
Freescale Semiconductor
Application Note

AN3224
Rev. 0, 3/2006

Table of Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
What is the XGATE Used For? . . . . . . . . . . . . . . . 2
XGATE Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Virtual Peripherals. . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1 Multi-Channel PWM. . . . . . . . . . . . . . . . . . . . 5
4.2 Serial Communication Protocol Handler . . . . 7
4.3 CAN Gateway  . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 Quadrature Decoder  . . . . . . . . . . . . . . . . . . . 8
4.5 Synchronous Serial Communications . . . . . . 9
4.6 Asynchronous Serial Communications  . . . . 11
4.7 LIN Protocol Handler . . . . . . . . . . . . . . . . . . 12
4.8 Queue Management  . . . . . . . . . . . . . . . . . . 12
4.9 LCD Display Control  . . . . . . . . . . . . . . . . . . 12
4.10 Encryption Routines. . . . . . . . . . . . . . . . . . . 13
Coding for the XGATE  . . . . . . . . . . . . . . . . . . . . 14
Performance Expectations . . . . . . . . . . . . . . . . . 16
XGATE Running Several Routines . . . . . . . . . . . 16
Debugging the XGATE Code . . . . . . . . . . . . . . . 17
Making the Most of the XGATE  . . . . . . . . . . . . . 18

0 Combining Functions on the XGATE  . . . . . . . . . 20
1 What Products are Supported. . . . . . . . . . . . . . . 20
2 Where to Get More Help and Information . . . . . . 21

12.1 Application Notes for XGATE Application 
Development . . . . . . . . . . . . . . . . . . . . . . . . 21

12.2 Web Sites for More Help . . . . . . . . . . . . . . . 21
3 Summary of Features . . . . . . . . . . . . . . . . . . . . . 21

13.1 Acknowledgements . . . . . . . . . . . . . . . . . . . 22

Tutorial: Introducing the XGATE 
Module to Consumer and 
Industrial Application 
Developers
by: Ross Mitchell

Systems Engineering Manager, Transportation and Standard Products Group
1 Introduction
A challenge for many embedded applications is to 
perform a significant number of tasks with very short 
latency times. Direct Memory Access modules (DMA) 
offer part of the solution by enabling data for interrupt 
sources to be read or written automatically via hardware 
control. DMA is limited in functionality, however, and 
usually only executes read or write commands before 
awaiting its next interrupt. Hardware in each module can 
be added to clear flags, but little else is possible. In 
embedded systems, such an interrupt event often 
involves additional logical process steps such as 
validating a signal or making a modification to the data 
before moving it to a final destination. Thus, an interrupt 
with DMA support often does half the job, and the CPU 
is left to interrupt the main execution routines to 
complete these tasks. Such interrupt handling takes CPU 
performance away from other functions and can often 
require critical timing of its own to ensure deterministic 
system operation, forcing complex software 
dependencies in the application.

The XGATE was born out of this need to greatly improve 
application responsiveness and coherency through a 
reduction in the interrupt loading on the main CPU, by 
allowing sequences of interrupt instructions to be 
executed in parallel with the normal CPU application 
execution.
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What is the XGATE Used For?
2 What is the XGATE Used For?
The XGATE is thus targeted at performing fast interrupt handling, thereby reducing the load on the main 
CPU performing interrupt handling.

Most real-time embedded applications require many interrupt driven processes to service simple functions, 
often at high rates of execution. These are most often associated with human interface functions, actuator 
control feedback, and communications with other parts of the system. The XGATE is designed to take the 
load off the main CPU for these events.

One impressive feature of the XGATE is its general instruction set, which allows complex sequences to be 
developed. The XGATE is more than an intelligent DMA controller, as it provides the capability of a 
sophisticated I/O co-processor. There are limitations to consider, when developing applications using the 
XGATE in parallel with the main CPU12X core. These will be explored later; however, they are easily 
understood and do not impact typical functions for which the XGATE was designed.

The XGATE provides a degree of deterministic behavior for applications with high levels of interrupt 
activity, by off-loading several of these routines, many of which will be short duration tasks, from the CPU.

3 XGATE Concept
Interrupts from the interrupt controller hardware can be routed to the XGATE or to the CPU12X. Any 
interrupts routed to the XGATE will remove the load of that interrupt from the main CPU, and the XGATE 
will handle the entire interrupt routine.

As can been seen from the diagram in Figure 1, a switch directs the interrupt signals to either the XGATE 
or the CPU12X. If the XGATE is chosen, it executes the requested routine and, when this is completed, 
awaits the next request.

In Figure 1, we can see that there is a register to enable the XGATE for a specific interrupt, and the level 
of interrupt priority is set to one of seven levels. Any simultaneous interrupt request will be serviced 
according to the interrupt level — the highest is the most important and will be run first. These interrupt 
levels are the same for the CPU12X or XGATE.

The XGATE is a CPU in its own right. It is completely software programmable and is fully supported by 
an ANSI C compiler. It runs as soon as the interrupt source for the XGATE becomes present. After 
completing the interrupting task, it stops all its clocks again to await the next event, thus reducing power 
consumption. 

The XGATE is a co-processor. It makes direct use of, and has direct access to, almost all of the 
memory-mapped registers and on-chip memory available to the main CPU. The XGATE’s most innovative 
feature is its unique way of interfacing to the MCU’s existing on-chip RAM. The internal bus of the MCU 
allows for interleaved access to the RAM on alternate bus access states, such that the main CPU, when 
running at full speed, accesses the RAM only half the time. The XGATE has access to the RAM on the 
other half of the bus cycle and in any cycle during which the main CPU does not access the RAM.

