GFLIB User's Guide

ARM® Cortex® MO+

Document Number: CMOGFLIBUG
Rev. 4, 11/2016

h
V"

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

Contents
Section number Title Page

Chapter 1

Library

L 51 13 (e Ta L Uo7 5 o | OO OO TP 5
1.2 Library integration into project (MCUXPIESSO IDE)cocoiiiiiiiiiiriiniiiieeiienecee ettt e 7
1.3 Library integration into project (Kinetis Design StUAIo)ceevueiiiiiiiiiiiiiiieieieeite ettt 16
1.4 Library integration into project (Keil LVISION)cccuirieriirieriiieite ettt ettt et et e et st e bt esee st estesbeenteneeens 24
1.5 Library integration into project (IAR Embedded Workbench)cccccoieiiniiiiiniiniiiiiniiicceicneccseeeseeeeeeee 32

Chapter 2

Algorithms in detail

2.1 GFLIB_SIN ittt ettt ettt sttt h et h et h e bt b et e ettt st b et ee 41
2.2 GELIB_CO0S....uttiititiietetetee ettt ettt ettt ettt e e et e 43
2.3 GFLIB_ALAN. ...ttt ettt ettt ettt h et h et b et bt st h et a et a e bt ekt h et b e bt b et eb et b e eb bttt et ettt et et eb e 44
2.4 GFLIB_ATANY X oottt sttt ettt ettt ettt ettt ettt ettt et h etttk et ekt ekt sttt a et st b e st b e st ens 46
2.5 GELIB_SqIt. ittt sttt et h et ettt 48
2.0 GFLIB_LIIME. ...ttt ettt b bbbt b bbb bbbt b et bt b et b et ee 50
AR €131 5 1 S 3 0762 o 511 1 L SO RRRROORPRPRTPRPRRRNt 51
2.8 GFLIB_UPPEILIMIL......ocuiiiiiiiiiiciiiciieeecrce ettt 52
2.9 GFLIB_VECIOTLAMILL.....ouviiiiiiiiiiiiie ettt e ettt e e ettt e e e e et e e e e eeesaaeeeessemaaeeeeeseessaseeeesasaaeseeeesseseeseeessannes 53
210 GEFLIB_HYSt .ttt ettt ettt b ekt ekt b ekttt b sttt enn 56
211 GELIB_LUEID ..ottt ettt a et s et n e n e enis 58
2,12 GFLIB_LULPEITD......ctitiieiirieiirtciirtee ettt ettt ettt ettt sttt et h et h et bt b et b et ebe st bt st e st st e st et et et et et e ebe e 61
2,13 GELIB_RAIMP ..ttt ettt ettt et b et e bttt e h e ebe e st e s bt e et s bt e bt sb e et e eb s et e et b et e eatesbeeatesbe et e sbeeaeebeen 63
2.14 GFELIB_DRAIMP. ..ottt ettt ettt s b s s et et a et a et s s e nenis 66
2,15 GFLIB_FIBXRAMP.c.ueiiiiiieiiitieieettee ettt ettt ettt e e e bt a et e st e bt et e eaeem bt ea e e bt sae e bt e st enbeemte bt emtenbeenseebeeneeeseenes 70
2,160 GFLIB_DFIEXRAMP.eiitiiiiriiiiieiiiie ittt ettt be et sttt et bt et e bt et e eat et eatesbeeatesbeeneesbeenaesueen 74
2,17 GELIB_INTEETALOT.eeutiitteeiieetie ettt ettt sttt e bt et e st e eabeeshbeeabeesaeeeabeessbeeabeesabeeabeeshbeeasee bt e enbeenseesabeenntesabeennbeenseensee 80
2.18 GFLIB_CHIIBEAIPPAW ..ottt ettt ettt sttt ettt b et bbbt ebe st bt et st et et st et ettt ene et e 83
2.19 GFLIB_CHIIPIPAW ..ottt ettt ettt b ettt et b et bt b et ue et naenenaeneas 88

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 3

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Functions Library (GFLIB) for the family of
ARM Cortex MO+ core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

GFLIB supports several data types: (un)signed integer, fractional, and accumulator. The
integer data types are useful for general-purpose computation; they are familiar to the
MPU and MCU programmers. The fractional data types enable powerful numeric and
digital-signal-processing algorithms to be implemented. The accumulator data type is a
combination of both; that means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1

 Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1

e Unsigned 32-bit integer —<0 ; 4294967295> with the minimum resolution of 1

 Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution
of 1

The following list shows the fractional types defined in the libraries:

* Fixed-point 16-bit fractional —<-1 ; 1 - 2"15> with the minimum resolution of 213
» Fixed-point 32-bit fractional —<-1; 1 - 2-315 with the minimum resolution of 2-3!

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 5

Introduction
The following list shows the accumulator types defined in the libraries:

* Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 27> with the minimum

resolution of 27
» Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2°15> with the minimum
resolution of 2°1°

1.1.3 API definition

GFLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB Mac_F32lss(f32Accum, flé6Multl, fleMult2);
where the function is compiled from four parts:

e MLIB—this is the library prefix
* Mac—the function name—Multiply-Accumulate

» F32—the function output type
* Iss—the types of the function inputs; if all the inputs have the same type as the
output, the inputs are not marked

The input and output types are described in the following table:
Table 1-1. Input/output types

Type Output Input
frac16_t F16 s
frac32_t F32 |
acc32_t A32 a

1.1.4 Supported compilers

GFLIB for the ARM Cortex M0+ core is written in C language or assembly language
with C-callable interface depending on the specific function. The library is built and
tested using the following compilers:

* Kinetis Design Studio

* MCUXpresso IDE

* JAR Embedded Workbench

e Keil uVision

GFLIB User's Guide, Rev. 4, 11/2016
6 NXP Semiconductors

4
Chapter 1 Library

For the MCUXpresso IDE, the library is delivered in the gflib.a file.

For the Kinetis Design Studio, the library is delivered in the gflib.a file.

For the IAR Embedded Workbench, the library is delivered in the gflib.a file.
For the Keil pVision, the library is delivered in the gflib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gflib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

GFLIB for the ARM Cortex MO+ core is written in C language or assembly language
with C-callable interface depending on the specific function. Some functions from this
library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It
can cause an issue especially when high optimization level is set. Therefore the
optimization level for all inline assembly written functions is defined by compiler
pragmas using macros. The configuration header file RTCESL_cfg.h is located in:

specific library folder\MLIB\Include. The optimization level can be changed by
modifying the macro value for specific compiler. In case of any change the library
functionality is not guaranteed.

Similarly as optimization level the Memory-mapped divide and square root module
support can be disable or enable if it has not been done by defined symbol
RTCESL_MMDVSQ_ON or RTCESL_MMDVSQ_OFF in project setting described in
Memory-mapped divide and square root support cheaper for specific compiler.

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the
number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

1.2 Library integration into project (MCUXpresso IDE)

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 7

Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL

\CMO_RTCESL_4.5_MCUX). If you have a different installation path, use that path
instead.

1.2.1 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square

root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the MCUXpresso SDK project name node or in the left-hand part, click Properties
or select Project > Properties from the menu. A project properties dialog appears.
2. Expand the C/C++ Build node and select Settings. See Figure 1-1.

. In the right-hand part, under the MCU C Compiler node, click the Preprocessor node.
See Figure 1-1.

(98]

M ™
n Properties for twrkv31f120m_demo_apps_hello_werld [-:' =] ﬂ
type filter text Settings & v v -

> Resource
Builders
4 C/C++ Build Configuration: ’Debug [Active]

'] ’Manage Configurations...]

Build Variables
Environment

Run/Debug Settings

4

(# Optimization

(2 Debugging

(# Warnings

@ Miscellanecus

@ Architecture
4 B MCU Assembler

@ General

@ Architecture & Headers
a4 B MCU Linker

@ General

@ Libraries

@ Miscellanecus

(2 Shared Library Settings

@ Architecture

(2 Managed Linker Script

@ Multicore

Logging) Tool Settings | 4 Build steps | Build Artifact | Binary Parsers | @ Error Parsers|
MCU settings
Settings 4 53 MCU C Compiler [[] Do not search system directories (-nostdinc)
Tool Chain Editor @ Dialect | Preprocess only (-E)
. C/C++ General (2 Preprocessor) T
Defined symbols (-D) & w E & =
Project References (2 Includes Y £ a8 C S

DEBUG
PRINTF_FLOAT_ENABLE=0
SCANF_FLOAT ENABLE=0
PRINTF_ADVANCED_ENABLE=0
SCANF_ADVANCED_ENABLE=0
TWR_KV31F120M

TOWER
SDK_DEBUGCONSOLE=0
_MCUXPRESSO

_USE_CMSIS
CPU_MKV31FS12VLL12
CPU_MKV31FS12VLL12_cmd
REDLIB

Undefined symbols (-U) &

I

Figure 1-1. Defined symbols

4. In the right-hand part of the dialog, click the Add... icon located next to the Defined
symbols (-D) title.

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

4
Chapter 1 Library
5. In the dialog that appears (see Figure 1-2), type the following:
e RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on
« RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off
If neither of these two defines is defined, the hardware division and square root
support is turned off by default.
ﬂ Enter Value Jp— ;_- @

Defined symbols (-0

RTCESL_MMDVSQ_OMN

[ok || Cancel

5 = e eee—e— |

Figure 1-2. Symbol definition
6. Click OK in the dialog.
7. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.2.2 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-3.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 9

Library integration into project (MCUXpresso IDE)

Mo s e .
type filter text Linked Resources oY w
4 Resource -
Linked Resources Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "S${VAR}".
Builders The locations of linked resources may be specified relative to these path variables,
[C/C++ Build Defined path variables for resource 'twrkv31f120m_demo_apps_hello_world':
[C.’C.++ General Name Value Mew...
Project References .
Run/Debug Settings (= ECLIPSE_HOME CAMXPAMCUXpressolDE_10.0.0_344%ide\ Edit..
= PARENT_LOC Diternp3
= PROJECT_LOC Dvternp3titwri31f120m_demo_apps_hello_world Remove
(= WORKSPACE_LOC Ditermnp3

Figure 1-3. Project properties
3. Click the New... button in the right-hand side.
4. In the dialog that appears (see Figure 1-4), type this variable name into the Name
box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CMO_RTCESL_4.5_MCUX. Click OK.

GFLIB User's Guide, Rev. 4, 11/2016
10 NXP Semiconductors

4
Chapter 1 Library

|
Define a New Path Variable

Enter a new variable name and its associated location.

F k]
= T e
B0 New Varisble e =

MName: RTCESL_LOC

Location: ICA\NXPARTCESLAC File.. || Folder. || Variable..
Resolved Location: C:\NXP\RTCESL\CMO_RTCESL_4.5_MCUX

® [oK] ’ Cancel

Figure 1-4. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click
Environment.

7. Click the Add... button in the right-hand side.

In the dialog that appears (see Figure 1-5), type this variable name into the Name

box: RTCESL_LOC.

9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CMO_RTCESL_4.5_MCUX.

10. Tick the Add to all configurations box to use this variable in all configurations. See
Figure 1-5.

11. Click OK.

12. In the previous dialog, click OK.

*®

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 11

Library integration into project (MCUXpresso IDE)

Linked Resources
Resource Filters
Builders
4 C/C++ Build
Build Variables
Environment

n Properties for twrkv31f120m_demo_apps_hello_world | = £2
type filter text Environment =l v -
4 Resource

Configuration: |Debug [Active]

'] [Manage Conﬁgurations...l

Environment variables to set

)

Logging Variable Value Origin Select
Elect...
MCU settings CWD Di\ternp3itwries31£120... BUILD SYSTEM
Seftings PATH CANXPAMCUXpressolD... BUILD SYSTEM Edit...
Tool Chain Editor PWD D:\ternp3twrky31f120... BUILD SYSTEM
» C/C++ General | Delete
Project A’ . . -
d) New variable " Undefine
Run/Deb [
Mame: RTCESL_LOC
Value: CAMNXPV\RTCESLVCMO_RTCESL 4.5_MCUX Variables
[V] Add to all configurations
[OK] ’ Cancel
S ——
@ Append variables to native environment
W () Replace native environment with specified one
[Restore Defaultsl l Apply
® [QK] [Cancel]

Figure 1-5. Environment variable

1.2.3 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.
2. Click Advanced to show the advanced options.

(98]

option.

To link the library source, select the Link to alternate location (Linked Folder)

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-6.
5. Click Finish, and the library folder is linked in the project. See Figure 1-7.

GFLIB User's Guide, Rev. 4, 11/2016

12

NXP Semiconductors

Chapter 1 Library

Folder —

Create a new folder resource. li .n_“

Enter or select the parent folder

twrkv31f120m_demo_apps_hello_world

D
=3 twrkw31f120m_demo_apps_hello_world

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (% Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. || Variables.. |

Figure 1-6. Folder link

a5 twrkv31f120m_demo_apps_hello_world
s g’;ﬁ Binariez
> [t Includes
- 2 CMSIS

- 2 board
- 2 drivers

- 2 source
» [startup
- A2 utilities

> [= Debug
» = doc
> |y RTCESL_LOC

Figure 1-7. Projects libraries paths

1.2.4 Library path setup

GFLIB requires MLIB to be included too. These steps show how to include all dependent
modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

In the right-hand dialog, select the Library Paths tab. See Figure 1-9.

4. Click the Add... button on the right, and a dialog appears.

e

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 13

A
Library integration into project (MCUXpresso IDE)
5. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-8): ${RTCESL_LOC}\MLIB.
6. Click OK, and then click the Add... button.
7. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GFLIB.
8. Click OK, you will see the paths added into the list. See Figure 1-9.

- T—
" Add. S ==
Directory:
S{RTCESL_LOCHMLIB]

[7] Add te all configurations
[T Add to all languages
[= Is a workspace path

Variables...

Workspace...

File systern...

Cancel

o
-

Figure 1-8. Library path inclusion

e e =

type filter texdt Paths and Symbols Frm >
» Resource
Builders ik
. C/C++ Build Configuration: [DEbUg [Active] '] [Manage Configurations...]
4 C/C++ General
> Code Analysis |
Documentation | @ Includesl # Symbols | =i Libraries| 1= Library Paths |B Source Location I @ References| |
File Types
Formatter (B ${RTCESL_LOCH\MLIB | Add. | |5
Indexer [P ${RTCESL_LOCNGFLIB -
Language Mappings |
Paths and Symbols -
Delete
Preprocessor Include Pi - [
Project References | 4
Run/Debug Settings 1
Move U
6] "Preprocessor Include Paths, Macros etc.” property page may define additional entries -
1 = r ' [T | » |
® [QK] [Cancel l]

Figure 1-9. Library paths
9. After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-11.
10. Click the Add... button on the right, and a dialog appears.
11. Type the following into the File text box (see Figure 1-10): :mlib.a
12. Click OK, and then click the Add... button.
13. Type the following into the File text box: :gflib.a
14. Click OK, and you will see the libraries added in the list. See Figure 1-11.

GFLIB User's Guide, Rev. 4, 11/2016
14 NXP Semiconductors

B Add..

File:
:mlib.a
[7] Add te all configurations

[T Add to all languages
[= Is a workspace path

Variables...

Workspace...

I“ [

File systern...

[ok || cancel

|

Figure 1-10. Library file inclusion

| (el Includesl # 5],rmbols| = Libraries |B Library Pathsl B

TEl :mlib.a
T gflib.a

Figure 1-11. Libraries

Chapter 1 Library

15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-13.

16. Click the Add... button on the right, and a dialog appears. See Figure 1-12.

17. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include

18. Click OK, and then click the Add... button.

19. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GFLIB\Include

20. Click OK, and you will see the paths added in the list. See Figure 1-13. Click OK.

- _
8 ' Add directory path M
Directory:
S{RTCESL_LOCAMLIBinclude]
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
[oK J ’ Cancel l

!—H
Figure 1-12. Library include path addition

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

15

Library integration into project (Kinetis Design Studio)

-
B Properties for twrkv31f120m_demo_apps_hello_world [. . ’ m‘ vhlﬁlg
type filter text Paths and Symbols =T v v
» Resource
Builders
. C/C++ Build Configuration: [Debug [Active] '] [Manage Configurations...]
a C/C++ General
» Code Analysis
Documentation @ Includes | # Symbols | =, Libraries I] Library Paths I 2 Source Location I @ Re‘Ferences|
I File Types
: Formatter Languages Include directeries Add...
| Indexer . Additional Assem || 1 /${ProjName}/source
Language Mappings Assembly @'H{Projﬂame}
Paths and Symbols GMNU € .
=L f$ProjName}/CMSIS Delete
I Preprocessor Include Pz gﬁ:P J'N :;’d .
. rojMame}/drivers
Praject References Export
| ! i . @;’ﬂProjName}fstartup
Run/Debug Settings
I 12 /${ProjName}/utilities
@;’ﬂProjName}fboard Maove Up
(=l ${RTCESL_LOCAMLIB\Include
- Move Down
(=l ${RTCESL_LOCNGFLIB\Include
[¢ /mxp/mecuxpresseide 10.0.0_344/ideftools/redlib/include
[¢ /mxp/mecuxpresseide 10.0.0_344/ide/tools/features/include
@ "Preprocessor Include Paths, Macros etc.” property page may define additional entries
| [¥] Show built-in values
I l E.E: Import Settings... l ’ ?& Export Settings...
g : ’Restore Defaults] l Apply]
I @' [oK] [Cancel] |

e —— — —— v,

Figure 1-13. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib.h"
#include "gflib.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Kinetis Design Studio)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Kinetis Design Studio. This example uses the default installation path (C:\NXP
\RTCESLA\CMO_RTCESL_4.5_KDS). If you have a different installation path, use that
path instead. If you want to use an existing MCUXpresso SDK project (for example the
hello_world project) see Memory-mapped divide and square root support . If not,
continue with the next section.

