AMCLIB User's Guide

ARM® Cortex® MO+

Document Number: CMOAMCLIBUG
Rev. 4, 11/2016

h
V"

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

Contents
Section number Title Page

Chapter 1

Library

L 51 13 (e Ta L Uo7 5 o | OO OO TP 5
1.2 Library integration into project (MCUXPIESSO IDE)ccceiviiriiiiriiiiiieeiieeeeeeetee et 7
1.3 Library integration into project (Kinetis Design StUAIO)ceecveiiiiiiiiiiiiiiiiiecieeite ettt 17
1.4 Library integration into project (Keil LVISION)cccuirieriirierieiieie ittt ettt e e st st esaeeseesbeeatesbeentenaeans 26
1.5 Library integration into project (IAR Embedded Workbench)cccccoieiiriiiiiniiniiiiiniiicnccicneccseecseeeeeeee 34

Chapter 2

Algorithms in detail

2.1 AMOCLIB _TTACKODSIV....coiiiiiiiiieeeeeeeeeeeee ettt e e e e e e et e et e e e e et s e st s teeeeeeeeaeeeeeessesesesa s sasasaasssesseseeaeaesessesessnsnnns 43
2.2 AMCLIB_ANZIETTACKODSTV...ccutiiiieiiiteiieeiteeit ettt sttt sttt e bt e sb e et e bt e st e e bt e sa bt e bt e eabe e beeeabeebeesabee st e sateenseesnseens 47
2.3 AMCLIB_PMSMBEMIODSIVDIQ......coueuiriiiiriiiitiiititeientetent ettt sttt sttt b et b et b et b ettt sttt ne 53
2.4 AMCLIB_PMSMBEMIODSIVABttt et e e e e e e e e e e e e e e s e s e st aaaaatseeteeeeeeeseeeeeeeeensanans 61

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 3

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the Advanced Motor Control Library (AMCLIB) for the
family of ARM Cortex M0+ core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

AMCLIB supports several data types: (un)signed integer, fractional, and accumulator.
The integer data types are useful for general-purpose computation; they are familiar to
the MPU and MCU programmers. The fractional data types enable powerful numeric and
digital-signal-processing algorithms to be implemented. The accumulator data type is a
combination of both; that means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1

 Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1

e Unsigned 32-bit integer —<O0 ; 4294967295> with the minimum resolution of 1

 Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution
of 1

The following list shows the fractional types defined in the libraries:

* Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 213
» Fixed-point 32-bit fractional —<-1; 1 - 2-315 with the minimum resolution of 2-3!

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 5

Introduction
The following list shows the accumulator types defined in the libraries:

* Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 27> with the minimum

resolution of 277
» Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2°15> with the minimum

resolution of 2°13

1.1.3 API definition

AMCLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB Mac_F32lss(f32Accum, flé6Multl, fleMult2);
where the function is compiled from four parts:

e MLIB—this is the library prefix

* Mac—the function name—Multiply-Accumulate

» F32—the function output type

* Iss—the types of the function inputs; if all the inputs have the same type as the
output, the inputs are not marked

The input and output types are described in the following table:
Table 1-1. Input/output types

Type Output Input
frac16_t F16 s
frac32_t F32 |
acc32_t A32 a

1.1.4 Supported compilers

AMCLIB for the ARM Cortex MO+ core is written in C language or assembly language
with C-callable interface depending on the specific function. The library is built and
tested using the following compilers:

* Kinetis Design Studio

* MCUXpresso IDE

* JAR Embedded Workbench

e Keil uVision

AMCLIB User's Guide, Rev. 4, 11/2016
6 NXP Semiconductors

4
Chapter 1 Library

For the MCUXpresso IDE, the library is delivered in the amclib.a file.

For the Kinetis Design Studio, the library is delivered in the amclib.a file.

For the IAR Embedded Workbench, the library is delivered in the amclib.a file.
For the Keil pVision, the library is delivered in the amclib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, amclib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

AMCLIB for the ARM Cortex MO+ core is written in C language or assembly language
with C-callable interface depending on the specific function. Some functions from this
library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It
can cause an issue especially when high optimization level is set. Therefore the
optimization level for all inline assembly written functions is defined by compiler
pragmas using macros. The configuration header file RTCESL_cfg.h is located in:

specific library folder\MLIB\Include. The optimization level can be changed by
modifying the macro value for specific compiler. In case of any change the library
functionality is not guaranteed.

Similarly as optimization level the Memory-mapped divide and square root module
support can be disable or enable if it has not been done by defined symbol
RTCESL_MMDVSQ_ON or RTCESL_MMDVSQ_OFF in project setting described in
Memory-mapped divide and square root support cheaper for specific compiler.

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the
number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

1.2 Library integration into project (MCUXpresso IDE)

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 7

Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL

\CMO_RTCESL_4.5_MCUX). If you have a different installation path, use that path
instead.

1.2.1 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square

root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the MCUXpresso SDK project name node or in the left-hand part, click Properties
or select Project > Properties from the menu. A project properties dialog appears.
2. Expand the C/C++ Build node and select Settings. See Figure 1-1.

. In the right-hand part, under the MCU C Compiler node, click the Preprocessor node.
See Figure 1-1.

(98]

M ™
m Properties for twrkv31f120m_demo_apps_hello_world [-:' =] éj
type filter text Settings & v v -

> Resource
Builders
4 C/C++ Build Configuration: ’Debug [Active]

'] ’Manage Configurations...]

Build Variables
Environment

Run/Debug Settings

4

(# Optimization

(2 Debugging

(# Warnings

@ Miscellanecus

@ Architecture
4 B MCU Assembler

@ General

@ Architecture & Headers
a4 B MCU Linker

@ General

@ Libraries

@ Miscellanecus

(2 Shared Library Settings

@ Architecture

(2 Managed Linker Script

@ Multicore

Logging) Tool Settings | 4 Build steps | Build Artifact | Binary Parsers | @ Error Parsers|
MCU settings
Settings 4 53 MCU C Compiler [[] Do not search system directories (-nostdinc)
Tool Chain Editor @ Dialect | Preprocess only (-E)
. C/C++ General (2 Preprocessor) .
Defined symbols (-D) & w E & =
Project References (2 Includes Y £ a8 C S

DEBUG
PRINTF_FLOAT_ENABLE=0
SCANF_FLOAT ENABLE=0
PRINTF_ADVANCED_ENABLE=0
SCANF_ADVANCED_ENABLE=0
TWR_KV31F120M

TOWER
SDK_DEBUGCONSOLE=0
_MCUXPRESSO

_USE_CMSIS
CPU_MKV31FS12VLL12
CPU_MKV31FS12VLL12_cmd
REDLIB

Undefined symbols (-U) &

I

o]

Cancel

Figure 1-1. Defined symbols

4. In the right-hand part of the dialog, click the Add... icon located next to the Defined
symbols (-D) title.

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

4
Chapter 1 Library
5. In the dialog that appears (see Figure 1-2), type the following:
e RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on
« RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off
If neither of these two defines is defined, the hardware division and square root
support is turned off by default.
ﬂ Enter Value Jp— ;_- @

Defined symbols (-0

RTCESL_MMDVSQ_OMN

[ok || Cancel

5 = e eee—e— |

Figure 1-2. Symbol definition
6. Click OK in the dialog.
7. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.2.2 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-3.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 9

Library integration into project (MCUXpresso IDE)

Mo s e .
type filter text Linked Resources oY w
4 Resource -
Linked Resources Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "S${VAR}".
Builders The locations of linked resources may be specified relative to these path variables,
[C/C++ Build Defined path variables for resource 'twrkv31f120m_demo_apps_hello_world':
[C.’C.++ General Name Value Mew...
Project References .
Run/Debug Settings (= ECLIPSE_HOME CAMXPAMCUXpressolDE_10.0.0_344%ide\ Edit..
= PARENT_LOC Diternp3
= PROJECT_LOC Dvternp3titwri31f120m_demo_apps_hello_world Remove
(= WORKSPACE_LOC Ditermnp3

Figure 1-3. Project properties
3. Click the New... button in the right-hand side.
4. In the dialog that appears (see Figure 1-4), type this variable name into the Name
box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CMO_RTCESL_4.5_MCUX. Click OK.

AMCLIB User's Guide, Rev. 4, 11/2016
10 NXP Semiconductors

4
Chapter 1 Library

|
Define a New Path Variable

Enter a new variable name and its associated location.

F k]
= T e
B0 New Varisble e =

MName: RTCESL_LOC

Location: ICA\NXPARTCESLAC File.. || Folder. || Variable..
Resolved Location: C:\NXP\RTCESL\CMO_RTCESL_4.5_MCUX

® [oK] ’ Cancel

Figure 1-4. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click
Environment.

7. Click the Add... button in the right-hand side.

In the dialog that appears (see Figure 1-5), type this variable name into the Name

box: RTCESL_LOC.

9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CMO_RTCESL_4.5_MCUX.

10. Tick the Add to all configurations box to use this variable in all configurations. See
Figure 1-5.

11. Click OK.

12. In the previous dialog, click OK.

*®

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 11

Library integration into project (MCUXpresso IDE)

Linked Resources
Resource Filters
Builders
4 C/C++ Build
Build Variables
Environment

n Properties for twrkv31f120m_demo_apps_hello_world | = £2
type filter text Environment =l v -
4 Resource

Configuration: |Debug [Active]

'] [Manage Conﬁgurations...l

Environment variables to set

)

Logging Variable Value Origin Select
Elect...
MCU settings CWD Di\ternp3itwries31£120... BUILD SYSTEM
Seftings PATH CANXPAMCUXpressolD... BUILD SYSTEM Edit...
Tool Chain Editor PWD D:\ternp3twrky31f120... BUILD SYSTEM
» C/C++ General | Delete
Project A’ . . -
d) New variable " Undefine
Run/Deb [
Mame: RTCESL_LOC
Value: CAMNXPV\RTCESLVCMO_RTCESL 4.5_MCUX Variables
[V] Add to all configurations
[OK] ’ Cancel
S ——
@ Append variables to native environment
W () Replace native environment with specified one
[Restore Defaultsl l Apply
® [QK] [Cancel]

Figure 1-5. Environment variable

1.2.3 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.
2. Click Advanced to show the advanced options.

(98]

option.

To link the library source, select the Link to alternate location (Linked Folder)

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-6.
5. Click Finish, and the library folder is linked in the project. See Figure 1-7.

AMCLIB User's Guide, Rev. 4, 11/2016

12

NXP Semiconductors

Chapter 1 Library

o

Folder —

Create a new folder resource. Ii .n_“

Enter or select the parent folder

twrkv31f120m_demo_apps_hello_world
[y
| =3 twrkw31f120m_demo_apps_hello_world

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (% Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. || Variables.. | I

Figure 1-6. Folder link

a5 twrkv31f120m_demo_apps_hello_world
s g’;ﬁ Binariez
> [t Includes
- 2 CMSIS

- 2 board
- 2 drivers

- 2 source
» [startup
- A2 utilities

> [= Debug
» = doc
> |y RTCESL_LOC

Figure 1-7. Projects libraries paths

1.2.4 Library path setup

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too.
These steps show how to include all dependent modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

In the right-hand dialog, select the Library Paths tab. See Figure 1-9.

4. Click the Add... button on the right, and a dialog appears.

(O8]

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 13

A
Library integration into project (MCUXpresso IDE)
5. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-8): ${RTCESL_LOC}\MLIB.
6. Click OK, and then click the Add... button.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GFLIB.
Click OK, and then click the Add... button.
9. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GDFLIB.
10. Click OK, and then click the Add... button.
11. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC}\GMCLIB.
12. Click OK, and then click the Add... button.
13. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC}\AMCLIB.
14. Click OK, you will see the paths added into the list. See Figure 1-9.

~

*®

- ™
" Add.. 5
. aa——
Directory:
S{RTCESL_LOCHAMLIE|
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
[oK] [Cancel]

Figure 1-8. Library path inclusion

AMCLIB User's Guide, Rev. 4, 11/2016
14 NXP Semiconductors

Chapter 1 Library

8 e sy S R
type filter text Paths and Symbols fPrm vy
> Resource
Builders —
. C/C++ Build Configuration: ’Debus [Active] '] [Manage Configurations...]
a4 C/C++ General
> Code Analysis
Docurmentation | e Includesl # Symbols | =11 Libraries| (& Library Paths |[B' Source Location | 3| References| |
File Types)
Formatter (B ${RTCESL_LOCAMLIB Add... 3
Indexer [P ${RTCESL_LOCNGFLIB =
Language Mappings & ${RTCESL_LOCNGMCLIB |
Paths and Symbals (B ${RTCESL_LOCNGDFLIB
Preprocessor Include P: (B ${RTCESL_LOCMNAMCLIE |
Project References | &
Run/Debug Settings 1
. . . Mave Up
(D "Preprocessor Include Paths, Macras etc.” property page may define additional entries - |
| ——
< i > < [| * |
® [oK] l Cancel ||

Figure 1-9. Library paths

15. After adding the library paths, add the library files. Click the Libraries tab. See

Figure 1-11.

