GDFLIB User's Guide

ARM® Cortex® MO+

Document Number: CMOGDFLIBUG
Rev. 4, 11/2016

h
V"

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

Contents
Section number Title Page

Chapter 1

Library

L 51 13 (e Ta L Uo7 5 o | OO OO TP 5
1.2 Library integration into project (MCUXPIESSO IDE)ccceiviiriiiiriiiiiieeiieeeeeeetee et 7
1.3 Library integration into project (Kinetis Design StUAIO)ceecveiiiiiiiiiiiiiiiiiecieeite ettt 16
1.4 Library integration into project (Keil LVISION)cccuirieriirierieiieie ittt ettt e e st st esaeeseesbeeatesbeentenaeans 24
1.5 Library integration into project (IAR Embedded Workbench)cccccoieiiriiiiiniiniiiiiniiicnccicneccseecseeeeeeee 32

Chapter 2

Algorithms in detail

2.1 GDFLIB _FIEIEXP. ..ottt ettt sttt bbbt s h et b bt e bttt e bt et e it e bt e st e sbeenaenae 41
2.2 GDFLIB_FIIEITIR ..ottt ettt 43
2.3 GDFLIB_FIIEITIR ...ttt ettt b et b et bbbt b et a et ee 48
2.4 GDFLIB_FIIEIMA.cuiiiiiiiiiniineetet ettt sttt b ettt b et b ettt sa et ne e 53

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 3

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Digital Filters Library (GDFLIB) for the family
of ARM Cortex M0+ core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

GDFLIB supports several data types: (un)signed integer, fractional, and accumulator. The
integer data types are useful for general-purpose computation; they are familiar to the
MPU and MCU programmers. The fractional data types enable powerful numeric and
digital-signal-processing algorithms to be implemented. The accumulator data type is a
combination of both; that means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1

 Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1

e Unsigned 32-bit integer —<0 ; 4294967295> with the minimum resolution of 1

 Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution
of 1

The following list shows the fractional types defined in the libraries:

* Fixed-point 16-bit fractional —<-1 ; 1 - 2"15> with the minimum resolution of 213
» Fixed-point 32-bit fractional —<-1; 1 - 2-315 with the minimum resolution of 2-3!

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 5

Introduction
The following list shows the accumulator types defined in the libraries:

* Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 27> with the minimum

resolution of 27
» Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2°15> with the minimum
resolution of 2°1°

1.1.3 API definition

GDFLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB Mac_F32lss(f32Accum, flé6Multl, fleMult2);
where the function is compiled from four parts:

e MLIB—this is the library prefix
* Mac—the function name—Multiply-Accumulate

» F32—the function output type
* Iss—the types of the function inputs; if all the inputs have the same type as the
output, the inputs are not marked

The input and output types are described in the following table:
Table 1-1. Input/output types

Type Output Input
frac16_t F16 s
frac32_t F32 |
acc32_t A32 a

1.1.4 Supported compilers

GDFLIB for the ARM Cortex M0+ core is written in C language or assembly language
with C-callable interface depending on the specific function. The library is built and
tested using the following compilers:

* Kinetis Design Studio

* MCUXpresso IDE

* JAR Embedded Workbench

e Keil uVision

GDFLIB User's Guide, Rev. 4, 11/2016
6 NXP Semiconductors

4
Chapter 1 Library

For the MCUXpresso IDE, the library is delivered in the gdflib.a file.

For the Kinetis Design Studio, the library is delivered in the gdflib.a file.

For the IAR Embedded Workbench, the library is delivered in the gdflib.a file.
For the Keil uVision, the library is delivered in the gdflib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gdflib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

GDFLIB for the ARM Cortex M0+ core is written in C language or assembly language
with C-callable interface depending on the specific function. Some functions from this
library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It
can cause an issue especially when high optimization level is set. Therefore the
optimization level for all inline assembly written functions is defined by compiler
pragmas using macros. The configuration header file RTCESL_cfg.h is located in:

specific library folder\MLIB\Include. The optimization level can be changed by
modifying the macro value for specific compiler. In case of any change the library
functionality is not guaranteed.

Similarly as optimization level the Memory-mapped divide and square root module
support can be disable or enable if it has not been done by defined symbol
RTCESL_MMDVSQ_ON or RTCESL_MMDVSQ_OFF in project setting described in
Memory-mapped divide and square root support cheaper for specific compiler.

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the
number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

1.2 Library integration into project (MCUXpresso IDE)

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 7

Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GDFLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL

\CMO_RTCESL_4.5_MCUX). If you have a different installation path, use that path
instead.

1.2.1 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square

root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the MCUXpresso SDK project name node or in the left-hand part, click Properties
or select Project > Properties from the menu. A project properties dialog appears.
2. Expand the C/C++ Build node and select Settings. See Figure 1-1.

. In the right-hand part, under the MCU C Compiler node, click the Preprocessor node.
See Figure 1-1.

(98]

M ™
m Properties for twrkv31f120m_demo_apps_hello_world [-:' =] éj
type filter text Settings & v v -

> Resource
Builders
4 C/C++ Build Configuration: ’Debug [Active]

'] ’Manage Configurations...]

Build Variables
Environment

Run/Debug Settings

4

(# Optimization

(2 Debugging

(# Warnings

@ Miscellanecus

@ Architecture
4 B MCU Assembler

@ General

@ Architecture & Headers
a4 B MCU Linker

@ General

@ Libraries

@ Miscellanecus

(2 Shared Library Settings

@ Architecture

(2 Managed Linker Script

@ Multicore

Logging) Tool Settings | 4 Build steps | Build Artifact | Binary Parsers | @ Error Parsers|
MCU settings
Settings 4 53 MCU C Compiler [[] Do not search system directories (-nostdinc)
Tool Chain Editor @ Dialect | Preprocess only (-E)
. C/C++ General (2 Preprocessor) .
Defined symbols (-D) & w E & =
Project References (2 Includes Y £ a8 C S

DEBUG
PRINTF_FLOAT_ENABLE=0
SCANF_FLOAT ENABLE=0
PRINTF_ADVANCED_ENABLE=0
SCANF_ADVANCED_ENABLE=0
TWR_KV31F120M

TOWER
SDK_DEBUGCONSOLE=0
_MCUXPRESSO

_USE_CMSIS
CPU_MKV31FS12VLL12
CPU_MKV31FS12VLL12_cmd
REDLIB

Undefined symbols (-U) &

I

o]

Cancel

Figure 1-1. Defined symbols

4. In the right-hand part of the dialog, click the Add... icon located next to the Defined
symbols (-D) title.

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

4
Chapter 1 Library
5. In the dialog that appears (see Figure 1-2), type the following:
e RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on
« RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off
If neither of these two defines is defined, the hardware division and square root
support is turned off by default.
ﬂ Enter Value Jp— ;_- @

Defined symbols (-0

RTCESL_MMDVSQ_OMN

[ok || Cancel

5 = e eee—e— |

Figure 1-2. Symbol definition
6. Click OK in the dialog.
7. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.2.2 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-3.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 9

Library integration into project (MCUXpresso IDE)

Mo s e .
type filter text Linked Resources oY w
4 Resource -
Linked Resources Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "S${VAR}".
Builders The locations of linked resources may be specified relative to these path variables,
[C/C++ Build Defined path variables for resource 'twrkv31f120m_demo_apps_hello_world':
[C.’C.++ General Name Value Mew...
Project References .
Run/Debug Settings (= ECLIPSE_HOME CAMXPAMCUXpressolDE_10.0.0_344%ide\ Edit..
= PARENT_LOC Diternp3
= PROJECT_LOC Dvternp3titwri31f120m_demo_apps_hello_world Remove
(= WORKSPACE_LOC Ditermnp3

Figure 1-3. Project properties
3. Click the New... button in the right-hand side.
4. In the dialog that appears (see Figure 1-4), type this variable name into the Name
box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CMO_RTCESL_4.5_MCUX. Click OK.

GDFLIB User's Guide, Rev. 4, 11/2016
10 NXP Semiconductors

4
Chapter 1 Library

|
Define a New Path Variable

Enter a new variable name and its associated location.

F k]
= T e
B0 New Varisble e =

MName: RTCESL_LOC

Location: ICA\NXPARTCESLAC File.. || Folder. || Variable..
Resolved Location: C:\NXP\RTCESL\CMO_RTCESL_4.5_MCUX

® [oK] ’ Cancel

Figure 1-4. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click
Environment.

7. Click the Add... button in the right-hand side.

In the dialog that appears (see Figure 1-5), type this variable name into the Name

box: RTCESL_LOC.

9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CMO_RTCESL_4.5_MCUX.

10. Tick the Add to all configurations box to use this variable in all configurations. See
Figure 1-5.

11. Click OK.

12. In the previous dialog, click OK.

*®

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 11

Library integration into project (MCUXpresso IDE)

Linked Resources
Resource Filters
Builders
4 C/C++ Build
Build Variables
Environment

n Properties for twrkv31f120m_demo_apps_hello_world | = £2
type filter text Environment =l v -
4 Resource

Configuration: |Debug [Active]

'] [Manage Conﬁgurations...l

Environment variables to set

)

Logging Variable Value Origin Select
Elect...
MCU settings CWD Di\ternp3itwries31£120... BUILD SYSTEM
Seftings PATH CANXPAMCUXpressolD... BUILD SYSTEM Edit...
Tool Chain Editor PWD D:\ternp3twrky31f120... BUILD SYSTEM
» C/C++ General | Delete
Project A’ . . -
d) New variable " Undefine
Run/Deb [
Mame: RTCESL_LOC
Value: CAMNXPV\RTCESLVCMO_RTCESL 4.5_MCUX Variables
[V] Add to all configurations
[OK] ’ Cancel
S ——
@ Append variables to native environment
W () Replace native environment with specified one
[Restore Defaultsl l Apply
® [QK] [Cancel]

Figure 1-5. Environment variable

1.2.3 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.
2. Click Advanced to show the advanced options.