GFLIB User's Guide, Rev. 4, 11/2016
16 NXP Semiconductors

1.3.1 Memory-mapped divide and square root support

Chapter 1 Library

Some Kinetis platforms contain a peripheral module dedicated for division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. Right-click the MyProjectO1 or MCUXpresso SDK project name node or in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See Figure 1-14.

3. In the right-hand part, under the Cross ARM C compiler node, click the Preprocessor
node. See Figure 1-14.

,
¥ Properties for MyProject01

(51, S |

» Resource
Builders

type filter text

4 C/C++ Build
Build Variables
Environment
Legging
Settings
Tool Chain Editor
» C/C++ General
Project References
Run/Debug Settings
» Task Repository
WikiText

symbols (-D) title.

Settings

& -

3 Tool Settings | 53 Toolchains

Build Steps | Build Artifact | [avt Binary Parsers | 3 Error Par;er;|

g Target Processor
g Optimization
2 Warnin
[t=2 9=
@ Debugging
4 133 Cross ARM GNU Assembler
@ Preprocessor

@ Includes

(# Warnings
(# Miscellaneous
4 B3 Cross ARM C Compiler
(2 Preprocessor
(2 Includes
(# Optimization
(# Warnings
(2 Miscellaneous
4 83 Cross ARM C++ Compiler
(2 Preprocessor
Includes
@ Optimization
@ Warnings
@ Miscellaneous
a4 18 Cross ARM C++ Linker
@ General

@ Libraries

@ Miscellaneous

Do not search system directories (-nostding)

Preprocess only (-E)
Defined symbols (-D) &

Undefined symbols (-U) L=

Figure 1-14. Defined symbols
4. In the right-hand part of the dialog, click the Add... icon located next to the Defined

5. In the dialog that appears (see Figure 1-15), type the following:
 RTCESL_MMDVSQ_ON-—to turn the hardware division and square root

support on

-

-

« RTCESL_MMDVSQ_OFF—to turn the hardware division and square root

support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

17

Library integration into project (Kinetis Design Studio)

r = = N
% Enter Value — ﬁ

| — L e

Defined symbels (-0)

RTCESL_MMDVSQ_ON|

[ok || Cancel

/)

Figure 1-15. Symbol definition
6. Click OK in the dialog.
7. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.3.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-16.

GFLIB User's Guide, Rev. 4, 11/2016
18 NXP Semiconductors

4
Chapter 1 Library

AR]
| type filter text Linked Resources oo ow
4 Resource -
Linked Resources Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file systern, including other path variables with the syntax "S{VAR}".
Builders The locations of linked resources may be specified relative to these path variables,
» CfC++ Build Defined path variables for resource 'MyProject(l":
[CfC++ General
MNew...
Linux Tools Path Name Value =
Project References (= ECLIPSE_HOME CANXPAKDS_3.0.00eclipsel, | Edit |
Run/Debug Settings [PARENT_LOC CAKDSProjects\workspace.kds R
i+ Task Repository = PROJECT_LOC CAKDSProjects\MyProject0l | Remove |
WikiTesxt = WORKSPACE_LOC CAKDSProjects\workspace.kds

Figure 1-16. Project properties
3. Click the New... button in the right-hand side.
4. In the dialog that appears (see Figure 1-17), type this variable name into the Name
box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CMO0O RTCESL 4.5 KDS. Click OK.

Define a New Path Variable

Enter a new variable name and its associated location.

Name: RTCESL_LOC

Location: oA\ NXPARTCESLAC Fie.. || Folder. || Variable..

Resolved Location: C:ANXPA\RTCESLNCMO_RTCESL 4.3 KDS

@

Figure 1-17. New variable

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 19

A
Library integration into project (Kinetis Design Studio)
6. Create such variable for the environment. Expand the C/C++ Build node and click
Environment.
7. Click the Add... button in the right-hand side.
8. In the dialog that appears (see Figure 1-18), type this variable name into the Name
box: RTCESL_LOC.
9. Type the library parent folder path into the Value box: C:\NXP\RTCESL
\CMO_RTCESL_4.5_KDS.
10. Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-18.
11. Click OK.
12. In the previous dialog, click OK.
% Properties for MyProject0l 8 - | =) 28
type filter text Environment L=l v -
> Resource
Builders
a4 C/C++ Build Configuration: |debug [Active | '] [Manage Configurations...]
Build Variables
Envirenment
l;:tgtlgr:;? Environment vaniables to set Add...
Toel Chain Editor Variable Value Origin
Select...
TDpls.P.ath‘: \ fati? rw BLITL [} SWSTERA -
- e 8 Newvorooe LD ——— - =
Linux
Proje Mame: RTCESL_LOC
$”":E Value: CANXP\RTCESL\CMO_RTCESL 4.3_KDS [Variables | | Undefine |
> Tasl
wikiT|)| ZAdd to sl configurations:
[(]9] l Cancel]

Figure 1-18. Environment variable

1.3.3 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click New > Folder, or select File > New > Folder from the menu. A
dialog appears.

2. Click Advanced to show the advanced options.

3. To link the library source, select the option Link to alternate location (Linked
Folder).

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-19.

GFLIB User's Guide, Rev. 4, 11/2016
20 NXP Semiconductors

Chapter 1 Library

5. Click Finish, and you will see the library folder linked in the project. See Figure
1-20.

F ™
% New Folder — E‘@g

Folder

.
Create a new folder resource. i .-_’

Enter or select the parent folder
MyProjectll
o

s[5 MyProject01
[=* RernoteSystemsTempFiles

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (-7 Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. | [Variables.. |
Choose file system:
Figure 1-19. Folder link

a 25 MyProject01
> [t Includes
> = Includes
» [= Project_Settings
» gy RTCESL_LOC
4 = Sources
> [main.c

Figure 1-20. Projects libraries paths

1.3.4 Library path setup

GFLIB requires MLIB to be included too. These steps show how to include all dependent
modules:

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

. In the right-hand dialog, select the Library Paths tab. See Figure 1-22.

(O8]

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 21

Library integration into project (Kinetis Design Studio)

4,
5

6.

~

10.
11.
12.
13.
14.

Click the Add... button on the right, and a dialog appears.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-21): ${RTCESL_LOC }\MLIB.
Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GFLIB.

Click OK, and the paths will be visible in the list. See Figure 1-22.

-
" Add.. 5
g e e

Directory:

S{RTCESL_LOCHMLIE|

[7] Add te all configurations

[T Add to all languages

[= Is a workspace path
[oK] [Cancel]

Figure 1-21. Library path inclusion

type filter text Paths and Symbols =T A 4
> Resource
Builders
C/C++ Build Configuration: ’Debug [Active] "] [Manage Configurations...]
4 C/C++ General
. Code Analysis
I Documentation | e Includesl # Symbols | = Libraries| (& Library Paths |[B' Source Location | 3| References|
File Types
Formatter [${ProjDirPath}/Project_Settings/Linker_Files Add...
Indexer (B ${RTCESL_LOCAMLIB
Language Mappings {EC$IRTCESL LOCNGFLIB
Paths and Symbuols
Preprocessor Include Pi
Profiling Categories
Linux Tools Path I

Figure 1-22, Library paths
After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-24.
Click the Add... button on the right, and a dialog appears.
Type the following into the File text box (see Figure 1-23): :mlib.a
Click OK, and then click the Add... button.
Type the following into the File text box: :gflib.a
Click OK, and you will see the libraries added in the list. See Figure 1-24.

GFLIB User's Guide, Rev. 4, 11/2016

22

NXP Semiconductors

B Add..

File:
:mlib.a
[7] Add te all configurations

[T Add to all languages
[= Is a workspace path

Variables...

Workspace...

I“ [

File systern...

[ok || cancel

|

Figure 1-23. Library file inclusion

| (el Includesl # 5],rmbols| = Libraries |B Library Pathsl B

TEl :mlib.a
T gflib.a

Figure 1-24. Libraries

Chapter 1 Library

15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-26.

16. Click the Add... button on the right, and a dialog appears. See Figure 1-25.

17. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include

18. Click OK, and then click the Add... button.

19. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GFLIB\Include

20. Click OK, and you will see the paths added in the list. See Figure 1-26. Click OK.

- _
8 ' Add directory path M
Directory:
S{RTCESL_LOCAMLIBinclude]
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
[oK J ’ Cancel l

!—H
Figure 1-25. Library include path addition

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

23

Library integration into project (Keil pVision)

. ‘% Properties for MyProjec]

type filter text Paths and Symbols L=l v
» Resource
Builders
. C/C++ Build Configuration: [Debug [Active] 'l lManage Configurations...]
4 C/C++ General
» Code Analysis
I Documentation @ Includes | # Symbols | =i, Libraries I [P Library Paths I 2 Source Location I @ Re‘Ferences|
File Types
Formatter Languages Include directeries Add... |
Indexer T8
Language Mappings »(\'-E\swssrgbl}r gf:;::.: |
E"’th‘ and S}"'I”bT"d . GNU €+ (= ${RTCESL_LOCHMLIBVinclude [Delete |
reprocessor Include P: ’ - y
ProiF:iIing Categories A MICESLLOCHEE Il
Linux Tools Path [

Figure 1-26. Compiler setting

Type the #include syntax into the code. Include the library into the main.c file. In the left-
hand dialog, open the Sources folder of the project, and double-click the main.c file.
After the main.c file opens up, include the following lines in the #include section:

#include "mlib.h"
#include "gflib.h"

When you click the Build icon (hammer), the project will be compiled without errors.

1.4 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil pVision. This example uses the default installation path (C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Memory-mapped divide and square root support chapter otherwise read
next chapter.

1.4.1 NXP pack installation for new project (without MCUXpresso
SDK)

This example uses the NXP MKV 10Z32xxx7 part, and the default installation path (C:
\WXP\RTCESL\CMO_RTCESL_4.5_KEIL) is supposed. If the compiler has never been
used to create any NXP MCU-based projects before, check whether the NXP MCU pack
for the particular device is installed. Follow these steps:

1. Launch Keil uVision.

GFLIB User's Guide, Rev. 4, 11/2016
24 NXP Semiconductors

W

AR

Chapter 1 Library

In the main menu, go to Project > Manage > Pack Installer....

. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale

(NXP) node.

Look for a line called "KVxx Series" and click it.

In the right-hand dialog (under the Packs tab), expand the Device Specific node.
Look for a node called "Keil::Kinetis_ KVxx_DFP." If there are the Install or Update
options, click the button to install/update the package. See Figure 1-27.

. When installed, the button has the "Up to date" title. Now close the Pack Installer.

i Pack Installer - C:\Keil ySVARM\PACK. (=[=] =]
File Packs Window Help
i | Device: Freescale - KVix Series
ﬂ Devices Boards ﬂ ﬂ Packs Examples ﬂ
| Search: - X Pack Action Description
I Toim /| Summary =1 -Device Specific 1 Pack
- @ Atmel 257 Devices | 41 Keil:Kinetis_KVi_DFP | & Install Freescale Kinetis Ko Series Device Support
@ Freescale 234 Devices =-Generic 10 Packs
2% K Series T Device - ARM:CMSIS @ Up to date | CMSIS (Cortex Microcontroller Software Interface Standard)
7% KOO Series 2 Devices +-Keil:ARM_Compiler Q Up to date | Keil ARM Compiler extensions
2% K10 Series 23 Devices +I-KeilzJansson & Install Jansson is a C library for encoding, decoding and manipula
7% K20 Series 11 Devices + Keil:MDK-Middleware | & Update | Keil MDK-ARM Professional Middleware for ARM Cortex-M
2% K30 Series & Devices +1- Keil:MDK-Network_DS Install Keil MDK-ARM Professional Middleware Dual-Stack IPvd/I>
1% K40 Series & Devices 4 lwiIP:wIP Q Install IwlP is a light-weight implementation of the TCP/IP protocy
252 K50 Series 1 Devices 41 Micrium:RTOS & Install Micrium software components
% K80 Series 18 Devices +- Oryx-Embedded:Midd... Q Install Middleware Package (CycloneTCP, CycloneSSL and Cyclon
2% K70 Series 1 Devices - wolfSSL:CyaSsL & _Install Light weight SSL/TLS and Crypt Library for Embedded Syste
7% KBO Series 2 Devices | 4 YOGITECH:fRSTL_AR... | &5 Install VOGITECH fRSTL Functional Safety EVAL Saftware Pack for
#-7 KEAvor Series 6 Devices
=1 Kb Series 11 Devices
=7 Ko« Series 54 Devices
=T KM Series 14 Devices
=7 Ko Series 26 Devices
H-TE Ko Series 8 Devices
= WPR1516 Series 1 Device
Output 2 x
Refresh Pack descriptions
Update available for Keil:: MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta)
Ready ONLINE

Figure 1-27. Pack Installer

1.4.2 New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and
1s opened, skip to the next section. Follow these steps to create a new project:

1.
2.

Launch Keil pVision.
In the main menu, select Project > New pVision Project..., and the Create New
Project dialog appears.

. Navigate to the folder where you want to create the project, for example C:

\KeilProjects\MyProjectO1. Type the name of the project, for example MyProjectO1.
Click Save. See Figure 1-28.

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 25

A ————
Library integration into project (Keil pVision)

Create New Project

.. » Computer » System (C:) » KeilProjects » MyProject0l L4 '. Search MyProject01

File name: MyProjectdl

Save as type: ’Proj.ect Files (*.uvproj; *.uvprojx)

¥ Browse Folders

Figure 1-28. Create New Project dialog
In the next dialog, select the Software Packs in the very first box.
Type 'kv10' into the Search box, so that the device list is reduced to the KV10
devices.
Expand the KV10 node.
Click the MKV 10Z32xxx7 node, and then click OK. See Figure 1-29.

~ — Bl
Select Device for Target ‘Target 1. M

,CPU|
|

Nl

.

ISoﬂware Packs ;I

Vendor: Freescale
Device: MEV10Z320x7

Toolset: ARM
Search:
Description:
@ ARM 4 || |The Kinetis KV 1x family is the entry point of the V Series. .
0% F I Buitt upon the ARM Cortex-M0+ core running at 75 MHz with hardware
reescale square root and divide capability, it delivers a 35% increase in
= 0[3 KV Series performance in math-intensive applications versus parable MCUs,
allowing it to target BLDC as well as more computationally demanding
2% ki PMSM metors.
& MKVL071 28007 Additional features include integrated FlexCAN, dual 16bit analog4o-
& digital controllers {ADCs) sampling at up to 1.2 mega samples per
MIKV10Z16x07 second (MS/s)in 12-bit mode, multiple motor control timers, up to 128
=l MKVL0Z3 25007 KB of flash memory and a comprehensive enablement suite from
Freescale and third-party resources. including reference designs.,
€1 MKV10Z641007 software libraries and motor configuration tools.
£ MKVL17128500T
[| || —

Figure 1-29. Select Device dialog
8. In the next dialog, expand the Device node, and tick the box next to the Startup node.
See Figure 1-30.
9. Expand the CMSIS node, and tick the box next to the CORE node.

GFLIB User's Guide, Rev. 4, 11/2016
26 NXP Semiconductors

Chapter 1 Library

Software Component Sel. Variant Version Description

= ’ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE 4 410 CMSIS-CORE for Cortex-M. 5C000. and SC300
¥ Dsp r 145 CMSIS-DSP Library for Cortex-M, SC000, and SC300

€ RTOS (APD) 10 CMSIS-RTOS5 API for Cortex-M, 5C000. and 5C300

€ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications

@ Compiler ARM Compiler Software Extensions

= ’ Device Startup, System Setup

I ¥ Startup [+ 100 Systern Startup for Kinetis KV10 75MHz devices

’ File System MDK-Pro 640 File Access on various storage devices

. Graphics MDK-Pro 5261 User Interface on graphical LCD displays

’ Metwork MDK-Pro G640 IP Metwaorking using Ethernet or Serial protocels

’ Use MDK-Pro 840 USE Communication with various device classes

Figure 1-30. Manage Run-Time Environment dialog
10. Click OK, and a new project is created. The new project is now visible in the left-
hand part of Keil uVision. See Figure 1-31.