16. Click the Add... button on the right, and a dialog appears.

17. Type the following into the File text box (see Figure 1-10): :mlib.a
18. Click OK, and then click the Add... button.

19. Type the following into the File text box: :gflib.a

20. Click OK, and then click the Add... button.

21. Type the following into the File text box: :gdflib.a

22. Click OK, and then click the Add... button.

23. Type the following into the File text box: :gmclib.a

24. Click OK, and then click the Add... button.

25. Type the following into the File text box: :amclib.a

26. Click OK, and you will see the libraries added in the list. See Figure 1-11.

B Add..

File:
mlib.a
[T Add to all configurations
[T Add te all languages
[T = Is a workspace path

Variables...
Workspace...

File system...

I“ ;

ok]

Cancel

b

Figure 1-10. Library file inclusion

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

15

A ————
Library integration into project (MCUXpresso IDE)

| (el Includesl # 5ym|:}o|s| B Libraries |B Library Pathsl =

T :mlib.a
T :gflib.a
T :gmclib
=\ :gdflib
T :amclib

Figure 1-11. Libraries

27. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages
list. See Figure 1-13.

28. Click the Add... button on the right, and a dialog appears. See Figure 1-12.

29. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include

30. Click OK, and then click the Add... button.

31. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GFLIB\Include

32. Click OK, and then click the Add... button.

33. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GDFLIB\Include

34. Click OK, and then click the Add... button.

35. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GMCLIB\Include

36. Click OK, and then click the Add... button.

37. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC}\AMCLIB\Include

38. Click OK, and you will see the paths added in the list. See Figure 1-13. Click OK.

L ™

Add directory path @
Directony:

S{RTCESL_LOC}\MUB\inclUdEI

[T Add to all configurations

[T Add te all languages

[T = Is a workspace path

[oK l ’ Cancel l

Figure 1-12. Library include path addition

AMCLIB User's Guide, Rev. 4, 11/2016

16 NXP Semiconductors

4
Chapter 1 Library

-
B Properties for twrkv31f120m_demo_apps_hello_world [. . ’ m‘ vhlﬁlg
type filter text Paths and Symbols =l A4

» Resource
Builders
. C/C++ Build Configuration: [Debug [Active] '] [Manage Configurations...]
4 C/C++ General
» Code Analysis
i Documentation @ Includes | # Symbols | =i, Libraries I [P Library Paths I 2 Source Location I @ Re‘Ferences|
File Types
: Formatter Languages Include directories - Add...
| Indexer . Additional Assem | (£ /${ProjName}/board
Fl;aﬂhg'-'agj 2‘1395'?95 Assembly (= ${RTCESL_LOCAMLIB\Include
athe and Symbok GMNU C (5L ${RTCESL_LOCNGFLIB\Include
Preprocessor Include Pz
\ . (= ${RTCESL_LOCAGMCLIB\Include
Project References
| . . (= ${RTCESL_LOCNGDFLIB\Include
Run/Debug Settings o E
I (=L S{RTCESL_LOCNAMCLIB\Include i
@-c:,a‘nxp,a’mcuxpressoide_lU.U.U_de_a'ide.a'tools,a'redlib_a'include
@-c:,a‘nxp,a’mcuxpressoide_lU.U.U_de_a'ide.a'tools,a'features_a'include - M D
Move Down
@ "Preprocessor Include Paths, Macros etc.” property page may define additional entries
Show built-in values
l E.E: Import Settings... l ’ ?‘@ Export Settings... I
| — Restore Defaults Appl
I q | 1 2 il
@. [oK l [Cancel]
E

Figure 1-13. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib.h"

#include "gflib.h"

#include "gdflib.h"

#include "gmclib.h"
#include "amclib.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Kinetis Design Studio)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Kinetis Design Studio. This example uses the default installation path (C:\NXP
\RTCESLA\CMO_RTCESL_4.5_KDS). If you have a different installation path, use that
path instead. If you want to use an existing MCUXpresso SDK project (for example the
hello_world project) see Memory-mapped divide and square root support . If not,
continue with the next section.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 17

Library integration into project (Kinetis Design Studio)

1.3.1 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. Right-click the MyProjectO1 or MCUXpresso SDK project name node or in the left-

2. Expand the C/C++ Build node and select Settings. See Figure 1-14.
3. In the right-hand part, under the Cross ARM C compiler node, click the Preprocessor

node. See Figure 1-14.

hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

,
¥ Properties for MyProject01

(51, S |

type filter text
» Resource
Builders
4 C/C++ Build
Build Variables
Environment
Legging
Settings
Tool Chain Editor
» C/C++ General
Project References
Run/Debug Settings
» Task Repository
WikiText

symbols (-D) title.

Settings

& -

3 Tool Settings | 53 Toolchains

Build Steps | Build Artifact | [avt Binary Parsers | 3 Error Par;er;|

v v

-

g Target Processor
g Optimization
@ Warnings
@ Debugging
4 133 Cross ARM GNU Assembler
@ Preprocessor
@ Includes
(# Warnings
(# Miscellaneous
4 B3 Cross ARM C Compiler
(2 Preprocessor
(2 Includes
(# Optimization
(# Warnings
(2 Miscellaneous
4 83 Cross ARM C++ Compiler
(2 Preprocessor
Includes
@ Optimization
@ Warnings
@ Miscellaneous
a4 18 Cross ARM C++ Linker
@ General

@ Libraries

@ Miscellaneous

Do not search system directories (-nostding)

Preprocess only (-E)
Defined symbols (-D) &

Undefined symbols (-U) L=

Figure 1-14. Defined symbols
4. In the right-hand part of the dialog, click the Add... icon located next to the Defined

5. In the dialog that appears (see Figure 1-15), type the following:

support on

support off

AMCLIB User's Guide, Rev. 4, 11/2016

 RTCESL_MMDVSQ_ON-—to turn the hardware division and square root
« RTCESL_MMDVSQ_OFF—to turn the hardware division and square root

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

18

NXP Semiconductors

Chapter 1 Library

r = = N
% Enter Value — ﬁ

| — L e

Defined symbels (-0)

RTCESL_MMDVSQ_ON|

[ok || Cancel

/)

Figure 1-15. Symbol definition
6. Click OK in the dialog.
7. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.3.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-16.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 19

Library integration into project (Kinetis Design Studio)

| type filter text

Linked Resources

a Resource
Linked Resources
Rescurce Filters
Builders
> C/C++ Build
» CfC++ General
Linux Tools Path
Project References
Run/Debug Settings
I» Task Repository
WikiText

=== ——]

v.:"/vv

Path Varnables | |inked Resources

Path variables specify locations in the file systern, including other path variables with the syntax "S{VAR}".
The lecations of linked resources may be specified relative to these path variables.

Defined path variables for resource 'MyProject(l":

Mame

(=5 ECLIPSE_HOME
= PARENT_LOC

= PROJECT_LOC

= WORKSPACE_LOC

Value
CAMNXPVKDS_3.0.0Veclipset,
CAKDSProjects\workspace.kds
CAKDSProjects\MyProject0l
CAKDSProjects\workspace.kds

MNew...

Edit...

Remove

Figure 1-16. Project properties
3. Click the New... button in the right-hand side.
4. In the dialog that appears (see Figure 1-17), type this variable name into the Name
box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CMO0O RTCESL 4.5 KDS. Click OK.

Define a New Path Variable

Enter a new variable name and its associated location.

Name: RTCESL_LOC

Location: oA\ NXPARTCESLAC Fie.. || Folder. || Variable..
Resolved Location: C:\ANXP\RTCESL\CMO_RTCESL_43_KDS

@

Figure 1-17. New variable

AMCLIB User's Guide, Rev. 4, 11/2016
20 NXP Semiconductors

~

10.

11.
12.

Chapter 1 Library

Create such variable for the environment. Expand the C/C++ Build node and click
Environment.

Click the Add... button in the right-hand side.

In the dialog that appears (see Figure 1-18), type this variable name into the Name
box: RTCESL_LOC.

Type the library parent folder path into the Value box: C:\NXP\RTCESL
\CMO_RTCESL_4.5_KDS.

Tick the Add to all configurations box to use this variable in all configurations. See
Figure 1-18.
Click OK.
In the previous dialog, click OK.
% Properties for MyProject0l 8 - | =) 28
type filter text Environment L=l v -
> Resource
Builders
a4 C/C++ Build Configuration: |debug [Active | '] [Manage Configurations...]
Build Variables
Envirenment
l;:tgtlgr:;? Envirenment variables to set Add...
Teoel Chain Editor Variable Value Origin
TDpls.P.ath‘: \ i rw ELIN 0 SWSTERA -
» c/c+] % New variable ‘_ [— 5
Linux
Proje Mame: RTCESL_LOC
$”":E Value: CANXP\RTCESL\CMO_RTCESL 4.3_KDS [Variables | | Undefine |
’ ‘.-‘:ii:iT- [V[Add to all configurations:
[OK] l Cancel]

Figure 1-18. Environment variable

1.3.3 Library folder addition
To use the library, add it into the Project tree dialog.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-

hand part and click New > Folder, or select File > New > Folder from the menu. A
dialog appears.

2. Click Advanced to show the advanced options.
3. To link the library source, select the option Link to alternate location (Linked

Folder).

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or

type the variable name into the box. See Figure 1-19.

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 21

Library integration into project (Kinetis Design Studio)

5. Click Finish, and you will see the library folder linked in the project. See Figure

-
% New Folder

R ——— [——

Folder

Create a new folder resource.

Enter or select the parent folder
MyProjectll
o

» =5 MyProject0l
[=* RernoteSystemsTempFiles

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (-7 Link to alternate location (Linked Folder)

=

RTCESL_LOC | Browse.. | [Variables.. |

Choose file system:
Figure 1-19. Folder link

a 25 MyProject01
> [a)! Includes
¢ = Includes
» [= Project_Settings
> [Fg RTCESL_LOC
4 = Sources

+ [main.c

Figure 1-20. Projects libraries paths

1.3.4 Library path setup

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too.
These steps show how to include all dependent modules:

1.

(O8]

AMCLIB User's Guide, Rev. 4, 11/2016

Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.
Expand the C/C++ General node, and click Paths and Symbols.

. In the right-hand dialog, select the Library Paths tab. See Figure 1-22.

22

NXP Semiconductors

4
Chapter 1 Library

~N

\O ©0

10
11

12
13

14

. Click the Add... button on the right, and a dialog appears.

. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box by adding the following (see Figure 1-21): ${RTCESL_LOC }\MLIB.
. Click OK, and then click the Add... button.

. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box by adding the following: ${RTCESL_LOC }\GFLIB.
. Click OK, and then click the Add... button.

. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box by adding the following: ${RTCESL_LOC }\GDFLIB.
. Click OK, and then click the Add... button.

. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box by adding the following: ${RTCESL_LOC}\GMCLIB.
. Click OK, and then click the Add... button.

. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box by adding the following: ${RTCESL_LOC}\AMCLIB.
. Click OK, and the paths will be visible in the list. See Figure 1-22.

= ropertes for MyPror

type filter text

> Resource
Builders
» C/C++ Build
a4 C/C++ General
. Code Analysis
Documentation
I File Types
Formatter
Indexer
Language Mappings
Paths and Symbuols
Preprocessor Include Pi
Profiling Categories
Linux Tools Path

' ™
" Add.. 5
P ——
Directory:
S{RTCESL_LOCHMLIE|
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
[oK] [Cancel]

Figure 1-21. Library path inclusion

Paths and Symbols

Configuration: ’Debug [Active]

"] [Manage Configurations...]

| @ Includesl # Symbols | =1 Libraries| (B Library Paths |[B' Source Location | @ References|

[${ProjDirPath}/Project_Settings/Linker_Files
B ${RTCESL_LOCHMLIB

[P ${RTCESL_LOCNGFLIB

[P ${RTCESL_LOCNGMCLIB

[P ${RTCESL_LOCNGDFLIB

(B ${RTCESL_LOCHAMCLIB

Figure 1-22. Library paths

Add
Edit...
Delete

Export

i

15. After adding the library paths, add the library files. Click the Libraries tab. See

Figure 1-24.

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

23

Library integration into project (Kinetis Design Studio)

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

28.
29.

30.
31.

32.
33.

34.

Click the Add... button on the right, and a dialog appears.