In fact, in a normal application execution, the main CPU accesses RAM much less often than every bus 
cycle, as it is usually fetching instructions from FLASH memory and reading and writing registers. The 
XGATE can read and write the RAM on typically seven out of every eight bus cycles. 
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XGATE Concept
Figure 1. Interrupt Paths Using CPU or XGATE

You may now be thinking, “Why not run the XGATE out of FLASH memory?” We must consider the 
speed of access to different memory types. The RAM memory can respond to addressing of its memory 
and deliver the data much more quickly than FLASH memory. FLASH accesses are unable to keep up with 
the demands of an 80 MHz bus access, while the RAM and the MCU registers can handle this access 
speed. Running the XGATE using code executing in FLASH rather than RAM would reduce the XGATE’s 
performance by at least fifty percent. Furthermore, the CPU spends a lot of time accessing FLASH (but is 
not held back by doing this as it runs at 40 MHz); however, the XGATE would be held back every time it 
every time it had to access the FLASH memory. RAM is therefore a much preferred memory type to run 
the XGATE code from.

The XGATE is clocked at twice the bus frequency, and its performance is typically not impacted by the 
need to share the same RAM resources. However, it is important to realize that this processor is second in 
priority to RAM access, and the main CPU always wins. This affects determinism; however, this is quite 
manageable, and we will explain how this works in the next sections.

The schematic in Figure 2 shows how the XGATE is connected to the other microcontroller resources.

Here, we can see a representation of the XGATE interfacing with the memory and peripherals. The “p” 
connector in the diagram indicates access where the CPU has priority over the XGATE (except for port 
replacement registers), and where the XGATE has the normal bus access of 40 MHz max on the S12X. 
The “t” symbol represents access where the XGATE can run at twice the access rate of the CPU. The 
XGATE can interface to one of the FLASH memory blocks, the RAM, and the peripherals, but is not able 
to interface directly to the EEPROM on S12X devices. In practice, most of the memory addresses are on 
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XGATE Concept
the same bus, but the role of the XGATE is usually to manage the data flow of the peripherals, to deliver 
the results of the interrupt handler to a buffer or memory address in RAM, for subsequent processing by 
the main CPU.

Figure 2. Data Bus Interfacing with XGATE, CPU12X, Memory, and Peripheral Modules

Let’s look at how we can best use this added functionality.

The XGATE runs at twice the frequency of the MCU bus and is, therefore, a CPU with twice the bus clock 
frequency. Most of the XGATE instructions take one clock cycle to complete, thus getting optimal 
performance from the faster bus access. The XGATE CPU also has optimized instructions and a register 
configuration to suit execution of very short routines with strong focus on efficient bit and byte 
manipulation, so its performance for these types of interrupt handling tasks can be higher than the host 
CPU. Indeed, in a like-for-like measurement of typical word, byte and bit manipulation operations, 
performance is around 8 MIPS (million instructions per second) for the CPU12X (40 MHz bus) and 13 
MIPS for the XGATE (80 MHz clock) — the co-processor has better execution performance than the main 
CPU.

Now we have introduced a number of potential concerns for most embedded developers. We have two 
separate CPUs, with different instruction sets and different CPU architectures, running at different speeds, 
but using the same memory and peripherals.

This is neatly handled by a number of considered design choices.

The main CPU normally wins, and the XGATE always has to wait until access is free. This means there is 
occasionally some delay, which reduces the XGATE performance slightly. All code written for the XGATE 
should take this factor into account.
Tutorial: Introducing the XGATE Module to Consumer and Industrial Application Developers, Rev. 0
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The use of C programming puts most of the architecture differences into the hands of the C compiler 
developers. The XGATE CPU architecture is focused on speed of execution and a small instruction set. 
The XGATE instructions have been developed to achieve this high speed, and to provide highly optimized 
implementation in C. For developers looking for that last tweak to the efficiency of the XGATE code, it is 
easily possible to insert XGATE assembly language into the code to force specific instructions to be used.

Since all the peripherals for the MCU are the same for both CPUs, it is simple to move C code for the S12X 
CPU to the XGATE CPU. In fact, this feature makes this very easy to develop XGATE routines, as the C 
code for both is almost identical — we will discuss the differences later.

So, we need some instructions to run, and we want these to run at the maximum XGATE CPU speed, so 
they should be run from RAM. Since the RAM is not permanent memory, the code is stored in FLASH 
memory and downloaded into RAM after reset of the MCU. To avoid corruption of the XGATE code after 
loading the code into RAM, the S12X allows this address range to be protected from writes by the main 
CPU after download, thereby removing the tiny risk of code runaway destroying the XGATE code. This 
memory protection feature operates in a similar manner to the FLASH and EEPROM protection.

In general terms, we now have the XGATE connected to the memory of the MCU, in much the same way 
as the main CPU, and able to run twice as fast as the main CPU when accessing RAM. 

We should take a look now at how best to use it, and then, later, at some important things to avoid and to 
understand for the total MCU.

4 Virtual Peripherals
We have now a possibility to create functionality with the XGATE, and the I/O and timer peripheral 
functions, that could be considered equivalent to a dedicated hardware peripheral.

These “virtual peripherals” allow for enormous flexibility for the S12X MCU and can greatly enhance the 
flexibility of the applications, whilst taking advantage of the added processing power of this I/O 
co-processor.