EE ChKeilProjects\MyProject01\MyProjectDluvprojx - pVision
File Edit Wiew Project Flash Debug Peripherals Toc

=1 | |
| %£| Target1 |z| £&|
Praject 1 &
=% Project: MyProjectll
g Targetl
{d Source Group 1
& cmsis
= ’ Device
J startup_MKVL0ZT s (Startup)
J systermn_MKVI0ZT . c (Startup)

Figure 1-31. Project

1.4.3 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog

appears.
2. Select the C/C++ tab. See Figure 1-32.
3. In the Include Preprocessor Symbols text box, type the following:
 RTCESL_MMDVSQ_ON—to turn the hardware division and square root

support on
 RTCESL_MMDVSQ_OFF—to turn the hardware division and square root

support off

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 27

Library integration into project (Keil pVision)

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

(" -
k] Options for Target 'Target 1' E
Device] Target] Output] Listing] User C/Ce+]Asm] Linker] Debug] Utilities]
Preprocessor Symbols
Define: |HTCESL_MMDVSQ_ON
Undefine: |
Language / Code Generation
[~ Execute-only Cods [~ Strict ANSIC Wamings:
Optimization: |Level 0(00) - [~ Enum Cortainer always int All Wamings =
[Optimize for Time I Plain Char is Signed I
[~ Split Load and Store Muttiple ™ Read-Only Position Independent [Mo Auto Includes
[~ One ELF Section per Function I Bead-Write Position Independent [C99 Mode
Include
Paths | J
Misc |
Controls
Compiler |-c —cpu Cortex-M4fp -D__EVAL -g -00 -apcs=interwork -
control |- C:\KeilProjects \MyProject 014K TE
string 7
oK | cancel | Defouts | Help

Figure 1-32. Preprocessor symbols
4. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.4.4 Linking the files into the project

GFLIB requires MLIB to be included too. The following steps show how to include all
dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group... from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.

Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'...

from the menu.

4. Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL 4.5 KEIL\MLIB\Include, and select the mlib.h file. If the file does
not appear, set the Files of type filter to Text file. Click Add. See Figure 1-33.

W

GFLIB User's Guide, Rev. 4, 11/2016
28 NXP Semiconductors

4
Chapter 1 Library

Look in: | J Include j [=% BB
Marne : Date modified i
T mlib.h 16.10.2014 8:19 iE‘

| MLUEB_Abs_Fl16.h 21.10.2014 3:45 r

_ MLUB_Abs_F32.h 1610.2014 9:19

| MLUB_Add_A32.h 16.10.2014 2:19

_ MLB_Add_Fl16.h 1610.2014 9:19

| MUB_Add_F32.h 16.10.2014 2:19

 MLB_Add4_F16.h 1610.2014 9:19

| MUB_Add4_F32.h 16.10.2014 2:19

_ MLIB_BiShift_F16.h 1610.2014 9:19

| MLUEB_BiShift_F32.h 16.10.2014 2:19 il
< samoen e i 1£ 40 nTa AR .
File name: |m|ib.h

Files of type: |Te:d file (“ta; “h; “inc) j Close

Figure 1-33. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\MLIB,
and select the mlib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add. See Figure 1-34.

Lookin: | J. MLIB ~| & & e B
MName : Date modified Ty
JInclude 20.10.2014 15:37 Fi
|| MLIB.lib 16.10.2014 9:19 LI
4| [| r
File name: |MLIB.Iib

Files of type: | Library file (*ib) <] e |

Figure 1-34. Adding .lib files dialog

6. Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL\GFLIB\Include, and select the gflib.h file. If the file does
not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GFLIB,
and select the gflib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add.

8. Now, all necessary files are in the project tree; see Figure 1-35. Click Close.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 29

Library integration into project (Keil pVision)

| Project 1 @
=% Project MyProject(l
g Targetl
[d Seurce Group 1
=45 RTCESL
_] mlib.h
L] MLEib
_] oflib.k
] GFLIB.ib
& cmsis
=] . Device

Figure 1-35. Project workspace

1.4.5 Library path setup

The following steps show the inclusion of all dependent modules.

1.

2.
3.

i

In the main menu, go to Project > Options for Target 'Targetl'..., and a dialog

Select the C/C++ tab. See Figure 1-36.
In the Include Paths text box, type the following paths (if there are more paths, they
must be separated by ;") or add them by clicking the ... button next to the text box:
o "C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\MLIB\Include"
o "C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GFLIB\Include"
Click OK.
Click OK in the main dialog.

GFLIB User's Guide, Rev. 4, 11/2016

30

NXP Semiconductors

4
Chapter 1 Library

r H b
Options for Target ‘Target x

Device I Targetl Outputl IJstingl User C/Ces |A5m I IJnkerI Debugl |Kilities I

— Preprocessaor Symbols

Diefine: I
Undefine: I

— Language / Code Generation

[~ Strict ANSIC Wamings:
Optimization: Im [Enum Container always int I‘D“" Wamings "I
[Optimize for Time I Plain Charis Signed [Thumb Mode
[Split Load and Store Muttiple [Read-Only Position Independent [No Auto Includes
[~ One ELF Section per Function [~ Read-Write Position Independent [~ C59 Mode

Include ||
Paths

Mizc I
Controls

Compiler |-¢ —cpu Cortex-M0+ -D__EVAL g 00 —apcs=intenwork
control |- C:\KeilProjects \MyProject01\RTE
string

Figure 1-36. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
1'... from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-37.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 31

A ————
Library integration into project (IAR Embedded Workbench)

Add MNew Item to Group "Source Group 1°

Create a new C source file and add it to the projed
C | CFie ()

@ C++ File (cpp)
\ﬂ Asm File (.5)

\ﬂ Header File (h)
é Teat File (i)
@ Image File (%)
7‘@ User Code Template

Type:
Marme: | i, &
Location: | C:\KeilProjects\MyProjectd1
|
Add Close |
R —

Figure 1-37. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and
create a main function:

#include "mlib.h"
#include "gflib.h"

int main (void)

{

while (1) ;

When you click the Build (F7) icon, the project will be compiled without errors.

1.5 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
GFLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CMO_RTCESL_4.5_IAR). If you have a different installation
path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Memory-mapped divide and square root support
chapter otherwise read next chapter.

GFLIB User's Guide, Rev. 4, 11/2016
32 NXP Semiconductors

Chapter 1 Library

1.5.1 New project (without MCUXpresso SDK)

This example uses the NXP MKV 10Z32xxx7 part, and the default installation path (C:
\NXP\RTCESL\CMO_RTCESL_4.5_IAR) is supposed. To start working on an
application, create a new project. If the project already exists and is opened, skip to the
next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.

2. In the main menu, select Project > Create New Project... so that the "Create New

Project" dialog appears. See Figure 1-38.

S
Create New Project A ﬁ

Taol chain: [&RM -

Project templates:
- asm P
- C++
Il |55 ‘_

DLIE [C, C++ with exceptions and RTTI] | &
DLIE [C, Extended Embedded C++)

R e |

m

1

Dezcription:
C project uzing default tool gettings inchuding an empty main.c file.

[oK] [Cancel]

Figure 1-38. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:
\[ARProjects\MyProjectO1. Type the name of the project, for example, MyProjectO1.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-39.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 33

A ————
Library integration into project (IAR Embedded Workbench)

& IAR Embedded Workbench IDE

Eile Edit View Project Simulator JTools Window Help

N dd@ & 2R o - ¢
WWiorkspace * main.cl
lDebug "]
I Files t B P
=i |MyProjectdl -Deb__ [v [| return 0:
rmain.c . 1
L@ 1 Qutput

Figure 1-39. New project

5. In the main menu, go to Project > Options..., and a dialog appears.
6. In the Target tab, select the Device option, and click the button next to the dialog to
select the MCU. In this example, select NXP > KV1x > NXP MKV10Z32xxx7 Click

OK. See Figure 1-40.

Options for node "MyProject01”

52]

Categony:

Static Analysis

Runtime Checking
C/C++ Compiler
Assembler
Qutput Conwverter

General Options

Target | Qutput | Library Configuration | Library Options | MISRAC.200/ 4 | »

custom Build Processor variant

Build Actions ™) Core
Linker

Cortex-MD+

Debugger @ Device NXP MKV10Z32007

Simulator
Angel
CMSIS DAP

OB Server Endian mode

IAR ROM-monitar @ Little FPLI

Ijet/ITAGjet Big
J—Link}J—Traoe BE12
TI Stellaris @ BES
Macraigor - -
PE micro
RDI

Floating poirt settings

D reqisters

Advanced SIMD (NEON)

MNone

ST-LINK

Third-Party Driver
TLXDS

[0K] [Cancel

Figure 1-40. Options dialog

GFLIB User's Guide, Rev. 4, 11/2016

34

NXP Semiconductors

4
Chapter 1 Library

1.5.2 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated to division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the
right; use the arrow icons for navigation).
4. In the text box (at the Defined symbols: (one per line)), type the following (See
Figure 1-41):
* RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on
 RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Options for node "MyProject01” S

Cateqgony: Factory Settings

General Options [T Multi-file Compilation

Static Analysis Discard Unuszed Publics
Runtime Checking

| Language 2 | Code | Optimizations | Output | List | Preprocessor ||«]+

Assembler
Qutput Converter [lgnore standard include directories

Custom Build Additional include directories: fone per line)
Build Actions " E]

Linker
Debugger
Simulator
Angel
CMSIS DAP Preinclude file:
GOB Server E]
IAR. ROM-monitor)
T-et/TTAGet Defined symbols: {one per line)
I-Link/1-Trace RTCESL_MMDVSQ_ON - [] Preprocessar output to file
TI Stellaris Preserve comments

Macraigor 1 Generate Hine directives

PE micro

RDI

ST-LIMNK
Third-Party Driver
TLXDS

[Ok] l Cancel

Figure 1-41. Defined symbols
5. Click OK in the main dialog.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 35

A ————
Library integration into project (IAR Embedded Workbench)

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.5.3 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1.

2.

i

In the main menu, go to Tools > Configure Custom Argument Variables..., and a
dialog appears.

Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-42.

B ' Configure Custom Argument Variables

Workspace | Global

~ahle Grour
Enable Group

MNew Group m

|'\
‘ Flanie. ..
.

Mame: PATH

lable...

OK] l Cancel =

prt...

Expand/Collapse Al

[Hide disabled groups

[OK] [Cancel

Figure 1-42. New Group
Click on the newly created group, and click the Add Variable button. A dialog
appears.
Type this name: RTCESL_LOC
To set up the value, look for the library by clicking the '..." button, or just type the
installation path into the box: C:\NXP\RTCESL\CMO_RTCESL_4.5_IAR. Click
OK.
In the main dialog, click OK. See Figure 1-43.

GFLIB User's Guide, Rev. 4, 11/2016

36

NXP Semiconductors

Chapter 1 Library

i ' Configure Custom Argument Variables P
Workspace | Global
[PATH Disable Group
-
Add Variable 5
Mame: RCTESL_LOC
Value: C:\NXP\RTCESL\CMO_FSLESL_4.3_IAR] B
[oK l [Cancel]
;
.. @ R

Figure 1-43. New variable

1.5.4 Linking the files into the project

GFLIB requires MLIB to be included too. The following steps show the inclusion of all
dependent modules.

To include the library files into the project, create groups and add them.

1.
2.
3.

Go to the main menu Project > Add Group...

Type RTCESL, and click OK.

Click on the newly created node RTCESL, go to Project > Add Group..., and create
a MLIB subgroup.

Click on the newly created node MLIB, and go to the main menu Project > Add
Files... See Figure 1-45.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\MLIB\Include, and select the m/ib.h file. (If the file does
not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-44.
Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

T |
b System (C:) » NXP » RTCESL » CMO_RTCESL 43 IAR » MLIE » Include

-

i Marne Date modified Type
| mlib.h 16.10.2015 9:38 H File
| MLIB_Abs_F16.h 16.10.2015 9:38 H File

Figure 1-44. Add Files dialog
Click on the RTCESL node, go to Project > Add Group..., and create a GFLIB

subgroup.

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 37

A ————
Library integration into project (IAR Embedded Workbench)

8.

9.

10.

1.

Click on the newly created node GFLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GFLIB\Include, and select the gflib.h file. (If the file does
not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GFLIB, and select the gflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Now you will see the files added in the workspace. See Figure 1-45.

Workspace x
[Debug VI
Files En B
B [MyProjectd1 -Deb_.. v
e CIRTCESL
FaCIGFLUE
| —DGFLUBa
| L— [oflibh
a1 Ca (ST
DO MLUEA
L— [l milibh
main.c
= (] Output

Figure 1-45. Project workspace

1.5.5 Library path setup

The following steps show the inclusion of all dependent modules:

1.
2.
3.

In the main menu, go to Project > Options..., and a dialog appears.
In the left-hand column, select C/C++ Compiler.
In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in
the right; use the arrow icons for navigation).
In the text box (at the Additional include directories title), type the following folder
(using the created variable):

* SRTCESL_LOCS$\MLIB\Include

e SRTCESL_LOC$\GFLIB\Include

. Click OK in the main dialog. See Figure 1-46.

GFLIB User's Guide, Rev. 4, 11/2016

38

NXP Semiconductors

,

Cateqary:

General Options
Static Analysis
Runtime Checking

CfC++ Compiler

Assembler
Output Conwverter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GOB Server
IAR. ROM-monitor
I4et/TTAGjet
J-Link{1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LIMNK
Third-Party Driver
TLXDS

=)

[Multi-file Compilation
Dizcard Unuzed Publics

Factony Settingz

| Language 1 I Language 2 I Code IOptirnizations IDutput I List

|[1 3

[lgnore standard include directories
Additional include directories: fone per line)

SRTCESL_LOCS'MLIB include
SRTCESL_LOCS\GFLIBncludel

Preinclude file:

Defined symbols: {one per line)

Preserve

. [T Preprocessor output to file

comments

Generate Hine directives

[ok

] l Cancel

Figure 1-46. Library path adition

Chapter 1 Library

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib.h"
#include "gflib.h"

When you click the Make icon, the project will be compiled without errors.

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

39

A ————
Library integration into project (IAR Embedded Workbench)

GFLIB User's Guide, Rev. 4, 11/2016
40 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GFLIB_Sin

The GFLIB_Sin function implements the polynomial approximation of the sine function.
It provides a computational method for the calculation of a standard trigonometric sine
function sin(x), using the 9" order Taylor polynomial approximation. The Taylor
polynomial approximation of a sine function is expressed as follows:

. _ox3 x5 X7 X8
Sln(x)fx-ﬁﬂ-ﬁ-ﬁﬁ-ﬁ

Equation 1.
sin(x) = x(d, + xXdy+ xXds+ xXd7 + x2dy))))

Equation 2.

where the constants are:

The fractional arithmetic is limited to the range <-1 ; 1), so the input argument can only
be within this range. The input argument is the multiplier of n: sin(rt - x), where the user
passes the x argument. Example: if the input is -0.5, it corresponds to -0.57.

The fractional function sin(r - x) is expressed using the 9™ order Taylor polynomial as
follows:

sin(x) = x(c; + xc3+ xXcs+ x¥(c7+ x°¢o)))

Equation 3.

where:

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 41

A
GFLIB_Sin

c=dml=n

c3=dym3= — %,3
cs=dsm5= %5
cp=dunl=— ”77

- _
Co=dom? =7

2.1.1 Available versions
The function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_Sin function are shown in the following table:

Table 2-1. Function versions

Function name Input type | Result type Description

GFLIB_Sin_F16 frac16_t frac16_t Calculation of the sin(m - x), where the input argument is a 16-bit fractional
value normalized to the range <-1; 1) that represents an angle in radians
within the range <-m; mm). The output is a 16-bit fractional value within the
range <-1; 1).

2.1.2 Declaration

The available GFLIB_Sin functions have the following declarations:

fracle t GFLIB Sin Flé6(fraclé t flé6Angle)

2.1.3 Function use

The use of the GFLIB_Sin function is shown in the following example:

#include "gflib.h"

static fraclé t fl6Result;
static fraclée t fl6Angle;

void main (void)
fléAngle = FRAC16(0.333333); /* fl6Angle = 0.333333 [60°] */

/* fl6Result = sin(fléAngle); (m * flé6Angle[rad]) = deg * (m / 180) */
fl6Result = GFLIB Sin F16 (fl6Angle) ;

GFLIB User's Guide, Rev. 4, 11/2016
42 NXP Semiconductors

Chapter 2 Algorithms in detail

2.2 GFLIB Cos

The GFLIB_Cos function implements the polynomial approximation of the cosine
function. This function computes the cos(x) using the ninth-order Taylor polynomial
approximation of the sine function, and its equation is as follows:

cos(x) = sin[% +M]
Equation 4.

