
Medical Connectivity Library
Users Guide

Document Number:MEDCONLIBUG
Rev. 5

05/2012

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the

Freescale™ and the
Freescale logo are trademarks of Freescale Semiconductor, Inc. ARC, the
ARC logo, ARCangel, ARCform, ARChitect, ARCompact, ARCtangent,
BlueForm, CASSEIA, High C/C++, High C++, iCon186, MetaDeveloper, MQX,
Precise Solution, Precise/BlazeNet, Precise/EDS, Precise/MFS,
Precise/MQX, Precise/MQX Test Suites, Precise/RTCS, RTCS, SeeCode,
TotalCore, Turbo186, Turbo86, V8 µ RISC, V8 microRISC, and VAutomation
are trademarks of ARC International. High C and MetaWare are registered
under ARC International.
The PowerPC name is a trademark of IBM Corp. and is used under license.The
described product contains a PowerPC processor core. The PowerPC name is
a trademark of IBM Corp. and used under license. The described product is a
PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp.
and is used under license. The described product is a PowerPC
microprocessor core. The PowerPC name is a trademark of IBM Corp. and is
used under license. All other product or service names are the property of their
respective owners.

© 1994-2008 ARC™ International. All rights reserved.

© Freescale Semiconductor, Inc. 2010. All rights reserved.

Document Number: MEDCONLIBUG
Rev. 5

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor iii

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be
the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
© Freescale Semiconductor, Inc., 2010. All rights reserved.

Revision
Number

Revision
Date Description of Changes

Rev. 1 10/2009 Initial release.

Rev. 2 04/2010 Updated Figure 2-1, Figure 4-1, and Section A.1.1.1, “Software Setup.”

Rev. 3 06/2010 • Added support for CFV2 devices

Rev. 4 07/2011 • Updated images in Appendix A

Rev. 5 05/2012
Added chapters

• IEEE 11073 Manager
• PHDC Manager Demo Applications

http://www.freescale.com

MEDCONLIB Users Guide, Rev. 5

v Freescale Semiconductor

Chapter 1 Before You Begin
1.1 About Medical Connectivity Library . 1-1
1.2 About This Book . 1-1
1.3 Reference Material . 1-2
1.4 Acronyms and Abbreviations . 1-3
1.5 Important Terms . 1-3

Chapter 2 Getting Familiar
2.1 Introduction . 2-1
2.2 Software Suite . 2-1
2.3 Directory Structure . 2-1

Chapter 3 Medical Connectivity Library Architecture
3.1 Architecture Overview . 3-1
3.2 Software Flows . 3-2

3.2.1 Initialization Flow . 3-2
3.2.2 Association Flow . 3-3
3.2.3 Send Measurement Data Flow . 3-4
3.2.4 Send Person Measurement Flow . 3-5

Chapter 4 Developing New Device Specialization
4.1 Introduction . 4-1
4.2 Directory Structure . 4-1
4.3 Medical Connectivity Library Interfaces . 4-2

4.3.1 Data Proto List . 4-2
4.3.2 DIM Variable . 4-3
4.3.3 MDS Object . 4-3
4.3.4 Device Configuration . 4-6
4.3.5 Metric Object . 4-7
4.3.6 Numeric Object . 4-8
4.3.7 Real-Time Sample Array (RT-SA) Object . 4-9
4.3.8 Enumeration Object . 4-9
4.3.9 Scanner . 4-10
4.3.10 Configurable Scanner . 4-10
4.3.11 Episodic Configurable Scanner . 4-11
4.3.12 Periodic Configurable Scanner . 4-11
4.3.13 PM Store Object . 4-12
4.3.14 PM Segment Object . 4-13

4.4 Application Design . 4-14
4.4.1 Main Application Function . 4-14
4.4.2 Application Task . 4-14
4.4.3 Callback Function . 4-15

Chapter 5 IEEE 11073 Manager
5.1 Introduction . 5-1

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor vi

5.2 Folder structure . 5-1
5.3 Module Usage/Aim . 5-2
5.4 Functional description . 5-2

5.4.1 MQX and Bare-Metal System Interraction . 5-2
5.4.2 MQX Host API . 5-3
5.4.3 MQX Chapter 9 Services . 5-4
5.4.4 MQX Common-class Services . 5-4

5.5 System Decomposition . 5-5

Appendix A Working with the Software
A.1 Introduction . A-1

A.1.1 Preparing the Setup . A-1
A.1.1.1Software Setup . A-1
A.1.1.2Hardware Setup . A-5

A.1.2 Building the Application . A-6
A.1.3 Running the Application . A-7

A.2 Uninstall Freescale Medical Connectivity Library 1.0 Software A-11
A.3 Important Files . A-13

Appendix B PAN USB Agent Demo
B.1 Setting Up the Demo . B-1
B.2 Running the Demo . B-1

Appendix C PAN Serial Bridge Demo
C.1 Setting Up the Demo . C-1
C.2 Running the Demo . C-2

Appendix D PHDC Manager Demo Application
D.1 Setting up the demo . C-1

D.1.1 Hardware setup . C-1
D.1.2 Set up HyperTerminal to get log . C-1
D.1.3 Running the demo . C-5

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 1-1

Chapter 1 Before You Begin

1.1 About Medical Connectivity Library
The increased use of electronic devices in the medical domain has created a need for the development of
common protocol for data interchange between various devices. This problem is addressed by IEEE-11073
Part 20601 (Optimized Exchange) specification. Freescale Medical Connectivity Library is based on this
specification. This library follows Continua design guidelines for implementation.