(98]

option.

To link the library source, select the Link to alternate location (Linked Folder)

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-6.
5. Click Finish, and the library folder is linked in the project. See Figure 1-7.

GDFLIB User's Guide, Rev. 4, 11/2016

12

NXP Semiconductors

Chapter 1 Library

Folder —

Create a new folder resource. li .n_“

Enter or select the parent folder

twrkv31f120m_demo_apps_hello_world

D
=3 twrkw31f120m_demo_apps_hello_world

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (% Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. || Variables.. |

Figure 1-6. Folder link

a5 twrkv31f120m_demo_apps_hello_world
s g’;ﬁ Binariez
> [t Includes
- 2 CMSIS

- 2 board
- 2 drivers

- 2 source
» [startup
- A2 utilities

> [= Debug
» = doc
> |y RTCESL_LOC

Figure 1-7. Projects libraries paths

1.2.4 Library path setup

GDFLIB requires MLIB to be included too. These steps show how to include all
dependent modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

In the right-hand dialog, select the Library Paths tab. See Figure 1-9.

4. Click the Add... button on the right, and a dialog appears.

e

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 13

A
Library integration into project (MCUXpresso IDE)
5. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-8): ${RTCESL_LOC}\MLIB.
6. Click OK, and then click the Add... button.
7. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GDFLIB.
8. Click OK, you will see the paths added into the list. See Figure 1-9.

- T—
" Add. S ==
Directory:
S{RTCESL_LOCHMLIB]

[7] Add te all configurations
[T Add to all languages
[= Is a workspace path

Variables...

Workspace...

File systern...

Cancel

o
-

Figure 1-8. Library path inclusion

e e =

type filter text Paths and Symbols Prm v
> Resource
Builders —
. CfC++ Build Configuration: ’Debug [Active] V] lManage Configurations...l
a CfC++ General
> Code Analysis
Documentation | (sl Includesl # Symbols | = Libraries| (B Library Paths |[B Source Location | 3| References| :
File Types)
Formatter S{RTCESL_LOCAMLIB | Add. | |7
Indexer = ${RTCESL_LOCNGDFLIB :
Language Mappings |
Paths and Symbols
Delete
Preprocessor Include P: I
Project References |4
Run/Debug Settings I
@ "Preprocessor Include Paths, Macros etc.” property page may define additicnal entries ~ [N
4 | 1 L2 < o LD I
® [oK] [Cancel] I

Figure 1-9. Library paths
9. After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-11.
10. Click the Add... button on the right, and a dialog appears.
11. Type the following into the File text box (see Figure 1-10): :mlib.a
12. Click OK, and then click the Add... button.
13. Type the following into the File text box: :gdflib.a
14. Click OK, and you will see the libraries added in the list. See Figure 1-11.

GDFLIB User's Guide, Rev. 4, 11/2016
14 NXP Semiconductors

Chapter 1 Library

B Add..

File:
:mlib.a
[7] Add te all configurations

[T Add to all languages
[= Is a workspace path

Variables...

Workspace...

File systern...

I“ [

[ok || cancel

|

Figure 1-10. Library file inclusion

| @ Includesl # 5},fmbo|s| = Libraries |E- Library Pathsl B s

. mlib.a
TEL :gdflib.a

Figure 1-11. Libraries

15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages
list. See Figure 1-13.

16. Click the Add... button on the right, and a dialog appears. See Figure 1-12.

17. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include

18. Click OK, and then click the Add... button.

19. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GDFLIB\Include

20. Click OK, and you will see the paths added in the list. See Figure 1-13. Click OK.

L T——
' Add directory path @
Directony:
S{RTCESL_LOC}\MLIB\incIudEI
[T Add to all configurations
[T Add te all languages
[T = Is a workspace path
| [oK J ’ Cancel l

~

Figure 1-12. Library include path addition

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

15

Library integration into project (Kinetis Design Studio)

.
B Properties for twrkv31f120m_demo_apps_hello_world m‘ 'E@Iﬂ
type filter text Paths and Symbols =l v

> Resource
Builders
. C/C++ Build Configuration: IDEbUg [Active] 'l [Manage Configurations...l
4 C/C++ General
> Code Analysis
= Documentation (= Includes | # Symbols | = Libraries | [Library Paths | 2 Source Location | 5 References|
File Types
: Formatter Languages Include directories i Add...
Indexer - .
Additional Assem [B-H{Pro Mame}/board .
| -] Edit...
';”EUEQS ’SV'EPE”:EIS Assembly (= ${RTCESL_LOCAMLIB\Include
aths and symbels GNU C [[=TS{RTCESL LOC\GDFLIB\Include
Preprocessor Include P: e : e P
I Project References [¢ /mxp/mecuxpressoide_10.0.0_344/ide/tools/redlib/include =
| Ruria’Debug Settings [¢ fmxp/mecuxpressoide_10.0.0_344/ide/tools/features/include | pe
@ "Preprocessor Include Paths, Macros etc.” property page may define additional entries [M]
[7] Show built-in values Moave Down
’ 2 Import Settings... l 5% Export Settings...
QT - [Restore Defaultsl [Apply] I
| G
% @/ [OK l ’ Cancel]

Figure 1-13. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib.h"
#include "gdflib.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Kinetis Design Studio)

This section provides a step-by-step guide on how to quickly and easily include GDFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Kinetis Design Studio. This example uses the default installation path (C:\NXP
\RTCESL\CMO_RTCESL_4.5_KDS). If you have a different installation path, use that
path instead. If you want to use an existing MCUXpresso SDK project (for example the
hello_world project) see Memory-mapped divide and square root support . If not,
continue with the next section.

GDFLIB User's Guide, Rev. 4, 11/2016
16 NXP Semiconductors

I
Chapter 1 Library
1.3.1 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square

root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. Right-click the MyProjectO1 or MCUXpresso SDK project name node or in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See Figure 1-14.

3. In the right-hand part, under the Cross ARM C compiler node, click the Preprocessor
node. See Figure 1-14.

-
& Properties for MyPraject01

S) |

type filter text

» Resource
Builders
4 C/C++ Build
Build Variables
Environment
Legging
Settings
Tool Chain Editor
» CfC++ General
Project References
Run/Debug Settings
» Task Repository
WikiText

Settings

=

i Tool Settings | i3 Toolchains

Build Steps | Build Artifact | Iﬂ Binary Parsers | @ Ermror Par;ers|

-

@ Target Processor
@ Optimization
@ Warnings
(2 Debugging
a 133 Cross ARM GNU Assembler
(2 Preprocessor
(2 Includes
(# Warnings
(# Miscellaneous
4 B3 Cross ARM C Compiler

Do not search system directories (-nostdine)

Preprocess only (-E)

Defined symbols (-0} &

-

-

@ Preprocessor
Includes
@ Optimization
Warnings
@ Miscellanecus
a 1% Cross ARM C++ Compiler
@ Preprocessor
@ Includes
@ Optimization
@ Warnings
@ Miscellaneous
a 133 Cross ARM C++ Linker
@ General
@ Libraries

@ Miscellaneous

Undefined symbols (-U) LS|

Figure 1-14. Defined symbols
4. In the right-hand part of the dialog, click the Add... icon located next to the Defined
symbols (-D) title.
5. In the dialog that appears (see Figure 1-15), type the following:
* RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on

 RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 17

Library integration into project (Kinetis Design Studio)

r = = N
% Enter Value — ﬁ

| — L e

Defined symbels (-0)

RTCESL_MMDVSQ_ON|

[ok || Cancel

/)

Figure 1-15. Symbol definition
6. Click OK in the dialog.
7. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.3.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-16.

GDFLIB User's Guide, Rev. 4, 11/2016
18 NXP Semiconductors

4
Chapter 1 Library

AR]
| type filter text Linked Resources oo ow
4 Resource -
Linked Resources Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file systern, including other path variables with the syntax "S{VAR}".
Builders The locations of linked resources may be specified relative to these path variables,
» CfC++ Build Defined path variables for resource 'MyProject(l":
[CfC++ General
MNew...
Linux Tools Path Name Value =
Project References (= ECLIPSE_HOME CANXPAKDS_3.0.00eclipsel, | Edit |
Run/Debug Settings [PARENT_LOC CAKDSProjects\workspace.kds R
i+ Task Repository = PROJECT_LOC CAKDSProjects\MyProject0l | Remove |
WikiTesxt = WORKSPACE_LOC CAKDSProjects\workspace.kds

Figure 1-16. Project properties
3. Click the New... button in the right-hand side.
4. In the dialog that appears (see Figure 1-17), type this variable name into the Name
box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CMO0O RTCESL 4.5 KDS. Click OK.

Define a New Path Variable

Enter a new variable name and its associated location.

Name: RTCESL_LOC

Location: oA\ NXPARTCESLAC Fie.. || Folder. || Variable..