Because the fractional arithmetic is limited to the range <-1 ; 1), the input argument can
only be within this range. The input argument is the multiplier of n: cos(n - x), where the
user passes the x argument. For example, if the input is -0.5, it corresponds to -0.57.

2.2.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_Cos function are shown in the following table:

Table 2-2. Function versions

Function name Input type | Result type Description

GFLIB_Cos_F16 frac16_t frac16_t Calculation of cos(m - x), where the input argument is a 16-bit fractional
value, normalized to the range <-1 ; 1) that represents an angle in radians
within the range <- m;). The output is a 16-bit fractional value within the
range <-1; 1).

2.2.2 Declaration

The available GFLIB_Cos functions have the following declarations:

fraclé t GFLIB Cos_ F1l6(fraclé_t flé6Angle)

2.2.3 Function use

The use of the GFLIB_Cos function is shown in the following example:

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 43

GFLIB_Atan

#include "gflib.h"

static fraclé t fl6Result;
static fraclé_t fl6Angle;

void main (void)

fl6Angle = FRAC16(0.333333); /* fl6Angle = 0.333333 [60°] */
/* fl6Result = cos(fl6Angle); (m * fl6Angle([rad]) = deg * (m / 180) */
fl6Result = GFLIB Cos F16(fl6Angle) ;

}

2.3 GFLIB Atan

The GFLIB_Atan function implements the polynomial approximation of the arctangent
function. It provides a computational method for calculating the standard trigonometric
arctangent function arctan(x), using the piece-wise minimax polynomial approximation.
Function arctan(x) takes a ratio, and returns the angle of two sides of a right-angled
triangle. The ratio is the length of the side opposite to the angle divided by the length of
the side adjacent to the angle. The graph of the arctan(x) is shown in the following figure:

777 ﬂ__fifi,,,,,,,,fififi,7,,7,,77777777777,7,,,77777,
2
atan(X) _
’/1“—
w i //'
4 6\'0\\ i i
& 1 The function GFLIB_Atan
S I A =
& | is not defined for this range
N4 i
& !
I
I | | | ' | |]
I I T ‘ I I 1 1
4 -3 -2 -1 1 2 3 4
I
I
I
|
] | 7
7 4
3

Figure 2-1. Course of the GFLIB_Atan function

The fractional arithmetic version of the GFLIB_Atan function is limited to a certain
range of inputs <-1 ; 1). Because the arctangent values are the same, with just an opposite
sign for the input ranges <-1 ; 0) and <0 ; 1), the approximation of the arctangent function

GFLIB User's Guide, Rev. 4, 11/2016
44 NXP Semiconductors

4
Chapter 2 Algorithms in detail

over the entire defined range of input ratios can be simplified to the approximation for a
ratio in the range <0 ; 1). After that, the result will be negated, depending on the input
ratio.

2.3.1 Available versions
The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-0.25 ; 0.25), which corresponds to the angle <-n /4 ; n/4).

The available versions of the GFLIB_Atan function are shown in the following table:

Table 2-3. Function versions

Function name Input type | Result type Description

GFLIB_Atan_F16 |frac16_t frac16_t Input argument is a 16-bit fractional value within the range <-1; 1). The
output is the arctangent of the input as a 16-bit fractional value, normalized
within the range <-0.25 ; 0.25), which represents an angle (in radians) in
the range <-1/ 4 ; m/ 4) <-45° ; 45°).

2.3.2 Declaration

The available GFLIB_Atan functions have the following declarations:

fraclé_t GFLIB_Atan Fl6(fraclée_t fleval)

2.3.3 Function use

The use of the GFLIB_Atan function is shown in the following example:

#include "gflib.h"

static fraclé t fl6Result;
static fracle_t fleval;

void main (void)
fl6val = FRAC16(0.57735026918962576450914878050196) ; /* £16vVal = tan(30°) */

/* fl6Result = atan(fléVal); fl6Result * 180 => angle[degree] */
fl6Result = GFLIB Atan Fl6(flé6Val);

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 45

GFLIB_AtanYX

2.4 GFLIB_AtanYX

The GFLIB_AtanY X function computes the angle, where its tangent is y / x (see the
figure below). This calculation is based on the input argument division (y divided by x),
and the piece-wise polynomial approximation.

Atan¥ (=1, 1=, <1, 13)

Atane(y,)

Figure 2-2. Course of the GFLIB_AtanYX function

The first parameter Y is the ordinate (the x coordinate), and the second parameter X is the
abscissa (the x coordinate). The counter-clockwise direction is assumed to be positive,
and thus a positive angle is computed if the provided ordinate (Y) is positive. Similarly, a
negative angle is computed for the negative ordinate. The calculations are performed in
several steps. In the first step, the angle is positioned within the correct half-quarter of the
circumference of a circle by dividing the angle into two parts: the integral multiple of 45°
(half-quarter), and the remaining offset within the 45° range. Simple geometric properties
of the Cartesian coordinate system are used to calculate the coordinates of the vector with

GFLIB User's Guide, Rev. 4, 11/2016
46 NXP Semiconductors

L __4
Chapter 2 Algorithms in detail
the calculated angle offset. In the second step, the vector ordinate is divided by the vector
abscissa (y / X) to obtain the tangent value of the angle offset. The angle offset is
computed by applying the GFLIB_Atan function. The sum of the integral multiple of
half-quarters and the angle offset within a single halfquarter form the angle is computed.

The function returns O if both input arguments equal 0, and sets the output error flag; in
other cases, the output flag is cleared. When compared to the GFLIB_Atan function, the
GFLIB_AtanYX function places the calculated angle correctly within the fractional range
<-TU; TT>.

In the fractional arithmetic, both input parameters are assumed to be in the fractional
range <-1; 1). The output is within the range <-1 ; 1), which corresponds to the real
range <-7 ; 7).

2.4.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1), which corresponds to the angle <-rt ;).

The available versions of the GFLIB_AtanY X function are shown in the following table:

Table 2-4. Function versions

Function name Input type Output type Result type
Y X Error flag
GFLIB_AtanYX_F16 frac16_t frac16_t bool_t * frac16_t

The first input argument is a 16-bit fractional value that contains the ordinate of the input vector (y
coordinate). The second input argument is a 16-bit fractional value that contains the abscissa of the
input vector (x coordinate). The result is the arctangent of the input arguments as a 16-bit fractional
value within the range <-1 ; 1), which corresponds to the real angle range <- m; m). The function sets
the boolean error flag pointed to by the output parameter if both inputs are zero; in other cases, the
output flag is cleared.

NOTE
This algorithm can use the MMDVSQ peripheral module. See
the following chapters for more details:
* Memory-mapped divide and square root support in Kinetis
Design Studio
* Memory-mapped divide and square root support in Keil
uVision
* Memory-mapped divide and square root support in AR
Embedded Workbench

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 47

A ————
GFLIB_Sqrt

2.4.2 Declaration
The available GFLIB_AtanY X functions have the following declarations:

fracleé t GFLIB AtanYX Flé6(fracle t fleY, fraclée t £f16X, bool t *pbErrFlag)

2.4.3 Function use
The use of the GFLIB_AtanY X function is shown in the following example:

#include "gflib.h"

static fraclé t flé6Result;
static fracle t fleYy, fl6X;
static bool_t bErrFlag;

void main (void)

{

f16Y = FRAC16(0.9); /* £16Y = 0.9 */
f16X = FRAC16(0.3); /* £16X = 0.3 */
/* fl6Result = atan(fléy / f16X); fl6Result * 180 => angle [degree] */

fl6Result = GFLIB AtanYX Fl6(fleY, fl16X, &bErrFlag);

2.5 GFLIB_Sqrt

The GFLIB_Sqrt function returns the square root of the input value. The input must be a
non-negative number, otherwise the function returns undefined results. See the following
equation:

>
GFLIB_Sqrt(x) = Ve, x=0
undefined, x<0

Equation 5. Algorithm formula

2.5.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The function is only defined for non-negative inputs. The
function returns undefined results out of this condition.

GFLIB User's Guide, Rev. 4, 11/2016
48 NXP Semiconductors

4
Chapter 2 Algorithms in detail

The available versions of the GFLIB_Sqrt function are shown in the following table:

Table 2-5. Function versions

Function name Input Result Description
type type
GFLIB_Sqrt_F16 frac16_t |frac16_t |The input value is a 16-bit fractional value, limited to the range <0 ; 1). The

function is not defined out of this range. The output is a 16-bit fractional value
within the range <0 ; 1).

GFLIB_Sqrt_F16l frac32_t |frac16_t |The input value is a 32-bit fractional value, limited to the range <0 ; 1). The
function is not defined out of this range. The output is a 16-bit fractional value
within the range <0 ; 1).

NOTE
This algorithm can use the MMDVSQ peripheral module. See
the following chapters for more details:
* Memory-mapped divide and square root support in Kinetis
Design Studio
* Memory-mapped divide and square root support in Keil
uVision
* Memory-mapped divide and square root support in AR
Embedded Workbench

2.5.2 Declaration

The available GFLIB_Sqrt functions have the following declarations:

fraclée_t GFLIB_Sqgrt_ Fl6 (fraclé_t fleval)
fraclé_t GFLIB_Sqrt_Fl16l(frac32_t f32Vval)

2.5.3 Function use

The use of the GFLIB_Sqrt function is shown in the following example:

#include "gflib.h"

static fraclé_t flé6Result;
static fracle t fleval;

void main (void)
fl16val = FRAC16(0.5) ; /* f£1l6Val = 0.5 */

/* fl6Result = sqrt(fie6val) */
fl6Result = GFLIB Sqgrt F16(fl6Val);

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 49

GFLIB_Limit

2.6 GFLIB_Limit

The GFLIB_Limit function returns the value limited by the upper and lower limits. See

the following equation:

GFLIB_Limit(x, min, max) = { max,

min, x <min

x’

X > max

else

Equation 6. Algorithm formula

2.6.1 Available versions

This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_Limit functions are shown in the following table:

Table 2-6. Function versions

Function name Input type Result Description
Input Lower Upper type
limit limit
GFLIB_Limit_F16 frac16_t |frac16_t |frac16_t |[frac16_t |The inputs are 16-bit fractional values within the range
<-1; 1). The function returns a 16-bit fractional value in
the range <f16LLim ; f16ULIim>.
GFLIB_Limit_F32 frac32_t |frac32_t |frac32_t |[frac32_t |The inputs are 32-bit fractional values within the range

<-1; 1). The function returns a 32-bit fractional value in
the range <f32LLim ; f32ULim>.

2.6.2 Declaration

The available GFLIB_Limit functions have the following declarations:

fracle t GFLIB Limit Flé6 (fracle t fleVval,
frac32_t GFLIB_Limit_F32(frac32_t f32val,

2.6.3 Function use

fracle t fl6LLim,
frac32_t f£32LLim,

fracle t f£16ULim)
frac32_t f32ULim)

The use of the GFLIB_Limit function is shown in the following example:

GFLIB User's Guide, Rev. 4, 11/2016

50

NXP Semiconductors

4
Chapter 2 Algorithms in detail

#include "gflib.h"
static fracle t flé6val, f16ULim, fl16LLim, fl6Result;
void main (void)

f16ULim = FRAC16(0.8);

fl6LLim = FRAC16(-0.3);

fl16val = FRAC16(0.9);

fl6Result = GFLIB Limit Fl6(fl6Val, fl6LLim, f£16ULim);

2.7 GFLIB LowerLimit

The GFLIB_LowerLimit function returns the value limited by the lower limit. See the
following equation:

o min, x <min
GFLIB_LowerLimit (x, min) = { x else

Equation 7. Algorithm formula

2.7.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_LowerLimit functions are shown in the following
table:

Table 2-7. Function versions

Function name Input type Result Description
Input Lower type
limit

GFLIB_LowerLimit_F16 frac16_t |frac16_t |frac16_t |[The inputs are 16-bit fractional values within the range <-1 ;
1). The function returns a 16-bit fractional value in the range
<f16LLIm ; 1).

GFLIB_LowerLimit_F32 frac32_t [frac32_t [frac32_t |The inputs are 32-bit fractional values within the range <-1 ;
1). The function returns a 32-bit fractional value in the range
<f32LLim ; 1).

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 51

A ————
GFLIB_UpperLimit

2.7.2 Declaration

The available GFLIB_LowerLimit functions have the following declarations:

fraclé t GFLIB LowerLimit F16 (fraclé t fleéVal, fracle t f16LLim)
frac32 t GFLIB LowerLimit F32(frac32 t f32Val, frac32 t £32LLim)

2.7.3 Function use

The use of the GFLIB_LowerLimit function is shown in the following example:

#include "gflib.h"
static fracle t flé6val, fl6LLim, fl6Result;
void main (void)

f16LLim = FRAC16(0.3);
f16Val = FRAC16(0.1);

fl6Result = GFLIB LowerLimit F16(fl16Val, fl6LLim);

}

2.8 GFLIB_UpperLimit

The GFLIB_UpperLimit function returns the value limited by the upper limit. See the
following equation:

max, X > max

GFLIB_UpperLimit(x, max) = { X else

Equation 8. Algorithm formula

2.8.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

GFLIB User's Guide, Rev. 4, 11/2016
52 NXP Semiconductors

Chapter 2 Algorithms in detail

The available versions of the GFLIB_UpperLimit functions are shown in the following
table:

Table 2-8. Function versions

Function name Input type Result Description

Input Upper type
limit

GFLIB_UpperLimit_F16 frac16_t |frac16_t |frac16_t |[The inputs are 16-bit fractional values within the range <-1 ;
1). The function returns a 16-bit fractional value in the range
<-1; f16ULIim>.

GFLIB_UpperLimit_F32 frac32_t |frac32_t |frac32_t |[The inputs are 32-bit fractional values within the range <-1 ;
1). The function returns a 32-bit fractional value in the range
<-1; f32ULim>.

2.8.2 Declaration
The available GFLIB_UpperLimit functions have the following declarations:

fraclé t GFLIB UpperLimit F16 (fraclé t fléVal, fraclée t £16ULim)
frac32 t GFLIB UpperLimit F32(frac32 t f32Val, frac32 t £32ULim)

2.8.3 Function use
The use of the GFLIB_UpperLimit function is shown in the following example:

#include "gflib.h"
static fracle t flé6val, f16ULim, fl6Result;
void main (void)

{

f16ULim = FRAC16(0.3);
fl6val = FRAC16(0.9);

fl6Result = GFLIB UpperLimit F16 (flé6val, £16ULim) ;

2.9 GFLIB VectorLimit1

The GFLIB_VectorLimitl function returns the limited vector by an amplitude. This
limitation is calculated to achieve that the first component remains unchanged (if the
limitation factor allows).

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 53

A
GFLIB_VectorLimit1

In: B

Out: B

L J

Out: A
In: A

Figure 2-3. Input and releated output

The GFLIB_VectorLimitl function limits the amplitude of the input vector. The input
vector a, b components are passed to the function as the input arguments. The resulting
limited vector is transformed back into the a, b components. The limitation is performed
according to the following equations:

{ a, |a| < lim

limesgn(a), else
Equation 9

b b, 1b] <\flin? — a*?
\’lim2 —a*? . sgn(b), else

Equation 10

where:

* a, b are the vector coordinates
e a* b* are the vector coordinates after limitation
* lim is the maximum amplitude

The relationship between the input and limited output vectors is shown in Figure 2-3.

GFLIB User's Guide, Rev. 4, 11/2016
54 NXP Semiconductors

4
Chapter 2 Algorithms in detail

If the amplitude of the input vector is greater than the input Lim value, the function
calculates the new coordinates from the Lim value; otherwise the function copies the
input values to the output.

2.9.1 Available versions
The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_VectorLimitl function are shown in the following
table:

Table 2-9. Function versions

Function name Input type Output type Result
Input Limit type
GFLIB_VectorLimit1_F16 GFLIB_VECTORLIMIT_T_F16 * |frac16_t |GFLIB_VECTORLIMIT_T_F16* |void

Limitation of a two-component 16-bit fractional vector within the range <-1 ; 1) with a 16-bit
fractional limitation amplitude. The function returns a two-component 16-bit fractional vector.