Freescale Medical Connectivity Library allows customers to implement various device specializations
defined under this standard without worrying about details of implementation of this protocol. The library
is transport independent, allowing users to use different transport technologies like Ethernet, USB, and so
on.

1.2 About This Book
This book describes the Freescale Medical Connectivity Library architecture and also explains you how
to create customized applications using this library. Table 1-1 shows the summary of chapters included in
this book.

Table 1-1. MEDCONLIBUG Summary

Chapter Title Description

Before you begin This chapter provides the prerequisites of reading this book.

Getting Familiar This chapter provides the information about the Freescale Medical Connectivity Library
software suite.

Medical Connectivity Library
Architecture

This chapter discusses the architecture design of Freescale Medical Connectivity Library
software suite.

Developing New Device
Specialization

This chapter discusses the steps a developer must take to develop new device
specialization applications using Freescale Medical Connectivity Library.

Working with Software This chapter provides information on how to build, run, and debug drivers and
applications.

PAN USB Agent Demo This chapter provides the setup and running PAN USB Agent demo for MC9S08JM60 and
MCF51JM128 devices.

Before You Begin

MEDCONLIB Users Guide, Rev. 5

1-2 Freescale Semiconductor

1.3 Reference Material
Use this book in conjunction with:

• Medical Connectivity Library API Reference Manual (document MEDCONLIBAPIRM)

• Freescale USB Stack with PHDC API Reference Manual (document MEDUSBAPIRM)

• Freescale USB Stack with PHDC Users Guide (document MEDUSBUG)

For better understanding, also refer to the following documents.

• Continua Design Guidelines (document ContinuaV1_DG_HL7_R1.pdf)

• IEEE Std 11073-20601TM-2008, Health informatics — Personal health device communication —
Part 20601: Application profile — Optimized Exchange Protocol.

• IEEE P11073-10441TM, Health informatics — Personal health device communication — Part
10441: Device specialization — Cardiovascular fitness and activity monitor.

• IEEE P11073-10442TM, Health informatics — Personal health device communication — Part
10442: Device specialization — Strength fitness equipment.

• IEEE Std 11073-10408TM, Health informatics — Personal health device communication — Part
10408: Device specialization — Thermometer.

• IEEE Std 11073-10415TM, Health informatics — Personal health device communication — Part
10415: Device specialization — Weighing scale.

• IEEE Std 11073-10471TM, Health informatics — Personal health device communication — Part
10471: Device specialization — Independent living activity hub.

• ISO/IEEE P11073-10404, Health informatics — Personal health device communication — Part
10404: Device specialization — Pulse oximeter.

• ISO/IEEE P11073-10407, Health informatics — Personal health device communication — Part
10407: Device specialization — Blood pressure monitor.

• ISO/IEEE P11073-10417, Health informatics — Personal health device communication — Part
10417: Device specialization — Glucose meter.

• ISO/IEEE 11073-10101, Health informatics — Point-of-care medical device communication —
Part 10101: Nomenclature.

• ISO/IEEE 11073-10201:2004, Health informatics — Point-of-care medical device communication
— Part 10201: Domain information model.

Before You Begin

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 1-3

1.4 Acronyms and Abbreviations

1.5 Important Terms
Table 1-2 shows the terms used throughout the book.

CFV1 ColdFire V1 (MCF51JM128 CFV1 device is used in this document)

CFV2 ColdFire V2 (MCF52221and MCF52259 CFV2 devices are used in this
document)

DIM Domain Information Model

IDE Integrated Development Environment

IEEE The Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

JM60 MC9S08JM60 Device

MDS Medical Device System

PHD Personal Healthcare Device

PHDC Personal Healthcare Device Class

RTSA Real Time Sample Array

TIL Transport Independent Layer

USB Universal Serial Bus

Table 1-2. Important Terms

Term Description

Continua Alliance This is a consortium of companies to establish standards for the
medical segment devices.

DemoJM This is the physical hardware where the expansion card with the
silicon is mounted.

Expansion Card This is the card where the silicon is embedded and can be loaded
on to the hardware board.

Shim Transport used for Data Send/Receive.

PM Store Persistent Metric Store

PM Segment Persistent Metric Segment

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 2-1

Chapter 2 Getting Familiar

2.1 Introduction
The Freescale Medical Connectivity Library software suite contains Medical Connectivity Library
(designed based on IEEE 11073-20601 specification and Continua Design guideline), USB Transport
Layer (based on USB-PHDC Specification), and a sample application. This section intends to help you
develop an understanding of the Medical Connectivity Library and to assist you in developing more device
specializations as defined by the standard. The document is targeted for firmware application developers
who would like to develop the applications using this library.

2.2 Software Suite
This suite contains Freescale Medical Connectivity Library, USB Transport Layer, and a sample
application for JM60, CFV1, and CFV2 devices.

2.3 Directory Structure
The software suite has a standard directory structure. You can extend it easily to accommodate more
applications and Transport Layers.

Getting Familiar

MEDCONLIB Users Guide, Rev. 5

2-2 Freescale Semiconductor

The following figure shows the directory structure.