Resolved Location: C:ANXPA\RTCESLNCMO_RTCESL 4.3 KDS

@

Figure 1-17. New variable

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 19

A
Library integration into project (Kinetis Design Studio)
6. Create such variable for the environment. Expand the C/C++ Build node and click
Environment.
7. Click the Add... button in the right-hand side.
8. In the dialog that appears (see Figure 1-18), type this variable name into the Name
box: RTCESL_LOC.
9. Type the library parent folder path into the Value box: C:\NXP\RTCESL
\CMO_RTCESL_4.5_KDS.
10. Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-18.
11. Click OK.
12. In the previous dialog, click OK.
% Properties for MyProject0l 8 - | =) 28
type filter text Environment L=l v -
> Resource
Builders
a4 C/C++ Build Configuration: |debug [Active | '] [Manage Configurations...]
Build Variables
Envirenment
l;:tgtlgr:;? Environment vaniables to set Add...
Toel Chain Editor Variable Value Origin
Select...
TDpls.P.ath‘: \ fati? rw BLITL [} SWSTERA -
- e 8 Newvorooe LD ——— - =
Linux
Proje Mame: RTCESL_LOC
$”":E Value: CANXP\RTCESL\CMO_RTCESL 4.3_KDS [Variables | | Undefine |
> Tasl
wikiT|)| ZAdd to sl configurations:
[(]9] l Cancel]

Figure 1-18. Environment variable

1.3.3 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click New > Folder, or select File > New > Folder from the menu. A
dialog appears.

2. Click Advanced to show the advanced options.

3. To link the library source, select the option Link to alternate location (Linked
Folder).

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-19.

GDFLIB User's Guide, Rev. 4, 11/2016
20 NXP Semiconductors

Chapter 1 Library

5. Click Finish, and you will see the library folder linked in the project. See Figure
1-20.

F ™
% New Folder — E‘@g

Folder

.
Create a new folder resource. i .-_’

Enter or select the parent folder
MyProjectll
o

s[5 MyProject01
[=* RernoteSystemsTempFiles

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (-7 Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. | [Variables.. |
Choose file system:
Figure 1-19. Folder link

a 25 MyProject01
> [t Includes
> = Includes
» [= Project_Settings
» gy RTCESL_LOC
4 = Sources
> [main.c

Figure 1-20. Projects libraries paths

1.3.4 Library path setup

GDFLIB requires MLIB to be included too. These steps show how to include all
dependent modules:

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

. In the right-hand dialog, select the Library Paths tab. See Figure 1-22.

(O8]

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 21

A
Library integration into project (Kinetis Design Studio)
4. Click the Add... button on the right, and a dialog appears.
5. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-21): ${RTCESL_LOC }\MLIB.
6. Click OK, and then click the Add... button.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GDFLIB.
8. Click OK, and the paths will be visible in the list. See Figure 1-22.

~

-
" Add.. 5
g e e

Directory:

S{RTCESL_LOCHMLIE|

[7] Add te all configurations

[T Add to all languages

[= Is a workspace path
[oK] [Cancel]

Figure 1-21. Library path inclusion

type filter text Paths and Symbols =l A4

- Resource

Builders
. C/C++ Build Configuration: ’Debug [Active] '] [Manage Configurations...

4 C/C++ General

> Code Analysis
I Documentation | @ Includesl # Symbaels | 1 Libraries| B Library Paths |@ Source Location | o References|

File Types

Formatter (B ${ProjDirPath}/Project_Settings/Linker_Files Add...
Indexer P ${RTCESL_LOCHMLIB
Language Mappings | B ${RTCESL_LOCNGDFLIB
Paths and Symbols

Edit...

Delete
Preprocessor Include P:

Profiling Categories Export
Linux Teols Path I

Figure 1-22, Library paths
9. After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-24.
10. Click the Add... button on the right, and a dialog appears.
11. Type the following into the File text box (see Figure 1-23): :mlib.a
12. Click OK, and then click the Add... button.
13. Type the following into the File text box: :gdflib.a
14. Click OK, and you will see the libraries added in the list. See Figure 1-24.

GDFLIB User's Guide, Rev. 4, 11/2016
22 NXP Semiconductors

Chapter 1 Library

B Add..

File:
:mlib.a
[7] Add te all configurations

[T Add to all languages
[= Is a workspace path

Variables...

Workspace...

File systern...

I“ [

[ok || cancel

|

Figure 1-23. Library file inclusion

| @ Includesl # 5},fmbo|s| = Libraries |E- Library Pathsl B s

. mlib.a
TEL :gdflib.a

Figure 1-24. Libraries

15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages
list. See Figure 1-26.

16. Click the Add... button on the right, and a dialog appears. See Figure 1-25.

17. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include

18. Click OK, and then click the Add... button.

19. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GDFLIB\Include

20. Click OK, and you will see the paths added in the list. See Figure 1-26. Click OK.

L T——
' Add directory path @
Directony:
S{RTCESL_LOC}\MLIB\incIudEI
[T Add to all configurations
[T Add te all languages
[T = Is a workspace path
| [oK J ’ Cancel l

~

Figure 1-25. Library include path addition

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

23

Library integration into project (Keil pVision)

l '+ Properties for MyProjec

type filter text Paths and Symbols E - T
> Resource
Builders
. C/C++ Build Configuration: [Debug [Active] '] lManage Configurations...]
4 C/C++ General
» Code Analysis
Documentation @ Includes | # Symbols | = Libraries I [1=] Library Paths | 2 Source Location | @ References|
File Types
Formatter Languages Include directories Add...
Indexer Assemnbl el
Language Mappings GNU C Blncludes
Eaths and SYTbT'Sd N GNU C++ (¥ ${RTCESL_LOC)MLIB\include Delete
p'e:c’_:?ce“cs':'t' nelude ‘[=TS{RTCESL LOCNGDFLIBAinclude
rofiling Categories pol
Linux Teals Path I

Figure 1-26. Compiler setting

Type the #include syntax into the code. Include the library into the main.c file. In the left-
hand dialog, open the Sources folder of the project, and double-click the main.c file.
After the main.c file opens up, include the following lines in the #include section:

#include "mlib.h"
#include "gdflib.h"

When you click the Build icon (hammer), the project will be compiled without errors.

1.4 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include GDFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil pVision. This example uses the default installation path (C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Memory-mapped divide and square root support chapter otherwise read
next chapter.

1.4.1 NXP pack installation for new project (without MCUXpresso
SDK)

This example uses the NXP MKV 10Z32xxx7 part, and the default installation path (C:
\NXP\RTCESL\CMO_RTCESL_4.5_KEIL) is supposed. If the compiler has never been
used to create any NXP MCU-based projects before, check whether the NXP MCU pack
for the particular device is installed. Follow these steps:

1. Launch Keil pVision.

GDFLIB User's Guide, Rev. 4, 11/2016
24 NXP Semiconductors

W

AR

Chapter 1 Library

In the main menu, go to Project > Manage > Pack Installer....

. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale

(NXP) node.

Look for a line called "KVxx Series" and click it.

In the right-hand dialog (under the Packs tab), expand the Device Specific node.
Look for a node called "Keil::Kinetis_ KVxx_DFP." If there are the Install or Update
options, click the button to install/update the package. See Figure 1-27.

. When installed, the button has the "Up to date" title. Now close the Pack Installer.

i Pack Installer - C:\Keil ySVARM\PACK. (=[=] =]
File Packs Window Help
i | Device: Freescale - KVix Series
ﬂ Devices Boards ﬂ ﬂ Packs Examples ﬂ
| Search: - X Pack Action Description
I Toim /| Summary =1 -Device Specific 1 Pack
- @ Atmel 257 Devices | 41 Keil:Kinetis_KVi_DFP | & Install Freescale Kinetis Ko Series Device Support
@ Freescale 234 Devices =-Generic 10 Packs
2% K Series T Device - ARM:CMSIS @ Up to date | CMSIS (Cortex Microcontroller Software Interface Standard)
7% KOO Series 2 Devices +-Keil:ARM_Compiler Q Up to date | Keil ARM Compiler extensions
2% K10 Series 23 Devices +I-KeilzJansson & Install Jansson is a C library for encoding, decoding and manipula
7% K20 Series 11 Devices + Keil:MDK-Middleware | & Update | Keil MDK-ARM Professional Middleware for ARM Cortex-M
2% K30 Series & Devices +1- Keil:MDK-Network_DS Install Keil MDK-ARM Professional Middleware Dual-Stack IPvd/I>
1% K40 Series & Devices 4 lwiIP:wIP Q Install IwlP is a light-weight implementation of the TCP/IP protocy
252 K50 Series 1 Devices 41 Micrium:RTOS & Install Micrium software components
% K80 Series 18 Devices +- Oryx-Embedded:Midd... Q Install Middleware Package (CycloneTCP, CycloneSSL and Cyclon
2% K70 Series 1 Devices - wolfSSL:CyaSsL & _Install Light weight SSL/TLS and Crypt Library for Embedded Syste
7% KBO Series 2 Devices | 4 YOGITECH:fRSTL_AR... | &5 Install VOGITECH fRSTL Functional Safety EVAL Saftware Pack for
#-7 KEAvor Series 6 Devices
=1 Kb Series 11 Devices
=7 Ko« Series 54 Devices
=T KM Series 14 Devices
=7 Ko Series 26 Devices
H-TE Ko Series 8 Devices
= WPR1516 Series 1 Device
Output 2 x
Refresh Pack descriptions
Update available for Keil:: MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta)
Ready ONLINE

Figure 1-27. Pack Installer

1.4.2 New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and
1s opened, skip to the next section. Follow these steps to create a new project:

1.
2.

Launch Keil pVision.
In the main menu, select Project > New pVision Project..., and the Create New
Project dialog appears.

. Navigate to the folder where you want to create the project, for example C:

\KeilProjects\MyProjectO1. Type the name of the project, for example MyProjectO1.
Click Save. See Figure 1-28.