NOTE
This algorithm can use the MMDVSQ peripheral module. See
the following sections for more details:
* Memory-mapped divide and square root support in Kinetis
Design Studio
* Memory-mapped divide and square root support in Keil
uVision
* Memory-mapped divide and square root support in AR
Embedded Workbench

2.9.2 GFLIB_VECTORLIMIT_T_F16 type description

Variable name Input type Description
f16A frac16_t A-component; 16-bit fractional type.
f16B frac16_t B-component; 16-bit fractional type.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 55

AR
GFLIB_Hyst

2.9.3 Declaration

The available GFLIB_VectorLimitl functions have the following declarations:

fraclé t GFLIB VectorLimitl F16 (const GFLIB VECTORLIMIT T F16 *psVectorIn, fraclée t fléLim,
GFLIB VECTORLIMIT T F16 *psVectorOut)

2.9.4 Function use

The use of the GFLIB_VectorLimitl function is shown in the following example:

#include "gflib.h"

static GFLIB_VECTORLIMIT T F1l6 sVector, sResult;
static fracleée t flé6MaxAmpl;

void main (void)

{

fleMaxAmpl = FRAC16(0.5);
sVector.f16A FRAC16(-0.4) ;
sVector.f16B FRAC16(0.2) ;

GFLIB_VectorLimitl F16 (&sVector, fléMaxAmpl, &sResult);

2.10 GFLIB_Hyst

The GFLIB_Hyst function represents a hysteresis (relay) function. The function switches
the output between two predefined values. When the input is higher than the upper
threshold, the output is high; when the input is lower than the lower threshold, the output
is low. When the input is between the two thresholds, the output retains its value. See the
following figure:

GFLIB User's Guide, Rev. 4, 11/2016
56 NXP Semiconductors

y
QOut

Chapter 2 Algorithms in detail

OutValOn

A 4

HystOff

OutValOff

A 4

HystOn In

Figure 2-4. GFLIB_Hyst functionality

The four points in the figure are to be set up in the parameters structure of the function.
For a proper functionality, the HystOn point must be greater than the HystOff point.

2.10.1 Available versions

This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result, and the result is
within the range <-1 ; 1).

The available versions of the GFLIB_Hyst function are shown in the following table.

Table 2-10. Function versions

Function name Input Parameters Result Description
type type
GFLIB_Hyst_F16 frac16_t |GFLIB_HYST_T_F16* frac16_t |The inputis a 16-bit fractional value within

the range <-1; 1). The output is a two-
state 16-bit fractional value.

2.10.2 GFLIB_HYST_T_F16

Set by the user.

Variable name Input Description
type
f16HystOn frac16_t |The point where the output sets the output to the f160utValOn value when the input rises.

Table continues on the next page...

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

57

GFLIB_Lut1D
Variable name Input Description
type
f16HystOff frac16_t |The point where the output sets the output to the f160utValOff value when the input falls.
Set by the user.
f160utValOn frac16_t |The ON value. Set by the user.
f160utValOff frac16_t |The OFF value. Set by the user.
f160utState frac16_t |The output state. Set by the algorithm. Must be initialized by the user.

2.10.3 Declaration
The available GFLIB_Hyst functions have the following declarations:

fraclé t GFLIB Hyst Fl16(fraclé t fl6Val, GFLIB HYST T Fl6 *psParam)

2.10.4 Function use
The use of the GFLIB_Hyst function is shown in the following example:

#include "gflib.h"

static fraclée t fl6Result, flé6Inval;
static GFLIB HYST T F16 sParam;

void main (void)

{
fl16Inval = FRAC16(-0.11);
sParam.f16HystOn = FRAC16(0.5) ;
sParam.f16HystOff = FRAC16(-0.1);
sParam.f160utvalOn = FRAC16(0.7);
sParam.f160utvValOff = FRAC16(0.3)
sParam.fl60utState = FRAC16(0.0) ;

7

fl6Result = GFLIB Hyst F16(fl6InVal, &sParam) ;

2.11 GFLIB_Lut1D

The GFLIB_LutlD function implements the one-dimensional look-up table.

Y~
y:ﬂ+x[<ﬁ@_x0

Equation 11.

where:

GFLIB User's Guide, Rev. 4, 11/2016
58 NXP Semiconductors

Chapter 2 Algorithms in detail

* y is the interpolated value

* y; and y, are the ordinate values at the beginning and end of the interpolating
interval, respectively

 X; and x, are the abscissa values at the beginning and end of the interpolating
interval, respectively

* x is the input value provided to the function in the X input argument

/ Table points

Figure 2-5. Algorithm diagram - fractional version

The GFLIB_LutlD function fuses a table of the precalculated function points. These
points are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range
<-1; 1>. The last table point is intended for the real value of 1, not the value of 1 from
the fraction numbers, which is lower than the real value of 1. The calculations are based
on the same intervals among the table points. The number of points must be 2" + 1, where
n can range from 1 through to 15.

The function finds two nearest precalculated points of the input argument, and calculates
the output value using the linear interpolation between these two points.

2.11.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 59

A
GFLIB_Lut1D

The available versions of the GFLIB_Lut1D function are shown in the following table:

Table 2-11. Function versions

Function name Input type Parameters Result type

Table Table size
GFLIB_Lut1D_F16 frac16_t frac16_t * uint16_t frac16_t

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 16-bit fractional values of the
look-up table, and the size of the look-up table. The table size parameter can be in the range <1 ;
15> (that means the parameter is log, of the number of points + 1). The output is the interpolated 16-
bit fractional value computed from the look-up table.

GFLIB_Lut1D_F32 frac32_t |fra032_t * uint16_t frac32_t

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the
look-up table, and the size of the look-up table. The table size parameter can be in the range <1 ;
15> (that means the parameter is log, of the number of points + 1). The output is the interpolated 32-
bit fractional value computed from the look-up table.

2.11.2 Declaration

The available GFLIB_LutlD functions have the following declarations:

fraclé_t GFLIB_LutlD Fl6(fraclé_t f16X, const fraclé_t *pfléTable, uintlé_t uléTableSize)

2.11.3 Function use

The use of the GFLIB_Lut1D function is shown in the following example:

#include "gflib.h"

static fracleée_t fl6Result, f16X;

static uintlé_t uléTableSize;

static fraclé t fl6Table[9] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
FRAC16(0.2), FRAC16(-0.3), FRAC16(-0.8), FRAC16(0.91), FRAC16(O.99)};

void main (void)

{

ul6TableSize = 3; /* size of table = 2 * 3 + 1 */
f16X = FRAC16(0.625) ; /* £16X = 0.625 */

/* £l6Result = value from look-up table between 7th and 8th position */
fl6Result = GFLIB LutlD F16(f16X, fle6Table, ulé6TableSize);

GFLIB User's Guide, Rev. 4, 11/2016
60 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.12 GFLIB_LutPer1D

The GFLIB_LutPer1D function approximates the one-dimensional arbitrary user function
using the interpolation look-up method. It is periodic.

Y7 N
yEY T = (X))
Equation 12.

where:

* y is the interpolated value

* y; and y, are the ordinate values at the beginning and end of the interpolating
interval, respectively

* x; and X, are the abscissa values at the beginning and end of the interpolating
interval, respectively

* x is the input value provided to the function in the X input argument

/ Table points

Figure 2-6. Algorithm diagram - fractional version

The GFLIB_LutPer1D fuses a table of the pre-calculated function points. These points
are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range
<-1; 1>. The last table point is intended for the real value of 1 not the value of 1 from the
fraction numbers, which is lower than the real value of 1. The calculations are based on
the same intervals among the table points. The floating-point version of the algorithm has

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 61

A
GFLIB_LutPer1D

a defined interval of inputs within the range <min ; max>, where the min and max values
are the parameters of the algorithms. The number of points is within the range <2 ;
65535>, where the first point lies at the min position, and the last point lies at the max
position.

The function finds two nearest precalculated points of the input argument, and calculates
the output value using the linear interpolation between these two points. This algorithm
serves for periodical functions. That means that when the input argument lies behind the
last pre-calculated point of the function, the interpolation is calculated between the last
and first points of the table.

2.12.1 Available versions
This function is available in the following versions:
* Fractional output - the output is the fractional portion of the result; the result is

within the range <-1; 1).

The available versions of the GFLIB_LutPer1D function are shown in the following
table:

Table 2-12. Function versions

Function name Input type Parameters Result type

Table Table size
GFLIB_LutPer1iD_F16 frac16_t frac16_t * uint16_t frac16_t

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a structure which contains the 16-bit fractional values of
the periodic look-up table, and the size of the look-up table. The table size parameter can be in
the range <1 ; 15> (that means the parameter is log, of the number of points). The output is the
interpolated 16-bit fractional value computed from the periodic look-up table.

GFLIB_LutPeriD_F32 frac32_t |frac32_t * |uint16_t |frac32_t

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the
periodic look-up table, and the size of the periodic look-up table. The table size parameter can be
in the range <1 ; 15> (that means the parameter is log, of the number of points). The output is
the interpolated 32-bit fractional value computed from the periodic look-up table.

2.12.2 Declaration

The available GFLIB_LutPer1D functions have the following declarations:

fraclé_t GFLIB_LutPerlD F16(fraclé6_t f16X, const fraclé_t *pfléTable, uintlé_t uléTableSize)

GFLIB User's Guide, Rev. 4, 11/2016
62 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.12.3 Function use
The use of the GFLIB_LutPer1D function is shown in the following example:

#include "gflib.h"

static fraclé_t fl6Result, f16X;

static uintlé_t uléTableSize;

static fraclé t fl6Table[8] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
FRAC16(0.2), FRAC16(-0.3), FRAC1l6(-0.8), FRAC16(0.91)};

void main (void)

{

ul6TableSize = 3; /* size of table = 2 * 3 */
f16X = FRAC16(0.25) ; /* £16X = 0.25 */

/* £l6Result = value from periodic look-up table at 6th position */
fl6Result = GFLIB LutPerlD F16(f16X, flé6Table, uléTableSize) ;

2.13 GFLIB_Ramp

The GFLIB_Ramp function calculates the up / down ramp with the defined fixed-step
increment / decrement. These two parameters must be set by the user.

For a proper use, it is recommended that the algorithm is initialized by the
GFLIB_Ramplnit function, before using the GFLIB_Ramp function. The
GFLIB_Ramplnit function initializes the internal state variable of the GFLIB_Ramp
algorithm with a defined value. You must call the init function when you want the ramp
to be initialized.

The use of the GFLIB_Ramp function is as follows: If the target value is greater than the
ramp state value, the function adds the ramp-up value to the state output value. The
output will not trespass the target value, that means it will stop at the target value. If the
target value is lower than the state value, the function subtracts the ramp-down value
from the state value. The output is limited to the target value, that means it will stop at the
target value. This function returns the actual ramp output value. As time passes, it is
approaching the target value by step increments defined in the algorithm parameters'
structure. The functionality of the implemented ramp algorithm is explained in the next
figure:

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 63

A
GFLIB_Ramp

A
Output

i
1
1
L
1
: : F |
H H H]
RampDown ll
: 1
1
1
1
1

ket K

>

Sample

Figure 2-7. GFLIB_Ramp functionality

2.13.1 Available versions

This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_Ramplnit functions are shown in the following
table:

Table 2-13. Init function versions
Function name Input Parameters Result Description
type type
GFLIB_Ramplnit_F16 frac16_t |GFLIB_RAMP_T_F16* |void Input argument is a 16-bit fractional value that
represents the initialization value. The
parameters' structure is pointed to by a pointer.
The input data value is in the range <-1; 1).
GFLIB_Ramplnit_F32 frac32_t |GFLIB_RAMP_T_F32* void Input argument is a 32-bit fractional value that
represents the initialization value. The
parameters' structure is pointed to by a pointer.
The input data value is in the range <-1; 1).
GFLIB User's Guide, Rev. 4, 11/2016
64

NXP Semiconductors

Chapter 2 Algorithms in detail
The available versions of the GFLIB_Ramp functions are shown in the following table:

Table 2-14. Function versions

Function name Input Parameters Result Description
type type
GFLIB_Ramp_F16 frac16_t |GFLIB_RAMP_T_F16* frac16_t |Input argument is a 16-bit fractional value that
represents the target output value. The
parameters' structure is pointed to by a pointer.
The function returns a 16-bit fractional value,
which represents the actual ramp output value.
The input data value is in the range <-1; 1), and
the output data value is in the range <-1 ; 1).

GFLIB_Ramp_F32 frac32_t |GFLIB_RAMP_T_F32* [frac32_t |Input argument is a 32-bit fractional value that
represents the target output value. The
parameters' structure is pointed to by a pointer.
The function returns a 32-bit fractional value,
which represents the actual ramp output value.
The input data value is in the range <-1; 1), and
the output data value is in the range <-1; 1).

2.13.2 GFLIB_RAMP_T_F16

Variable name Type Description
f16State frac16_t |Actual value - controlled by the algorithm.
f16RampUp frac16_t |Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.
fi6RampDown frac16_t |Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.

2.13.3 GFLIB_RAMP_T_F32

Variable name Type Description
f32State frac32_t |Actual value - controlled by the algorithm.
f82RampUp frac32_t |Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.
f32RampDown frac32_t |Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.

2.13.4 Declaration

The available GFLIB_Ramplnit functions have the following declarations:

void GFLIB_RampInit F16 (fraclé t fl6InitVal, GFLIB _RAMP T F16 *psParam)
void GFLIB RampInit F32(frac32 t £32InitVal, GFLIB RAMP T F32 *psParam)

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 65

A
GFLIB_DRamp

The available GFLIB_Ramp functions have the following declarations:

fraclé t GFLIB Ramp F16(fraclé t fléTarget, GFLIB RAMP T F16 *psParam)
frac32 t GFLIB Ramp F32(frac32 t f32Target, GFLIB RAMP T F32 *psParam)

2.13.5 Function use

The use of the GFLIB_Ramplnit and GFLIB_Ramp functions is shown in the following
example:

#include "gflib.h"

static fracle t fle6InitVval;
static GFLIB RAMP T F16 sParam;
static fraclée t fléTarget, fleResult;

void Isr (void) ;
void main (void)

sParam.f1l6RampUp = FRAC16(0.1);
sParam.fl6RampDown = FRAC16(0.02) ;
fl6Target = FRAC16(0.75);

f16InitVal = FRAC16(0.9);

GFLIB RampInit Fl6(fl6InitVal, &sParam) ;

}

/* periodically called function */
void Isr()

{

fl6Result = GFLIB Ramp F16 (fl6Target, &sParam) ;

2.14 GFLIB_DRamp

The GFLIB_DRamp function calculates the up / down ramp with the defined step
increment / decrement. The algorithm approaches the target value when the stop flag is
not set, and/or returns to the instant value when the stop flag is set.

GFLIB User's Guide, Rev. 4, 11/2016
66 NXP Semiconductors

Chapter 2 Algorithms in detail
Ramp output

Instant
X

Ramp-up-sati

Ramp-down-sat

Stop flag ~__

Reachﬂag\
! TTTTTTTTTTTLTTTTTTTTTTTTTTTTTTTDTTTTTTTTTT

Figure 2-8. GFLIB_DRamp functionality

For a proper use, it is recommended that the algorithm is initialized by the
GFLIB_DRamplInit function, before using the GFLIB_DRamp function. This function
initializes the internal state variable of GFLIB_DRamp algorithm with the defined value.
You must call this function when you want the ramp to be initialized.

The GFLIB_DRamp function calculates a ramp with a different set of up / down
parameters, depending on the state of the stop flag. If the stop flag is cleared, the function
calculates the ramp of the actual state value towards the target value, using the up or
down increments contained in the parameters' structure. If the stop flag is set, the
function calculates the ramp towards the instant value, using the up or down saturation
increments.

If the target value is greater than the state value, the function adds the ramp-up value to
the state value. The output cannot be greater than the target value (case of the stop flag
being cleared), nor lower than the instant value (case of the stop flag being set).

If the target value is lower than the state value, the function subtracts the ramp-down
value from the state value. The output cannot be lower than the target value (case of the
stop flag being cleared), nor greater than the instant value (case of the stop flag being
set).

If the actual internal state reaches the target value, the reach flag is set.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 67

A
GFLIB_DRamp

2.14.1 Available versions
The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_DRamplnit function are shown in the following
table:

Table 2-15. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_DRamplnit_F16 frac16_t |GFLIB_DRAMP_T_F16* void Input argument is a 16-bit fractional value

that represents the initialization value. The
parameters' structure is pointed to by a
pointer. The input data value is in the range
<-1;1).

GFLIB_DRamplnit_F32 frac32_t |GFLIB_DRAMP_T_F32* void Input argument is a 32-bit fractional value
that represents the initialization value. The
parameters' structure is pointed to by a
pointer. The input data value is in the range
<-1;1).

The available versions of the GFLIB_DRamp function are shown in the following table:

Table 2-16. Function versions

Function name Input type Parameters Result type
Target Instant Stop flag
GFLIB_DRamp_F16 |frac16_t frac16_t bool_t * GFLIB_DRAMP_T_F16 * frac16_t

The target and instant arguments are 16-bit fractional values. The parameters' structure is pointed to
by a pointer. The function returns a 16-bit fractional value, which represents the actual ramp output
value. The input data values are in the range of <-1; 1), the Stop flag parameter is a pointer to a
boolean value, and the output data value is in the range <-1 ; 1).