Figure 2-1. Freescale Medical Connectivity Library Directory Structure

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 3-1

Chapter 3 Medical Connectivity Library Architecture

3.1 Architecture Overview
Figure 3-1 shows the Freescale Medical Connectivity Library architecture.

Figure 3-1. Freescale USB Stack with PHDC Architecture

Medical Connectivity Library is divided into two layers with application developed on top of them. The
layered architecture helps the application developers concentrate on developing the application without
being concerned about the other layers.

Transport Layer interacts with underlying Shim to provide reliable data communication to upper layer.
This layer abstracts application and Medical Connectivity Library from details of how the data is sent or
received through Shim. This layer interacts with underlying Shims with its defined interfaces, therefore
allowing users to add different transport technologies as required.

Medical Connectivity Library Architecture

MEDCONLIB Users Guide, Rev. 5

3-2 Freescale Semiconductor

Freescale Medical Connectivity Library Layer implements IEEE11073-20601 Standard (based on
Continua guidelines). Freescale Medical Connectivity Library Layer defines interfaces for Device
Specialization (part of Application Software) layer to communicate with Continua Manager. Device
Specialization layer uses interfaces provided by this layer to send measurement and configuration data to
Continua Manager.

As stated earlier, the layered architecture helps the application developers to develop applications.
However, it does not limit the developer to interface lower layer APIs if they prefer to.

CAUTION
Simultaneous use of driver APIs and class APIs may have undefined
behavior. In this case, the driver functionality will not work as defined in
this document. Functioning of class drivers depends upon lower layer USB
device controller state and USB bus state machine. If application invokes
lower layer functions directly, then class driver state machine might get
affected, leading to undefined behavior. However, this does not necessitates
application to use class driver only. You can develop its application directly
using lower layer driver APIs. In such a case, application needs to take care
of class layer functionality.

3.2 Software Flows
This section describes the execution flow of the stack across various layers and modules.

3.2.1 Initialization Flow

Figure 3-2 describes application initialization flow.

Figure 3-2. Sequence for Library Initialization

Medical Connectivity Library Architecture

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 3-3

The application initialization sequence starts by initializing Transport Independent Layer (TIL). Using this
interface, application registers various Shims that can be used as transport. After successful TIL
initialization, application initializes Medical Connectivity Library with a callback and Shim Identification
Code. This internally initializes Shim to send and receive data.

After Shim is initialized, enumeration process begins. After successful initialization, "Transport Connect"
event is sent to TIL, which is passed to the Medical Connectivity Library and then to the application.

3.2.2 Association Flow

Figure 3-3 describes association process flow.

Figure 3-3. Association Process Flow

After receiving Transport Connect Event, application can start Association Process. Application uses
AgentSendAssociationRequest interface to send Association Request to Continua Manager. If the request
is successful, application receives a callback to initialize DIM. Once DIM is initialized, configuration
process begins. This process is initiated by Medical Connectivity Library. After configuration process is
successfully completed, application is given a callback Operating State. After this callback event is
received, application can now send measurement data to Continua Manager.

Medical Connectivity Library Architecture

MEDCONLIB Users Guide, Rev. 5

3-4 Freescale Semiconductor

3.2.3 Send Measurement Data Flow

Figure 3-4 and Figure 3-5 below describes how application can send confirmed/un-confirmed
measurement data to Continua Manager.

Figure 3-4. Send Measurement Confirmed Flow

Figure 3-5. Send Measurement Un-Confirmed Flow

To send measurement data to Continua Manager, application creates an ObservationScanList. Application
then calls AgentSendMeasurements interface to send data to Continua Manager. Application is informed
by a callback event (EVENT Report Sent) if successful, otherwise an error is reported in the callback.
Application should wait for these callback events before attempting to send another measurement.

Medical Connectivity Library Architecture

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 3-5

To prepare ObservationScanList, AddEntryToObsScanList interface is provided to the application. This
abstracts the internal details of this structure from the application.

3.2.4 Send Person Measurement Flow

Figure 3-6 and Figure 3-7 below describes how application can send confirmed/un-confirmed person
measurement data to Continua Manager.

Figure 3-6. Send Person Measurement Confirmed Flow

Figure 3-7. Send Person Measurement Un-Confirmed Flow

To send measurement data to Continua Manager, application creates a ScanReportPerVarList. Application
then calls AgentSendPersonMeasurements interface to send data to Continua Manager. Application is

Medical Connectivity Library Architecture

MEDCONLIB Users Guide, Rev. 5

3-6 Freescale Semiconductor

informed by a callback event (EVENT Report Sent) if successful, otherwise an error is reported in the
callback. Application should wait for these callback events before attempting to send another
measurement.

To prepare ScanReportPerVarList, AddEntryToScanRptPerVarList interface is provided to the application.
This abstracts the internal details of this structure from the application.

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 4-1

Chapter 4 Developing New Device Specialization

4.1 Introduction
This chapter discusses how you can create new device specialization applications based on Medical
Connectivity Library.

4.2 Directory Structure
The following figure shows the directory structure of the PAN USB Agent application.

Figure 4-1. PAN USB Agent Application Directory Structure

For developing a new device specialization, change the following pre-existing files:

• ConstDataStruct.c

• phdc_app.c

• phdc_app.h

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

4-2 Freescale Semiconductor

4.3 Medical Connectivity Library Interfaces
This section discusses the structures of the device specialization defined in the file ConstDataStruct.c.