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 25

A ————
Library integration into project (Keil pVision)

Create New Project

.. » Computer » System (C:) » KeilProjects » MyProject0l L4 '. Search MyProject01

File name: MyProjectdl

Save as type: ’Proj.ect Files (*.uvproj; *.uvprojx)

¥ Browse Folders

Figure 1-28. Create New Project dialog
In the next dialog, select the Software Packs in the very first box.
Type 'kv10' into the Search box, so that the device list is reduced to the KV10
devices.
Expand the KV10 node.
Click the MKV 10Z32xxx7 node, and then click OK. See Figure 1-29.

~ — Bl
Select Device for Target ‘Target 1. M

,CPU|
|

Nl

.

ISoﬂware Packs ;I

Vendor: Freescale
Device: MEV10Z320x7

Toolset: ARM
Search:
Description:
@ ARM 4 || |The Kinetis KV 1x family is the entry point of the V Series. .
0% F I Buitt upon the ARM Cortex-M0+ core running at 75 MHz with hardware
reescale square root and divide capability, it delivers a 35% increase in
= 0[3 KV Series performance in math-intensive applications versus parable MCUs,
allowing it to target BLDC as well as more computationally demanding
2% ki PMSM metors.
& MKVL071 28007 Additional features include integrated FlexCAN, dual 16bit analog4o-
& digital controllers {ADCs) sampling at up to 1.2 mega samples per
MIKV10Z16x07 second (MS/s)in 12-bit mode, multiple motor control timers, up to 128
=l MKVL0Z3 25007 KB of flash memory and a comprehensive enablement suite from
Freescale and third-party resources. including reference designs.,
€1 MKV10Z641007 software libraries and motor configuration tools.
£ MKVL17128500T
[| || —

Figure 1-29. Select Device dialog
8. In the next dialog, expand the Device node, and tick the box next to the Startup node.
See Figure 1-30.
9. Expand the CMSIS node, and tick the box next to the CORE node.

GDFLIB User's Guide, Rev. 4, 11/2016
26 NXP Semiconductors

Chapter 1 Library

Software Component Sel. Variant Version Description

= ’ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE 4 410 CMSIS-CORE for Cortex-M. 5C000. and SC300
¥ Dsp r 145 CMSIS-DSP Library for Cortex-M, SC000, and SC300

€ RTOS (APD) 10 CMSIS-RTOS5 API for Cortex-M, 5C000. and 5C300

€ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications

@ Compiler ARM Compiler Software Extensions

= ’ Device Startup, System Setup

I ¥ Startup [+ 100 Systern Startup for Kinetis KV10 75MHz devices

’ File System MDK-Pro 640 File Access on various storage devices

. Graphics MDK-Pro 5261 User Interface on graphical LCD displays

’ Metwork MDK-Pro G640 IP Metwaorking using Ethernet or Serial protocels

’ Use MDK-Pro 840 USE Communication with various device classes

Figure 1-30. Manage Run-Time Environment dialog
10. Click OK, and a new project is created. The new project is now visible in the left-
hand part of Keil uVision. See Figure 1-31.

EE ChKeilProjects\MyProject01\MyProjectDluvprojx - pVision
File Edit Wiew Project Flash Debug Peripherals Toc

=1 | |
| %£| Target1 |z| £&|
Praject 1 &
=% Project: MyProjectll
g Targetl
{d Source Group 1
& cmsis
= ’ Device
J startup_MKVL0ZT s (Startup)
J systermn_MKVI0ZT . c (Startup)

Figure 1-31. Project

1.4.3 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog

appears.
2. Select the C/C++ tab. See Figure 1-32.
3. In the Include Preprocessor Symbols text box, type the following:
 RTCESL_MMDVSQ_ON—to turn the hardware division and square root

support on
 RTCESL_MMDVSQ_OFF—to turn the hardware division and square root

support off

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 27

Library integration into project (Keil pVision)

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

(" -
k] Options for Target 'Target 1' E
Device] Target] Output] Listing] User C/Ce+]Asm] Linker] Debug] Utilities]
Preprocessor Symbols
Define: |HTCESL_MMDVSQ_ON
Undefine: |
Language / Code Generation
[~ Execute-only Cods [~ Strict ANSIC Wamings:
Optimization: |Level 0(00) - [~ Enum Cortainer always int All Wamings =
[Optimize for Time I Plain Char is Signed I
[~ Split Load and Store Muttiple ™ Read-Only Position Independent [Mo Auto Includes
[~ One ELF Section per Function I Bead-Write Position Independent [C99 Mode
Include
Paths | J
Misc |
Controls
Compiler |-c —cpu Cortex-M4fp -D__EVAL -g -00 -apcs=interwork -
control |- C:\KeilProjects \MyProject 014K TE
string 7
oK | cancel | Defouts | Help

Figure 1-32. Preprocessor symbols
4. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.4.4 Linking the files into the project

GDFLIB requires MLIB to be included too. The following steps show how to include all
dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group... from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.

Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'...

from the menu.

4. Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL 4.5 KEIL\MLIB\Include, and select the mlib.h file. If the file does
not appear, set the Files of type filter to Text file. Click Add. See Figure 1-33.

W

GDFLIB User's Guide, Rev. 4, 11/2016
28 NXP Semiconductors

4
Chapter 1 Library

Look in: | J Include j [=% BB

Mame = Date modified i
i mlib.h 16.10.2014 9:19 iE‘

. MLIB_Abs_F16.h 21.10.2014 945 r

_ MLEB_Abs F32.h 16.10.2014 919

. MLIB_Add_A32.h 16.10.2014 9:19

_ MLUB_Add_F16.h 16.10.2014 919

. MLIB_Add_F32.h 16.10.2014 9:19

_ MLUB_Addd_Fl16.h 16.10.2014 919

. MLIB_Addd_F32.h 16.10.2014 9:19

| MLIB_BiShift_F16.h 16.10.2014 919

. MLIB_BiShift_F32.h 16.10.2014 9:19 i
O AR Fle P —) 1£10 1A AR)
File name: |m|ib.h

Files of type: |Te:d file (“ta; “h; “inc) j Close

Figure 1-33. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\MLIB,
and select the mlib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add. See Figure 1-34.

Lookin: | J. MLIB ~| & & e B
MName : Date modified Ty
JInclude 20.10.2014 15:37 Fi
|| MLIB.lib 16.10.2014 9:19 LI
4| [| r
File name: |MLIB.Iib

Files of type: | Library file (*ib) <] e |

Figure 1-34. Adding .lib files dialog

6. Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_KEIL\GDFLIB\Include, and select the gdflib.h file. If the file
does not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GDFLIB,
and select the gdflib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add.

8. Now, all necessary files are in the project tree; see Figure 1-35. Click Close.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 29

Library integration into project (Keil pVision)

I Project 1 @
-1 Project: MyProject0l
=g Targetl
[Source Group 1
=[5 RTCESL
_1 mlibh
1 MUB.lib
_1 gdflib.h
] GDFLIE.lib
& cMmsis
=] ’ Device

Figure 1-35. Project workspace

1.4.5 Library path setup
The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog
appears.

2. Select the C/C++ tab. See Figure 1-36.

3. In the Include Paths text box, type the following paths (if there are more paths, they

must be separated by ;") or add them by clicking the ... button next to the text box:
o "C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\MLIB\Include"
e "C:\NXP\RTCESL\CMO_RTCESL_4.5_KEIL\GDFLIB\Include"

Click OK.

Click OK in the main dialog.

i

GDFLIB User's Guide, Rev. 4, 11/2016
30 NXP Semiconductors

4
Chapter 1 Library

r H b
Options for Target ‘Target x

Device I Targetl Outputl IJstingl User C/Ces |A5m I IJnkerI Debugl |Kilities I

— Preprocessaor Symbols

Diefine: I
Undefine: I

— Language / Code Generation

[~ Strict ANSIC Wamings:
Optimization: Im [Enum Container always int I‘D“" Wamings "I
[Optimize for Time I Plain Charis Signed [Thumb Mode
[Split Load and Store Muttiple [Read-Only Position Independent [No Auto Includes
[~ One ELF Section per Function [~ Read-Write Position Independent [~ C59 Mode

Include ||
Paths

Mizc I
Controls

Compiler |-¢ —cpu Cortex-M0+ -D__EVAL g 00 —apcs=intenwork
control |- C:\KeilProjects \MyProject01\RTE
string

Figure 1-36. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
1'... from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-37.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 31

A ————
Library integration into project (IAR Embedded Workbench)

Add MNew Item to Group "Source Group 1°

Create a new C source file and add it to the projed
C | CFie ()

@ C++ File (cpp)
\ﬂ Asm File (.5)

\ﬂ Header File (h)
é Teat File (i)
@ Image File (%)
7‘@ User Code Template

Type:
Marme: | i, &
Location: | C:\KeilProjects\MyProjectd1
|
Add Close |
R —

Figure 1-37. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and
create a main function:

#include "mlib.h"
#include "gdflib.h"

int main (void)

{

while (1) ;

When you click the Build (F7) icon, the project will be compiled without errors.

1.5 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
GDFLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CMO_RTCESL_4.5_IAR). If you have a different installation
path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Memory-mapped divide and square root support
chapter otherwise read next chapter.

GDFLIB User's Guide, Rev. 4, 11/2016
32 NXP Semiconductors

Chapter 1 Library

1.5.1 New project (without MCUXpresso SDK)

This example uses the NXP MKV 10Z32xxx7 part, and the default installation path (C:
\NXP\RTCESL\CMO_RTCESL_4.5_IAR) is supposed. To start working on an
application, create a new project. If the project already exists and is opened, skip to the
next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.