Type the following into the File text box (see Figure 1-23): :mlib.a
Click OK, and then click the Add... button.

Type the following into the File text box: :gflib.a

Click OK, and then click the Add... button.

Type the following into the File text box: :gdflib.a

Click OK, and then click the Add... button.

Type the following into the File text box: :gmclib.a

Click OK, and then click the Add... button.

Type the following into the File text box: :amclib.a

Click OK, and you will see the libraries added in the list. See Figure 1-24.

B Add..

File:
:mlib.a
[7] Add te all configurations

[T Add to all languages
[= Is a workspace path

Variables...

Workspace...

III &3

File systern...

[ok || cance |

Figure 1-23. Library file inclusion

| (el Includesl # 5ymbc-|s| B Libraries |[E,- Library Pathsl =

TEL :mlib.a
T :gflib.a
TEi agmclib
Tl :gdflib
TEi :amclib

Figure 1-24. Libraries
In the right-hand dialog, select the Includes tab, and click GNU C in the Languages
list. See Figure 1-26.
Click the Add... button on the right, and a dialog appears. See Figure 1-25.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include
Click OK, and then click the Add... button.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GFLIB\Include
Click OK, and then click the Add... button.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GDFLIB\Include
Click OK, and then click the Add... button.

AMCLIB User's Guide, Rev. 4, 11/2016

24

NXP Semiconductors

L __4
Chapter 1 Library

35. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GMCLIB\Include

36. Click OK, and then click the Add... button.

37. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC}NAMCLIB\Include

38. Click OK, and you will see the paths added in the list. See Figure 1-26. Click OK.

-
B Add directory path

Directory:
S{RTCESL_LOCHMLIBAInclude]

[7] Add te all configurations
[T Add to all languages
[= Is a workspace path

Variables...
Workspace...

File systern...

i g

Cancel

ok |

Figure 1-25. Library include path addition

- Properties for MyPra

type filter text Paths and Symbols G v
. Resource
Builders
. C/C++ Build Configuration: ’Debug [Active] '] [Manage Configurations...]
a4 C/C++ General
» Code Analysis
Documentation (= Includes | # Symbols | = Libraries | [Library Paths | 2 Source Location | 5 References|
File Types
Formatter Languages Include directories Add...
Indexer _ Assembly 1= Sources Edit
Language Mappings GNU C Blncludes
aibs apd Symbols GNU C++ (= ${RTCESL_LOC)MLIB\include Delete

Preprocessor Include Pz
Profiling Categories
Linux Tools Path
Project References
Run/Debug Settings

(1= ${RTCESL_LOCNGFLIB\include

(= ${RTCESL_LOCAGMCLIB\include
(= ${RTCESL_LOCNGDFLIB\include
(= ${RTCESL_LOCNAMCLIB\include Mowve Up

Export

Figure 1-26. Compiler setting

Type the #include syntax into the code. Include the library into the main.c file. In the left-
hand dialog, open the Sources folder of the project, and double-click the main.c file.
After the main.c file opens up, include the following lines in the #include section:
#include "mlib.h"

#include "gflib.h"

#include "gdflib.h"

#include "gmclib.h"
#include "amclib.h"

When you click the Build icon (hammer), the project will be compiled without errors.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 25

Library integration into project (Keil pVision)

1.4 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil pVision. This example uses the default installation path (C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Memory-mapped divide and square root support chapter otherwise read
next chapter.

1.4.1 NXP pack installation for new project (without MCUXpresso
SDK)

This example uses the NXP MKV 10Z32xxx7 part, and the default installation path (C:
\WXP\RTCESL\CMO_RTCESL_4.5_KEIL) is supposed. If the compiler has never been
used to create any NXP MCU-based projects before, check whether the NXP MCU pack
for the particular device is installed. Follow these steps:

1. Launch Keil uVision.

2. In the main menu, go to Project > Manage > Pack Installer....

3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale
(NXP) node.

Look for a line called "KVxx Series" and click it.

In the right-hand dialog (under the Packs tab), expand the Device Specific node.
Look for a node called "Keil::Kinetis_ KVxx_DFP." If there are the Install or Update
options, click the button to install/update the package. See Figure 1-27.

7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

A

AMCLIB User's Guide, Rev. 4, 11/2016
26 NXP Semiconductors

Chapter 1 Library

i) Pack Installer - C:AKeil yS\ARM\PACK P - ([=/=] =]
File Packs Window Help
[2 | Device: Freeseale - KVixx Series
ﬂi Devices r Boards] ﬂ ﬂ Packs r Examples] ﬂ
| Search: - X Pack Action Description
I Toim /| Summary E| Device Specific 1Pack
~@ Atmel 257 Devices ||| e Keilakinetis Kiio DFP % Install | Freescale Kinetis K\ Series Device Support
El- @ Freescale 234 Devices &l Generic 10 Packs
5% K Series T Device s ARM::CMSIS & Up to date || CMSIS (Cortex Microcontroller Software Interface Standard)
% KDO Series 2 Devices [+ Keil: ARM_Compiler Up to date | Keil ARM Compiler extensions
%8 K10 Series 23 Devices #l-Keil:Jansson & _Install Jansson is a C library for encoding, decoding and manipulal
v{g K20 Series 41 Devices [+ Keil:MDK-Middleware 1 Update Keil MDK-ARM Professional Middleware for ARM Cortex-M
5% K30 Series 6 Devices sl Keil:MDK-Network_DS | _Install Keil MDK-ARM Professional Middleware Dual-Stack IPvl/I>
% K40 Series 6 Devices [lwiIP::hwIP & Install IwIP is a light-weight implementation of the TCP/IP protoc
%8 K50 Series 11 Devices [+l Micrium:RTOS & _Install Micrium software components
% KBO Series 18 Devices [+ Oryx-Embedded:Midd... € Install Middleware Package (CycloneTCP, CycloneSSL and Cyclon
% K70 Series 1 Devices - wolfSSL:CyaSsL & _Install Light weight SSL/TLS and Crypt Library for Embedded Syste
% KBO Series 2 Devices = - YOGITECH:ARSTL AR... |43 Install VOGITECH fRSTL Functional Safety EVAL Software Pack for
7 KE A Series 6 Devices
A Kb Series 11 Devices
7 Ko Series 54 Devices
% KMo Series 14 Devices
7 Ko Series 26 Devices
% Kot Series 8 Devices
el | | »
Output 2 x
Refresh Pack descriptions
Update available for Keil:: MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta)
1
Ready ||onune

Figure 1-27. Pack Installer

1.4.2 New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and
is opened, skip to the next section. Follow these steps to create a new project:

1.
2.

il

Launch Keil pVision.

In the main menu, select Project > New pVision Project..., and the Create New
Project dialog appears.

Navigate to the folder where you want to create the project, for example C:
\KeilProjects\MyProjectO1. Type the name of the project, for example MyProjectO1.
Click Save. See Figure 1-28.

Create New Project

.. v Computer » System (T » KeiIProj roI - '-

Search MyProject01 pel

File name: MyProject0l

Save as type: IProj.ect Files (*.uvproj; *.uvprojx)

¥ Browse Folders

Figure 1-28. Create New Project dialog
In the next dialog, select the Software Packs in the very first box.
Type 'kv10' into the Search box, so that the device list is reduced to the KV10
devices.
Expand the KV10 node.

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 27

Library integration into project (Keil pVision)

7. Click the MKV 10Z32xxx7 node, and then click OK. See Figure 1-29.

~ - B
Select Device for Target ‘Target 1. “

8. In the next dialog, expand the Device node, and tick the box next to the Startup node.

cru |
ISoﬂware Packs ;I
Vendor: Freescale
Device: MKV10Z320007
Toolset: ARM
Search:
Description:

@ ARM a || |The Kinetis KV Tx family is the entry point of the W Series. -
0% F I Buitt upon the ARM Cortex-M0+ core running at 75 MHz with hardware
reescale square root and divide capability, it delivers a 35% increase in
= “3[3 K\ Series performance in math-intensive applications versus blz MCUs,

allowing it to target BLOC as well as more computationally demanding
=% K FMSM motars.
] MKVL071 28007 Additional features include integrated FlexCAN, dual 16bit analogto-
a digital controllers {ADCs) sampling at up to 1.2 mega samples per
MKV10Z16x07 second {MS/s)in 12+t mode, multiple motor control timers, up to 128
=l MKVL0Z2250aT KB of flash memary and a comprehensive enablement suite from
Freescale and third-party resources, including reference designs,
€1 MKV10Z641007 software libraries and motor corfiguration tools.
€] MKVL17128w007
1 b i

See Figure 1-30.
9. Expand the CMSIS node, and tick the box next to the CORE node.

[

10. Click OK, and a new project is created. The new project is now visible in the left-

Figure 1-29. Select Device dialog

e L =)
| Software Component | Sel. Variant Version Description

= ’ CMSIS Cortex Microcontroller Software Interface Components

CORE i 410 CMSIS-CORE for Cortex-M, SC000, and SC300

@ DsP - 145 CMSIS-DSP Library for Cortex-M, SC000, and SC300

€ RTOS (AP 10 CMSIS-RTOS API for Cortex-M, SC000, and 5C300

. CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
@ Compiler ARM Compiler Software Extensions
= . Device Startup, System Setup

@ Startup icd 100 Systern Startup for Kinetis KV10 75MHz devices
’ File System MDK-Pro 640 File Access on various storage devices
. Graphics MDK-Pro 5.26.1 User Interface on graphical LCD displays
0 Network MDK-Pro 640 1P Metworking using Ethernet or Serial protocels
’ UsSE MDE-Pro 640 USE Communication with various device classes

Figure 1-30. Manage Run-Time Environment dialog

hand part of Keil uVision. See Figure 1-31.

AMCLIB User's Guide, Rev. 4, 11/2016

28

NXP Semiconductors

Chapter 1 Library

—
kA CiKeilProjects\MyProjectD1\MyProject01.uvprojx - p\ision

File Edit Wiew Project Flash Debug Peripherals Toc

- I | |

e §9 | Target1 =] & |
Project 1 @
=% Project MyProject(l
g Targetl
[Source Groupl
& cmsis
=9 Device
Bl startup_MKV10Z7 s (Startup)
Bl system_MKVL0Z7.c (Startup)

Figure 1-31. Project

1.4.3 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog

appears.
2. Select the C/C++ tab. See Figure 1-32.
3. In the Include Preprocessor Symbols text box, type the following:
e RTCESL_MMDVSQ_ON—to turn the hardware division and square root

support on
» RTCESL_MMDVSQ_OFF—to turn the hardware division and square root

support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 29

Library integration into project (Keil pVision)

(" -
k] Options for Target 'Target 1' E
Device] Target] Output] Listing] User C/Ce+]Asm] Linker] Debug] Utilities]
Preprocessor Symbols
Define: |HTCESL_MMDVSQ_ON
Undefine: |
Language / Code Generation
[~ Execute-only Cods [~ Strict ANSIC Wamings:
Optimization: |Level 0{00) = ™ Enum Container always irt Al Wamings h
[Optimize for Time I Plain Char is Signed I
[~ Split Load and Store Muttiple ™ Read-Only Position Independent [Mo Auto Includes
[~ One ELF Section per Function I Bead-Write Position Independent [C99 Mode
Include
Paths J
Misc |
Controls
Compiler |-c —cpu Cortex-M4fp -D__EVAL -g -00 -apcs=interwork -
control |- C:\KeilProjects \MyProject 014K TE
string 7
oK | cancel | Defouts | Help

Figure 1-32. Preprocessor symbols
4. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.4.4 Linking the files into the project

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too. The
following steps show how to include all dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group... from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.

3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'...
from the menu.

4. Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL 4.5 KEIL\MLIB\Include, and select the mlib.h file. If the file does
not appear, set the Files of type filter to Text file. Click Add. See Figure 1-33.

AMCLIB User's Guide, Rev. 4, 11/2016
30 NXP Semiconductors

4
Chapter 1 Library

Look in: | J Include j [=% BB
Marne : Date modified il
T mlib.h 16.10.2014 8:19 iE‘

| MLUEB_Abs_Fl16.h 21.10.2014 3:45 r

_ MLUB_Abs_F32.h 1610.2014 9:19

| MLUB_Add_A32.h 16.10.2014 2:19

_ MLB_Add_Fl16.h 1610.2014 9:19

| MUB_Add_F32.h 16.10.2014 2:19

 MLB_Add4_F16.h 1610.2014 9:19

| MUB_Add4_F32.h 16.10.2014 2:19

_ MLIB_BiShift_F16.h 1610.2014 9:19

| MLUEB_BiShift_F32.h 16.10.2014 2:19 il
< samoen e i 1£ 40 nTa AR .
File name: |m|ib.h

Files of type: |Te:d file (“ta; “h; “inc) j Close

Figure 1-33. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\MLIB,
and select the mlib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add. See Figure 1-34.