4.1 Multi-Channel PWM
Pulse width modulation (PWM) on many I/O pins is strictly limited by the physical hardware of the MCU, 
or we must use software to drive these pulses. As we want a low-cost filter on the output, we usually want 
short PWM periods, and this can result in a very high loading on the main CPU, resulting from interrupt 
calls. The XGATE can remove this load completely from the main CPU, and can run the PWM generation 
for many channels from just a single hardware timer, thus making very efficient use of the MCU resources. 

The following two implementation examples illustrate the performance of the XGATE for this type of 
functionality.

Example 1. Flexible routine delivering 117 channels of 8-bit PWM updated at 80 Hz, each with selectable 
port assignment, duty cycle, and period. 

Here we have ten bytes of data assigned to each PWM channel to control port assignment, duty cycle, 
period, etc., and a very short routine that reads the data and executes the function defined by the data table. 
The routine is only 94 bytes in length and requires 58.2% of the XGATE performance to execute. Here a 
Tutorial: Introducing the XGATE Module to Consumer and Industrial Application Developers, Rev. 0
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Virtual Peripherals
full table for 117 LEDs takes a data space of 1170 bytes, yet the executable routine is just 8% of this size. 
This is a good example of the flexibility of the XGATE instruction set.

This routine has an effective interrupt rate of 2.4 million interrupts per second. In this case, the routine 
reads through the table at a rate of once every 49 µs, to maintain 8-bit resolution at 80 Hz, as the PWM is 
generated using software control based on a single timer compare. The routine takes 28.4 µs to check the 
117 PWM channels for change of output state. This can be scaled down linearly for a reduced number of 
channels. Thus, for 100 channels of flexible 8-bit PWM control refreshed at 80 Hz, the execution time is 
approximately 24.3 µs.

In the second example routine, discussed below, the code was optimized for speed of execution, to reduce 
the time spent in the XGATE routine.

Example 2. One hundred channels of 10-bit PWM at 100 Hz, with grouping of outputs and a common period 
for maximum performance, is an alternate approach. 

This routine has been optimized for performance and provides less flexibility than the former routine. It is 
therefore considerably longer at 1010 bytes, but requires only two bytes of data per PWM to set up, thus 
taking 202 bytes of data for 100 channels. The total load on the XGATE for this is 86%, but the resolution 
is four times better and the PWM rate is faster than in the first example.

This performance-optimized routine has an effective interrupt rate of 10.2 million interrupts per second, 
more than four times the performance of the flexible routine in the first example. 

This routine takes 8.6 µs to execute 100 PWM channels of 10-bit resolution. 

We can see from the PWM examples above that some trade-offs must be made in the XGATE code, as is 
the case for any CPU. However, if we want low latency times so that other routines can run, we must 
reduce the time taken by the XGATE to execute code and complete the interrupt handling routine. 
Balancing the use of RAM is also an important consideration. If 24 µs is acceptable for the other routine’s 
latency, the much shorter first algorithm could significantly reduce the amount of RAM required, and 
could be important if there is a limited amount of RAM available. However, most developers would 
probably opt for the longer, but more efficient routine, as this is relatively short and allows for future 
flexibility of the XGATE application code.

In both examples, the S12X CPU could be held in STOP mode, in which case the PWM will still run fully. 
Tutorial: Introducing the XGATE Module to Consumer and Industrial Application Developers, Rev. 0
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4.2 Serial Communication Protocol Handler
Other functions typically seen with the XGATE are serial communications. Here we have messages being 
received, with identifiers to be compared, then data to be moved to an appropriate area in memory, 
determined by any matching of identifiers and payload data.

The XGATE routines are usually longer for this type of operation, as it may be necessary to search for and 
compare data, and then to search message destination tables to direct the distribution of the payload data. 
A full CAN implementation for an XGATE attached to the msCAN module may check 100 or more 
identifiers, but it can handle this in the time between separate messages from the CAN buses, and still have 
performance to spare. In this case, a typical 10 ms CAN frame period for one low speed CAN bus gives 
plenty of time for the XGATE to handle large tables. As the CAN message handling routine can be 
complex, this will often take longer to execute than typical interrupt routines, thus establishing the worst 
case latency for all other interrupts.

CANOpen is a good example of enhancing the performance of a standard peripheral. The msCAN module 
has only three transmit and five receive buffers, whereas CANOpen requires a minimum of sixteen of 
each. Software can extend the CAN capability, but the CPU12X will use much of its application 
performance to create this additional functionality, and this will limit the performance available for the 
main application code.

Figure 3. Sharing the CANOpen Application Load with the XGATE

Figure 3 illustrates the CANOpen functionality using XGATE to increase the number of msCAN buffers 
to meet the demands of CANOpen. The resulting loading on the CPU12X is greatly reduced.
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Figure 4. Releasing CPU Performance

To illustrate the point further, the schematic in Figure 4 shows the CPU12X activity (with time advancing 
from left to right). As the CAN message is received, the XGATE interrupt routine runs first, then the 
CANOpen routine follows to identify the packet and place the data into the appropriate memory buffers 
for access by the application code. The code running on the CPU12X has all the time between CAN 
interrupts to run the application, and leaves handling the interrupts to the XGATE. This can result in a 
significant improvement in application code performance, when the CAN messages are arriving, on 
average, once every 100 µs (the theoretical maximum for high-speed CAN). Applications that can benefit 
from this include real-time industrial applications, such as those driving automated equipment, where 
closed-loop control systems require fast system responses. Without the XGATE, a much faster CPU would 
be required, usually at significantly higher cost.

4.3 CAN Gateway
The CAN gateway can be seen in industrial systems — typically in the form of a two CAN network 
topology. The msCAN module found on Freescale 8-bit and 16-bit MCUs has limited filtering capability, 
and large distributed industrial systems can have large numbers of message identifiers.