2. In the main menu, select Project > Create New Project... so that the "Create New

Project" dialog appears. See Figure 1-38.

S
Create New Project A ﬁ

Taol chain: [&RM -

Project templates:
- asm P
- C++
Il |55 ‘_

DLIE [C, C++ with exceptions and RTTI] | &
DLIE [C, Extended Embedded C++)

R e |

m

1

Dezcription:
C project uzing default tool gettings inchuding an empty main.c file.

[oK] [Cancel]

Figure 1-38. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:
\[ARProjects\MyProjectO1. Type the name of the project, for example, MyProjectO1.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-39.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 33

A ————
Library integration into project (IAR Embedded Workbench)

& IAR Embedded Workbench IDE

Eile Edit View Project Simulator JTools Window Help
DI &S| i 2R o ~ 4
Workspace x main.cl
lDebug v]
|| Files £ B P
E}& JMyProjectd] -Deb__ | v | | return 0;
FrIEin.c *]
L@ 3 Output

Figure 1-39. New project

5. In the main menu, go to Project > Options..., and a dialog appears.
6. In the Target tab, select the Device option, and click the button next to the dialog to
select the MCU. In this example, select NXP > KV1x > NXP MKV10Z32xxx7 Click

OK. See Figure 1-40.

Options for node "MyProject01”

Categony:

Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Qutput Conwverter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GDE Server

Ijet/ITAGjet
Jink/1-Trace
TI Stellaris
Macraigor

PE micro

ROI

STLIMNK

TIXDS

General Options

IAR. ROM-monitor

Third-Party Driver

Target | Qutput | Library Configuration | Library Options | MISRAC.200/ 4 | »

Processor variant
() Core Cortex-MD=
@ Device NXP MKV10Z32007
Endian mode Floating poirt settings
© Litle EPU Mone

Big

BE3? D reqisters
(@) BES
Advanced SIMD (NEON)

] [Cancel

Figure 1-40. Options dialog

GDFLIB User's Guide, Rev. 4, 11/2016

[= |

34

NXP Semiconductors

4
Chapter 1 Library

1.5.2 Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated to division and square
root. This section shows how to turn the memory-mapped divide and square root
(MMDVSQ) support on and off.

1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the
right; use the arrow icons for navigation).
4. In the text box (at the Defined symbols: (one per line)), type the following (See
Figure 1-41):
* RTCESL_MMDVSQ_ON—to turn the hardware division and square root
support on
 RTCESL_MMDVSQ_OFF—to turn the hardware division and square root
support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Options for node "MyProject01” S

Cateqgony: Factory Settings

General Options [T Multi-file Compilation

Static Analysis Discard Unuszed Publics
Runtime Checking

| Language 2 | Code | Optimizations | Output | List | Preprocessor ||«]+

Assembler
Qutput Converter [lgnore standard include directories

Custom Build Additional include directories: fone per line)
Build Actions " E]

Linker
Debugger
Simulator
Angel
CMSIS DAP Preinclude file:
GOB Server E]
IAR. ROM-monitor)
T-et/TTAGet Defined symbols: {one per line)
I-Link/1-Trace RTCESL_MMDVSQ_ON - [] Preprocessar output to file
TI Stellaris Preserve comments

Macraigor 1 Generate Hine directives

PE micro

RDI

ST-LIMNK
Third-Party Driver
TLXDS

[Ok] l Cancel

Figure 1-41. Defined symbols
5. Click OK in the main dialog.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 35

A ————
Library integration into project (IAR Embedded Workbench)

See the device reference manual to verify whether the device contains the MMDVSQ
module.

1.5.3 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1.

2.

i

In the main menu, go to Tools > Configure Custom Argument Variables..., and a
dialog appears.

Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-42.

B ' Configure Custom Argument Variables

Workspace | Global

~ahle Grour
Enable Group

MNew Group m

|'\
‘ Flanie. ..
.

Mame: PATH

lable...

OK] l Cancel =

prt...

Expand/Collapse Al

[Hide disabled groups

[OK] [Cancel

Figure 1-42. New Group
Click on the newly created group, and click the Add Variable button. A dialog
appears.
Type this name: RTCESL_LOC
To set up the value, look for the library by clicking the '..." button, or just type the
installation path into the box: C:\NXP\RTCESL\CMO_RTCESL_4.5_IAR. Click
OK.
In the main dialog, click OK. See Figure 1-43.

GDFLIB User's Guide, Rev. 4, 11/2016

36

NXP Semiconductors

Chapter 1 Library

i ' Configure Custom Argument Variables P
Workspace | Global
[PATH Disable Group
-
Add Variable 5
Mame: RCTESL_LOC
Value: C:\NXP\RTCESL\CMO_FSLESL_4.3_IAR] B
[oK l [Cancel]
;
.. @ R

Figure 1-43. New variable

1.5.4 Linking the files into the project

GDFLIB requires MLIB to be included too. The following steps show the inclusion of all
dependent modules.

To include the library files into the project, create groups and add them.

1.
2.
3.

Go to the main menu Project > Add Group...

Type RTCESL, and click OK.

Click on the newly created node RTCESL, go to Project > Add Group..., and create
a MLIB subgroup.

Click on the newly created node MLIB, and go to the main menu Project > Add
Files... See Figure 1-45.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\MLIB\Include, and select the m/ib.h file. (If the file does
not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-44.
Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

T |
b System (C:) » NXP » RTCESL » CMO_RTCESL 43 IAR » MLIE » Include

-

i Marne Date modified Type
| mlib.h 16.10.2015 9:38 H File
| MLIB_Abs_F16.h 16.10.2015 9:38 H File

Figure 1-44. Add Files dialog
Click on the RTCESL node, go to Project > Add Group..., and create a GDFLIB

subgroup.

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors 37

A ————
Library integration into project (IAR Embedded Workbench)

8.

9.

10.

1.

Click on the newly created node GDFLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_TAR\GDFLIB\Include, and select the gdflib.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CMO_RTCESL_4.5_IAR\GDFLIB, and select the gdflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Now you will see the files added in the workspace. See Figure 1-45.

Workspace x
[Debug -]

Files o H
B MyProjectd1 - Deb... v
21 L1 RTCESL
FE C1GDFUB
| — O GDFLEA
| L— &) getflib.h
a1 Co (R T—
F— O MLE.A
L— [mlibh
FrIdin. c
=1 [Qutput

Figure 1-45. Project workspace

1.5.5 Library path setup

The following steps show the inclusion of all dependent modules:

1.
2.
3.

In the main menu, go to Project > Options..., and a dialog appears.
In the left-hand column, select C/C++ Compiler.
In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in
the right; use the arrow icons for navigation).
In the text box (at the Additional include directories title), type the following folder
(using the created variable):
e $SRTCESL_LOCS$\MLIB\Include
* SRTCESL_LOCS$\GDFLIB\Include
Click OK in the main dialog. See Figure 1-46.

GDFLIB User's Guide, Rev. 4, 11/2016

38

NXP Semiconductors

,

Cateqary:

=)

General Options
Static Analysis
Runtime Checking

CfC++ Compiler

Assembler
Output Conwverter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GOB Server
IAR. ROM-monitor
I4et/TTAGjet
J-Link{1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LIMNK
Third-Party Driver
TLXDS

[Multi-file Compilation
Dizcard Unuzed Publics

Factony Settingz

| Language 1 I Language 2 I Code IOptirnizations IDutput I List

|[1 3

[lgnore standard include directories
Additional include directories: fone per line)

SRTCESL_LOCS'\MLIBinclude
SRTCESL_LOCSWGDFLIENnclude|

Preinclude file:

Defined symbols: {one per line)

Preserve
Generate

. [T Preprocessor output to file

comments
Hine directives

[ok

] l Cancel

Figure 1-46. Library path adition

Chapter 1 Library

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib.h"
#include "gdflib.h"

When you click the Make icon, the project will be compiled without errors.

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

39

A ————
Library integration into project (IAR Embedded Workbench)

GDFLIB User's Guide, Rev. 4, 11/2016
40 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GDFLIB_FilterExp

The GDFLIB_FilterExp function calculates the exponential smoothing. The exponential
filter is the simplest filter with only one tuning parameter, requiring to store only one
variable - the filter output (it is used in the next step). For a proper use, it is recommended
that the algorithm is initialized by the GDFLIB_FilterExpInit function, before using the
GDFLIB_FilterExp function.

The filter calculation consists of the following equation:

y(k) =y(k-1) +A4- (x(k)-(k-1))

Equation 1.

where:

* x(k) 1s the actual value of the input signal
* y(k) is the actual filter output
* A is the filter constant (O ; 1) (it defines the smoothness of the exponential filter)

The exponential filter tuning is based on these rules: for a small value of the filter
constant there is a strong filtering effect (if A = 0 then the output equals the new input).
For a high value of the filtering constant, there is a weak filtering effect (if A = 1 then the
new input is ignored). The filter constant defines the ratio between the filter inputs and
the last step output, used for the next calculation.

2.1.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameter uses the fraction type.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 41

A
GDFLIB_FilterExp

The available versions of the GDFLIB_FilterExplInit function are shown in the following
table:

Table 2-1. Init function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterExplnit_F16 |frac16_t |GDFLIB_FILTER_EXP_T_F32* |void The input argument is a 16-bit

fractional value that represents the
initial value of the filter at the current
step. The input is within the range
<-1;1). The parameters' structure is
pointed to by a pointer.