Lookin: | J. MLIB ~| & & e B
MName : Date modified Ty
JInclude 20.10.2014 15:37 Fi
|| MLIB.lib 16.10.2014 9:19 LI
4| [| r
File name: |MLIB.Iib

Files of type: | Library file (*ib) <] e |

Figure 1-34. Adding .lib files dialog
6. Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL\GFLIB\Include, and select the gflib.h file. If the file does
not appear, set the Files of type filter to Text file. Click Add.
7. Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GFLIB,
and select the gflib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 31

Library integration into project (Keil pVision)

8.

10.

11.

12.

13.

14.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL\GDFLIB\Include, and select the gdflib.h file. If the file
does not appear, set the Files of type filter to Text file. Click Add.

Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GDFLIB,
and select the gdflib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL\GMCLIB\Include, and select the gmclib.h file. If the file
does not appear, set the Files of type filter to Text file. Click Add.

Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL
\GMCLIB, and select the gmclib.lib file. If the file does not appear, set the Files of
type filter to Library file. Click Add.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL 4.5 KEIL\AMCLIB\Include, and select the amclib.h file. If the file
does not appear, set the Files of type filter to Text file. Click Add.

Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL
\AMCLIB, and select the amclib.lib file. If the file does not appear, set the Files of
type filter to Library file. Click Add.

Now, all necessary files are in the project tree; see Figure 1-35. Click Close.

Project n B
= “T8 Project: MyProject01
-5 Targetl
I Source Group 1
=[5 RTCESL
_1 mlibh
L1 MUB.lib
_1 gflib.h
] GFLBIib
_1 gmclib.h
1 GMCLIB.lib
_1 amclib.h
1 AMCLIB.lib
& cmsis

= @ Device

Figure 1-35. Project workspace

1.4.5 Library path setup

The following steps show the inclusion of all dependent modules.

1.

2.

In the main menu, go to Project > Options for Target 'Targetl'..., and a dialog
appears.
Select the C/C++ tab. See Figure 1-36.

AMCLIB User's Guide, Rev. 4, 11/2016

32

NXP Semiconductors

4
Chapter 1 Library

3. In the Include Paths text box, type the following paths (if there are more paths, they

must be separated by ';') or add them by clicking the ... button next to the text box:
e "C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\MLIB\Include"

"C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GFLIB\Include"

"C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GDFLIB\Include"

"C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GMCLIB\Include"

"C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\AMCLIB\Include"

4. Click OK.

5. Click OK in the main dialog.

,

Device] Target] Outpl_rt] Usting] User C/Ce+ lﬂsm] Unker] Debug] Lhilities]

Preprocessor Symbols
Define: |
Undefine: |
Language / Code Generation
[Strict ANSIC ST
‘ Optimization: |Level 0 (O0) = [~ Enum Container always int All Wamings i
[~ Optimize for Time [Plain Charis Signed I
[~ Split Load and Store Muttiple [~ Read-Only Position Independert ™ No Auto Includes
[~ One ELF Section per Function [Read-Write Position Independent [C59 Mode
w | N
Misc |
Controls
‘ Compiler |- —cpu Cortex-M0+ -D__EVAL g 00 —apcs=intenwork -
cc;tr:;c; - C:\KeilProjects " MyProject01\RTE i

I
ok | Cancel | Defaults | Help |

Figure 1-36. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
1'... from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-37.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 33

Library integration into project (IAR Embedded Workbench)

Add MNew Item to Group "Source Group 1°

Create a new C source file and add it to the projed
C | CFie ()

@ C++ File (cpp)
\ﬂ Asm File (.5)

\ﬂ Header File (h)
é Teat File (i)
@ Image File (%)
7‘@ User Code Template

Type:
Marme: | i, &
Location: | C:\KeilProjects\MyProjectd1
Add Close |
—

Figure 1-37. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and
create a main function:
#include "mlib.h"
#include "gflib.h"
#include "gdflib.h"

#include "gmclib.h"
#include "amclib.h"

int main(void)

while (1) ;

}
When you click the Build (F7) icon, the project will be compiled without errors.

1.5 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
AMCLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CMO_RTCESL_4.5_IAR). If you have a different installation

AMCLIB User's Guide, Rev. 4, 11/2016
34 NXP Semiconductors

Chapter 1 Library

path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Memory-mapped divide and square root support
chapter otherwise read next chapter.

1.5.1 New project (without MCUXpresso SDK)

This example uses the NXP MKV 10Z32xxx7 part, and the default installation path (C:
\NXP\RTCESL\CMO_RTCESL_4.5_IAR) is supposed. To start working on an
application, create a new project. If the project already exists and is opened, skip to the
next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.

2. In the main menu, select Project > Create New Project... so that the "Create New

Project" dialog appears. See Figure 1-38.

Create New Project __ ﬁ

Taol chain: [&RM -

Project templates:

- asm ~
- C++

Il |55
DLIE [C, C++ with exceptions and RTTI] | &
DLIE [C, Extended Embedded C++) i

R e |

m

Dezcription:
C project uzing default tool gettings inchuding an empty main.c file.

[oK] [Cancel]

Figure 1-38. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:
\[ARProjects\MyProjectO1. Type the name of the project, for example, MyProjectO1.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-39.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 35

A ————
Library integration into project (IAR Embedded Workbench)

& IAR Embedded Workbench IDE

FrIEin.c
L@ 3 Output

OK. See Figure 1-40.

Ef&|MyProjectdl -Deb__ | v [| T :
. }

Eile Edit View Project Simulator JTools Window Help

N dd@ & 2R o - ¢
I * main.cl

lDebug v]
|| Files £ B tne maind)

return 0;

Figure 1-39. New project
5. In the main menu, go to Project > Options..., and a dialog appears.

6. In the Target tab, select the Device option, and click the button next to the dialog to
select the MCU. In this example, select NXP > KV1x > NXP MKV10Z32xxx7 Click

Options for node "MyProject01”

52]

Categony:

Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Qutput Conwverter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GDE Server
IAR. ROM-monitor
I§et/ITAGjet
Jink/1-Trace
TI Stellaris
Macraigor
PE micro
RDI

Target | Qutput | Library Configuration | Library Options | MISRAC.200/ 4 | »

Processor variant

0 Core

@ Device

Endian mode
@ Little
Big
BE3Z2

@ BE8

NXP MEV10Z32007

Cortex-MD+

Floating poirt settings
EPU Mone

D reqisters

Advanced SIMD (NEON)

ST-LINK

Third-Party Driver
TLXDS

] [Cancel

Figure 1-40

. Options dialog

AMCLIB User's Guide, Rev. 4, 11/2016

36

NXP Semiconductors

4
Chapter 1 Library

1.5.2 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated to division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the
right; use the arrow icons for navigation).
4. In the text box (at the Defined symbols: (one per line)), type the following (See
Figure 1-41):
* RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on
 RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Options for node "MyProject01” S

Cateqgony: Factory Settings

General Options [T Multi-file Compilation

Static Analysis Discard Unuszed Publics
Runtime Checking

| Language 2 | Code | Optimizations | Output | List | Preprocessor ||«]+

Assembler
Qutput Converter [lgnore standard include directories

Custom Build Additional include directories: fone per line)
Build Actions " E]

Linker
Debugger
Simulator
Angel
CMSIS DAP Preinclude file:
GOB Server E]
IAR. ROM-monitor)
T-et/TTAGet Defined symbols: {one per line)
I-Link/1-Trace RTCESL_MMDVSQ_ON - [] Preprocessar output to file
TI Stellaris Preserve comments

Macraigor 1 Generate Hine directives

PE micro

RDI

ST-LIMNK
Third-Party Driver
TLXDS

[Ok] l Cancel

Figure 1-41. Defined symbols
5. Click OK in the main dialog.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 37

A ————
Library integration into project (IAR Embedded Workbench)

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.5.3 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1.

2.

i

In the main menu, go to Tools > Configure Custom Argument Variables..., and a
dialog appears.

Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-42.

B ' Configure Custom Argument Variables

Workspace | Global

~ahle Grour
Enable Group

MNew Group m

|'\
‘ Flanie. ..
.

Mame: PATH

lable...

OK] l Cancel =

prt...

Expand/Collapse Al

[Hide disabled groups

[OK] [Cancel

Figure 1-42. New Group
Click on the newly created group, and click the Add Variable button. A dialog
appears.
Type this name: RTCESL_LOC
To set up the value, look for the library by clicking the '..." button, or just type the
installation path into the box: C:\NXP\RTCESL\CMO_RTCESL_4.5_IAR. Click
OK.
In the main dialog, click OK. See Figure 1-43.

AMCLIB User's Guide, Rev. 4, 11/2016

38

NXP Semiconductors

Chapter 1 Library

i ' Configure Custom Argument Variables P
Workspace | Global
[PATH Disable Group
-
Add Variable 5
Mame: RCTESL_LOC
Value: C:\NXP\RTCESL\CMO_FSLESL_4.3_IAR] B
[oK l [Cancel]
%

Figure 1-43. New variable

1.5.4 Linking the files into the project

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too. The
following steps show the inclusion of all dependent modules.

To include the library files into the project, create groups and add them.

1.
2.
3.

Go to the main menu Project > Add Group...

Type RTCESL, and click OK.

Click on the newly created node RTCESL, go to Project > Add Group..., and create
a MLIB subgroup.

Click on the newly created node MLIB, and go to the main menu Project > Add
Files... See Figure 1-45.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\MLIB\Include, and select the m/ib.h file. (If the file does
not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-44.
Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

.
b System (C:) » NXP » RTCESL » CMO_RTCESL 43 IAR » MLIE » Include

———

i Marne Date modified Type
| mlib.h 16.10.2015 9:38 H File
| MLIB_Abs_F16.h 16.10.2015 9:38 H File

Figure 1-44. Add Files dialog
Click on the RTCESL node, go to Project > Add Group..., and create a GFLIB

subgroup.

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 39

A ————
Library integration into project (IAR Embedded Workbench)

8.

9.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Click on the newly created node GFLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GFLIB\Include, and select the gflib.h file. (If the file does
not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GFLIB, and select the gflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create a GDFLIB
subgroup.

Click on the newly created node GDFLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GDFLIB\Include, and select the gdflib.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GDFLIB, and select the gdflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create a GMCLIB
subgroup.

Click on the newly created node GMCLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GMCLIB\Include, and select the gmclib.h file. If the file
does not appear, set the file-type filter to Source Files. Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GMCLIB, and select the gmclib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create an AMCLIB
subgroup.

Click on the newly created node AMCLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL 4.5 TAR\AMCLIB\Include, and select the amclib.h file. If the file
does not appear, set the file-type filter to Source Files. Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_ TAR\AMCLIB, and select the amclib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Now you will see the files added in the workspace. See Figure 1-45.

AMCLIB User's Guide, Rev. 4, 11/2016

40

NXP Semiconductors

4
Chapter 1 Library

Waorkspace x
lDebug v]

Files nomy
=i [MyProjectdl -Deb_ | v | |
FE O RTCESL

= (O AMCLIB

— [AMCLIB.&

L— k] amclibh

—E C1GFLE

— [GFLE.a

I

= (I GRMCLIB

— [GMCLIB.&

L— [gmclib h

= kLB

— [MUE.a

— [h] rnlibh

main.c

= [Output

Figure 1-45. Project workspace

1.5.5 Library path setup
The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in
the right; use the arrow icons for navigation).
4. In the text box (at the Additional include directories title), type the following folder
(using the created variable):
e SRTCESL_LOC$\MLIB\Include
« $SRTCESL_LOC$\GFLIB\Include
e SRTCESL_LOCS$\GDFLIB\Include
e SRTCESL_LOCS$\GMCLIB\Include
* SRTCESL_LOC$\AMCLIB\Include
5. Click OK in the main dialog. See Figure 1-46.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 41

A ————
Library integration into project (IAR Embedded Workbench)

F Bl

General Options [Multifile Compilation
Static Analysis Discard Unused Publics
Runtime Checking
| Language 1 I Language 2 I Code I Optimizations I Output I List | Hlatalin
Assembler
QOutput Converter
Custom Build
Build Actions [lgnore standard include directories
gnl;er Additional include directories: jone per ling)
il SRTCESL_LOCS\MLIB\include - &
simuator SRTCESL_LOCS\GFLIB\nclude
Angel SRTCESL LOCSVGMCLIBYnclude
CMSIS DAP SRTCESL_LOCESMGDFLIBNNnclude
GOB Server SRTCESL_LOCS\AMCLIBNinclude -
TAR. ROM-monitor Preinclude file:
T4et/TTAGet |
J-Link/1-Trace E]
TI Stellaris Defined symbols: (one per line)
Macraigor n || Preprocessor outpit to file
PE micro Preserve comments
RDI Generate Hine directives
ST-LIMK
Third-Party Driver
TI XDS
[QK.] l Cancel

Figure 1-46. Library path adition

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib.h"

#include "gflib.h"

#include "gdflib.h"

#include "gmclib.h"
#include "amclib.h"

When you click the Make icon, the project will be compiled without errors.