The XGATE can provide 100% filtering via a look-up table. For CAN messages arriving every 100 µs 
(eight bytes per message and a 29-bit identifier), this loading for two CAN buses is significant for 8-bit or 
16-bit MCUs. The XGATE can reduce this to approximately zero load for the main CPU, with just 258 
bytes of code. For a CAN message of six bytes of data, this can be around 3 µs per CAN message for the 
XGATE code — a loading of just 6%, worst case.

4.4 Quadrature Decoder
Many motor control applications require continuous input from position and velocity sensors. A 
quadrature decoder may provide position feedback and can generate tens of thousands of pulses 
(interrupts) per second, for small, rapidly spinning electric motors. This would be an ideal XGATE 
function, as it can handle the interrupt event on each of the two sensors, to provide direction and position 
changes, with no load being placed the main CPU. A third sensor can provide an index signal for the 
rotational reference point. The task of reading the two sensor inputs each time there is an interrupt, and 
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performing simple forwards/backwards computation based on the subsequent states of the inputs, takes 
little time when using the XGATE (the routine takes less than 0.5 µs to execute), and is an ideal example 
of an XGATE function.

Figure 5. Quadrature Encoder Signals

As can be seen from the diagram in Figure 5, the interrupts are frequent; however, there can be some 
latency in checking the input pins, as long as the highest input rate is met. For motor control, this can be 
high, so it is important to check the allowable latency of such a routine, if you plan to run several routines 
on the XGATE.

4.5 Synchronous Serial Communications
The XGATE can provide a low-level driver function for many serial communications. 

SPI operation in master mode is easy to achieve, as the clock and data are fully driven by the XGATE, and 
only a timer is required to provide the baud rate. 

Interrupts to XGATE from Timer input capture or KBI port
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Figure 6. Serial Peripheral Interface (SPI) Master

In most cases, the master can deliver slightly varying clock periods in this protocol, with no impact on the 
slave provided the minimum time between clocks is maintained. Thus, another XGATE routine slightly 
delaying the SPI master routine is normally acceptable. However, this routine is usually run very 
frequently and may be significantly delayed by another XGATE function which could result in large 
variations in bit rates for this software SPI function. For many applications, the master is driving an SMOS 
product or dumb peripheral, and data rates can be well below 100 kBaud. In such cases, each bit can be 
handled separately.

Do be careful, therefore — typically, the SPI clocks run at 1 MHz, which leaves only 80 cycles for the 
XGATE, and it is easy for other routines to delay this by a significant amount. To avoid this, one possible 
approach is to send an entire byte without leaving the XGATE routine. This takes approximately 9 µs to 
complete, and would have a lot of dead time in the routine, which effectively wastes XGATE performance; 
however, if all the other routines can accept a worst case delay of 9 µs, this could be the best option. 

Responding as a slave in this example takes more careful consideration, as it must react swiftly to each 
clock from the incoming SPICLK signal delivered by the SPI master. This defines the worst case latency, 
and again we need to know that the other routines will not interfere with this reception. 

The XGATE can still easily manage SPI slave operation, as this typically involves collecting the data value 
on a port pin (MOSI) or outputting data on another port pin (MISO), each time a clock transition is 
received on a third pin (SCLK). Care must be taken for a slave SPI implementation, as missing a clock 
edge by half a cycle will generate erroneous reads and cause incorrect data to be transmitted back to the 
SPI master. 
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Figure 7. Serial Peripheral Interface (SPI) Slave

The diagram in Figure 7 shows two ways to deal with the combination of master and slave SPI. The lower 
part of the timing diagram illustrates the loading of the XGATE and shows that master and slave have 
events at different times. For a slow SPI, the lower of the two traces is acceptable but, for higher speed 
communications, the jitter effect of other XGATE routines, or even just the CPU common access to RAM, 
could cause enough delay to demand a different approach and require the master send and slave read to be 
one routine, to preserve timing. As we can see from Figure 7, for high baud rates, this effectively hogs the 
XGATE while transmitting and receiving data.

SPI slave operation is, therefore, very demanding for the XGATE, but it does demonstrate nicely some 
limitations of the co-processor that we can chose to accept and manage carefully to achieve our desired 
functionality. In most cases, a dedicated SPI peripheral is used with the XGATE, providing a queue 
mechanism and perhaps providing chip select functionality.

4.6 Asynchronous Serial Communications
Software SCIs or UARTs can be handled by the XGATE by “bit-bashing” the I/O ports directly, just as for 
the SPI. This is similar to the synchronous communications function described earlier but, of course, the 
timing of the edges for each bit is critical. 

This imposes strict limitations on the XGATE code; however, the baud rates are usually a maximum of 
19,200. With a need to remain within 20% of the baud rate for individual bits and 2% overall, this results 
in a worst case latency, either to set or to sample each bit, of 10.4 µs. This is the allowable variation in bit 
timing, such that there will be no impact on sending and receiving correctly eight bits of data at 19,200 
baud.
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The XGATE code to send SCI data needs two timer values that can be generated by a single timer compare: 
one for the bit period; and another for the break detection time, which is usually a multiple of the bit time. 
The routine to transmit a bit is very short, being required only to set the output state and increment the bit 
counter. Receiving the data requires the sample to be mid way through the timing for a bit period, which 
effectively doubles the interrupt rate as this would be another XGATE interrupt, separate from the transmit 
interrupt. Again, this routine is very short. As the worst case time between the interrupts (send/receive and 
19,200 baud) is 26 µs, this allows for another routine taking up to approximately 36 µs (26+ 10.4 µs 
allowable delay), before the timing of the XGATE routine impacts the reception and transmission of SCI 
data at 19,200 baud.