4.3.1 Data Proto List

Sample Structure:
/* Data Proto List */
const intu8 g_DataProtoList[] =
{

0x00, 0x01,
0x00, 0x30,
/* Data Proto ID = 20601 */
0x50, 0x79,
/* Data Proto Length */
0x00, 0x2c,
/* PROTOCOL_VERSION1 */
0x80, 0x00, 0x00, 0x00,
/* Encoding rules */
0x80, 0x00,
/* NOM_VERSION1 */
0x80, 0x00, 0x00, 0x00,
/* Functional units */
0x00, 0x00, 0x00, 0x00, /* Device Cannot Enter Test Association */
/* SYS_TYPE_AGENT */
0x00, 0x80, 0x00, 0x00,
/* system_id */
0x00, 0x0e,
'F','S','L','M','E','D','I','C','A','L','0','0','1', 0x0,
/* dev_config_id */
0x40, 0x00, /* --- user modifiable */
/* data_req_mode_capab */
0x08, 0x81, /* --- user modifiable */
/* maximum number of parallel agent initiated data requests*/
MAX_AGENT_DATA_COUNT, /* --- user modifiable */
/* maximum number of parallel manager initiated data requests*/
MAX_MANAGER_DATA_COUNT,
/* optionList */
0x00, 0x00, 0x00, 0x00

};

In the above structure, the user modifiable parameters are marked in red color. The device configuration
Id for standard configuration is in the range 0x0001 — 0x3FFF (both inclusive). These configurations are
fixed. If you want to create a configuration apart from the standard configuration, the configuration Id
should be in the range 0x4000 — 0x7FFF (both inclusive). These configurations are called extended
configurations. You can change data request mode capability flags depending on the requirement. The
maximum number of parallel agent initiated data requests can be either 0 or 1.

NOTE
• Library does not support manager initiated data transmission (as per

Continua Design guidelines).

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 4-3

• If agent initiated data transmission is not supported, at least one Scanner
should be a part of the configuration.

4.3.2 DIM Variable

Sample Structure:
/* DIM variable */
DIM g_DIM =
{

/* Pointer to MDS */
&g_Mds, /* --- user modifiable */
/* Device Configuration ID */
EXTENDED_CONFIG_START /* --- user modifiable */

};

In the above structure, the user modifiable parameters are marked in red color. &g_Mds is a pointer to
MDS which is the top-most object. The device configuration Id for standard configuration is in the range
0x0001 — 0x3FFF (both inclusive). These configurations are fixed. If you want to create a configuration
apart from the standard configuration, the configuration Id should be in the range 0x4000 — 0x7FFF (both
inclusive). These configurations are called extended configurations.

4.3.3 MDS Object

Medical Device System (MDS) represents the topmost object. Each device has one MDS class. The MDS
represents the identification and status of the device through its attributes. Each class has a nomenclature
code for its identification and some set of attributes. Out of all the attributes, some attributes are mandatory
to implement (if that class is instantiated), and some are conditional that is, they should be present if the
required condition is met. The rest of the attributes are optional. Each object has a "Handle" attribute that
is used to identify the object for operations. The value of this attribute is unique. For MDS object, the
handle is fixed to zero.

Sample Structure:
/* MDS Object */
MDS g_Mds =
{

/* MDS Handle */
0x0000, /* --- not modifiable */
/* Sys type */
#ifdef MDS_ATTR_SYS_TYPE
{

4224,
8136

},
#else

/* Type Per Var List */
TypeVerList*)&g_MdcAttrSysTypeSpecList,

#endif /* MDS_ATTR_SYS_TYPE */

/* System Model */
(SystemModel*)&g_MdcAttrSysModel,
/* System Id */

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

4-4 Freescale Semiconductor

(octet_string*)&g_MdcAttrSysId,
/* device Configuration ID */
0x4000,
/* pointer to attribute val map */

#ifdef MDC_FIXED_DATA_FORMAT
(AttrValMap*)&g_MdcAttrValMap,

#endif /* MDC_FIXED_DATA_FORMAT */

/* pointer to production spec */
#ifdef MDS_PROD_SPEC

(ProductionSpec*)&g_MdcAttrIdProdSpecn,
#endif /* MDS_ABSOLUTE_TIME */

/* Mds Time Info */
#ifdef MDS_SETTABLE_TIME
{

(
#ifdef MDS_MGR_SET_TIME

MDS_TIME_MGR_SET_TIME |
#endif
#ifdef MDS_HIRES_TIME

MDS_TIME_CAPAB_HIGH_RES_RELATIVE_TIME |
#endif
#ifdef MDS_RELATIVE_TIME

MDS_TIME_CAPAB_RELATIVE_TIME |
#endif
#ifdef MDS_SET_CLOCK

MDS_TIME_CAPAB_SET_CLOCK |
#endif
#ifdef MDS_RTC

MDS_TIME_CAPAB_REAL_TIME_CLOCK |
#endif
0),
MDC_TIME_SYNC_NONE,
TIME_SYNC_ACCURACY_UNKNOWN,
TIME_RESOLUTION_UNKNOWN, /* Absolute Time Resolution */
TIME_RESOLUTION_UNKNOWN, /* Relative Time Resolution */
TIME_RESOLUTION_UNKNOWN /* High Res Time Resolution */