AMCLIB User's Guide, Rev. 4, 11/2016
42 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 AMCLIB TrackObsrv

The AMCLIB_TrackObsrv function calculates a tracking observer for the determination
of angular speed and position of the input error functional signal. The tracking-observer
algorithm uses the phase-locked-loop mechanism. It is recommended to call this function
at every sampling period. It requires a single input argument as a phase error. A phase-
tracking observer with a standard PI controller used as the loop compensator is shown in
Figure 2-1.

Oerror , W , 1 _,9
S

Figure 2-1. Block diagram of proposed PLL scheme for position estimation
The depicted tracking observer structure has the following transfer function:

Os) sKp+K;
Os) s2+sKptK;

Equation 1

The controller gains K, and K; are calculated by comparing the characteristic polynomial
of the resulting transfer function to a standard second-order system polynomial.

The essential equations for implementation of the tracking observer according to the
block scheme in Figure 2-1 are as follows:

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 43

A
AMCLIB_TrackObsrv
(k)= Kpeelk)+Ts Ky elk)+awfk—1)

Equation 2

0(k)=Ts w(k)+6(k-1)
Equation 3

where:

* Kp is the proportional gain

K| is the integral gain

T, is the sampling period [s]

e(k) is the position error in step k

w(k) 1s the rotor speed [rad / s] in step k

w(k - 1) 1s the rotor speed [rad / s] in step k - 1
B(k) is the rotor angle [rad] in step k

* B(k - 1) is the rotor angle [rad] in step k - 1

In the fractional arithmetic, Equation 1 on page 43 and Equation 2 on page 44 are as
follows:
wsc(k) * Wpax = KP . esc(k)+ TS : K] . esc(k)+ wvc(k - 1) * Wmax

Equation 4

Osc (k) Opax = Ts* 05 (k) * Opax T Ose (k= 1) = Oy

Equation 5
where:

* e..(k) is the scaled position error in step k

* Wq.(k) is the scaled rotor speed [rad / s] in step k

* Wy.(k - 1) 1s the scaled rotor speed [rad / s] in step k - 1
* O,.(k) is the scaled rotor angle [rad] in step k

* O,.(k - 1) is the scaled rotor angle [rad] in step k - 1

* Wpax 1S the maximum speed

* 0.« 1S the maximum rotor angle (typically)

2.1.1 Available versions
The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1; 1).

AMCLIB User's Guide, Rev. 4, 11/2016
44 NXP Semiconductors

Chapter 2 Algorithms in detail

The available versions of the AMCLIB_TrackObsrv function are shown in the following

table:
Table 2-1. Init versions
Function name Init angle Parameters Result type
AMCLIB_TrackObsrvinit_F16 frac16_t AMCLIB_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1; 1) that
represents an angle (in radians) within the range <-m ; m).

Table 2-2. Function versions

Function name

Input type Parameters Result type

AMCLIB_TrackObsrv_F16

frac16_t AMCLIB_TRACK_OBSRV_T_F32 * frac16_t

Tracking observer with a 16-bit fractional position error input divided by 1. The output
from the obsever is a 16-bit fractional position normalized to the range <-1 ; 1) that
represents an angle (in radians) within the range <-m ; m).

2.1.2 AMCLIB_TRACK_OBSRV_T_F32

Variable name Input Description
type
f32Theta frac32_t |Estimated position as the output of the second numerical integrator. The parameter is
within the range <-1; 1). Controlled by the algorithm.
f32Speed frac32_t |Estimated speed as the output of the first numerical integrator. The parameter is within the
range <-1; 1). Controlled by the algorithm.
f321_1 frac32_t |State variable in the controller part of the observer; integral part at step k - 1. The
parameter is within the range <-1 ; 1). Controlled by the algorithm.
f161Gain frac16_t |The observer integral gain is set up according to Equation 4 on page 44 as:
TS : KI ’ wriax : 271511
The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.
i161GainSh int16_t The observer integral gain shift takes care of keeping the f161Gain variable within the
fractional range <-1 ; 1). The shift is determined as:
))i
log (T K} G) —log, 1 < Ish <log (T's K wq7) — 10g,0.5
The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.
f16PGain frac16_t |The observer proportional gain is set up according to Equation 4 on page 44 as:
K P’ wnlzax : 27PSh
The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.
i16PGainSh int16_t The observer proportional gain shift takes care of keeping the f16PGain variable within the

fractional range <-1 ; 1). The shift is determined as:

log (K p* ms) — l0g,1 < Psh < 10g,(K p* mpezr) — l0g 0.5

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

45

A
AMCLIB_TrackObsrv

Variable name Input Description
type
The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.
f16ThGain frac16_t |The observer gain for the output position integrator is set up according to Equation 5 on
page 44 as:

o, _
T, max o Thsh

max

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16ThGainSh int16_t The observer gain shift for the position integrator takes care of keeping the f16ThGain
variable within the fractional range <-1 ; 1). The shift is determined as:

log (T 7™) ~ log,1 < THsh < log (T, 5*) ~ log 0.5

emtvc

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

2.1.3 Declaration
The available AMCLIB_TrackObsrvInit functions have the following declarations:

void AMCLIB TrackObsrvInit F16 (fraclée t fl6ThetalInit, AMCLIB TRACK OBSRV_ T F32 *psCtrl)
The available AMCLIB_TrackObsrv functions have the following declarations:

fracle t AMCLIB_TrackOber_F16(frac16_t fl6Error, AMCLIB TRACK OBSRV T F32 *psCtrl)

2.1.4 Function use
The use of the AMCLIB_TrackObsrv function is shown in the following example:

#include "amclib.h"

static AMCLIB TRACK OBSRV T F32 sTo;
static fraclé_t fl6ThetaError;
static fraclé_t fl6PositionEstim;
void Isr(void) ;

void main (void)

sTo.f16IGain FRAC16 (0.6434) ;

sTo.116IGainSh = -9;
sTo.f16PGain = FRAC16(0.6801) ;
sTo.116PGainSh = -2;
sTo.f16ThGain = FRAC16(0.6400) ;
sTo.i16ThGainSh = -4;

AMCLIB TrackObsrvInit F16 (FRAC16(0.0), &sTo);

flé6ThetaError = FRAC16(0.5);

AMCLIB User's Guide, Rev. 4, 11/2016
46 NXP Semiconductors

4
Chapter 2 Algorithms in detail

/* Periodical function or interrupt */
void Isr (void)

/* Tracking observer calculation */
fléPositionEstim = AMCLIB TrackObsrv_ F16 (fl16ThetaError, &sTo) ;

}

2.2 AMCLIB_AngleTrackObsrv

The AMCLIB_TrackObsrv function calculates an angle-tracking observer for
determination of angular speed and position of the input signal. It requires two input
arguments as sine and cosine samples. The practical implementation of the angle-tracking
observer algorithm is described below.

The angle-tracking observer compares values of the input signals - sin(0), cos(0) with
their corresponding estimations. As in any common closed-loop systems, the intent is to
minimize the observer error towards zero value. The observer error is given here by
subtracting the estimated resolver rotor angle from the actual rotor angle.

The tracking-observer algorithm uses the phase-locked loop mechanism. It is
recommended to call this function at every sampling period. It requires a single input
argument as phase error. A phase-tracking observer with standard PI controller used as
the loop compensator is shown in Figure 2-2.

K>

Figure 2-2. Block diagram of proposed PLL scheme for position estimation

Note that the mathematical expression of the observer error is known as the formula of
the difference between two angles:

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 47

A
AMCLIB_AngleTrackObsrv

sin(6 — 9) = sin(6) - cos(d) — cos(d) - sin(0)

Equation 6

If the deviation between the estimated and the actual angle is very small, then the
observer error may be expressed using the following equation:

sin@—0)=60—0

Equation 7

The primary benefit of the angle-tracking observer utilization, in comparison with the
trigonometric method, is its smoothing capability. This filtering is achieved by the
integrator and the proportional and integral controllers, which are connected in series and
closed by a unit feedback loop. This block diagram tracks the actual rotor angle and
speed, and continuously updates their estimations. The angle-tracking observer transfer
function is expressed as follows:

Os) K(1+sK))
H(S) - S2+SK1K2+K1

Equation 8

The characteristic polynomial of the angle-tracking observer corresponds to the
denominator of the following transfer function:

S2+SK1K2+K]

Appropriate dynamic behavior of the angle-tracking observer is achieved by the
placement of the poles of characteristic polynomial. This general method is based on
matching the coefficients of characteristic polynomial with the coefficients of a general
second-order system.

The analog integrators in the previous figure (marked as 1/ s) are replaced by an
equivalent of the discrete-time integrator using the backward Euler integration method.
The discrete-time block diagram of the angle-tracking observer is shown in the following
figure:

AMCLIB User's Guide, Rev. 4, 11/2016
48 NXP Semiconductors

Chapter 2 Algorithms in detail

K>
sin(6(k))
K1 7= = o0k
cos(6(k))—
Y 1
Vi z

Figure 2-3. Block scheme of discrete-time tracking observer

The essential equations for implementating the angle-tracking observer (according to this
block scheme) are as follows:

e(k) = sin(6(k)) - cos(A(k — 1)) — cos(6(k)) - sin(B(k — 1))

Equation 9

o(k)=Ts* K;*elk)+ otk —1)
Equation 10

axk)= Ty (k) +axk — 1)
Equation 11

0(k) =K, (k) +ay(k)

Equation 12

where:

» K, is the integral gain of the I controller

* K, is the proportional gain of the PI controller

T, 1s the sampling period [s]

e(k) is the position error in step k

w(k) is the rotor speed [rad / s] in step k

w(k - 1) 1s the rotor speed [rad / s] in step k - 1

a(k) 1s the integral output of the PI controler [rad / s] in step k

a(k - 1) is the integral output of the PI controler [rad / s] in step k - 1
B(k) is the rotor angle [rad] in step k

* O(k - 1) is the rotor angle [rad] in step k - 1

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 49

AR
AMCLIB_AngleTrackObsrv

* O(k) is the estimated rotor angle [rad] in step k
e O(k - 1) is the estimated rotor angle [rad] in step k - 1

In the fractional arithmetic, Equation 9 on page 49 to Equation 12 on page 49 are as
follows:

W dk) ® Opax = Ts* Ko e(k)+ ogdk — 1) * Oy
Equation 13

a2sc(k) * Omax = T's* 05 dk) * Opax azsc(k = 1) Opax

Equation 14

ésc(k) 'gmax:K2°wsc(k) 'wmax+a25c(k) °9max

Equation 15
where:

* e..(k) is the scaled position error in step k

* Wq.(k) is the scaled rotor speed [rad / s] in step k

* Wy (k - 1) 1s the scaled rotor speed [rad / s] in step k - 1

* a..(k) 1s the integral output of the PI controler [rad / s] in step k
* a,.(k - 1) is the integral output of the PI controler [rad / s] in step k - 1
* O,.(k) is the scaled rotor angle [rad] in step k

* O,.(k - 1) is the scaled rotor angle [rad] in step k - 1

* O0..(k) is the scaled rotor angle [rad] in step k

* O,.(k - 1) is the scaled rotor angle [rad] in step k - 1

* Wpax 18 the maximum speed

* 04 1S the maximum rotor angle (typicaly)

2.2.1 Available versions
The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

AMCLIB User's Guide, Rev. 4, 11/2016
50 NXP Semiconductors

4
Chapter 2 Algorithms in detail

The available versions of the AMCLIB_AngleTrackObsrv function are shown in the
following table:

Table 2-3. Init versions

Function nhame Init angle Parameters Result
type
AMCLIB_AngleTrackObsrvinit_F16 frac16_t AMCLIB_ANGLE_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1; 1)
that represents an angle in (radians) within the range <-11 ; m).

Table 2-4. Function versions

Function name Input type Parameters Result
type
AMCLIB_AngleTrackObsrv_F16 GMCLIB_2COOR_SINCOS_T_F16 * AMCLIB_ANGLE_TRACK_OB|frac16_t
SRV_T_F32*

Angle-tracking observer with a two-componenent (sin/cos) 16-bit fractional position
input within the range <-1 ; 1). The output from the obsever is a 16-bit fractional
position normalized to the range <-1 ; 1) that represents an angle (in radians) within
the range <-1; m).