This is a good example of how to allow for the other routine execution and meet maximum allowable 
delays when mixing XGATE routines.

There are a few other things to consider; and we will deal with these later, but this first pass should have 
given you good understanding of how much you can do with the XGATE in your application.

4.7 LIN Protocol Handler
The Local Interconnect Network (LIN) protocol is well known in automotive applications, and, due to its 
cost and deployment alongside CAN, is starting to appear in other non automotive applications.

LIN assumes a slightly modified standard UART or SCI. The main difference for a master node is the 
generation of a longer break signal than other asynchronous communication protocols tend to use. This is 
required to accommodate variable clock frequencies on the slave. The protocol has a simple frame format 
of: break, baud rate synch byte, identifier, payload data of two to eight bytes, and finally a checksum byte.

As the SCI peripherals are controlled byte by byte, the protocol benefits from the fact that the XGATE 
handles the interrupts and queues data for transmission and buffers received data.

The XGATE routine that executes the protocol is just 213 bytes long and executes in just 0.9 µs per byte. 
With two bytes of payload data, this works out at just 0.66% of the XGATE performance at 80 MHz for a 
two-byte LIN message.

4.8 Queue Management
Management of queues for peripherals can often be a significant load for the main CPU. Many MCU 
architectures opt for queues on the peripherals to reduce this loading on the CPU. The XGATE can provide 
this function with user defined flexibility, without loading the main CPU. 

Typically, the search routines can take a while, so it is a good idea to try to find a way to reduce the 
execution times of these routines, to avoid lengthy latency times for other routines. Binary searches of 
ordered data can be very effective, as can splitting the task into a number of steps to avoid having a single 
long routine.

4.9 LCD Display Control
Direct driving of up to four back-plane LCD panels is possible with the XGATE; a typical example is 
shown in Figure 8. 
Tutorial: Introducing the XGATE Module to Consumer and Industrial Application Developers, Rev. 0
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Figure 8. PCB Demo Board where the XGATE Controls the LCD Panel Directly

This LCD has 60 segments driven from four backplanes and fifteen front planes. It is refreshed at a frame 
rate of 64 Hz. The control algorithm allows for direct control of each segment (ON/OFF — one bit per 
segment), and contrast adjustment with 16-bit accuracy.

The XGATE also generates all the signals for ½ biased drive of the LCD 

In this example, the XGATE average load is 0.098% (40 MHz bus) and the CPU is in STOP

This is an example of driving a display where the XGATE performance greatly exceeds what is required. 
This routine performs ten specific functions that generate eight transitions to maintain the four backplanes 
and two transitions to maintain contrast timing. Each update takes 1220 cycles to execute (15.3 µs 
execution time per display refresh) allowing 640 transitions to be performed per second, thus refreshing 
the display at 64 Hz. In this example, each transition routine takes just 1.25 µs to complete, making this a 
tiny and very short-lived loading on the XGATE. This is an excellent example of how the XGATE can be 
used to good effect and kept flexible for other routines to use the remaining performance.

4.10 Encryption Routines
The XGATE was not designed specifically for encryption. However, as long as the latency considerations 
are understood for long-running routines, the CPU is, in fact, quite a high-performance bit transposition 
machine and can work well for AES, DES and 3DES.

The XGATE has excellent bit manipulation instructions over a 16-bit field, making this highly efficient for 
algorithms such as AES. Even so, a run time of over 100 µs will probably cause major problems if the 
XGATE is to be used for other interrupt routines, as such routines usually require much shorter latency 
times, to perform correctly. Therefore, take care when performing long algorithms such as encryption, in 
case there is a direct impact on other functions running on the XGATE.

...breaking the AES into multiple stages can allow other interrupts to be handled.
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Coding for the XGATE
for (i = 0; i = 8; i++)

     {

     enter Xgate AES algorithm for stage i;

     // Other xgate interrups can then run between each partial execution of AES.

     }

5 Coding for the XGATE
Converting an interrupt routine from the S12X CPU to the XGATE is quite straightforward. 

A typical flow would be as follows:
1. Decide service by XGATE of CPU.
2. Decide interrupt priority.
3. Decide shared data allocation and sharing mechanism.

The C code must be directed to the XGATE C compiler rather than the main CPU; to make this happen, 
the XGATE C code files have a different extension, “.cxgate”, when using CodeWarrior. The linker 
handles the dual compiler control by recognizing the different extension for the filename. 

To enter an interrupt routine, the XGATE uses two words, the interrupt vector address (as usual), and an 
additional word (16-bit) for a data parameter associated with the specific vector to be taken.

As the execution code is in RAM, we must take care to optimize usage of this expensive MCU resource. 
For a single virtual peripheral, there is no major impact; however, it is often desirable to create several of 
these virtual peripherals. One example would be to create multiple software PWM channels. When writing 
code for a software PWM on CPU12X, the developer would usually would usually opt for a separate 
routine in FLASH memory for each PWM output. This works well, as FLASH is a relatively cheap 
resource on the MCU. However, the XGATE is more efficient when running from RAM, which is a more 
expensive resource, so a different approach should be taken.

It would be better to have a single PWM routine and allow each PWM output to have data associated with 
it to uniquely select the specific I/O pin it is associated with, and the appropriate period and pulse width. 
For eight channels of software PWM, the data might amount to eight times four bytes (for I/O pin 
identification, period, and duty), but the RAM required to store the executable code would be much greater 
— probably, at least 100 bytes.