The available versions of the GDFLIB_FilterExp function are shown in the following
table:

Table 2-2. Function versions

Function name Input Parameters Result Description
type type

GDFLIB_FilterExp_F16 |[frac16_t |GDFLIB_FILTER_EXP_T_F32 * |frac16_t |The input argument is a 16-bit fractional
value of the input signal to be filtered within
the range <-1; 1). The parameters'
structure is pointed to by a pointer. The
function returns a 16-bit fractional value
within the range <-1; 1).

2.1.2 GDFLIB_FILTER_EXP_T_F32

Variable Input Description
name type
f32A frac32_t |Filter constant value (filter parameter). It defines the smoothness of the exponential filter (high value

= small filtering effect, low value = strong filtering effect). It is usually defined as:
A=1- exp—%

Where Ty is the sample time and 7 is the filter time constant. The parameter is a 32-bit fractional
value within the range <-0 ; 1). Set by the user.

f82AccK_1 |frac32_t |Filter accumulator (last step output) value. The parameter is a 32-bit accumulator type within the
range <-1.0 ; 1.0). Controlled by the algorithm.

2.1.3 Declaration
The available GDFLIB_FilterExplnit functions have the following declarations:

GDFLIB User's Guide, Rev. 4, 11/2016
42 NXP Semiconductors

4
Chapter 2 Algorithms in detail

void GDFLIB_FilterExpInit_ F16 (fraclé_t flé6InitVal, GDFLIB_FILTER_EXP_T F32 *psParam)
The available GDFLIB_FilterExp functions have the following declarations:

fraclé t GDFLIB FilterExp F16(fraclé6 t f16InX, GDFLIB FILTER EXP_T F32 *psParam)

2.1.4 Function use

The use of the GDFLIB_FilterExpInit and GDFLIB_FilterExp functions is shown in the
following example:

#include "gdflib.h"

static fraclé t flé6Result;

static fraclée_t fl6Initval, fl6InX;

static GDFLIB_FILTER EXP T F32 sFilterParam;
void Isr (void) ;

void main (void)

fl16InitVal = FRAC16(0.0) ; /* fl6Initval = 0.0 */

/* Filter constant = 0.05 */
sFilterParam.f32A = FRAC32(0.05);

GDFLIB FilterExpInit F16(fl6InitVal, &sFilterParam) ;

£f16InX = FRAC16(0.5);

}

/* periodically called function */
void Isr (void)

fl6Result = GDFLIB FilterExp F16(f£16InX, &sFilterParam) ;

}

2.2 GDFLIB_FilterlIR1

This function calculates the first-order direct form 1 IIR filter.

For a proper use, it is recommended that the algorithm is initialized by the
GDFLIB_FilterlIR 11nit function, before using the GDFLIB_FilterIIR1 function. The
GDFLIB_FilterlIR 11nit function initializes the buffer and coefficients of the first-order
IIR filter.

The GDFLIB_FilterlIR1 function calculates the first-order infinite impulse response
(IIR) filter. The IIR filters are also called recursive filters, because both the input and the
previously calculated output values are used for calculation. This form of feedback

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 43

A
GDFLIB_FilterlIR1

enables the transfer of energy from the output to the input, which leads to an infinitely
long impulse response (IIR). A general form of the IIR filter, expressed as a transfer
function in the Z-domain, is described as follows:

B(z) botbiz Mbyz 2+ Abyz N
H(Z) TAG ajz"Wayz2+. +ayz—N

Equation 2.

where N denotes the filter order. The first-order IIR filter in the Z-domain is expressed as
follows:

B(z) bytbz!

H(z)= Az) ~ T+az1

Equation 3.
which is transformed into a time-domain difference equation as follows:

k)= box(k) + byxk = 1)-a(k = 1)

Equation 4.

The filter difference equation is implemented in the digital signal controller directly, as
given in Equation 4 on page 44; this equation represents a direct-form 1 first-order IIR
filter, as shown in Figure 2-1.

x(k)

Figure 2-1. Direct form 1 first-order IIR filter

The coefficients of the filter shown in Figure 2-1 can be designed to meet the
requirements for the first-order low-pass filter (LPF) or high-pass filter (HPF). The
coefficient quantization error is not important in the case of a first-order filter due to a
finite precision arithmetic. A higher-order LPF or HPF can be obtained by connecting a
number of first-order filters in series. The number of connections gives the order of the
resulting filter.

The filter coefficients must be defined before calling this function. As some coefficients
can be greater than 1 (and lesser than 2), the coefficients are scaled down (divided) by 2.0
for the fractional version of the algorithm. For faster calculation, the A coefficient is sign-
inverted. The function returns the filtered value of the input in the step k, and stores the
input and the output values in the step k into the filter buffer.

GDFLIB User's Guide, Rev. 4, 11/2016
44 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.2.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1; 1).

The available versions of the GDFLIB_Filter[IR 1Init function are shown in the following
table:

Table 2-3. Init function versions

Function name Parameters Result Description
type
GDFLIB_FilterlIR1Init_F16 GDFLIB_FILTER_IIR1_T_F32 * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

The available versions of the GDFLIB_Filter[IR1 function are shown in the following
table:

Table 2-4. Function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterlIR1_F16 frac16_t |GDFLIB_FILTER_IIR1_T_F32* frac16_t |The input argumentis a 16-bit
fractional value of the input signal to
be filtered within the range <-1; 1).
The parameters' structure is pointed
to by a pointer. The function returns
a 16-bit fractional value within the
range <-1; 1).

2.2.2 GDFLIB_FILTER_IIR1_T_F32

Variable name Input type Description
sFltCoeff GDFLIB_FILTER_IIR1_COEFF_T_F32 * Substructure containing filter coefficients.
f32FItBfrY[1] frac32_t Internal buffer of y-history. Controlled by the
algorithm.
f16FItBfrX[1] frac16_t Internal buffer of x-history. Controlled by the
algorithm.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 45

A
GDFLIB_FilterlIR1

2.2.3 GDFLIB_FILTER_IIR1_COEFF_T_F32

Variable name Type Description
f32B0 frac32_t |BO coefficient of the IIR1 filter. Set by the user, and must be divided by 2.
f32B1 frac32_t |B1 coefficient of the 1IR1 filter. Set by the user, and must be divided by 2.
f32A1 frac32_t | A1 (sign-inverted) coefficient of the IIR1 filter. Set by the user, and must be divided by -2
(negative two).

2.2.4 Declaration
The available GDFLIB_FilterlIR 1Init functions have the following declarations:

void GDFLIB FilterIIR1Init F16 (GDFLIB FILTER IIR1 T F32 *psParam)
The available GDFLIB_FilterlIR1 functions have the following declarations:

fraclé t GDFLIB FilterIIR1 F16(fraclé t £16InX, GDFLIB FILTER IIR1 T F32 *psParam)

2.2.5 Calculation of filter coefficients

There are plenty of methods for calculating the coefficients. The following example
shows the use of Matlab to set up a low-pass filter with the 500 Hz sampling frequency,
and 240 Hz stopped frequency with a 20 dB attenutation. Maximum passband ripple is 3
dB at the cut-off frequency of 50 Hz.

sampling frequency 500 Hz, low pass
s =1/ 500

H oe

% cut-off frequency 50 Hz
Fc = 50

% max. passband ripple 3 dB
Rp = 3

% stopped frequency 240Hz
Fs = 240

% attenuation 20 dB
Rs = 20

% checking order of the filter
n = buttord(2 * Ts * Fc, 2 * Ts * Fs, Rp, Rs)
$n=1, i.e. the filter is achievable with the 1st order

% getting the filter coefficients
[b, al = butter(n, 2 * Ts * Fc, 'low');

GDFLIB User's Guide, Rev. 4, 11/2016
46 NXP Semiconductors

Chapter 2 Algorithms in detail

e coefs are:
0.245237275252786, bl = 0.245237275252786
1.0000, al = -0.509525449494429

o° o o

th
b0
ao

The filter response is shown in Figure 2-2.

Magnitude (dB) and Phase Responzes

-2.3032

-150.7897

-29.2742

-42 TEET

Magnitude (dB)
Phase (degrees)

-56.2432

-EQTRTT

-53.2121

i} =] 100 150 200
Freguency (Hz)

Figure 2-2. Filter response

2.2.6 Function use

The use of the GDFLIB_FilterIIR 1Init and GDFLIB_FilterIIR1 functions is shown in the
following example. The filter uses the above-calculated coefficients:

#include "gdflib.h"

static fraclé_t flé6Result;

static fraclé_t f16InX;

static GDFLIB_FILTER_IIR1 T_F32 sFilterParam;

void Isr (void) ;

void main (void)

{
sFilterParam.sFltCoeff.f32B0 = FRAC32(0.245237275252786 / 2.0);
sFilterParam.sFltCoeff.£f32B1 = FRAC32(0.245237275252786 / 2.0);
sFilterParam.sFltCoeff.£f32A1 = FRAC32(-0.509525449494429 / -2.0);
GDFLIB FilterIIR1Init F16 (&sFilterParam);
f16InX = FRAC16(0.1) ;

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 47

A
GDFLIB_FilterlIR2

/* periodically called function */
void Isr(void)

{
}

fl6Result = GDFLIB FilterIIR1 F16(f16InX, &sFilterParam);

2.3 GDFLIB_FilterliIR2

This function calculates the second-order direct-form 1 IIR filter.

For a proper use, it is recommended that the algorithm is initialized by the
GDFLIB_FilterlIR2Init function, before using the GDFLIB_FilterIIR2 function. The
GDFLIB_FilterIIR2Init function initializes the buffer and coefficients of the second-
order IIR filter.