2.2.2 AMCLIB_ANGLE_TRACK_OBSRV_T_F32

Variable name Input Description
type
f32Speed frac32_t |Estimated speed as the output of the first numerical integrator. The parameter is within the

range <-1; 1). Controlled by the AMCLIB_AngleTrackObsrv_F16 algorithm; cleared by the
AMCLIB_AngleTrackObsrvinit_F16 function.

f32A2 frac32_t |Output of the second numerical integrator. The parameter is within the range <-1; 1).
Controlled by the AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16
algorithms.

f16Theta frac16_t |Estimated position as the output of the observer. The parameter is normalized to the range

<-1; 1) that represents an angle (in radians) within the range <-m ; m). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16 algorithms.

f16SinEstim frac16_t |Sine of the estimated position as the output of the actual step. Keeps the sine of the
position for the next step. The parameter is within the range <-1 ; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16 algorithms.

f16CosEstim frac16_t |Cosine of the estimated position as the output of the actual step. Keeps the cosine of the
position for the next step. The parameter is within the range <-1 ; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvinit_F16 algorithms.

f16K1Gain frac16_t |Observer K1 gain is set up according to Equation 13 on page 50 as:

Ty K, L. 5Klish

Omax

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 51

A
AMCLIB_AngleTrackObsrv

Variable name Input Description
type
i16K1GainSh int16_t Observer K2 gain shift takes care of keeping the f16K1Gain variable within the fractional

range <-1; 1). The shift is determined as:
log (T K")~ log 1 < KIsh < log (T K ;") — log 0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16K2Gain frac16_t |Observer K2 gain is set up according to Equation 15 on page 50 as:

K- Omax 27K2$h

‘gmax

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16K2GainSh int16_t Observer K2 gain shift takes care of keeping the f16K2Gain variable within the fractional
range <-1; 1). The shift is determined as:

log (K- C;::“X

ax

)~ log 1< K2sh < log (K, 7%~ log 0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16A2Gain frac16_t |Observer A2 gain for the output position is set up according to Equation 14 on page 50 as:

T.- Omax 2—A2Sh

S gmax

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16A2GainSh int16_t Observer A2 gain shift for the position integrator takes care of keeping the f16A2Gain
variable within the fractional range <-1 ; 1). The shift is determined as:

log (T 72~ log,1 < A2sh < log (T 7) ~ l0g 0.5

0max emax

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

2.2.3 Declaration
The available AMCLIB_AngleTrackObsrvInit functions have the following declarations:

void AMCLIB_AngleTrackObsrvInit F16 (fraclé_t fl6ThetaInit, AMCLIB_ANGLE TRACK OBSRV_ T F32
*
psCtrl)

The available AMCLIB_AngleTrackObsrv functions have the following declarations:

fraclé_t AMCLIB AngleTrackObsrv F16 (const GMCLIB 2COOR_SINCOS T F16 *psAnglePos,
AMCLIB ANGLE TRACK OBSRV T F32 *psCtrl)

2.2.4 Function use

The use of the AMCLIB_AngleTrackObsrvInit and AMCLIB_AngleTrackObsrv
functions is shown in the following example:

AMCLIB User's Guide, Rev. 4, 11/2016
52 NXP Semiconductors

Chapter 2 Algorithms in detail

#include "amclib.h"

static AMCLIB_ANGLE TRACK OBSRV T F32 sAto;
static GMCLIB 2COOR_SINCOS T F16 sAnglePos;

static fraclé_t
void Isr (void) ;
void main (void)

sAto.f16K1Gain
sAto.116K1GainSh
sAto.f1l6K2Gain
sAto.116K2GainSh
sAto.f16A2Gain
sAto.116A2GainSh

fl6PositionInit =

fl6PositionEstim, fl6PositionInit;

FRAC16(0.6434) ;
_9;
FRAC16(0.6801) ;
-2;
FRAC16(0.6400) ;
_4;

FRAC16(0.0) ;

AMCLIB AngleTrackObsrvInit Fl6(fl6PositionInit, &sAto);

sAnglePos.f16Sin
sAnglePos.fl6Cos

}

FRAC16(0.0) ;
FRAC16(1.0) ;

/* Periodical function or interrupt */

void Isr (void)

/* Angle tracking observer calculation */
flé6PositionEstim = AMCLIB AngleTrackObsrv F16 (&sAnglePos, &sAto);

2.3 AMCLIB_PMSMBemfObsrvDQ

The AMCLIB_PMSMBemf{ObsrvDQ function calculates the algorithm of back-electro-
motive force observer in a rotating reference frame. The method for estimating the rotor
position and angular speed is based on the mathematical model of an interior PMSM
motor with an extended electro-motive force function, which is realized in an estimated
quasi-synchronous reference frame y-0 as shown in Figure 2-4.

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

53

AMCLIB_PMSMBemfObsrvDQ

Figure 2-4. The estimated and real rotor dq synchronous reference frames

The back-EMF observer detects the generated motor voltages induced by the permanent
magnets. A tracking observer uses the back-EMF signals to calculate the position and
speed of the rotor. The transformed model is then derived as follows:
uy] [Rgtslp —awlg
[“(s]: oLy Rg+sLp

= sin(Ocrror)
coS(Oerror)

. i + (AL . (a),.i o siQ) + ‘Pma)r) .

!5,

Equation 16

where:

* Ry is the stator resistance

* Lp and Lq are the D-axis and Q-axis inductances

W, is the back-EMF constant

Ww; 1s the angular electrical rotor speed

uy and ug are the estimated stator voltages

iy and ig are the estimated stator currents

* O.or 18 the error between the actual D-Q frame and the estimated frame position
* s is the operator of the derivative

The block diagram of the observer in the estimated reference frame is shown in Figure
2-5. The observer compensator is substituted by a standard PI controller with following
equation in the fractional arithmetic.

isc(k) Yipax = Kp- esc(k) “emax T Ts Ky esc(k) *€max T isc(k - 1) * Iax

Equation 17

where:

AMCLIB User's Guide, Rev. 4, 11/2016
54 NXP Semiconductors

4

Chapter 2 Algorithms in detail
* Kp is the observer proportional gain [-]

K is the observer integral gain [-]

ise(k) = [iy, 5] is the scaled stator current vector in the actual step

igc(k - 1) = [iy, i5] is the scaled stator current vector in the previous step

esc(k) = [ey, e5] is the scaled stator back-EMF voltage vector in the actual step

* inax 18 the maximum current [A]

* €max 1S the maximum back-EMEF voltage [V]

* Tg is the sampling time [s]

As shown in Figure 2-5, the observer model and hence also the PI controller gains in both
axes are 1dentical to each other.

Uy

- O— —

Y N sLp+Rs
X le'y

wr— Lo _f—’eerror
X T85

, od 1

6 a p SsLp+Rs

Us

Figure 2-5. Block diagram of proposed Luenberger-type stator current observer acting
as state filter for back-EMF

The position estimation can now be performed by extracting the 8., term from the
model, and adjusting the position of the estimated reference frame to achieve 6., = 0.
Because the .y, term is only included in the saliency-based EMF component of both uy
and ug axis voltage equations, the Luenberger-based disturbance observer is designed to
observe the u, and ug voltage components. The position displacement information Oy
is then obtained from the estimated back-EMFs as follows:

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 55

A
AMCLIB_PMSMBemfObsrvDQ

—ey
eerror = atan(6(;)

Equation 18

The estimated position ¢ can be obtained by driving the position of the estimated
reference frame to achieve zero displacement 0., = 0. The phase-locked-loop
mechanism can be adopted, where the loop compensator ensures correct tracking of the
actual rotor flux position by keeping the error signal 0., zeroed, B0 = 0.

A perfect match between the actual and estimated motor model parameters is assumed,
and then the back-EMF transfer function can be simplified as follows:

A FAs)
Eaf$)= = Eafl) * ST TR F o)

Equation 19

The appropriate dynamic behavior of the back-EMF observer is achieved by the
placement of the poles of the stator current observer characteristic polynomial. This
general method is based on matching the coefficients of the characteristic polynomial
with the coefficients of the general second-order system.

The back-EMF observer is a Luenberger-type observer with a motor model, which is
implemented using the backward Euler transformation as follows:

N Ts Ts LQTS . LD .
)= FT.Ry “ M+ T 3T Ry " T T+ TR, @db) i)+ po ik =D

Equation 20

where:

* i(k) = [iy, i5] is the stator current vector in the actual step

* i(k - 1) = [iy, ig] is the stator current vector in the previous step

* u(k) = [uy, ug] is the stator voltage vector in the actual step

* e(k) = [ey, eg] is the stator back-EMF voltage vector in the actual step

e i'(k) = [iy, -i5] is the complementary stator current vector in the actual step
* We(k) is the electrical angular speed in the actual step

Tg 1s the sampling time [s]

This equation is transformed into the fractional arithmetic as follows:

, . T T LoTs ., , L . .
is k) ® ipmax = Ly+ ;SRS * Usck) ® gy + Ly+ ;SRS * eslk)* epaxt LD+—T:RS * Wesck) ® Omax * 1'sl(K) * bnax + LD+—?’SRS o sk = 1) ipax

Equation 21
where:

* ige(k) = [iy, i5] is the scaled stator current vector in the actual step

AMCLIB User's Guide, Rev. 4, 11/2016
56 NXP Semiconductors

4
Chapter 2 Algorithms in detail
* ige(k - 1) =[iy, ig] is the scaled stator current vector in the previous step
* ugc(k) = [uy, us] is the scaled stator voltage vector in the actual step
* es(k) = [ey, e5] is the scaled stator back-EMF voltage vector in the actual step
* i'so(k) = [iy, -15] is the scaled complementary stator current vector in the actual step
* Wesc(k) 1s the scaled electrical angular speed in the actual step
* inax 18 the maximum current [A]
* €max 1S the maximum back-EMEF voltage [V]
* Uy.x 1S the maximum stator voltage [V]
* Wpax 18 the maximum electrical angular speed in [rad / s]

If the Luenberger-type stator current observer is properly designed in the stationary
reference frame, the back-EMF can be estimated as a disturbance produced by the
observer controller. However, this is only valid when the back-EMF term is not included
in the observer model. The observer is a closed-loop current observer, therefore it acts as
a state filter for the back-EMF term.

The estimate of the extended EMF term can be derived from Equation 19 on page 56 as
follows:

_ gyﬁ(s) _ sKp+K;
E,s) s2Lp+sRg+sKp+K;

Equation 22

The observer controller can be designed by comparing the closed-loop characteristic
polynomial with that of a standard second-order system as follows:

52+ I, 's+L—D =52+ 2 wys + 0}

Equation 23
where:

* W is the natural frequency of the closed-loop system (loop bandwith)
* ¢ is the loop attenuation

* Kp is the proporional gain

* k; is the integral gain

2.3.1 Available versions

This function is available in the following versions:

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 57

AMCLIB_PMSMBemfObsrvDQ

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

* Accumulator output with floating-point inputs - the output is the accumulator result;
the result is within the range <-1 ; 1). The inputs are 32-bit single precision floating-

point values.
The available versions of the AMCLIB_PMSMBemfObsrvDQ function are shown in the
following table:
Table 2-5. Init versions

Function name Parameters Result type

AMCLIB_PMSMBemfObsrvDQInit_F16 AMCLIB_BEMF_OBSRV_DQ_T_A32 * void
Initialization does not have any input.

Table 2-6. Function versions

Function name Input/output type Result type
AMCLIB_PMSMBemfObsrvDQ_F16 Input GMCLIB_2COOR_DQ_T_F16 * frac16_t
GMCLIB_2COOR_DQ_T_F16*
frac16_t
Parameters AMCLIB_BEMF_OBSRV_DQ_T_A32 *

Back-EMF observer with a 16-bit fractional input D-Q current and voltage, and
a 16-bit electrical speed. All are within the range <-1 ; 1).