To deal with this kind of situation, XGATE has been provided with a feature that easily enables many sets 
of data to be assigned to a generic routine. The XGATE design includes a pointer to data in addition to the 
interrupt routine pointers. In other words, each time the code runs, it can load or store data differently, 
based on a separate table of addresses being defined for each interrupt vector. This has a significant effect 
when the routines are complex. This capability is illustrated in Figure 9.
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Coding for the XGATE
Figure 9. Vector and Data Pointer for XGATE Routines

The interrupt routines can be set with an individual data pointer and separate program start address for each 
interrupt. Because CPU12X does not have this capability, this is one of the few changes usually to be made 
to XGATE routines when converting from a routine originally written for the S12X CPU. As the XGATE 
is a single process CPU, the use of this scheme to reduce RAM does not cause any problems with 
coherency of data.

The XGATE code will usually be executed from RAM, but must first be loaded into RAM from the 
FLASH memory at MCU startup. Therefore, a small bootloader routine is also written to the FLASH, and 
the data packet of the XGATE executable routines is loaded into FLASH with this bootloader routine.

One final check...

Make sure the faster execution of the XGATE will not cause problems with the timing of the overall 
system, if you originally wrote the routine for the S12 CPU. Good coding practice, of not depending upon 
cycle counting to meet the timing requirements of the virtual peripheral, helps here. As the timers and other 
peripherals behave just as they do for the S12 CPU, this is not usually a problem.

Communicating with routines running on the main processor is essential for any dual processor system, 
and this is provided for by the inclusion of eight semaphore registers. The semaphore concept allows two 
independent tasks to share the same data elements in a controlled manner; task A takes control of the 
semaphore associated with the data, and task B must wait for task A to clear the semaphore before any 
access to the data is possible. In the case of XGATE, task A could run on the XGATE while task B could 
run on the main CPU; therefore, both tasks could be running simultaneously, and would require this 
hardware interlock to avoid incorrect modification of the data.
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Performance Expectations
The semaphore hardware registers have two significant states: reserved for XGATE, and reserved for the 
main CPU. The receiving task must wait for the register to be cleared before proceeding and will not be 
able to change the semaphore register state, thus allowing the software to use this state to determine 
whether access is or is not allowed to the shared data. This allows safe sharing of data between the CPU 
and XGATE, in either direction.

In fact, most programmers choose to use software semaphores, which operate in the same way and offer 
flexibility to the developer. Here, double buffered data can be used to share data, and flags in software 
indicate the “ownership” of the data and completion of the other function.

And there we have it — the XGATE code is ready to run.

6 Performance Expectations
The XGATE has only a 150–200 ns (operating at 80 MHz) delay on any interrupt handling — this is driven 
by the hardware. After this, the XGATE executes the code in the appropriate RAM location.

On return from the interrupt routine, the XGATE is immediately able to execute another interrupt, with no 
delay. The XGATE does not stack its registers, or have to restore them, to service interrupts. This can lead 
to a twenty cycle improvement in interrupt handling, compared to the CPU12X, and is a considerable 
advantage of XGATE when handling interrupts.

With a typical access to RAM of 85% of the time (the main CPU has priority) and with an optimized 
instruction set, for typical uses of XGATE, functions can run up to 4.5 times faster than an S12X CPU. 
More typically, the XGATE runs at twice the speed of the CPU12X.

Some performance examples are given in Table 1.

7 XGATE Running Several Routines
The XGATE has one very important consideration for the programmer — once a task has started in the 
XGATE, the routine runs until the end of the routine is reached, defined by the “Return To Scheduler” 

Table 1. Performance Examples

Function
Typical Size

(Bytes)
Data Size
(Bytes)

Typical
Execution
Time (μs)

Percent of
XGATE

Performance

100-channel, 10-bit PWM with common fixed period  
of 100 Hz & static port selection

1010 202 8.3 86%

100-channel, 8-bit PWM at 80 Hz refresh, flexible periods 
for each channel

94 800 24.3 49.7%

LCD – 60 segments, 64 Hz refresh, four back planes, 
contrast adjustment

262 26 1.25 0.098%

LIN SCI per byte 213 14 per channel 0.9 0.17%

CAN gateway message routing, messages every 1 ms 258 6 per CAN 
message + ID 

table

3.0 0.3%
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Debugging the XGATE Code
(RTS) instruction. Thus, we must always be mindful of the possibility that some code will not execute 
immediately after an interrupt, as an executing XGATE routine must finish before any others can start.

For many industrial applications, a typical way to consider XGATE performance is to allow a time slot for 
all the operations to complete in, and then to measure the time for each routine to complete. Adding these 
together will show if the routines can all complete within the allotted time. If they can, the system will be 
deterministic. Any spare performance available will be obvious.

Table 2 shows an example of running a number of code segments on the XGATE.

As can be seen in this example, the CAN communications for two CAN buses and 30 messages takes 32% 
of the 100 µs time slot. This allows for other routines to run — in this case, the CANOpen PDO execution 
— on a maximum of eight objects per message (one byte each) and 32 channels, for 7-bit (128 levels) 
PWM, running at 100 Hz for LED brightness control.

This leaves spare performance of 40%.