},
#endif /* MDS_SETTABLE_TIME */

/* Absolute Time Stamp */
#ifdef MDS_ABSOLUTE_TIME
{

0x20, /* Century */
0x09, /* Year */
0x07, /* Month */
0x22, /* Day */
0x19, /* Hour */
0x30, /* Minute */
0x10, /* Second */
0x00 /* Second Fraction */

},
#endif /* MDS_ABSOLUTE_TIME */

/* Relative Time */
#ifdef MDS_RELATIVE_TIME

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 4-5

0x00000000,
#endif /* MDS_ABSOLUTE_TIME */

/* Hi Resolution Relative Time */
#ifdef MDS_HIRES_TIME
{

0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00
},
#endif /* MDS_ABSOLUTE_TIME */

/* Absolute Date and Time Adjust */
#ifdef MDS_ADJUST_DATE_TIME
{

0x00, 0x00, 0x00, 0x00, 0x00,0x00
},
#endif /* MDS_ABSOLUTE_TIME */

/* Power Status */
#ifdef MDS_POWER_STATUS

ON_MAINS,
#endif /* MDS_POWER_STATUS */

/* Battery Charge */
#ifdef MDS_BATT_CHARGE

/* 100% Charge */
100,

#endif /* MDS_BATT_CHARGE */

/* Battery Measure */
#ifdef MDS_BATT_REMAIN
{

/* 1 Day of Battery Remaining */
0x1,
MDC_DIM_DAY

},
#endif /* MDS_BATT_REMAIN */

/* pointer to Reg Certified Data List */
(RegCertDataList *)&g_MdcAttrRegCertDataList,

/* Confirm Timeout - 3 secs */
#ifdef MDS_CONFIRM_TIMEOUT

0x00005dc0,
#endif

/* Configuration Selected */
0, /* --- not modifiable */
/* Configuration Count */
2,
/* pointer to an array of configurations */
(CONFIGURATION (*)[])&g_Configuration

};

The user modifiable attribute values are marked in red color. You can modify all the attributes, except for
Handle attribute. The configuration selected parameter, in the above structure, is modified in the library.
The device can support multiple configurations whose number is given by the configuration count

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

4-6 Freescale Semiconductor

followed by an array of configurations. The index of the configuration accepted by the manager is updated
in the configuration selected parameter in the library.

4.3.4 Device Configuration

There are zero or more Numeric, Real-Time Sample Array, Enumeration, Scanner, or PM Store objects
associated with an MDS object. There are zero or more PM Segments that contain persistent metrics
associated with a PM Store. Numeric, Real-Time Sample Array, and Enumeration are derived from a
common Metric base class that contains common and shared attributes. In general, Numeric objects
represent episodic measurements, Real-Time Sample Array objects represent continuous samples or wave
forms, Enumeration objects represent event annotations, and PM Stores along with PM Segments provide
a persistent storage mechanism for metrics that are accessed by the Manager at a later time. In addition, a
Scanner object facilitates the reporting of agent initiated data transfers. All these objects form a part of the
device configuration.

Sample Configuration Structure:
/* Device Configuration */
const CONFIGURATION g_Configuration[] =
{

/* Device Configuration ID */
0x4000,
#ifdef MDS_NUMERIC

/* Numeric object count */
2,
/* Pointer to an array of Numeric classes */
(NUMERIC (*)[])&g_Numeric,

#endif
#ifdef MDS_RTSA

/* RTSA object count */
1,
/* Pointer to an array of RTSA classes */
(RTSA (*)[])&g_Rtsa,

#endif
#ifdef MDS_ENUMERATION

/* Enumeration object count */
1,
/* Pointer to an array of Enumeration classes */
(ENUMERATION (*)[])&g_Enum,

#endif

#ifdef MDS_EPISOIDIC_SCANNER
/* Episoidic Scanner object count */
1,
/* Pointer to an array of Episoidic Scanner classes */
(EPICFGSCANNER (*)[])&g_EpiScanner,

#endif
#ifdef MDS_PERIODIC_SCANNER

/* Periodic Scanner object count */
1,
/* Pointer to an array of Periodic Scanner classes */
(PERICFGSCANNER (*)[])&g_PeriScanner,

#endif
#ifdef MDS_PMSTORE

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 4-7

/* PM Store object count */
1,
/* Pointer to an array of PM Store classes */
(PMSTORE (*)[])&g_PMStore

#endif
};

The whole configuration structure is user modifiable. The configuration structure sets the number of
Numeric, RT-SA, Enumeration, Episodic Scanner, Periodic Scanner, PM Store classes and the pointers to
these classes. It also provides the device configuration Id.

NOTE
• The configuration Id of the first configuration should be the one

specified in the Data Proto List.

• If agent initiated data transmission is not supported (specified in data
request mode flags in Data Proto List), at least one Scanner should be a
part of the configuration.

4.3.5 Metric Object

The Metric class is the base class for all objects representing measurements, status, and context data. The
Metric class is not instantiated. As a base class, it defines all common attributes, methods, events, and
services that are common for all objects representing measurements.