NOTE
This algorithm can use the MMDVSQ peripheral module. See
the following sections for more details:
* Memory-mapped divide and square root support in Kinetis

Design Studio

* Memory-mapped divide and square root support in Keil
uVision

* Memory-mapped divide and square root support in TAR
Embedded Workbench

2.3.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type description

Variable name Data type Description

sEObsrv GMCLIB_2COOR_DQ_T_ |Estimated back-EMF voltage structure.
F32

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 11/2016

58 NXP Semiconductors

Chapter 2 Algorithms in detail

Variable name Data type Description
slObsrv GMCLIB_2COOR_DQ_T_ |Estimated current structure.
F32
sCitrl f32ID_1 frac32_t State variable in the alpha part of the observer, integral part
at step k - 1. The variable is within the range <-1 ; 1).
f321Q_1 frac32_t State variable in the beta part of the observer, integral part
at step k - 1. The variable is within the range <-1 ; 1).
a32PGain acc32_t The observer proportional gain is set up according to
Equation 23 on page 57 as:
(2eoLp-Rs) 72
The parameter is within the range <0 ; 65536.0). Set by the
user.
a321Gain acc32_t The observer integral gain is set up according to Equation
23 on page 57 as:
LT,
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32|Gain acc32_t The current coefficient gain is set up according to Equation
21 on page 56 as:
Lp
Lp+TRg
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32UGain acc32_t The voltage coefficient gain is set up according to Equation
21 on page 56 as:
TS . Lfmax
LD+ TSRS Lmax
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32WIiGain acc32_t The angular speed coefficient gain is set up according to
Equation 21 on page 56 as:
LoT
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32EGain acc32_t The back-EMF coefficient gain is set up according to
Equation 21 on page 56 as:
TS . emax
Lp+ TRy imax
The parameter is within the range <0 ; 65536.0). Set by the
user.
f16Error frac16_t Output - estimated phase error between a real D / Q frame
system and an estimated D / Q reference system. The error
is within the range <-1; 1).

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

59

A
AMCLIB_PMSMBemfObsrvDQ

2.3.3 Declaration

The available AMCLIB_PMSMBemf{ObsrvDQInit functions have the following
declarations:

void AMCLIB PMSMBemfObsrvDQInit F16 (AMCLIB BEMF OBSRV _DQ T A32 *psCtrl)

The available AMCLIB_PMSMBemfObsrvDQ functions have the following
declarations:

fracle t AMCLIB_PMSMBemeberDQ_Fl6(const GMCLIB 2COOR_DQ T Fl6 *psIDQ, const
GMCLIB 2COOR DQ T F16 *psUDQ, fraclé t flé6Speed, AMCLIB BEMF OBSRV DQ T A32 *psCtrl)

2.3.4 Function use

The use of the AMCLIB_PMSMBemfObsrvDQ function is shown in the following
example:

#include "amclib.h"

static GMCLIB 2COOR _DQ T F16 sIdqg, sUdg;
static AMCLIB BEMF OBSRV _DQ T A32 sBemfObsrv;
static fraclé t flé6Speed, fl6Error;

void Isr (void) ;

void main (void)

{
sBemfObsrv.sCtrl.a32PGain= ACC32(1.697);
sBemfObsrv.sCtrl.a32IGain= ACC32(0.134);
sBemfObsrv.a32IGain ACC32(0.986) ;
sBemfObsrv.a32UGain ACC32(0.170) ;
sBemfObsrv.a32WIGain= ACC32(0.110) ;
sBemfObsrv.a32EGain ACC32(0.116) ;

/* Initialization of the observer's structure */
AMCLIB_PMSMBemfObsrvDQInit F16 (&sBemfObsrv) ;

sIdg.f16D = FRAC16(0.05) ;
sIdg.f16Q = FRAC16(0.1);
sUdqg.£f16D = FRAC16(0.2);
sUdg.f16Q = FRAC16(-0.1);

}

/* Periodical function or interrupt */
void Isr (void)

/* BEMF Observer calculation */
fl16Error = AMCLIB PMSMBemfObsrvDQ F16 (&sIdqg, &sUdg, fléSpeed, &sBemfObsrv) ;

}

AMCLIB User's Guide, Rev. 4, 11/2016
60 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.4 AMCLIB_PMSMBemfObsrvAB

The AMCLIB_PMSMBemfObsrvAB function calculates the algorithm of the back-
electro-motive force (back-EMF) observer in a stationary reference frame. The estimation
method for the rotor position and the angular speed is based on the mathematical model
of an interior PMSM motor with an extended electro-motive force function, which is
realized in the alpha/beta stationary reference frame.

The back-EMF observer detects the generated motor voltages, induced by the permanent
magnets. The angle-tracking observer uses the back-EMF signals to calculate the position
and speed of the rotor. The transformed model is then derived as:
ug] [R¢+sLp AL
[”ﬂ]z ~w AL Rg+sLp)’

[

g

Sln(ﬁr)]

[AL (w,zD szQ)+ S”mco, [cos(0,

Equation 24
Where:

* Ry is the stator resistance

* Lp and L are the D-axis and Q-axis inductances
* AL = Lp - L is the motor saliency

WY, is the back-EMF constant

W, 1s the angular electrical rotor speed

* ug and ug are the estimated stator voltages

iy and ig are the estimated stator currents

B, is the estimated rotor electrical position

* s is the operator of the derivative

This extended back-EMF model includes both the position information from the
conventionally defined back-EMF and the stator inductance as well. This enables
extracting the rotor position and velocity information by estimating the extended back-
EMF only.

Both the alpha and beta axes consist of the stator current observer based on the RL. motor
circuit which requires the motor parameters.

The current observer input is the sum of the actual applied motor voltage and the cross-
coupled rotational term, which corresponds to the motor saliency (Lp - Lp) and the
compensator corrective output. The observer provides the back-EMF signals as a
disturbance because the back-EMF is not included in the observer model.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 61

A
AMCLIB_PMSMBemfObsrvAB

The block diagram of the observer in the estimated reference frame is shown in Figure
2-6. The observer compensator is substituted by a standard PI controller with following
equation in the fractional arithmetic.

isc(k) Cimax = Kp- esc(k) “epax T Ts- Ky esc(k) *€max T isc(k - 1) * Iax

Equation 25

where:

» Kp is the observer proportional gain [-]

K is the observer integral gain [-]

ise(k) = [iy, 5] is the scaled stator current vector in the actual step

ic(k - 1) = [iy, i5] is the scaled stator current vector in the previous step

esc(k) = [ey, e5] is the scaled stator back-EMF voltage vector in the actual step
* iax 18 the maximum current [A]

* €max 15 the maximum back-EMEF voltage [V]

* Tg is the sampling time [s]

As shown in Figure 2-6, the observer model and hence also the PI controller gains in both
axes are 1dentical to each other.

AMCLIB User's Guide, Rev. 4, 11/2016
62 NXP Semiconductors

Chapter 2 Algorithms in detail

Ua
T : L
a a SsLp+Rs
% o
Wr 4" Lp—=1Lo If
X -eg
[s 1
g 4 : sLp+Rs
up

Figure 2-6. Block diagram of back-EMF observer

It is obvious that the accuracy of the back-EMF estimates is determined by the
correctness of the motor parameters used (R, L), the fidelity of the reference stator
voltage, and the quality of the compensator, such as the bandwidth, phase lag, and so on.

The appropriate dynamic behavior of the back-EMF observer is achieved by the
placement of the poles of the stator current observer characteristic polynomial. This
general method is based on matching the coefficients of the characteristic polynomial to
the coefficients of the general second-order system.

A FAs)
EafS)= = EafS)* ST R TF)

Equation 26

The back-EMF observer is a Luenberger-type observer with a motor model, which is
implemented using the backward Euler transformation as:

. _ TS Ts ALT?) LD .
0= T riRs 0 T gy o)~ T i " ol 10+ 7 =D

Equation 27

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 63

A
AMCLIB_PMSMBemfObsrvAB

Where:

* i(k) = [iy, i5] is the stator current vector in the actual step

* i(k - 1) =iy, ig] is the stator current vector in the previous step

* u(k) = [uy, ug] is the stator voltage vector in the actual step

* e(k) = [ey, eg] is the stator back-EMF voltage vector in the actual step

e i'(k) = [iy, -i5] is the complementary stator current vector in the actual step
* We(k) is the electrical angular speed in the actual step

Tg 1s the sampling time [s]

This equation is transformed into the fractional arithmetic as:

. . T T ALT , . L . .
lsc(k) ® Unax = LD+—}SRS * uvc(k) * Upax T+ LD+—%SRS * esc(k) ® €max — LD+—TiRS * wesc(k) ® Wpgx * 1 sc(k) * Ipax T]4D+—?1vRs * lsc(k - l) ® Lnax

Equation 28
Where:

* ig(k) = [iy, i3] 1s the scaled stator current vector in the actual step

* ige(k - 1) =[iy, ig] is the scaled stator current vector in the previous step

* ugc(k) = [uy, us] is the scaled stator voltage vector in the actual step

* es(k) = [ey, ep] 1s the scaled stator back-EMF voltage vector in the actual step

* i'so(k) = [iy, -15] is the scaled complementary stator current vector in the actual step
* Wesc(k) 1s the scaled electrical angular speed in the actual step

* iax 18 the maximum current [A]

* €max 15 the maximum back-EMEF voltage [V]

* Uy.x 1S the maximum stator voltage [V]

* Wpax 18 the maximum electrical angular speed in [rad / s]

If the Luenberger-type stator current observer is properly designed in the stationary
reference frame, the back-EMF can be estimated as a disturbance produced by the
observer controller. However, this is only valid when the back-EMF term is not included
in the observer model. The observer is a closed-loop current observer, therefore, it acts as
a state filter for the back-EMF term.

The estimate of the extended EMF term can be derived from Equation 26 on page 63 as:

LBy sKp+K
E,s) ~ s2Lp+sRg+sKp+K;

Equation 29

The observer controller can be designed by comparing the closed-loop characteristic
polynomial to that of a standard second-order system as:

AMCLIB User's Guide, Rev. 4, 11/2016
64 NXP Semiconductors

where:

¢ is the loop attenuation

K; is the integral gain

Chapter 2 Algorithms in detail

o5+ =52+ + w2
I, s I, K Cwgs an

2+

Equation 30

W 1s the natural frequency of the closed-loop system (loop bandwidth)

Kp is the proporional gain

2.4.1 Available versions

This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

The available versions of the AMCLIB_PMSMBem{fObsrvAB function are shown in the

following table:

Table 2-7. Init versions

Function name

Parameters Result type

AMCLIB_PMSMBemfObsrvABInit_F16

AMCLIB_BEMF_OBSRV_AB_T_A32 * void
The initialization does not have an input.

The available versions of the AMCLIB_PMSMBemf{fObsrvAB function are shown in the

following table:

Table 2-8. Function versions

Function name Input/output type Result type
AMCLIB_PMSMBemf{ObsrvAB_F16 Input GMCLIB_2COOR_ALBE_T_F16 * void
GMCLIB_2COOR_ALBE_T_F16 *
frac16_t
Parameters AMCLIB_BEMF_OBSRV_AB_T_A32*

The back-EMF observer with a 16-bit fractional input Alpha/Beta current and voltage,
and a 16-bit electrical speed. All are within the range <-1 ; 1).

Parameters

AMCLIB_BEMF_
OBSRV_AB_T_F
LT*

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

65

AMCLIB_PMSMBemfObsrvAB

puVision

NOTE
This algorithm can use the MMDVSQ peripheral module. See
the following sections for more details:
* Memory-mapped divide and square root support in Kinetis
Design Studio
* Memory-mapped divide and square root support in Keil

* Memory-mapped divide and square root support in TAR
Embedded Workbench

2.4.2 AMCLIB_BEMF_OBSRV_AB_T_A32 type description

Variable name

Data type

Description

sEObsrv GMCLIB_2COOR_ALBE_ |The estimated back-EMF voltage structure.
T_F32
slObsrv GMCLIB_2COOR_ALBE_ |The estimated current structure.
T_F32
sCirl f321Alpha_1 frac32_t The state variable in the alpha part of the observer, integral
part at step k-1. The variable is within the range <-1; 1).
f32IBeta_1 frac32_t The state variable in the beta part of the observer, integral
part at step k-1. The variable is within the range <-1; 1).
a32PGain acc32_t The observer proportional gain is set up according to
Equation 30 on page 65 as:
e,
(2%wlp-R) Foe
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32IGain acc32_t The observer integral gain is set up according to Equation
30 on page 65 as:
e
OLpT T e
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32IGain acc32_t The current coefficient gain is set up according to Equation
5 as:
Lp
Lp+TRg
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32UGain acc32_t The voltage coefficient gain is set up according to Equation

5 as:

T o Umax
Lp+TRg ipax

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 11/2016

66

NXP Semiconductors

Chapter 2 Algorithms in detail

Variable name Data type Description

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32WIiGain acc32_t The angular speed coefficient gain is set up according to
Equation 5 as:

ALT

Lyt TRy~ “max
The parameter is within the range <0 ; 65536.0).Set by the
user.

a32EGain acc32_t The back-EMF coefficient gain is set up according to
Equation 5 as:

T . emax

LD+ TS‘RS Umax
The parameter is within the range <0 ; 65536.0). Set by the
user.

sUnityVctr GMCLIB_2COOR_SINCO |The output - estimated angle as the sin/cos vector.