It may be required to not fully use the XGATE performance, as latency times could be important. In the 
example shown in Table 2, the longest routine run time is 25 µs. This means that the worst case latency for 
the routines is at least 25 µs. Since each routine has a priority level, it could actually be longer than this if 
they all interrupt while the longest routine is running. Therefore, the lowest priority routine might have to 
wait until all the other functions have completed before getting allocation of XGATE CPU time. If the 
lowest priority routine is the PWM control, then it will have a worst case latency of 57 µs (sum of all the 
other execution times). An LED brightness control might cope with this latency, but not all functions will 
tolerate such a delay.

8 Debugging the XGATE Code
So now we have our code written and we wish to test it — but there are two processors, so how can we do 
this easily?

Table 2. Example of Running a Number of Code Segments on the XGATE

Function
Total Time

(μs)
% of 100μs

Period

Gateway tic for 30Tx and 30Rx IDs 17.1  

Receive find frame ID 2.4  

Copy signal to message buffer (byte values) 1.9  

Frame transmit 0.7  

CAN buffer empty ISR 1.2  

CAN receive ISR (1 Tx frame generated) 8.8  

Total XGATE utilization for CAN comms (μs) 32.1 32

   

Process data object execution on 8 signals 25 25

32 x 10bit PWM channels at 100Hz period 2.7 3

   

Available resources in XGATE 40.2 40
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Making the Most of the XGATE
The IDE for S12X development tools has a debugger interface that can show both sets of CPU information. 
It sounds like a lot of information, but, as we can see from Figure 10, the details are easily viewed.

This CodeWarrior IDE debugger screen shot shows the S12X CPU on the left and the XGATE on the right.

Figure 10. CodeWarrior IDE Debugger Screen Shot

The CodeWarrior tool and the Background Debug Mode (BDM) of the S12X handle the two processors 
transparently. The BDM interfaces fully to the XGATE in the same way as it manages the main S12X CPU. 
Thus, it is possible to set breakpoints and trace each processor independently and simultaneously.

The data rate for sending debug data to the PC can handle both processors and provides, very effectively, 
all the information you need to develop and debug your code.

9 Making the Most of the XGATE
The XGATE is best with small routines, because the initial versions cannot stop a routine until it reaches 
the end of its execution (RTI), with the exception of a brief halt while the main CPU accesses the same 
memory or peripheral as the XGATE CPU.
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Making the Most of the XGATE
If we have long routines running in the XGATE, the worst case latency of any routine running in the 
XGATE will be at least as long as the time of the longest routine. 

An example always helps... 

Assume that the XGATE is running four timer input captures in a short routine of duration 80 cycles (1 µs), 
and there is an AES encryption algorithm running in approximately 8000 cycles (100 µs). If the AES 
algorithm is not running, the worst case latency is 1 µs (the previous interrupt has just started). However, 
if the AES algorithm has just started running, we must wait patiently for 100 µs for this to complete, before 
the timer interrupt can start. In many applications, this would be fatal in the system, and a second timer 
interrupt could easily have occurred with the second one lost (blocked because the first capture was not 
reset).

Thus, we should use lots of small routines in the XGATE. 

What other issues need special consideration to make this work effectively?

One important timing feature of the XGATE to consider relates to bus collisions. Our code could be halted 
for some cycles whenever the CPU accesses the same memory as the XGATE. For RAM, this is a very 
short delay (usually) but, for registers, this could be more significant. If the CPU is performing a 
read-modify-write instruction, such as BSET which takes five cycles of the main CPU to complete, the 
XGATE would have to wait for the complete CPU instruction to finish. If we are unlucky, and it occurs 
when the CPU starts accessing the same address, there could be a maximum XGATE delay of ten cycles. 
We must take this into account when measuring the performance of the XGATE, as this could be a rare 
event and be difficult to observe. However, if the XGATE loading is high, or latency requirements of the 
other routines are critical, this could be very important for the application. 

NOTE
There are several very specific situations that occur when accessing port 
replacement registers, where the XGATE has priority over CPU12X. See 
the data sheet for full details of how timing is affected for specific address 
ranges.

One solution is to avoid the same address accesses for XGATE and the CPU, where possible. This can 
usually be achieved for most functions, but is quite easily overlooked.

Now, what about power consumption, as we have a fast clock and a lot of logic?

The XGATE has clocks running in the module only when it is running. When there is no activity, the 
XGATE consumes leakage current only, which is almost insignificant compared to the rest of the MCU.

When executing code, it will take approximately the same current as the rest of the MCU, increasing the 
power consumption while executing code by approximately 35%. For a very heavy loading on the 
XGATE, we must take care to make sure there is enough heat dissipation at the worst case ambient 
temperature. 
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Combining Functions on the XGATE
10 Combining Functions on the XGATE
Ideally, we should load up the XGATE with routines to use the CPU fully, and, as we have seen, there are 
some constraints. 

Since the completion of XGATE tasks are usually time critical, latency of any other routines can be very 
important. Take care of this as a worst case scenario, as the longest latency could be a relatively rare event 
and not easily seen by observing the MCU functionality. 

Next, we might want to check we have enough RAM and no conflicts with peripheral access. 

The virtual peripheral software routines on the XGATE can make use of timers frequently, so, to avoid 
addressing conflicts, check that you have not mistakenly allocated a timer to the main CPU application 
code. As discussed earlier, bus arbitration can have a major impact on code execution.

Taking all factors into account, the average loading on the XGATE is usually in the range 40–60%.

11 What Products are Supported
Today we support the XGATE on the S12X family of MCUs. This family has a very rich feature set, as 
can be seen from be seen from the list of S12X family derivatives in Table 3.