Sample Structure:
#ifdef MDS_METRIC
METRIC g_Metric[] =
{
 /* Numeric(Temperature) Class Handle */
 (intu16)0x0002,
 /* TYPE */
 {
 MDC_PART_SCADA,
 MDC_TEMP_BODY
 },
 /* Metric Spec Small */
 (intu16)(
 MSS_AVAIL_INTERMITTENT | MSS_AVAIL_STORED_DATA |
 MSS_UPD_APERIODIC | MSS_MSMT_APERIODIC | MSS_ACC_AGENT_INITIATED
),
 /* Optional Attributes */
 (intu16)(OPT_MET_UNIT_CODE | OPT_MET_ATTRVALMAP),
 /* SupplementalTypeList */
 (SupplementalTypeList*)&g_Supplemental_type_list,
 /* Metric Struct Small */
 {
 MS_STRUCT_SIMPLE, 0
 },
 /* Measurement Status */
 MS_VALIDATED_DATA,
 /* MetricIdPhysioList */
 {

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

4-8 Freescale Semiconductor

 0,
 (OID_Type *)&gMetricId
 },
 /* Metric ID Part */
 NOM_PART_OBJ,
 /* Unit Code */
 MDC_DIM_DEGC,
 /* Attribute Val Map */
 (AttrValMap*)&g_AttrValMap,
 /* source handle reference*/
 0x0001,
 /* Label String */
 (octet_string*)&g_label_string,
 /* Unit Label String */
 (octet_string*)&g_unit_label_string
};
#endif

The user modifiable attribute values are marked in red color. You can modify all the attributes. The
operational attribute flag tells which conditional and optional attributes of this class are implemented by
the user.

4.3.6 Numeric Object

An instance of a Numeric class represents a numerical measurement. This class is derived from the Metric
base class.

Sample Structure:
/* Numeric classes */
#ifdef MDS_NUMERIC
const NUMERIC g_Numeric[] =
{

/* Metric class Pointer */
&g_Metric[0],
/* Optional Attribute */
1,
/* Accuracy */
0x00000001

};
#endif

The user modifiable attribute values are marked in red color. &g_Metric[0] sets the pointer to the metric
base class. The operational attribute flag tells which conditional and optional attributes of this class are
implemented by the user.

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 4-9

4.3.7 Real-Time Sample Array (RT-SA) Object

An instance of the Real-Time Sample Array (RT-SA) class represents a wave form measurement. This
class is derived from the Metric base class.

Sample Structure:
const RTSA g_Rtsa[] =
{

/* Metric class Pointer */
&g_Metric[3],
/* sample period */
0x00000002,
/* Simple Sa Observed Value */
(octet_string*)&g_RtsaSimpSaObsVal,
/* Scale Range Spec */
0x00,
(ScaleRangeSpec8 *)&g_scale8,
/* Sa Spec */
0x00a, /*array size */
0x08, 31, /* sample type */
SMOOTH_CURVE /* sa flags */

};

The user modifiable attribute values are marked in red color. &g_Metric[3] sets the pointer to the Metric
base class. All attributes of the RT-SA object class are mandatory.

4.3.8 Enumeration Object

An instance of the Enumeration class represents status information and/or annotation information. The
values of the Enumeration object are coded in the form of normative codes (as defined in ISO/IEEE Std
11073-10101) or in the form of free text. This class is derived from the Metric base class.

Sample Structure:
/* Enumeration Object Class */
#ifdef MDS_ENUMERATION
ENUMERATION g_Enum[] =
{

/* Pointer to metric class */
&g_Metric[2],
/* operational attribute flag */
1,
/* Nom Partition */
NOM_PART_SITES

};
#endif

The user modifiable attribute values are marked in red color. &g_Metric[2] sets the pointer to the Metric
base class. The operational attribute flag tells which conditional and optional attributes of this class are
implemented by the user.

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

4-10 Freescale Semiconductor

4.3.9 Scanner

A Scanner object is an observer and 'summarizer' of object attribute values. It observes attributes of Metric
objects (for example, Numeric objects) and generates summaries. The Scanner class is an abstract class
defining attributes, methods, events, and services that are common for its subclasses. As such, it cannot
be instantiated. More specialized Scanner classes are derived from the Scanner base class.

Sample Structure:
#ifdef MDS_SCANNER
SCANNER g_Scanner[] =
{

/* Episoidic class handle */
5,
/* Operational Stat */
0, /* --- not modifiable */
/* Handle Attribute Val Map */
(HandleAttrValMap*)&g_HandleAttributeValMap,

};
#endif

The user modifiable attribute values are marked in red color.

4.3.10 Configurable Scanner

The Configurable Scanner class is an abstract class defining attributes, methods, events, and services that
are common for its subclasses (Episodic and Periodic Configurable Scanner objects). In particular, it
defines the communication behavior of a configurable Scanner object. As such, it cannot be instantiated.

Sample Structure:
/* Configuration scanner class */
#ifdef MDS_CFGSCANNER
CFGSCANNER g_CfgScanner[] =
{

/* Optional Attributes */
3,
/* pointer to scanner class */
(SCANNER*)&g_Scanner[0],
/* confirm mode */
0x0001,
/* confirm timeout - 2 secs */
16000,
/* transmit window */
0x0001

};
#endif

The user modifiable attribute values are marked in red color. &g_Scanner[0] sets the pointer to the Scanner
base class. The operational attribute flag tells which conditional and optional attributes of this class are
implemented by the user.

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 4-11

4.3.11 Episodic Configurable Scanner

The Episodic Configurable Scanner objects are used to send reports containing episodic data, that is, data
that does not have a fixed period between each data value. A report is sent whenever one of the observed
attributes changes value. However, two consecutive event reports shall not have a time interval less than
Min-Reporting-Interval.