S_T_F16

2.4.3 Declaration

The available AMCLIB_PMSMBemfObsrvABInit functions have the following

declarations:

void AMCLIB PMSMBemfObsrvABInit F16 (AMCLIB BEMF OBSRV_AB T A32 *psCtrl)

The available AMCLIB_PMSMBemf{ObsrvAB functions have the following

declarations:

void AMCLIB_PMSMBemfObsrvAB_F16 (const GMCLIB_2COOR_ALBE_T_F16 *psIAlBe,
fraclé_t fl6Speed, AMCLIB BEMF OBSRV_AB T A32 *psCtrl)

GMCLIB_2COOR ALBE T F16 *psUAlBe,

2.4.4 Function use

const

The use of the AMCLIB_PMSMBemfObsrvAB function is shown in the following

example:

#include "amclib.h"

static GMCLIB_2COOR_ALBE T F16 sIAlBe, sUAlBe;
static AMCLIB BEMF OBSRV AB T A32 sBemfObsrv;
static fraclée t flé6Speed;

void Isr (void) ;

void main (void)

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

67

A
AMCLIB_PMSMBemfObsrvAB

sBemfObsrv.
sBemfObsrv.
sBemfObsrv.
sBemfObsrv.
sBemfObsrv.
sBemfObsrv.

sCtrl.a32PGain= ACC32(1.697);

sCtrl.a32IGain= ACC32(0.134);
a32IGain = ACC32(0.986) ;
a32UGain = ACC32(0.170);
a32WIGain= ACC32(0.110);

)

’

a32EGain = ACC32(0.116

/* Initialization of the observer's structure */
AMCLIB_PMSMBemfObsrvABInit F16 (&sBemfObsrv) ;

sIAlBe.fl6Alpha = FRAC16(0.05) ;
sIAlBe.fl6Beta = FRAC16(0.1);
sUAlBe.f1l6Alpha = FRAC16(0.2);
sUAlBe.fl6Beta = FRAC16(-0.1);

}

/* Periodical function or interrupt */
void Isr (void)

/* BEMF Observer calculation */
AMCLIB_PMSMBemeberAB_F16(&SIAlBe, &sUAlBe, flé6Speed,

}

&sBemfObsrv) ;

AMCLIB User's Guide, Rev. 4, 11/2016

68

NXP Semiconductors

Appendix A
Library types

A.1 bool t

The bool_t type 1s a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool t;
The following figure shows the way in which the data is stored by this type:
Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused LC(;?i
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 1
TRUE
0 0 0 1
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 0
FALSE
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8 t;

The following figure shows the way in which the data is stored by this type:

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 69

uint16_t
Table A-2. Data storage
7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1
255
F F
y 0 | 0 | 0 | 0 1 | 0 | 1 | 1
0 B
0 | 1 | 1 | 1 1 | 1 | 0 | 0
124
7 C
156 1 | o | o | A R
9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uintlé t;
The following figure shows the way in which the data is stored by this type:
Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
65535
F F F F
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 1 | 0 | 1
5
0 0 0 5
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
40768
9 F 4 0

A.4 uint32_t

AMCLIB User's Guide, Rev. 4, 11/2016
70 NXP Semiconductors

4
Appendix A Library types

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32 t;
The following figure shows the way in which the data is stored by this type:
Table A-4. Data storage

31 24 23 16 15 87 0
Value Integer
4294967295 F F F F F F F F
2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
3451051828 C D B 2 D F 3 4
A5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;
The following figure shows the way in which the data is stored by this type:
Table A-5. Data storage

7 6 5 4 3 2 1 0
Value Sign Integer
0 1 | 1 | 1 1 | 1 | 1 | 1
127
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
-128
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
60
3 o}
o7 1 | o | o | A R
9 F

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 71

A
int16_t

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short intlé t;
The following figure shows the way in which the data is stored by this type:
Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer
0o | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
32767
7 F F F
1 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | oo | 0 | 0 | 0
-32768
8 0 0 0
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
-24768
9 F 4 0

A.7 Int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32 t;
The following figure shows the way in which the data is stored by this type:
Table A-7. Data storage

31 24 23 16 15 87 0
Value S | Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4

AMCLIB User's Guide, Rev. 4, 11/2016
72 NXP Semiconductors

4
Appendix A Library types

A.8 frac8 t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within

the range <-1 ; 1). Its definition is as follows:

typedef char frac8 t;

The following figure shows the way in which the data is stored by this type:
Table A-8. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0 1 | 1 | 1 1 | 1 | 1 | 1
0.99219
7 F
1 | 0 | 0 | 0 0 | 0 | 0
-1.0
8 0
0 | 0 | 1 | 1 1 | 1 | 0
0.46875
3 c
1 | 0 | 0 | 1 1 | 1 | 1
-0.75781
9 F

To store a real number as frac8_t, use the FRACS8 macro.

A.9 frac16 t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within

the range <-1 ; 1). Its definition is as follows:

typedef short fraclé t;

The following figure shows the way in which the data is stored by this type:
Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Value

0.99997

-1.0

Fractional

1|1|1|1

1|1|1|1

F

F

1|o|o|o o|o|o|o o|o|o|o o|o|o|o

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

73

frac32_t
Table A-9. Data storage (continued)
8 0 0 0
o|o|1|11|1|o|o1|o|o|11|1|1|o
0.47357
3 C 9 E
1|o|o|11|1|1|1o|1|o|o o|o|o|o
-0.75586
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_ t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32 t;
The following figure shows the way in which the data is stored by this type:
Table A-10. Data storage

31 24 23 16 15 87 0
Value S Fractional
0.9999999995 7 F F F F F F F
-1.0 8 0 0 0 0 0 0 0
0.02606645970 0 3 5 6 2 5 5 0
-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acci16_t

The accl6_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acclé t;

The following figure shows the way in which the data is stored by this type:

AMCLIB User's Guide, Rev. 4, 11/2016
74 NXP Semiconductors

4
Appendix A Library types

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional
o1|1|11|1|1|111|1|11|1|1|1
255.9921875
7 F F F
1|o|o|o o|o|o|o o|o|o|o o|o|o|o
-256.0
8 0 0 0
o|o|o|o o|o|o|o1|o|o|o o|o|o|o
1.0
0 0 8 0
o t 1111|111]1]o]lofo]o]o]o]o
F F 8 0
o|o|o|o o|1|1|o1|1|1|o o|1|o|1
13.7890625
0 6 E 5
1|1|o|1o|o|1|1o|o|1|o o|1|o|o
-89.71875
D 3 2 4

To store a real number as accl16_t, use the ACC16 macro.

A.12 acc32_ t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;
The following figure shows the way in which the data is stored by this type:
Table A-12. Data storage

31 24 23 16 15 87 0
Value S Integer | Fractional
65535.999969
-65536.0
1.0
-1.0
23.789734
-1171.306793

Mm|o|m|lo|w| N
U|lo|mn|o|o|m
Wjo|m|lo|o|m
o|m|m|o|o|m
o|m|o|o|o|m
w|lo|lo|lo|o|m
W| —=|o|o|o|m
Olo|lo|o|o|m

To store a real number as acc32_t, use the ACC32 macro.

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 75

A
GMCLIB_3COOR_T_F16

A.13 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_FI16 structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the frac16_t
data type. The structure definition is as follows:

typedef struct
fracle t fl6A;
fracle_t f16B;

fracle t f16C;
} GMCLIB 3COOR_T F16;

The structure description is as follows:
Table A-13. GMCLIB_3COOR_T_F16 members description

Type Name Description
frac16_t f16A A component; 16-bit fractional type
frac16_t f16B B component; 16-bit fractional type
frac16_t f16C C component; 16-bit fractional type

A.14 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase
stationary coordinate system, based on the Alpha and Beta orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
fracléeé t flé6Alpha;

fracle_t fléBeta;
} GMCLIB 2COOR ALBE T F16;

The structure description is as follows:
Table A-14. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description
frac16_t f16Apha a-component; 16-bit fractional type
frac16_t f16Beta B-component; 16-bit fractional type

AMCLIB User's Guide, Rev. 4, 11/2016

76

NXP Semiconductors

4
Appendix A Library types

A.15 GMCLIB_2COOR_DQ_T_F16

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac16_t data type. The structure definition is as follows:
typedef struct

fracle t fl16D;

fracle_t fl6Q;
} GMCLIB 2COOR_DQ T F16;

The structure description is as follows:

Table A-15. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description
frac16_t f16D D-component; 16-bit fractional type
frac16_t f16Q Q-component; 16-bit fractional type

A.16 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac32_t data type. The structure definition is as follows:

typedef struct
frac32_t £32D;

frac32 t £32Q;
} GMCLIB 2COOR_DQ T F32;

The structure description is as follows:

Table A-16. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description
frac32_t f32D D-component; 32-bit fractional type
frac32_t f32Q Q-component; 32-bit fractional type

A.17 GMCLIB_2COOR_SINCOS_T_F16

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 77

A
FALSE

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the frac16_t data type. The structure definition is as follows:
typedef struct

fracle t fle6Sin;

fracle _t fléCos;
} GMCLIB_2COOR_SINCOS T F16;

The structure description is as follows:

Table A-17. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description
frac16_t f16Sin Sin component; 16-bit fractional type
frac16_t f16Cos Cos component; 16-bit fractional type

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"
static bool_t bval;
void main (void)

{

bval = FALSE; /* bVal = FALSE */

}

A.19 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool t)1)

#include "mlib.h"

static bool t bval;

AMCLIB User's Guide, Rev. 4, 11/2016
78 NXP Semiconductors

4
Appendix A Library types

void main (void)

bval = TRUE; /* bval = TRUE */

}

A.20 FRACS

The FRACS8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8 (x) ((frac8_t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; Ox7F>,
which corresponds to <-1.0 ; 1.0-277>.

#include "mlib.h"
static frac8 t f8val;
void main (void)

f8val = FRAC8(0.187); /* f8val = 0.187 */

A.21 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((fraclé t) ((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000)
0x7FFF))

The input is multiplied by 32768 (=213). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-215>,

#include "mlib.h"
static fraclé_t flé6Val;
void main (void)

fleval = FRAC16(0.736); /* £16Val = 0.736 */

}

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 79

A
FRAC32

A.22 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

#define FRAC32(x) ((frac32_t) ((x) < 1 ? ((x) »>= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 2147483648 (=23!). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2731>,

#include "mlib.h"
static frac32_t f32val;
void main (void)

f32Val = FRAC32(-0.1735667) ; /* £32Val = -0.1735667 */

A.23 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACCl6 (x) ((acclé_t) ((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : OxX7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"
static acclé_t aléVval;
void main(void)

aléVal = ACC16(19.45627); /* aleévVal = 19.45627 *x/

}

A.24 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

AMCLIB User's Guide, Rev. 4, 11/2016
80 NXP Semiconductors

#define ACC32(x) ((ace32_t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : Ox7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range
<0x80000000 ; Ox7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2715>.

#include "mlib.h"
static acc32_t a32val;
void main (void)

a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */

AMCLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 81

AMCLIB User's Guide, Rev. 4, 11/2016

82

NXP Semiconductors

How to Reach Us: Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated
circuits based on the information in this document. Freescale reserves the right
Web Support: to make changes without further notice to any products herein.
nxp.com/support

Home Page:
nxp.com

Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical’ parameters that may be provided
in Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its
patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following
address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor,
Inc. ARM and Cortex are the registered trademarks of ARM Limited, in EU and/or
elsewhere. ARM logo is the trademark of ARM Limited. All rights reserved. All
other product or service names are the property of their respective owners.

© 2017 NXP B.V.

Document Number CMOAMCLIBUG
Revision 4, 11/2016

r
4\

Yo
)
oc
w
=
<)
a
|

>
X
K4

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	Memory-mapped divide and square root support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Kinetis Design Studio)
	Memory-mapped divide and square root support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	Memory-mapped divide and square root support
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	Memory-mapped divide and square root support
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	AMCLIB_TrackObsrv
	Available versions
	AMCLIB_TRACK_OBSRV_T_F32
	Declaration
	Function use

	AMCLIB_AngleTrackObsrv
	Available versions
	AMCLIB_ANGLE_TRACK_OBSRV_T_F32
	Declaration
	Function use

	AMCLIB_PMSMBemfObsrvDQ
	Available versions
	AMCLIB_BEMF_OBSRV_DQ_T_A32 type description
	Declaration
	Function use

	AMCLIB_PMSMBemfObsrvAB
	Available versions
	AMCLIB_BEMF_OBSRV_AB_T_A32 type description
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	GMCLIB_3COOR_T_F16
	GMCLIB_2COOR_ALBE_T_F16
	GMCLIB_2COOR_DQ_T_F16
	GMCLIB_2COOR_DQ_T_F32
	GMCLIB_2COOR_SINCOS_T_F16
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