GFLIB_DRamp_F32 |frac32_t frac32_t bool_t * | GFLIB_DRAMP_T_F32 * frac32_t

The target and instant arguments are 32-bit fractional values. The parameters' structure is pointed to
by a pointer. The function returns a 32-bit fractional value, which represents the actual ramp output
value. The input data values are in the range <-1 ; 1), the Stop flag parameter is a pointer to a boolean
value, and the output data value is in the range <-1; 1).

GFLIB User's Guide, Rev. 4, 11/2016
68 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.14.2 GFLIB_DRAMP_T_F16

Variable name Type Description

f16State frac16_t |Actual value - controlled by the algorithm.

f16RampUp frac16_t |Value of non-saturation ramp-up increment. The data value is in the range <0 ; 1). Set by
the user.

f16RampDown frac16_t |Value of non-saturation ramp-down increment. The data value is in the range <0 ; 1). Set
by the user.

f16RampUpSat frac16_t |Value of saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

fi6RampDownSat |frac16_t |Value of saturation ramp-down increment. The data value is in the range <0 ; 1). Set by the
user.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared.
Set by the algorithm.

2.14.3 GFLIB_DRAMP_T_F32

Variable name Type Description

f32State frac32_t |Actual value - controlled by the algorithm.

f82RampUp frac32_t |Value of non-saturation ramp-up increment. The data value is in the range <0 ; 1). Set by
the user.

f32RampDown frac32_t |Value of non-saturation ramp-down increment. The data value is in the range <0 ; 1). Set
by the user.

f32RampUpSat frac32_t |Value of saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

f32RampDownSat |frac32_t |Value of saturation ramp-down increment. The data value is in the range <0 ; 1). Set by the
user.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared.
Set by the algorithm.

2.14.4 Declaration

The available GFLIB_DRamplnit functions have the following declarations:

void GFLIB DRampInit F16 (fraclé t fleInitVal, GFLIB DRAMP T F16 *psParam)
void GFLIB DRampInit F32(frac32 t f£32InitVal, GFLIB DRAMP T F32 *psParam)

The available GFLIB_DRamp functions have the following declarations:

fraclé_t GFLIB_DRamp F16 (fraclé_t fléTarget, fraclé_t fléInstant, const bool t *pbStopFlag,
GFLIB DRAMP T F1l6 *psParam)
frac32 t GFLIB DRamp F32(frac32 t f32Target, frac32 t f32Instant, const bool t *pbStopFlag,
GFLIB DRAMP T F32 *psParam)

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 69

A
GFLIB_FlexRamp

2.14.5 Function use

The use of the GFLIB_DRamplnit and GFLIB_DRamp functions is shown in the
following example:

#include "gflib.h"

static fraclée t fl6InitvVal, flé6Target, fléInstant, fl6Result;
static GFLIB_DRAMP_T_F16 sParam;
static bool t bStopFlag;

void Isr (void) ;

void main (void)

{
sParam.fl6RampUp = FRAC16(0.05) ;
sParam.fl6RampDown = FRAC16(0.02) ;
sParam.fl6RampUpSat = FRAC16(0.025) ;
sParam. f16RampDownSat = FRAC16(0.01) ;
fl6Target = FRAC16(0.7);
fl6Initval FRAC16 (
fléInstant FRAC16 (
bStopFlag = FALSE;

0.3);
0.6);

GFLIB_DRampInit_F16 (f16InitVal, &sParam) ;

}

/* periodically called function */
void Isr()

fl6éResult = GFLIB DRamp_ F1l6 (fl6Target, flé6Instant, &bStopFlag, &sParam) ;

2.15 GFLIB_FlexRamp

The GFLIB_FlexRamp function calculates the up/down ramp with a fixed-step increment
that is calculated according to the required speed change per a defined duration. These
parameters must be set by the user.

The GFLIB_FlexRamp algorithm consists of three functions that must be used for a
proper functionality of the algorithm:

* GFLIB_FlexRamplnit - this function initializes the state variable with a defined
value and clears the reach flag

* GFLIB_FlexRampCalclncr - this function calculates the increment and clears the
reach flag

» GFLIB_FlexRamp - this function calculates the ramp in the periodically called loop

GFLIB User's Guide, Rev. 4, 11/2016
70 NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
For a proper use, it is recommended to initialize the algorithm by the
GFLIB_FlexRamplnit function. The GFLIB_FlexRamplnit function initializes the
internal state variable of the algorithm with a defined value and clears the reach flag. Call
the init function when you want to initialize the ramp.

To calculate the increment, use the GFLIB_FlexRampCalcIncr function. This function is
called at the point when you want to change the ramp output value. This function's inputs
are the target value and duration. The target value is the destination value that you want
to get to. The duration is the time required to change the ramp output from the actual state
to the target value. To be able to calculate the ramp increment, fill the control structure
with the sample time, that means the period of the loop where the GFLIB_FlexRamp
function is called. The structure also contains a variable which determines the maximum
value of the increment. It is necessary to set it up too. The equation for the increment
calculation is as follows:

V.=V
I= tT S'Ts

Equation 13.
where:

e | is the increment

* V,1is the target value

* V. is the state (actual) value (in the structure)

* T is the duration of the ramp (to reach the target value starting at the state value)

* T is the sample time, that means the period of the loop where the ramp algorithm 1s
called (set in the structure)

If the increment is greater than the maximum increment (set in the structure), the
increment uses the maximum increment value.

As soon as the new increment is calculated, call the GFLIB_FlexRamp algorithm in the
periodical control loop. The function works as follows: The function adds the increment
to the state value (from the previous step), which results in a new state. The new state is
returned by the function. As the time passes, the algorithm is approaching the target
value. If the new state trespasses the target value, that new state 1s limited to the target
value and the reach flag is set. The functionality of the implemented algorithm is shown
in this figure:

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 71

GFLIB_FlexRamp

Duration | ; Duration

,,,

@
\Llncrement]
& 0
s & /T '
] ! @
L [i o
- ! —
@ T | o
= | ~
£ |
& |
= R —— L _
|
!
| "
! Sample time
—

" Flex ramp output (State)
__— Reachflag

-

! RN RN RN R RN

Flex ramp Flex ramp Flex ramp
initialization periodical call periodical call
Flex ramp Flex ramp
increment calculation increment calculation

Figure 2-9. GFLIB_FlexRamp functionality

2.15.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The input parameters are the fractional and accumulator

types.

The available versions of the GFLIB_FlexRamplnit function are shown in the following
table:

Table 2-17. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_FlexRamplnit_F16 frac16_t |GFLIB_FLEXRAMP_T_F32 * void The input argument is a 16-bit

fractional value that represents the
initialization value. The
parameters' structure is pointed to
by a pointer. The input data value
is in the range <-1; 1).

GFLIB User's Guide, Rev. 4, 11/2016
72 NXP Semiconductors

4
Chapter 2 Algorithms in detail

The available versions of the GFLIB_FlexRamp function are shown in the following
table:

Table 2-18. Increment calculation function versions

Function nhame Input type Parameters Result
type

Target Duration
GFLIB_FlexRampCalcincr_F16 frac16_t acc32_t GFLIB_FLEXRAMP_T_F32 * void

The input arguments are a 16-bit fractional value in the range <-1 ; 1) that represents
the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that
represents the duration of the ramp (in seconds) to reach the target value. The
parameters' structure is pointed to by a pointer.

Table 2-19. Function versions

Function nhame Parameters Result Description
type
GFLIB_FlexRamp_F16 GFLIB_FLEXRAMP_T_F32 * frac16_t The parameters' structure is pointed to by a

pointer. The function returns a 16-bit fractional
value, which represents the actual ramp
output value. The output data value is in the
range <-1; 1).

2.15.2 GFLIB_FLEXRAMP_T_F32

Variable name Type Description

f32State frac32_t |The actual value. Controlled by the GFLIB_FlexRamplnit_F16 and GFLIB_FlexRamp_F16
algorithms.

f32Incr frac32_t |The value of the flex ramp increment. Controlled by the GFLIB_FlexRampCalcincr_F16
algorithm.

f32Target frac32_t |The target value of the flex ramp algorithm. Controlled by the
GFLIB_FlexRampCalclncr_F16 algorithm.

f32Ts frac32_t |The sample time, that means the period of the loop where the GFLIB_FlexRamp_F16
algorithms are periodically called. The data value (in seconds) is in the range (0 ; 1). Set by
the user.

f32IncrMax frac32_t |The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set
by the user.

bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_FlexRamp_F16 algorithm. It is cleared
by the GFLIB_FlexRamplnit_F16 and GFLIB_FlexRampCalcIncr_F16 algorithms.

2.15.3 Declaration
The available GFLIB_FlexRamplnit functions have the following declarations:

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 73

A
GFLIB_DFlexRamp

void GFLIB_FlexRampInit_ F16 (fraclé_t fl16InitVal, GFLIB_FLEXRAMP T F32 *psParam)
The available GFLIB_FlexRampCalclncr functions have the following declarations:

void GFLIB FlexRampCalcIncr F1l6 (fraclé t fleéTarget, acc32 t a32Duration,
GFLIB FLEXRAMP T F32 *psParam)

The available GFLIB_FlexRamp functions have the following declarations:

fraclé t GFLIB FlexRamp F16 (GFLIB FLEXRAMP T F32 *psParam)

2.15.4 Function use

The use of the GFLIB_FlexRamplnit, GFLIB_FlexRampCalcIncr, and
GFLIB_FlexRamp functions is shown in the following example:

#include "gflib.h"

static fracle t fle6InitVval;

static GFLIB FLEXRAMP T F32 sFlexRamp;
static fraclé_t flé6Target, fl6RampResult;
static acc32_t a32RampDuration;

void Isr (void) ;

void main (void)

{

/* Control loop period is 0.002 s; maximum increment value is 0.15 */
sFlexRamp.£32Ts = FRAC32(0.002) ;
sFlexRamp.f32IncrMax = FRAC32(0.15);

/* Initial value to 0 */
fl16InitvVal = FRAC16(0.0) ;

/* Flex ramp initialization */
GFLIB_ FlexRampInit F16(fl6InitVal, &sFlexRamp) ;

/* Target value is 0.7 in duration of 5.3 s */
fl6Target = FRAC16(0.7);
a32RampDuration = ACC32(5.3);;

/* Flex ramp increment calculation */
GFLIB_ FlexRampCalcIncr F16 (fl6Target, a32RampDuration, &sFlexRamp) ;

}

/* periodically called control loop with a period of 2 ms */
void Isr()

{

fl6RampResult = GFLIB_FlexRamp_ F16 (&sFlexRamp) ;

2.16 GFLIB_DFlexRamp

GFLIB User's Guide, Rev. 4, 11/2016
74 NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
The GFLIB_DFlexRamp function calculates the up/down ramp with a fixed-step
increment that is calculated according to the required speed change per a defined
duration.These parameters must be set by the user. The algorithm has stop flags. If none
of them is set, the ramp behaves normally. If one of them is set, the ramp can run in the
opposite direction.

The GFLIB_DFlexRamp algorithm consists of three functions that must be used for a
proper functionality of the algorithm:

* GFLIB_DFlexRamplnit - this function initializes the state variable with a defined
value and clears the reach flag

* GFLIB_DFlexRampCalclncr - this function calculates the increment and clears the
reach flag

* GFLIB_DFlexRamp - this function calculates the ramp in the periodically called
loop

For a proper use, initialize the algorithm by the GFLIB_DFlexRamplnit function. The
GFLIB_DFlexRamplInit function initializes the internal state variable of the algorithm
with a defined value and clears the reach flag. Call the init function when you want to
initialize the ramp.

To calculate the increment, use the GFLIB_DFlexRampCalclIncr function. Call this
function when you want to change the ramp output value. This function's inputs are the
target value and duration, and the ramp increments for motoring and generating
saturation modes. The target value is the destination value that you want to get to. The
duration is the time required to change the ramp output from the actual state to the target
value. To calculate the ramp increment, fill the control structure with the sample time,
that means the period of the loop where the GFLIB_DFlexRamp funciton is called. The
structure also contains a variable which determines the maximum value of the increment.
It is necessary to set it up too. The equation for the increment calculation is as follows:

V=V
I= ZT ST,

Equation 14.

where:

* [is the increment

* V,is the target value

* V. is the state (actual) value (in the structure)

* T is the duration of the ramp (to reach the target value starting at the state value)

* T, is the sample time, that means the period of the loop where the ramp algorithm is
called (set in the structure)

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 75

A
GFLIB_DFlexRamp

If the increment is greater than the maximum increment (set in the structure), the
increment uses the maximum increment value.

The state, target, and instant values must have the same sign, otherwise the saturation
modes don't work properly.

As soon as the new increment is calculated, you can call the GFLIB_DFlexRamp
algorithm in the periodical control loop. If none of the stop flags is set, the function
works as follows: The function adds the increment to the state value (from the previous
step), which results in a new state. The new state is returned by the function. As time
passes, the algorithm is approaching the target value. If the new state trespasses the target
value that new state 1s limited to, the target value and the reach flag are set. The
functionality of the implemented algorithm is shown in the following figure:

Duration N | Duration

Increment
Gen-sat-mode | |

Increment
Mot-sat-mod el

*

(
\
\

I

\ Instant Jl‘lncrement
\
\

Target - State

i A}
------ “T Dyn. flex ramp
Increment i output (State)

Motoring mode Sample time
stop flag ; s
— ' ; '

Generating mode
stop flag —

___—— Reachflag | E—

—

Dyn. flex ramp Dyn. flex ramp Dyn. flex ramp

! {TTTTTTTTTTTTTTTTTTHTTTTTTTTTTTTTTTTTTTTT

initialization periodical call periodical call
Dyn. flex ramp Dyn. flex ramp
increment calculation increment calculation

Figure 2-10. GFLIB_DFlexRamp functionality

If the motoring mode stop flag is set and the absolute value of the target value is greater
than the absolute value of the state value, the function uses the increment for the
motoring saturation mode to return to the instant value. Use case: when the application is
in the saturation mode and cannot supply more power to increase the speed, then a
saturation (motoring mode) flag is generated. To get out of the saturation, the ramp
output value is being reduced.

GFLIB User's Guide, Rev. 4, 11/2016
76 NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
If the generating mode stop flag is set and the absolute value of the target value is lower
than the absolute value of the state value, the funcion uses the increment for the
generating saturation mode to return to the instant value. Use case: when the application
1s braking a motor and voltage increases on the DC-bus capacitor, then a saturation
(generating mode) flag is generated. To avoid trespassing the DC-bus safe voltage limit,
the speed requirement is increasing to disipate the energy of the capacitor.

2.16.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The input parameters are the fractional and accumulator

types.

The available versions of the GFLIB_DFlexRamplInit functions are shown in the
following table:

Table 2-20. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_FlexRamplnit_F16 frac16_t |GFLIB_DFLEXRAMP_T_F32* void The input argument is a 16-bit

fractional value that represents
the initialization value. The
parameters' structure is pointed
to by a pointer. The input data
value is in the range <-1; 1).

The available versions of the GFLIB_DFlexRamp functions are shown in the following
table:

Table 2-21. Increment calculation function versions

Function name Input type Parameters Result
Target Duration | Incr. sat- | Incr. sat- type
mot gen
GFLIB_DFlexRampCalcincr_F16 frac16_t |acc32_t frac32_t |frac32_t |GFLIB_DFLEXRAMP_T_ |void

F32 *

The input arguments are 16-bit fractional values in the range <-1 ; 1) that represent
the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that
represents the duration (in seconds) of the ramp to reach the target value. The other
two arguments are increments for the saturation mode when in the motoring and
generating modes. The parameters' structure is pointed to by a pointer.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 77

A
GFLIB_DFlexRamp

Table 2-22. Function versions

Function name Input type Parameters Result
Instant | Stop flag- | Stop flag- type
mot gen
GFLIB_DFlexRamp_F16 frac16_t |bool_t* bool_t * GFLIB_DFLEXRAMP_T_F32 * frac16_t

The input argument is a 16-bit fractional value in the range <-1 ; 1) that represents
the measured instant value. The stop flags are pointers to the bool_t types. The
parameters' structure is pointed to by a pointer. The function returns a 16-bit
fractional value, which represents the actual ramp output value. The output data
value is in the range <-1; 1).