Sample Structure:
/* Episoidic scanner object class */
#ifdef MDS_EPISOIDIC_SCANNER
EPICFGSCANNER g_EpiScanner[] =
{

/* Optional Attributes */
OPT_EPISCAN_MIN_RPT_INT,
/* pointer to configuration scanner class */
(CFGSCANNER*)&g_CfgScanner[0],
/* minumum reporting interval - 2 secs */
16000

};
#endif

The user modifiable attribute values are marked in red color. &g_CfgScanner[0] sets the pointer to the
Configurable Scanner base class. The operational attribute flag tells which conditional and optional
attributes of this class are implemented by the user.

4.3.12 Periodic Configurable Scanner

Periodic Configurable Scanner objects are used to send reports containing periodic data, that is, data
sampled during fixed periods. It buffers any data value changes to be sent as part of a periodic report.
Event reports shall be sent with a time interval of Reporting-Interval. The number of observations for each
Metric object is dependent on the Metric object's update interval and the Scanner's Reporting-Interval.

Sample Structure:
/* Periodic scanner object class */
#ifdef MDS_PERIODIC_SCANNER
PERICFGSCANNER g_PeriScanner[] =
{

/* pointer to configuration scanner class */
(CFGSCANNER*)&g_CfgScanner[1],
/* Scan reporting period - 1 sec */
8000

};
#endif

The user modifiable attribute values are marked in red color. &g_CfgScanner[1] sets the pointer to the
Configurable Scanner base class. The scan reporting period sets the Scanner's reporting interval.

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

4-12 Freescale Semiconductor

4.3.13 PM Store Object

An instance of the PM Store class provides long-term storage capabilities for Metric data. The data is
stored in a variable number of PM Segment objects.

Sample Structure:
/* PM Store Object Class */
PMSTORE g_PMStore[] =
{

/* optinal attribute flag */
0x0f,
/* PM Store Object handle */
0x04,
/* PM Store Capability */
(
#ifdef MULTI_PERSON_SUPPORT

PMSC_MULTI_PERSON |
#endif
#ifdef SAMPLE_PERIOD

PMSC_PERI_SEG_ENTRIES | /* if sample period attr present in PM Store or in all PM
Segments, then this shud be set */

#endif
PMSC_CLEAR_SEGM_REMOVE | PMSC_CLEAR_SEGM_BY_TIME_SUP |
PMSC_EPI_SEG_ENTRIES | PMSC_CLEAR_SEGM_BY_LIST_SUP),
/* sampling algorithm */
ST_ALG_NO_DOWNSAMPLING,
/* max PM Segments entries */
0x04,
/* actual num of segment entries presently used */
0x02,
/* operational state, if data is actively added it should be 0x01 */
0x00,
/* PM Store Label String */
(octet_string*)&g_pm_label_string,
/* Sample Period */
0x000000ff,
/* num of PM Segments instantiated */
0x02,
/* Clear segment timeout */
0xFFFFFFFF,
/* PM Segment Count */
0x02,
/* Pointer to array of PM Segments */
(PMSEGMENT (*)[])&g_PmSegment

};

The user modifiable attribute values are marked in red color. You can modify all the attributes. The PM
Store object structure also sets the PM Segments instantiated followed by the pointer to an array of PM
Segment structures.

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 4-13

4.3.14 PM Segment Object

An instance of the PM Segment class represents a persistently stored episode of measurement data.

Sample Structure:
PMSEGMENT g_PmSegment[] =
{

/* optional attribute flag */
0x01FF,
/* instance number */
0x0001,
/* PM Segment entry map */
(PmSegmentEntryMap*)&g_PmSegEntryMap,
/* Person ID */
#ifdef MULTI_PERSON_SUPPORT

0x0001,
#endif
/* operational state */
0x0000,
/* Sample period */
0x05,
/* segment label string */
(octet_string*)&g_PmSeg_label_string1,
/* Segment Start Time */
0x20, 0x09, 0x09, 0x13, 0x02, 0x00, 0x00, 0x00,
/* Segment End Time */
0x20, 0x09, 0x09, 0x13, 0x04, 0x00, 0x00, 0x00,
/* Date and time adjustment */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* usage count */
0x00,
/* Segment Statistics */
(SegmentStatistics*)&g_SegStat,
/* pointer to Segment data */
NULL,
/* Confirm timeout = 4 secs */
0x00007D00,
/* Transfer timeout = 4 secs */
0x00007D00

};

The user modifiable attribute values are marked in red color. You can modify all the attributes. Whenever
an entry is added to the PM Segment, the library updates the Segment Start Time (if implemented),
Segment End Time (if implemented), and Usage Count (if implemented).

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

4-14 Freescale Semiconductor

4.4 Application Design
This section discusses the application design. The application is made up of the main application function,
application task, and the callback function.

