	GFLIB_RAMP_T_F32
	Declaration
	Function use

	GFLIB_DRamp
	Available versions
	GFLIB_DRAMP_T_F16
	GFLIB_DRAMP_T_F32
	Declaration
	Function use

	GFLIB_FlexRamp
	Available versions
	GFLIB_FLEXRAMP_T_F32
	Declaration
	Function use

	GFLIB_DFlexRamp
	Available versions
	GFLIB_DFLEXRAMP_T_F32
	Declaration
	Function use

	GFLIB_Integrator
	Available versions
	GFLIB_INTEGRATOR_T_A32
	Declaration
	Function use

	GFLIB_CtrlBetaIPpAW
	Available versions
	GFLIB_CTRL_BETA_IP_P_AW_T_A32
	Declaration
	Function use

	GFLIB_CtrlPIpAW
	Available versions
	GFLIB_CTRL_PI_P_AW_T_A32
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