2.16.2 GFLIB_DFLEXRAMP_T_F32

Variable name Type Description

f32State frac32_t |The actual value. Controlled by the GFLIB_FlexRamplnit_F16 and GFLIB_FlexRamp_F16
algorithms.

f32Incr frac32_t |The value of the dyn. flex ramp increment. Controlled by the
GFLIB_FlexRampCalcincr_F16 algorithm.

f32IncrSatMot frac32_t |The value of the dyn. flex ramp increment when in the motoring saturation mode.
Controlled by the GFLIB_DFlexRampCalclncr_F16 algorithm.

f32IncrSatGen frac32_t |The value of the dyn. flex ramp increment when in the generating saturation mode.
Controlled by the GFLIB_DFlexRampCalcincr_F16 algorithm.

f32Target frac32_t |The target value of the flex ramp algorithm. Controlled by the
GFLIB_DFlexRampCalclncr_F16 algorithm.

f32Ts frac32_t |The sample time, that means the period of the loop where the GFLIB_DFlexRamp_F16
algorithm is periodically called. The data value (in seconds) is in the range (0 ; 1). Set by
the user.

f32IncrMax frac32_t |The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set
by the user.

bReachFlag bool_t Reach flag. This flag is controlled by the GFLIB_DFlexRamp_F16 algorithm. It is cleared
by the GFLIB_DFlexRamplnit_F16 and GFLIB_DFlexRampCalcIncr_F16 algorithms.

2.16.3 Declaration
The available GFLIB_DFlexRamplnit functions have the following declarations:

void GFLIB_DFlexRampInit_ F16 (fraclé_t fl6InitVal, GFLIB_DFLEXRAMP_ T_F32 *psParam)
The available GFLIB_DFlexRampCalcIncr functions have the following declarations:

void GFLIB DFlexRampCalcIncr F16(fracleé t flé6Target, acc32 t a32Duration, frac32 t
f32IncrSatMot, frac32 t f32IncrSatGen, GFLIB DFLEXRAMP T F32 *psParam)

GFLIB User's Guide, Rev. 4, 11/2016
78 NXP Semiconductors

4
Chapter 2 Algorithms in detail

The available GFLIB_DFlexRamp functions have the following declarations:

fraclé t GFLIB DFlexRamp F16 (fraclé t fléInstant, const bool t *pbStopFlagMot, const bool t
*pbStopFlagGen, GFLIB DFLEXRAMP T F32 *psParam)

2.16.4 Function use

The use of the GFLIB_DFlexRamplnit, GFLIB_DFlexRampCalclncr, and
GFLIB_DFlexRamp functions is shown in the following example:

#include "gflib.h"

static fracle t fle6InitVval;

static GFLIB DFLEXRAMP T F32 sDFlexRamp;

static fracle t fléTarget, flé6RampResult, fléInstant;
static acc32 t a32RampDuration;

static frac32 t £32IncrSatMotMode, f32IncrSatGenMode;
static bool t bSatMot, bSatGen;

void Isr (void) ;
void main (void)

/* Control loop period is 0.002 s; maximum increment value is 0.15 */
sDFlexRamp.f32Ts = FRAC32(0.002) ;
sDFlexRamp.f32IncrMax = FRAC32(0.15) ;

/* Initial value to 0 */
f16InitVal = FRAC16(0.0) ;

/* Dyn. flex ramp initialization */
GFLIB FlexRampInit F16(fl6InitVal, &sDFlexRamp) ;

/* Target value is 0.7 in duration of 5.3 s */
fl6Target = FRAC16(0.7);
a32RampDuration = ACC32(5.3);;

/* Saturation increments */
f32IncrSatMotMode = FRAC32(0.000015) ;
f32IncrSatGenMode = FRAC32(0.00002) ;

/* Saturation flags init */
bSatMot = FALSE;
bSatGen = FALSE;

/* Dyn. flex ramp increment calculation */
GFLIB_DFlexRampCalcIncr F16 (fl16Target, a32RampDuration, f32IncrSatMotMode,
f32IncrSatGenMode, &sDFlexRamp) ;

}

/* periodically called control loop with a period of 2 ms */
void Isr ()

fl6RampResult = GFLIB DFlexRamp F16 (fl6Instant, &bSatMot, &bSatGen, &sDFlexRamp) ;

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 79

A
GFLIB_Integrator

2.17 GFLIB_Integrator

The GFLIB_Integrator function calculates a discrete implementation of the integrator
(sum), discretized using a trapezoidal rule in Tustin's method (bi-linear transformation).

The continuous time domain representation of the integrator is defined as follows:

ut) = je(t)dt
Equation 15.

In a continuous time domain, the transfer function for this integrator is described using
the Laplace transformation as follows:

Ul
16 - 53~

Equation 16.

Transforming the above equation into a digital time domain using the bi-linear
transformation leads to the following transfer function:

U(z) Tg+Tz!
Z{H(S}:m =221

Equation 17.

where T is the sampling period of the system. The discrete implementation of the digital
transfer function in the above equation is expressed as follows:

u(k) = u(k — 1)+ e(k)% +e(k — 1)%
Equation 18.

Considering integrator gain Kj, the transfer function leads to the following equation:

KT,
ufk)=uk — 1)+ e(k): p)

KT,

+e(k— I)T
Equation 19.

where:

* uy(k) 1s the integrator's output in the actual step

* uy(k - 1) is the integrator's output from the previous step
* ¢(k) is the integrator's input in the actual step

* e(k - 1) is the integrator's input from the previous step

GFLIB User's Guide, Rev. 4, 11/2016
80 NXP Semiconductors

L __4
Chapter 2 Algorithms in detail
* K| is the integrator's gain coefficient
* T, is the sampling period of the system

Equation 19 on page 80 can be used in the fractional arithmetic as follows:

k) +eg(k— 1
s (k) Uy = vy (k = 1).umM+KITS'M e

max

Equation 20.

where:

* Uy 18 the integrator output scale

* up(k) is the scaled integrator output in the actual step

u.(k - 1) 1s the scaled integrator output from the previous step
* eqax 18 the integrator input scale

eq.(k) 1s the scaled integrator input in the actual step

e.(k - 1) is the scaled integrator input in the previous step

For a proper use of this function, it is recommended to initialize the function's data by the
GFLIB_IntegratorInit functions, before using the GFLIB_Integrator function. You must
call the init function when you want the integrator to be initialized.

2.17.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result, the result is within
the range <-1 ; 1), and it may overflow from one limit to the other. The parameters
use the accumulator types.

The available versions of the GFLIB_IntegratorInit function are shown in the following
table:

Table 2-23. Init function versions

Function nhame Input Parameters Result Description
type type
GFLIB_Integratorinit_F16 frac16_t GFLIB_INTEGRATOR_T_A32 * void The inputs are a 16-bit fractional

initial value and a pointer to the
integrator parameters' structure.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 81

A
GFLIB_Integrator

The available versions of the GFLIB_Integrator function are shown in the following
table:

Table 2-24. Function versions

Function name Input Parameters Result Description
type type

GFLIB_Integrator_F16 frac16_t |GFLIB_INTEGRATOR_T_A32* frac16_t |The inputs are a 16-bit fractional
value to be integrated and a pointer
to the integrator parameters'
structure. The output is limited to
range <-1; 1>. When the integrator
reaches the limit, it overflows to the

other limit.
Variable name Input Description
type
a32Gain acc32_t |Integrator gain is set up according to Equation 20 on page 81 as follows:
Cmax

lzljk'umax

The parameter is a 32-bit accumulator type within the range <-65536.0 ; 65536.0). Set by

the user.
f32IAccK_1 frac32_t |Integral portion in the step k - 1. Controlled by the algorithm.
f16InValK_1 frac16_t |Input value in the step k - 1. Controlled by the algorithm.

2.17.3 Declaration

The available GFLIB_Integratorlnit functions have the following declarations:
void GFLIB IntegratorInit F16 (fraclé_t flé6InitVal, GFLIB_INTEGRATOR_T A32 *psParam)
The available GFLIB_Integrator functions have the following declarations:

fraclé t GFLIB Integrator F1l6(fraclé t fl6InVal, GFLIB INTEGRATOR T A32 *psParam)

2.17.4 Function use

The use of the GFLIB_IntegratorInit and GFLIB_Integrator functions is shown in the
following example:

GFLIB User's Guide, Rev. 4, 11/2016
82 NXP Semiconductors

4
Chapter 2 Algorithms in detail

#include "gflib.h"

static fraclé t fléResult, fleInvVal, fléInitVal;
static GFLIB_INTEGRATOR T A32 sParam;

void Isr (void) ;
void main (void)

fl16Inval = FRAC16(-0.4);
sParam.a32Gain = ACC32(0.1);

fleInitvVal = FRAC16(0.1);

GFLIB IntegratorInit Fl6 (f16InitVal, &sParam) ;

}

/* periodically called function */
void Isr()

fl6Result = GFLIB Integrator F16(f16InvVal, &sParam);

}

2.18 GFLIB_CtriBetalPpAW

The GFLIB_CtrIBetalPpAW function calculates the parallel form of the Beta-Integral-
Proportional (Beta-IP) controller with an implemented integral anti-windup functionality.
The Beta-IP controller is an extended PI controller, which enables to separate the
responses from the setpoint change and the load change (if B = 1, the Beta-IP controller
has the same response as the PI controller). Therefore the Beta-IP controller allows for
reducing the overshoot caused by the change of the setpoint without affecting the load
change response. The B parameter can be set in the range from zero to one, where zero
means the maximal overshoot limitation and one means no limitation.

The Beta-IP controller attempts to correct the error between the measured process
variable (feedback) and the desired set-point by calculating a corrective action that can
adjust the process accordingly. The GFLIB_CtrIBetalPpAW function calculates the Beta-
IP algorithm according to the equations below. The Beta-IP algorithm is implemented in
the parallel (non-interacting) form, enabling you to define the P, I, and B parameters
independently and without interaction. The controller output is limited and the limit
values (the upper limit and the lower limit) are defined by the user.

The Beta-IP controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the Beta-IP controller output reaches the upper or
lower limits, the limit flag is set to one. Otherwise, it is zero (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state is limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag that is pointed to by the function's API.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 83

A ————
GFLIB_CtriBetalPpAW

The Beta-IP algorithm in the continuous time domain can be expressed as follows:

u(r) = Kpr [Bw(0) -y (D) 14K [w(0) -y (1)]
Equation 21.

where:

* u(t) is the controller output in the continuous time domain

* w(t) is the required value in the continuous time domain

* y(t) is the measured value (feedback) in the continuous time domain

» Kp is the proportional gain

K| is the integral gain

* [3 is the beta gain (overshoot reduction gain in the range from zero to one)

Equation 21 on page 84 can be expressed using the Laplace transformation as follows:

U(s) =Kp-[-W(5)-Y(s)] + K- LTS

Equation 22.

The proportional part (up) of Equation 21 on page 84 is transformed into the discrete time
domain as follows:

up(k) =Kp-[f-w(k)-y(k)]

Equation 23.

where:

* up(k) 1s the proportional action in the actual step
* w(k) is the required value in the actual step

* y(k) is the measured value in the actual step

» Kp is the proportional gain coefficient

* [is the beta gain coefficient

Equation 23 on page 84 can be used in the fractional arithmetic as follows:
Upge (k) * gy =Kp+ [ﬁ'wsc(k) 'ysc(k)] " €max
Equation 24.
where:

* Uy 1S the action output scale
* up,.(k) is the scaled proportional action in the actual step
* €max 18 the error input scale

GFLIB User's Guide, Rev. 4, 11/2016
84 NXP Semiconductors

L __4
Chapter 2 Algorithms in detail

* wy.(k) is the scale required value in the actual step

* y..(k) is the scale measured value in the actual step

Transforming the integral part (uy) of Equation 21 on page 84 into a discrete time domain
using the bi-linear method (also known as the trapezoidal approximation) is as follows:

KT, KT,
up (k) =y (k-1) + [w(k) -y (k) - =52 + e (k-1) =52

Equation 25.

where:

* uy(k) is the integral action in the actual step

uy(k - 1) 1s the integral action from the previous step
w(k) is the required value in the actual step

y(k) 1s the measured value in the actual step

e(k - 1) 1s the error in the previous step

* T, is the sampling period of the system

* K is the integral gain coefficient

Equation 25 on page 85 can be used in the fractional arithmetic as follows:

esc(k) +es(k-1)
ulsc'umax:u[sc(k_l) 'umax"_K[Ts'% " €max

Equation 26.

where:

* U,.x 1S the action output scale

* up(k) is the scaled integral action in the actual step

* up(k - 1) is the scaled integral action from the previous step
* €nax 1S the error input scale

* e..(k) is the scaled error in the actual step

* e..(k - 1) is the scaled error in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded not to exceed the given limit values UpperLimit and LowerLimit. This is either
due to the bounded power of the actuator or due to the physical constraints of the plant.

U pperLimit w(k)> U pperLimit

u(k) ={ LowerLimit u(k) < Lower Limit
u(k) else
Equation 27.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 85

A ————
GFLIB_CtriBetalPpAW

The bounds are described by a limitation element, as shown in Equation 27 on page 85.
When the bounds are exceeded, the non-linear saturation characteristic takes effect and
influences the dynamic behavior. The described limitation is implemented on the integral
part accumulator (limitation during the calculation) and the overall controller output.
Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the
wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrIBetalPpAWInit function, before using the GFLIB_CtrlBetalPpAW function.

2.18.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

The available versions of the GFLIB_CtrIBetalPpAWInit function are shown in the
following table:

Table 2-25. Init function versions
Function name Input Parameters Result Description
type type
GFLIB_CtriBetalPpAWInit_F16 |frac16_t |GFLIB_CTRL_BETA_IP_P_AW_T_A |void The inputs are a 16-bit
32" fractional initial value and a
pointer to the controller's
parameters structure.

The available versions of the GFLIB_CtrlBetalPpAW function are shown in the
following table:

Table 2-26. Function versions

Function name Input type Parameters Result
required measured Stop flag type
value value
GFLIB_CtriBetalPpAW_F16 frac16_t frac16_t bool_t * GFLIB_CTRL_BETA_IP_P_AW_T |frac16_t
_A32~*

The required value input is a 16-bit fractional value within the range <-1; 1). The measured
value input is a 16-bit fractional value within the range <-1 ; 1). The integration of the Beta-
IP controller is suspended if the stop flag is set. When it is cleared, the integration

continues. The parameters are pointed to by an input pointer. The function returns a 16-bit
fractional value in the range <f16LowerLim ; f16UpperLim>.

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.18.2 GFLIB_CTRL_BETA_IP_P_AW_T_A32

Variable name Input Description
type
a32PGain acc32_t | The proportional gain is set up according to Equation 24 on page 84 as follows:
e,
Kp Ty

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32|Gain acc32_t |The integral gain is set up according to Equation 26 on page 85 as follows:

K. T Cmax
1

S Umax

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

f32l1AccK_1 frac32_t |State variable of the internal accumulator (integrator). Controlled by the algorithm.
f16InErrk_1 frac16_t |Input error at the step k - 1. Controlled by the algorithm.
f16UpperLim frac16_t |Upper limit of the controller's output and the internal accumulator (integrator). This

parameter must be greater than f16LowerLim. Set by the user.

f16LowerLim frac16_t |Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than f16UpperLim. Set by the user.

f16BetaGain frac16_t |The beta gain is a fraction 16-bit type in the range [0 ; 1). The beta gain defines the
reduction overshot when the required value is changed. Set by the user.

bLimFlag bool_t Limitation flag which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.18.3 Declaration
The available GFLIB_CtrlBetalPpAWInit functions have the following declarations:

void GFLIB CtrlBetaIPpAWInit F16(fraclé_t fl6InitVal, GFLIB CTRL BETA IP P AW T A32 *psParam)

The available GFLIB_CtrIBetalPpAW functions have the following declarations:

fracleé t GFLIB CtrlBetaIPpAW Fl6(fraclé t fléInReq, fraclé t £f16In, const bool t
*pbStopIntegFlag, GFLIB CTRL BETA IP P AW T A32 *psParam)

2.18.4 Function use

The use of the GFLIB_CtrlBetalPpAWInit and GFLIB_CtrlBetalPpAW functions is
shown in the following example:

#include "gflib.h"

static fraclé_t fl6Result, fléInitVal, flé6InReq, fl6In;

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 87

A
GFLIB_CtrIPIpAW

static bool_ t bStopIntegFlag;
static GFLIB CTRL BETA IP P AW T A32 sParam;

void Isr (void) ;
void main (void)

fl6InReq = FRAC16(-0.3);

f16In = FRAC16(-0.4);
sParam.a32PGain = ACC32(0.1);
sParam.a32IGain = ACC32(0.2);
sParam. f16UpperLim FRAC16(0.9) ;
sParam.flé6LowerLim FRAC16(-0.9) ;
sParam.fl6BetaGain = FRAC16(0.5);
bStopIntegFlag = FALSE;

fl16Initval = FRAC16(0.0);

GFLIB_ CtrlBetaIPpAWInit Fl6(fl6InitVal, &sParam);

}

/* periodically called function */
void Isr()

fl6Result = GFLIB CtrlBetaIPpAW F16 (fl16InReqg, f16In, &bStopIntegFlag, &sParam);

}

2.19 GFLIB_CtrIPIpAW

The GFLIB_CtrlPIpAW function calculates the parallel form of the Proportional-Integral
(PI) controller with implemented integral anti-windup functionality.