The GDFLIB_FilterlIR2 function calculates the second-order infinite impulse response
(IIR) filter. The IIR filters are also called recursive filters, because both the input and the
previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely
long impulse response (IIR). A general form of the IIR filter, expressed as a transfer
function in the Z-domain, is described as follows:

Hz) = B2) _ bgtbz Wbyz 2. 4byz N
(2= Az~ Taz Hayz 2+ tayz N

Equation 5.

where N denotes the filter order. The second-order IIR filter in the Z-domain is expressed
as follows:

B(z) bytbiz1+bz2

HE= 50 = Trag a2

Equation 6.
which is transformed into a time-domain difference equation as follows:

(k) = box(k) + byx(k — 1)+ byx(k — 2)- app(k — 1)-ayy(k —2)
Equation 7.
The filter difference equation is implemented in the digital signal controller directly, as

given in Equation 7 on page 48; this equation represents a direct-form 1 second-order IIR
filter, as depicted in Figure 2-3.

GDFLIB User's Guide, Rev. 4, 11/2016
48 NXP Semiconductors

4
Chapter 2 Algorithms in detail

x(k)

y(k) |

Figure 2-3. Direct-form 1 second-order IIR filter

The coefficients of the filter depicted in Figure 2-3 can be designed to meet the
requirements for the second-order low-pass filter (LPF), high-pass filter (HPF), band-pass
filter (BPF) or band-stop filter (BSF). The coefficient quantization error can be neglected
in the case of a second-order filter due to a finite precision arithmetic. A higher-order
LPF or HPF can be obtained by connecting a number of second-order filters in series.
The number of connections gives the order of the resulting filter.

The filter coefficients must be defined before calling this function. As some coefficients
can be greater than 1 (and lesser than 2), the coefficients are scaled down (divided) by 2.0
for the fractional version of the algorithm. For faster calculation, the A coefficients are
sign-inverted. The function returns the filtered value of the input in the step k, and stores
the input and output values in the step k into the filter buffer.

2.3.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

The available versions of the GDFLIB_FilterIIR2Init function are shown in the following
table:

Table 2-5. Init function versions

Function name Parameters Result Description
type
GDFLIB_FilterlIR2Init_F16 GDFLIB_FILTER_IIR2_T_F32 * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 49

GDFLIB_FilterlIR2

The available versions of the GDFLIB_FilterIIR2 function are shown in the following
table:

Table 2-6. Function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterlIR2_F16 frac16_t |GDFLIB_FILTER_IIR2_T_F32* frac16_t |Input argument is a 16-bit fractional
value of the input signal to be filtered
within the range <-1; 1). The
parameters' structure is pointed to
by a pointer. The function returns a
16-bit fractional value within the
range <-1; 1).

2.3.2 GDFLIB_FILTER_IIR2_T_F32

Variable name Input type Description
sFltCoeff GDFLIB_FILTER_IIR2_COEFF_T_F32 * Substructure containing filter coefficients.
f32FItBfrY[2] frac32_t Internal buffer of y-history. Controlled by the
algorithm.
f16FItBfrX[2] frac16_t Internal buffer of x-history. Controlled by the
algorithm.

2.3.3 GDFLIB_FILTER_IIR2_COEFF_T_F32

Variable name Type Description

f32B0 frac32_t |BO coefficient of the 1IR2 filter. Set by the user, and must be divided by 2.

f32B1 frac32_t |B1 coefficient of the IIR2 filter. Set by the user, and must be divided by 2.

f32B2 frac32_t |B2 coefficient of the 1IR2 filter. Set by the user, and must be divided by 2.

f32A1 frac32_t |A1 (sign-inverted) coefficient of the I1IR2 filter. Set by the user, and must be divided by -2
(negative two).

f32A2 frac32_t |A2 (sign-inverted) coefficient of the 1IR2 filter. Set by the user, and must be divided by -2
(negative two).

2.3.4 Declaration
The available GDFLIB_FilterIIR2Init functions have the following declarations:

void GDFLIB_FilterIIR2Init F16 (GDFLIB_FILTER_IIR2 T F32 *psParam)

GDFLIB User's Guide, Rev. 4, 11/2016
50 NXP Semiconductors

4
Chapter 2 Algorithms in detail

The available GDFLIB_FilterIIR2 functions have the following declarations:

fraclé_t GDFLIB FilterIIR2 F16(fraclé t f16InX, GDFLIB FILTER ITR2 T F32 *psParam)

2.3.5 Calculation of filter coefficients

There are plenty of methods for calculating the coefficients. The following example
shows the use of Matlab to set up a stopband filter with the 1000 Hz sampling frequency,
100 Hz stop frequency with 10 dB attenuation, and 30 Hz bandwidth. Maximum
passband ripple is 3 dB.

% sampling frequency 1000 Hz, stop band
s =1/ 1000

H

% center stop frequency 100 Hz
Fc = 50

% attenuation 10 dB
Rs = 10

% bandwidth 30 Hz
Fbw = 30

% max. passband ripple 3 dB
Rp = 3

o\°

checking order of the filter
= buttord(2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2], 2 * Ts * [Fc - Fbw Fc + Fbw], Rp, Rs)
n =2, i.e. the filter is achievable with the 2nd order

o B

getting the filter coefficients

— o\?°

b, al] = butter(n / 2, 2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2], 'stop')

% the coefs are:

% b0 = 0.913635972986238, bl = -1.745585863109291, b2 = 0.913635972986238
% a0 = 1.0000, al = -1.745585863109291, a2 = 0.827271945972476

The filter response is shown in Figure 2-4.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 51

A
GDFLIB_FilterlIR2

Magnitucie (dB) and Phase Responses
T

! 16333
11012

- —0.5692

- —0.037

M agnitude (dB)
Phase (radians)

-—-0.485

-—-1.0271

-—-1.5592

i \ \ i I I i | \
a an 100 150 200 250 300 350 400 450
Frequency (Hz)

Figure 2-4. Filter response

2.3.6 Function use

The use of the GDFLIB_FilterIIR2Init and GDFLIB_Filter[IR2 functions is shown in the
following example. The filter uses the above-calculated coefficients:

#include "gdflib.h"

static fraclé t fl6Result;
static fraclée_t fl6InX;
static GDFLIB FILTER IIR2 T F32 sFilterParam;

void Isr (void) ;
void main (void)

sFilterParam.sFltCoeff.f£32B0
sFilterParam.sFltCoeff.f32B1
sFilterParam.sFltCoeff.f32B2
sFilterParam.sFltCoeff.f32A1
sFilterParam.sFltCoeff.f32A2

FRAC32(0.913635972986238 / 2.0) ;

FRAC32(-1.745585863109291 / 2.0);

FRAC32(0.913635972986238 / 2.0) ;
(
(

FRAC32(-1.745585863109291 / -2.0);
FRAC32(0.827271945972476 / -2.0);

GDFLIB FilterIIR2Init F16 (&sFilterParam) ;

f16InX = FRAC16(0.1);

}

/* periodically called function */
void Isr(void)

fl6Result = GDFLIB FilterIIR2 F16(f16InX, &sFilterParam) ;

GDFLIB User's Guide, Rev. 4, 11/2016
52 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.4 GDFLIB_FilterMA

The GDFLIB_FilterMA function calculates a recursive form of a moving average filter.
For a proper use, it is recommended that the algorithm is initialized by the
GDFLIB_FilterMAlInit function, before using the GDFLIB_FilterMA function.

The filter calculation consists of the following equations:
acc(k) = acc(k — 1)+ x(k)
Equation 8.

sl = 250

Equation 9.

acc(k) «— acc(k) — (k)
Equation 10.

where:

* x(k) 1s the actual value of the input signal
 acc(k) is the internal filter accumulator

* y(k) is the actual filter output

* n, is the number of points in the filter window

The size of the filter window (number of filtered points) must be defined before calling
this function, and must be equal to or greater than 1.

The function returns the filtered value of the input at step k, and stores the difference
between the filter accumulator and the output at step k into the filter accumulator.

2.4.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 53

GDFLIB_FilterMA

The available versions of the GDFLIB_FilterMAlnit function are shown in the following
table:

Table 2-7. Function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterMAInit_F16 |frac16_t |GDFLIB_FILTER_MA_T_A32* void Input argument is a 16-bit fractional

value that represents the initial value
of the filter at the current step. The
input is within the range <-1; 1). The
parameters' structure is pointed to
by a pointer.

The available versions of the GDFLIB_FilterMA function are shown in the following
table:

Table 2-8. Function versions

Function name Input type Result type Description
Value Parameter
GDFLIB_FilterMA_F16 |frac16_t |GDFLIB_FILTER_MA_T_A32 * |frac16_t Input argument is a 16-bit fractional value

of the input signal to be filtered within the
range <-1; 1). The parameters' structure
is pointed to by a pointer. The function
returns a 16-bit fractional value within the
range <-1; 1).

2.4.2 GDFLIB_FILTER_MA_T_A32

Variable name Input Description
type

a32Acc acc32_t |Filter accumulator. The parameter is a 32-bit accumulator type within the range <-65536.0 ;
65536.0). Controlled by the algorithm.

u16Sh uint16_t | Number of samples for averaging filtered points (size of the window) defined as a number
of shifts:

np= qul6Sh

ul6Sh=log np
The parameter is a 16-bit unsigned integer type within the range <0 ; 15>. Set by the user.