Table 3. S12X Family Derivatives and Their Useful Peripheral Features

Device
FLASH / 

OTP
(kB)

EE
(Bytes)

RAM
(kB)

Timer I/O Comms A/D PWM

MC9S12XDP512 512 32 4K 1 x 8ch 
ECT       +                          
4 x 24-bit 

PIT

up to
119

up to 6 SCI, 
up to 3 SPI, 
up to 2 IIC,

5 CAN

2x8ch (112pin),
1x8ch & 1x16ch

(144pin)

8ch 8-bit

MC9S12XDT512 512 20 4K 1 x 8ch 
ECT       +                          
4 x 24-bit 

PIT

up to 
119

up to 6 SCI, 
up to 3 SPI, 

1 IIC,
3 CAN

1x8ch (80pin), 
2x8ch (112pin), 
1x-ch & 1x16ch 

(144pin)

8-ch 8-bit 
(7-ch 8-bit 
on 80QFP 
package)

MC9S12XDT256 256 16 4K 1 x 8ch 
ECT       +                          
4 x 24-bit 

PIT

up to 
119

up to 4 SCI, 
up to 3 SPI,  

1 IIC,
3 CAN

1x8ch (80pin), 
2x8ch (112pin), 
1x8ch & 1x16ch 

(144pin)

8-ch 8-bit 
(7-ch 8-bit 
on 80QFP 
package)

MC9S12XD256 256 14 4K 1 x 8ch 
ECT       +                          
4 x 24-bit 

PIT

up to 
119

up to 4 SCI, 
up to 2 SPI,  

1 IIC,
1 CAN

1x8ch (80pin), 
2x8ch (112pin), 
1x8ch & 1x16ch 

(144pin)

8-ch 8-bit 
(7-ch 8-bit 
on 80QFP 
package)

MC9S12XA512 512 32 4K 1 x 8ch 
ECT       +                          
4 x 24-bit 

PIT

up to 
119

up to 6 SCI, 
up to 3 SPI,  

1 IIC

1x8ch (80pin), 
2x8ch (112pin), 
1x8ch & 1x16ch 

(144pin)

8-ch 8-bit 
(7-ch 8-bit 
on 80QFP 
package)

MC9S12XA256 256 16 4K 1 x 8ch 
ECT       +                          
4 x 24-bit 

PIT

up to 
119

up to 4 SCI, 
up to 3 SPI,  

1 IIC

1x8ch (80pin), 
2x8ch (112pin), 
1x8ch & 1x16ch 

(144pin)

8-ch 8-bit 
(7-ch 8-bit 
on 80QFP 
package)
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Where to Get More Help and Information
12 Where to Get More Help and Information
Application notes are available to help you understand typical examples of XGATE use. Today, these focus 
on automotive communications interfaces such as CAN and LIN. However, the list of general purpose 
routines is growing, and it is well worth checking the Freescale web site for new examples and application 
notes.

12.1 Application Notes for XGATE Application Development

12.2 Web Sites for More Help
Freescale Semiconductor, Inc. for data books, tools and application notes on microcontrollers.

www.freescale.com/mcu

13 Summary of Features
This may be a good time to review what we have learned.

• The XGATE is an I/O co-processor that has access to the same peripheral resources as the main 
CPU.

• Low latency response and zero delay on exit from interrupts.
• The XGATE must wait for the main CPU to release access to any memory before it can access the 

same locations.
• The XGATE can best offer deterministic application behavior when it is used with short routines.
• The XGATE consumes power only when running.

ID for 
Application Note

ID for
Software

Description

AN2708 An Introduction to the External Bus Interface on the HCS12X  

AN3015 AN3015SW Using the XGATE for Manchester Decoding  

AN3144 AN3144SW Using XGATE to Implement a Simple Buffered SCI  

AN2726 AN2726SW MSCAN Driver for MC9S12XDP512 Using XGATE  

AN2685 How to Configure and Use the XGATE on S12X Devices  

AN2732 Using XGATE to Implement LIN Communication on HCS12X  

AN2734 HCS12X Family Memory Organization  

AN3145 XGATE Library: Using the Freescale XGATE Software Library

AN3219 AN3219SW XGATE Library: TN/STN LCD driver (Driving bare TN and STN LCDs using 
GPIO pins)

AN3225 AN3225SW XGATE Library: PWM Driver

AN3226 AN3226SW XGATE Library: ATD Average
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http://www.freescale.com/files/microcontrollers/doc/app_note/AN2708.pdf
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3015.pdf
https://www.freescale.com/webapp/Download?colCode=AN3015SW&prodCode=MC9S12XDP512&nodeId=0162468636K100&appType=license&location=psp
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3144.pdf
http://www.freescale.com/webapp/sps/download/license.jsp?colCode=AN3144SW&prodCode=MC9S12XDP512&nodeId=0162468636K100&location=psp
http://www.freescale.com/files/microcontrollers/doc/app_note/AN2726.pdf
http://www.freescale.com/files/microcontrollers/doc/app_note/AN2726SW.zip
http://www.freescale.com/files/microcontrollers/doc/app_note/AN2685.pdf
http://www.freescale.com/files/microcontrollers/doc/app_note/AN2732.pdf
http://www.freescale.com/files/microcontrollers/doc/app_note/AN2734.pdf
http://www.freescale.com/mcu
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3145.pdf
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3219.pdf
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3225.pdf
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3226.pdf
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3219SW.zip
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3225SW.zip
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3226SW.zip


• The XGATE can be used for many functions or routines normally run on the main CPU and offers 
greatly improved performance over a single S12X CPU solution.

• The XGATE is very flexible, with application uses that continue to develop as users explore the 
myriad of new opportunities provided by a low-cost dual processor MCU.
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