The PI controller attempts to correct the error between the measured process variable and
the desired set-point by calculating a corrective action that can adjust the process
accordingly. The GFLIB_CtrIPIpAW function calculates the PI algorithm according to
the equations below. The PI algorithm is implemented in the parallel (non-interacting)
form, allowing the user to define the P and I parameters independently and without
interaction. The controller output is limited and the limit values (upper limit and lower
limit) are defined by the user.

The PI controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the PI controller output reaches the upper or lower
limit, then the limit flag is set to 1, otherwise it is O (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state is limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag that is pointed to by the function's API.

The PI algorithm in the continuous time domain can be expressed as follows:

u(t):dt)~KP+Kljdt)dt
Equation 28.

GFLIB User's Guide, Rev. 4, 11/2016
88 NXP Semiconductors

4
Chapter 2 Algorithms in detail

where:

* u(t) is the controller output in the continuous time domain
* e(t) is the input error in the continuous time domain

* Kp is the proportional gain

» K is the integral gain

Equation 28 on page 88 can be expressed using the Laplace transformation as follows:

H(s)=%=KP+@

Equation 29.

The proportional part (up) of Equation 28 on page 88 is transformed into the discrete time
domain as follows:

uplk) = K p-e(k)
Equation 30.

where:

* up(k) is the proportional action in the actual step
* e(k) is the error in the actual step
» Kp is the proportional gain coefficient

Equation 30 on page 89 can be used in the fractional arithmetic as follows:

uPsc(k)' Upax = Kp es k)" emax

Equation 31.
where:

* U 1S the action output scale

* ups.(k) is the scaled proportional action in the actual step
* enax 1S the error input scale

* e..(k) is the scale error in the actual step

Transforming the integral part (uy) of Equation 28 on page 88 into a discrete time domain
using the bi-linear method, also known as the trapezoidal approximation, is as follows:

KT, KT,
(k)= (k=)+ e(k) =5 + elk — =5

Equation 32.

where:

* uy(k) 1s the integral action in the actual step

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 89

A
GFLIB_CtrIPIpAW
 ug(k - 1) 1s the integral action from the previous step
e(k) is the error in the actual step
e(k - 1) is the error in the previous step
T, 1s the sampling period of the system
» K is the integral gain coefficient

Equation 32 on page 89 can be used in the fractional arithmetic as follows:

u]sc(k)'umax = u]sc(k = Dty + KT

max

esdk) +esk—1)
SEt—e
Equation 33.

where:

* Uy 1S the action output scale

* up(k) is the scaled integral action in the actual step

u.(k - 1) 1s the scaled integral action from the previous step
* €max 18 the error input scale

es.(k) is the scaled error in the actual step

es(k - 1) is the scaled error in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded not to exceed the given limit values UpperLimit and LowerLimit. This is due to
either the bounded power of the actuator or due to the physical constraints of the plant.

U pperLimit u(k)> U pperLimit

u(k)=1{ LowerLimit u(k) < Lower Limit
u(k) else
Equation 34.

The bounds are described by a limitation element, as shown in Equation 34 on page 90.
When the bounds are exceeded, the nonlinear saturation characteristic will take effect and
influence the dynamic behavior. The described limitation is implemented on the integral
part accumulator (limitation during the calculation) and on the overall controller output.
Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the
wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrlPIpAWInit functions, before using the GFLIB_CtrIPIpAW function. You
must call this function when you want the PI controller to be initialized.

2.19.1 Available versions
This function is available in the following versions:

GFLIB User's Guide, Rev. 4, 11/2016
90 NXP Semiconductors

4
Chapter 2 Algorithms in detail

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

The available versions of the GFLIB_CtrlPIpAWInit function are shown in the following
table:

Table 2-27. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_CtrIPIpAWInit_F16 frac16_t |GFLIB_CTRL_PI_P_AW_T_A32* void The inputs are a 16-bit

fractional initial value and a
pointer to the controller's
parameters structure.

The available versions of the GFLIB_CtrlPIpAW function are shown in the following
table:

Table 2-28. Function versions

Function name Input type Parameters Result type
Error Stop flag
GFLIB_CtrIPIpAW_F16 frac16_t bool_t * GFLIB_CTRL_PI_P_AW_T_A32 * frac16_t

The error input is a 16-bit fractional value within the range <-1 ; 1). The integration of the PI
controller is suspended if the stop flag is set. When it is cleared, the integration continues. The
parameters are pointed to by an input pointer. The function returns a 16-bit fractional value in
the range <f16LowerLim ; f16UpperLim>.

2.19.2 GFLIB_CTRL_PI_P_AW_T_A32

Variable name Input Description
type
a32PGain acc32_t |Proportional gain is set up according to Equation 31 on page 89 as follows:
€,
K T

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.
a32|Gain acc32_t |Integral gain is set up according to Equation 33 on page 90 as follows:

emax
KITS' Umax

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

f32l1AccK_1 frac32_t |State variable of the internal accumulator (integrator). Controlled by the algorithm.
f16InErrK_1 frac16_t |Input error at the step k - 1. Controlled by the algorithm.
f16UpperLim frac16_t |Upper limit of the controller's output and the internal accumulator (integrator). This

parameter must be greater than f16LowerLim. Set by the user.

Table continues on the next page...

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 91

A
GFLIB_CtrIPIpAW

Variable name Input Description
type
f16LowerLim frac16_t |Lower limit of the controller's output and the internal accumulator (integrator). This

parameter must be lower than f16UpperLim. Set by the user.

bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.19.3 Declaration

The available GFLIB_CtrIPIpAWInit functions have the following declarations:
void GFLIB CtrlPIpAWInit F16 (fraclé t fl6InitVal, GFLIB_CTRL, PI P AW T A32 *psParam)
The available GFLIB_CtrlPIpAW functions have the following declarations:

fraclé t GFLIB CtrlPIpAW Fl16(fracl6é t fl6InErr, const bool t *pbStopIntegFlag,
GFLIB_CTRL PI P AW T A32 *psParam)

2.19.4 Function use

The use of the GFLIB_CtrlPIpAWInit and GFLIB_CtrlPIpAW functions is shown in the
following example:

#include "gflib.h"

static fraclé t flé6Result, fl6InitVal, fl6InErr;
static bool t bStopIntegFlag;
static GFLIB CTRL_PI P AW T A32 sParam;

void Isr (void) ;

void main (void)
fl16InErr = FRAC16(-0.4);
sParam.a32PGain = ACC32(0.1);
sParam.a32IGain = ACC32(0.2);
sParam.f16UpperLim = FRAC16(0.9);

sParam.fl6LowerLim = FRAC16(-0.9) ;
bStopIntegFlag = FALSE;

f16InitVal = FRAC16(0.0);

GFLIB CtrlPIpAWInit F16(fl6InitVal, &sParam) ;

}

/* periodically called function */
void Isr()

fl6Result = GFLIB CtrlPIpAW F16 (fl6InErr, &bStopIntegFlag, &sParam);

GFLIB User's Guide, Rev. 4, 11/2016
92 NXP Semiconductors

Appendix A
Library types

A.1 bool t

The bool_t type 1s a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool t;
The following figure shows the way in which the data is stored by this type:
Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused LC(;?i
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 1
TRUE
0 0 0 1
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 0
FALSE
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8 t;

The following figure shows the way in which the data is stored by this type:

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 93

uint16_t
Table A-2. Data storage
7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1
255
F F
y 0 | 0 | 0 | 0 1 | 0 | 1 | 1
0 B
0 | 1 | 1 | 1 1 | 1 | 0 | 0
124
7 C
156 1 | o | o | A R
9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uintlé t;
The following figure shows the way in which the data is stored by this type:
Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
65535
F F F F
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 1 | 0 | 1
5
0 0 0 5
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
40768
9 F 4 0

A.4 uint32_t

GFLIB User's Guide, Rev. 4, 11/2016
94 NXP Semiconductors

4
Appendix A Library types

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32 t;
The following figure shows the way in which the data is stored by this type:
Table A-4. Data storage

31 24 23 16 15 87 0
Value Integer
4294967295 F F F F F F F F
2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
3451051828 C D B 2 D F 3 4
A5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;
The following figure shows the way in which the data is stored by this type:
Table A-5. Data storage

7 6 5 4 3 2 1 0
Value Sign Integer
0 1 | 1 | 1 1 | 1 | 1 | 1
127
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
-128
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
60
3 o}
o7 1 | o | o | A R
9 F

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 95

A
int16_t

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short intlé t;
The following figure shows the way in which the data is stored by this type:
Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer
0o | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
32767
7 F F F
1 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | oo | 0 | 0 | 0
-32768
8 0 0 0
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
-24768
9 F 4 0

A.7 Int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32 t;
The following figure shows the way in which the data is stored by this type:
Table A-7. Data storage

31 24 23 16 15 87 0
Value S | Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4

GFLIB User's Guide, Rev. 4, 11/2016
96 NXP Semiconductors

4
Appendix A Library types

A.8 frac8 t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within

the range <-1 ; 1). Its definition is as follows:

typedef char frac8 t;

The following figure shows the way in which the data is stored by this type:
Table A-8. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0 1 | 1 | 1 1 | 1 | 1 | 1
0.99219
7 F
1 | 0 | 0 | 0 0 | 0 | 0
-1.0
8 0
0 | 0 | 1 | 1 1 | 1 | 0
0.46875
3 c
1 | 0 | 0 | 1 1 | 1 | 1
-0.75781
9 F

To store a real number as frac8_t, use the FRACS8 macro.

A.9 frac16 t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within

the range <-1 ; 1). Its definition is as follows:

typedef short fraclé t;

The following figure shows the way in which the data is stored by this type:
Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Value

0.99997

-1.0

Fractional

1|1|1|1

1|1|1|1

F

F

o|o|o|o o|o|o|o

Table continues on the next page...

GFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

97

frac32_t
Table A-9. Data storage (continued)
8 0 0 0
o|o|1|11|1|o|o1|o|o|11|1|1|o
0.47357
3 C 9 E
1|o|o|11|1|1|1o|1|o|o o|o|o|o
-0.75586
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_ t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32 t;
The following figure shows the way in which the data is stored by this type:
Table A-10. Data storage

31 24 23 16 15 87 0
Value S Fractional
0.9999999995 7 F F F F F F F
-1.0 8 0 0 0 0 0 0 0
0.02606645970 0 3 5 6 2 5 5 0
-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acci16_t

The accl6_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acclé t;

The following figure shows the way in which the data is stored by this type:

GFLIB User's Guide, Rev. 4, 11/2016
98 NXP Semiconductors

4
Appendix A Library types

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional
o1|1|11|1|1|111|1|11|1|1|1
255.9921875
7 F F F
1|o|o|o o|o|o|o o|o|o|o o|o|o|o
-256.0
8 0 0 0
o|o|o|o o|o|o|o1|o|o|o o|o|o|o
1.0
0 0 8 0
o t 1111|111]1]o]lofo]o]o]o]o
F F 8 0
o|o|o|o o|1|1|o1|1|1|o o|1|o|1
13.7890625
0 6 E 5
1|1|o|1o|o|1|1o|o|1|o o|1|o|o
-89.71875
D 3 2 4

To store a real number as accl16_t, use the ACC16 macro.

A.12 acc32_ t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;
The following figure shows the way in which the data is stored by this type:
Table A-12. Data storage

31 24 23 16 15 87 0
Value S Integer | Fractional
65535.999969
-65536.0
1.0
-1.0
23.789734
-1171.306793

Mm|o|m|lo|w| N
U|lo|mn|o|o|m
Wjo|m|lo|o|m
o|m|m|o|o|m
o|m|o|o|o|m
w|lo|lo|lo|o|m
W| —=|o|o|o|m
Olo|lo|o|o|m

To store a real number as acc32_t, use the ACC32 macro.

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 99

FALSE

A.13 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"
static bool_t bval;
void main (void)

{

bval = FALSE; /* bVal = FALSE */

}

A.14 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool t)1)

#include "mlib.h"
static bool t bval;
void main (void)

bval = TRUE; /* bval = TRUE */

}

A.15 FRACS8

The FRACS8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8 (x) ((frac8 t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; Ox7F>,
which corresponds to <-1.0 ; 1.0-277>.

GFLIB User's Guide, Rev. 4, 11/2016
100 NXP Semiconductors

4
Appendix A Library types

#include "mlib.h"
static frac8 t f8Val;
void main (void)

f8val = FRAC8(0.187); /* f£8val = 0.187 */

}

A.16 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((fraclé_t) ((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000)
0x7FFF))

The input is multiplied by 32768 (=213). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-215>,

#include "mlib.h"
static fraclé_t fléeVal;
void main (void)

fleval = FRAC16(0.736); /* fleVal = 0.736 */

A.17 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

#define FRAC32(x) ((frac32 t) ((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000)
0x7FFFFFFF))

The input is multiplied by 2147483648 (=231). The output is limited to the range
<0x80000000 ; Ox7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2731>,

#include "mlib.h"
static frac32 t £32val;
void main (void)

£32val = FRAC32(-0.1735667) ; /* £32Val = -0.1735667 */

GFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 101

ACC16

A.18 ACC16

The ACC16 macro serves to convert a real number to the accl16_t type. Its definition is as
follows:

#define ACCl6 (x) ((acclé_t) ((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : OX7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"
static acclé_t aleVal;
void main (void)

aléVal = ACC1l6(19.45627); /* aleVal = 19.45627 */

A.19 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32 t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : Ox7FFFFFFF))

The input is multiplied by 32768 (=213). The output is limited to the range
<0x80000000 ; Ox7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2"15>

#include "mlib.h"
static acc32_t a32val;
void main (void)

a32vVal = ACC32(-13.654437); /* a32Val = -13.654437 *x/

}

GFLIB User's Guide, Rev. 4, 11/2016
102 NXP Semiconductors

How to Reach Us: Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated
circuits based on the information in this document. Freescale reserves the right
Web Support: to make changes without further notice to any products herein.
nxp.com/support

Home Page:
nxp.com

Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical’ parameters that may be provided
in Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its
patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following
address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor,
Inc. ARM and Cortex are the registered trademarks of ARM Limited, in EU and/or
elsewhere. ARM logo is the trademark of ARM Limited. All rights reserved. All
other product or service names are the property of their respective owners.

© 2017 NXP B.V.

Document Number CMOGFLIBUG
Revision 4, 11/2016

r
4\

Yo
)
oc
w
=
<)
a
|

>
X
K4

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	Memory-mapped divide and square root support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Kinetis Design Studio)
	Memory-mapped divide and square root support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	Memory-mapped divide and square root support
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	Memory-mapped divide and square root support
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	GFLIB_Sin
	Available versions
	Declaration
	Function use

	GFLIB_Cos
	Available versions
	Declaration
	Function use

	GFLIB_Atan
	Available versions
	Declaration
	Function use

	GFLIB_AtanYX
	Available versions
	Declaration
	Function use

	GFLIB_Sqrt
	Available versions
	Declaration
	Function use

	GFLIB_Limit
	Available versions
	Declaration
	Function use

	GFLIB_LowerLimit
	Available versions
	Declaration
	Function use

	GFLIB_UpperLimit
	Available versions
	Declaration
	Function use

	GFLIB_VectorLimit1
	Available versions
	GFLIB_VECTORLIMIT_T_F16 type description
	Declaration
	Function use

	GFLIB_Hyst
	Available versions
	GFLIB_HYST_T_F16
	Declaration
	Function use

	GFLIB_Lut1D
	Available versions
	Declaration
	Function use

	GFLIB_LutPer1D
	Available versions
	Declaration
	Function use

	GFLIB_Ramp
	Available versions
	GFLIB_RAMP_T_F16
	GFLIB_RAMP_T_F32
	Declaration
	Function use

	GFLIB_DRamp
	Available versions
	GFLIB_DRAMP_T_F16
	GFLIB_DRAMP_T_F32
	Declaration
	Function use

	GFLIB_FlexRamp
	Available versions
	GFLIB_FLEXRAMP_T_F32
	Declaration
	Function use

	GFLIB_DFlexRamp
	Available versions
	GFLIB_DFLEXRAMP_T_F32
	Declaration
	Function use

	GFLIB_Integrator
	Available versions
	GFLIB_INTEGRATOR_T_A32
	Declaration
	Function use

	GFLIB_CtrlBetaIPpAW
	Available versions
	GFLIB_CTRL_BETA_IP_P_AW_T_A32
	Declaration
	Function use

	GFLIB_CtrlPIpAW
	Available versions
	GFLIB_CTRL_PI_P_AW_T_A32
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