2.4.3 Declaration
The available GDFLIB_FilterMAlnit functions have the following declarations:

GDFLIB User's Guide, Rev. 4, 11/2016
54 NXP Semiconductors

4
Chapter 2 Algorithms in detail

void GDFLIB_FilterMAInit Fl16(fraclé_t fl6InitVal, GDFLIB FILTER MA T_A32 *psParam)
The available GDFLIB_FilterMA functions have the following declarations:

fraclé t GDFLIB FilterMA F16(fraclé t f16InX, GDFLIB FILTER MA T A32 *psParam)

2.4.4 Function use

The use of GDFLIB_FilterMAInit and GDFLIB_FilterMA functions is shown in the
following example:

#include "gdflib.h"

static fraclé t flé6Result;

static fraclée_t fl6Initval, fl6InX;

static GDFLIB_FILTER MA T A32 sFilterParam;
void Isr (void) ;

void main (void)

fl16InitVal = FRAC16(0.0); /* fl6Initval = 0.0 */

2;

/* Filter window

= 2 = 4 points */
sFilterParam.ulé6Sh

2

GDFLIB FilterMAInit F16(fl6éInitVal, &sFilterParam) ;

£f16InX = FRAC16(0.8);

}

/* periodically called function */
void Isr (void)

fl6Result = GDFLIB FilterMA F16(f16InX, &sFilterParam) ;

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 55

A
GDFLIB_FilterMA

GDFLIB User's Guide, Rev. 4, 11/2016
56 NXP Semiconductors

Appendix A

A.1 bool t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool t;
The following figure shows the way in which the data is stored by this type:
Table A-1. Data storage

Value Unused Lcc;glyi
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 1
TRUE
0 0 0 1
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 0
FALSE
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8 t;
The following figure shows the way in which the data is stored by this type:
Table A-2. Data storage

Table continues on the next page...

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 57

uint16_t
Table A-2. Data storage (continued)
7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1
255
F F
» 0 | 0 | 0 | 0 1 | 0 | 1 | 1
0 B
0 | 1 | 1 | 1 1 | 1 | 0 | 0
124
7 C
156 1 | o | o | 1 1 K K K
9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uintlé t;
The following figure shows the way in which the data is stored by this type:
Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
65535
F F F F
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 1 | 0 | 1
5
0 0 0 5
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
40768
9 F 4 0

A.4 uint32_t

GDFLIB User's Guide, Rev. 4, 11/2016
58 NXP Semiconductors

4
Appendix A

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32 t;
The following figure shows the way in which the data is stored by this type:
Table A-4. Data storage

31 24 23 16 15 87 0
Value Integer
4294967295 F F F F F F F F
2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
3451051828 C D B 2 D F 3 4
A5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;
The following figure shows the way in which the data is stored by this type:
Table A-5. Data storage

7 6 5 4 3 2 1 0
Value Sign Integer
0 1 | 1 | 1 1 | 1 | 1 | 1
127
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
-128
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
60
3 o}
o7 1 | o | o | A R
9 F

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 59

A
int16_t

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short intlé t;
The following figure shows the way in which the data is stored by this type:
Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer
0o | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
32767
7 F F F
1 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | oo | 0 | 0 | 0
-32768
8 0 0 0
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
-24768
9 F 4 0

A.7 Int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32 t;
The following figure shows the way in which the data is stored by this type:
Table A-7. Data storage

31 24 23 16 15 87 0
Value S | Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4

GDFLIB User's Guide, Rev. 4, 11/2016
60 NXP Semiconductors

4
Appendix A

A.8 frac8 t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;
The following figure shows the way in which the data is stored by this type:
Table A-8. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0 1 | 1 | 1 1 | 1 | 1 | 1
0.99219
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
-1.0
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
0.46875
3 c
1 | 0 | 0 | 1 1 | 1 | 1 | 1
-0.75781
9 F

To store a real number as frac8_t, use the FRACS8 macro.

A.9 frac16 t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef short fraclé t;
The following figure shows the way in which the data is stored by this type:
Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value

0.99997

-1.0

Fractional

1|1|1|1

1|1|1|1

F

F

o|o|o|o o|o|o|o

Table continues on the next page...

GDFLIB User's Guide, Rev. 4, 11/2016

NXP Semiconductors

61

frac32_t
Table A-9. Data storage (continued)
8 0 0 0
o|o|1|11|1|o|o1|o|o|11|1|1|o
0.47357
3 C 9 E
1|o|o|11|1|1|1o|1|o|o o|o|o|o
-0.75586
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_ t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32 t;
The following figure shows the way in which the data is stored by this type:
Table A-10. Data storage

31 24 23 16 15 87 0
Value S Fractional
0.9999999995 7 F F F F F F F
-1.0 8 0 0 0 0 0 0 0
0.02606645970 0 3 5 6 2 5 5 0
-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acci16_t

The accl6_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acclé t;

The following figure shows the way in which the data is stored by this type:

GDFLIB User's Guide, Rev. 4, 11/2016
62 NXP Semiconductors

4
Appendix A

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional
o1|1|11|1|1|111|1|11|1|1|1
255.9921875
7 F F F
1|o|o|o o|o|o|o o|o|o|o o|o|o|o
-256.0
8 0 0 0
o|o|o|o o|o|o|o1|o|o|o o|o|o|o
1.0
0 0 8 0
o t 1111|111]1]o]lofo]o]o]o]o
F F 8 0
o|o|o|o o|1|1|o1|1|1|o o|1|o|1
13.7890625
0 6 E 5
1|1|o|1o|o|1|1o|o|1|o o|1|o|o
-89.71875
D 3 2 4

To store a real number as accl16_t, use the ACC16 macro.

A.12 acc32_ t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;
The following figure shows the way in which the data is stored by this type:
Table A-12. Data storage

31 24 23 16 15 87 0
Value S Integer | Fractional
65535.999969
-65536.0
1.0
-1.0
23.789734
-1171.306793

Mm|o|m|lo|w| N
U|lo|mn|o|o|m
Wjo|m|lo|o|m
o|m|m|o|o|m
o|m|o|o|o|m
w|lo|lo|lo|o|m
W| —=|o|o|o|m
Olo|lo|o|o|m

To store a real number as acc32_t, use the ACC32 macro.

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 63

FALSE

A.13 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"
static bool_t bval;
void main (void)

{

bval = FALSE; /* bVal = FALSE */

}

A.14 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool t)1)

#include "mlib.h"
static bool t bval;
void main (void)

bval = TRUE; /* bval = TRUE */

}

A.15 FRACS8

The FRACS8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8 (x) ((frac8 t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; Ox7F>,
which corresponds to <-1.0 ; 1.0-277>.

GDFLIB User's Guide, Rev. 4, 11/2016
64 NXP Semiconductors

4
Appendix A

#include "mlib.h"
static frac8 t f8Val;
void main (void)

f8val = FRAC8(0.187); /* f£8val = 0.187 */

}

A.16 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((fraclé_t) ((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000)
0x7FFF))

The input is multiplied by 32768 (=213). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-215>,

#include "mlib.h"
static fraclé_t fléeVal;
void main (void)

fl6val = FRAC16(0.736) ; /* fleVal = 0.736 */

A.17 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

#define FRAC32(x) ((frac32 t) ((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000)
0x7FFFFFFF))

The input is multiplied by 2147483648 (=231). The output is limited to the range
<0x80000000 ; Ox7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2731>,

#include "mlib.h"
static frac32 t £32val;
void main (void)

£32val = FRAC32(-0.1735667) ; /* £32Val = -0.1735667 */

GDFLIB User's Guide, Rev. 4, 11/2016
NXP Semiconductors 65

ACC16

A.18 ACC16

The ACC16 macro serves to convert a real number to the accl16_t type. Its definition is as
follows:

#define ACCl6 (x) ((acclé_t) ((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : OX7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"
static acclé_t aleVal;
void main (void)

aléVal = ACC1l6(19.45627); /* aleVal = 19.45627 */

A.19 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32 t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : Ox7FFFFFFF))

The input is multiplied by 32768 (=213). The output is limited to the range
<0x80000000 ; Ox7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2"15>

#include "mlib.h"
static acc32_t a32val;
void main (void)

a32vVal = ACC32(-13.654437); /* a32Val = -13.654437 *x/

}

GDFLIB User's Guide, Rev. 4, 11/2016
66 NXP Semiconductors

How to Reach Us: Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated
circuits based on the information in this document. Freescale reserves the right
Web Support: to make changes without further notice to any products herein.
nxp.com/support

Home Page:
nxp.com

Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical’ parameters that may be provided
in Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its
patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following
address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor,
Inc. ARM and Cortex are the registered trademarks of ARM Limited, in EU and/or
elsewhere. ARM logo is the trademark of ARM Limited. All rights reserved. All
other product or service names are the property of their respective owners.

© 2017 NXP B.V.

Document Number CMOGDFLIBUG
Revision 4, 11/2016

r
4\

Yo
)
oc
w
=
<)
a
|

>
X
K4

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	Memory-mapped divide and square root support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Kinetis Design Studio)
	Memory-mapped divide and square root support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	Memory-mapped divide and square root support
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	Memory-mapped divide and square root support
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	GDFLIB_FilterExp
	Available versions
	GDFLIB_FILTER_EXP_T_F32
	Declaration
	Function use

	GDFLIB_FilterIIR1
	Available versions
	GDFLIB_FILTER_IIR1_T_F32
	GDFLIB_FILTER_IIR1_COEFF_T_F32
	Declaration
	Calculation of filter coefficients
	Function use

	GDFLIB_FilterIIR2
	Available versions
	GDFLIB_FILTER_IIR2_T_F32
	GDFLIB_FILTER_IIR2_COEFF_T_F32
	Declaration
	Calculation of filter coefficients
	Function use

	GDFLIB_FilterMA
	Available versions
	GDFLIB_FILTER_MA_T_A32
	Declaration
	Function use

	Appendix A:
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