4.4.1 Main Application Function

The main application function initializes Transport Independent Layer (TIL) and Medical Connectivity
Library. It also registers the application callback function. The main application function uses the
following C code:
void TestApp_Init(void)
{

DisableInterrupts;
<Application Buffers Initialization Code>
<Application Specific Initialization Code goes here>

/* Initialize TIL */
TIL_Initialize((PTIL)&g_Til);
/* Initialize IEEE11073 and start Transport */
(void)Ieee11073Initialize((PTIL)&g_Til, SHIMID, MedAppCallback);

EnableInterrupts;
while(TRUE)
{

__RESET_WATCHDOG();
<Application Specific Code goes here>
new_app_task();

}
}

4.4.2 Application Task

The application task performs application specific functionality. Sample application code below uses
Keyboard inputs to send measurement data to Continua Manager. The application task uses the following
C code:
static void new_app_task(void)
{

ERR_CODE err = ERROR_SUCCESS;
if(kbi_stat > 0)
{

switch(kbi_stat & KBI_STAT_MASK)
{

case SEND_BPM_MSR : /* PTG1 is pressed */
{

<Application Specific Code goes here>
}
break;

case SEND_TEMPERATURE_MSR : /* PTG2 is pressed */
{

<Application Specific Code goes here>
}
break;

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 4-15

case SEND_EPISOIDIC_SCANNER_MSR: /* PTG3 is pressed*/
{

<Application Specific Code goes here>
}
break;

/* otherwise */
default:break;
}

/* reset status after servicing interrupt */
kbi_stat = 0x00;
}
return;

}

4.4.3 Callback Function

This is the application callback function. This callback function is registered during initialization in the
main application function. This function performs various tasks depending upon the event received from
the Medical Connectivity Library. The callback function uses the following C code:
static void MedAppCallback(IEEE11073_EVENT event_id, void *pvoid)
{

switch(event_id)
{

case IEEE11073_ASSOCIATION_RELEASING:
<Application Specific Code goes here>

break;
case IEEE11073_ASSOCIATION_RELEASED:

<Application Specific Code goes here>
break;
case IEEE11073_TRANSPORT_CONNECT:

<Application Specific Code goes here>
break;
case IEEE11073_TRANSPORT_DISCONNECT:

<Application Specific Code goes here>
break;
case IEEE11073_GET_DATAPROTO:

<Application Specific Code goes here>
break;
case IEEE11073_OPERATING:

<Application Specific Code goes here>
break;
case IEEE11073_EVNTRPT_SENT:

<Application Specific Code goes here>
break;
case IEEE11073_CLEAR_PMSEGMENT:

<Application Specific Code goes here>
break;
default:

<Application Specific Code goes here>
break;

}
return;

}

Developing New Device Specialization

MEDCONLIB Users Guide, Rev. 5

4-16 Freescale Semiconductor

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 5-1

Chapter 5 IEEE 11073 Manager

5.1 Introduction
This chapter describes the IEEE 11073-based PHDC Manager implementation using USB host stack
functionality for transport purposes.

The IEEE 11073 Manager's purpose is to enable seamless interoperability between personal healthcare
devices (such as glucose meters, pulse oximeters, thermometers, etc) and USB hosts. The USB Class
definition for personal healthcare devices provides a generic mechanism by which standardized messages
can be sent over USB

5.2 Folder structure
The PHDC manager source code includes:

• Include sub-folder:
— ieee11073.h: contains agent structure definition ieee11073_comm.h: contains definition of application

events, application Callback function pointer and function prototypes for communication layer

— ieee11073_dec.h: describes function prototypes for event report decoding functionality

— ieee11073_phd_types.h: defines all phdc structures for PHDC manager library
ieee11073_non_codes.h: contains the nomenclature codes used by IEEE_11073ieee11073_sl.h:
describes function prototypes for service layer

— type.h: define basic data type used for PHDC manager libraryieee11073_timer.h: defines time object
structure and function prototype serving time out functionality

— TransportLayer/TIL.h: defines communication callback function pointer and function prototype for
TIL layer

— TransportLayer/UsbShimManager.h: defines constants, structures, function prototypes used for SHIM
layer

• "Src sub-folder:
— Ieee11073/ieee11073_comm.c: implements all functions of communication layer. It deals with

analyzing APDU data from receive and send callback function called in lower level layer.

— Ieee11073/ieee11073_dec.c: implements all decoding functions: It supports to decode:

– Fix format

– Variable format

– Grouped format

 For

– Numeric class

IEEE 11073 Manager

MEDCONLIB Users Guide, Rev. 5

5-2 Freescale Semiconductor

– Real time sample array class

– Enumeration class

– MDS class
— ieee11073/ieee11073_sl.c: implement all service layer's functions which can be called by applications

— TransportLayer/TIL.c: implements TIL functions

— TransportLayer/USbShimManager.c: implements all functions of SHIM layer.

5.3 Module Usage/Aim
The PHDC Host class driver provides an interface to the USB Host controller, allowing the application
layer to handle the data exchange with the Agent using standard PHDC commands in the scope of
gathering the personal healthcare data.

The PHDC Host class provides the following functions:

• Manages a class interface with the connected device consisting in 3 communication pipes
corresponding to the attached device endpoints (1 Bulk IN, 1 Bulk OUT endpoint and 1 Interrupt
IN Endpoint)

• PHDC data sending with Metadata support.

• PHDC data receiving with Metadata support

• PHDC Send Class Request function with SET_FEATURE, CLEAR_FEATURE, GET_STATUS
requests supportSend Complete Event indication to the application layer

• Receive Complete Event indication to the application layer

• Send Control Requests Complete Event indication to the application layer

5.4 Functional description

5.4.1 MQX and Bare-Metal System Interraction

The PHDC Host class driver uses the MQX or bare-metal stack provided Host common API services in
order to access the USB bus and manage USB device communication. The Freescale MQX ™ USB Host
Stack provides an abstraction of the USB hardware controller consisting in:

• Host API

• Chapter9 API

• Common-Class API

IEEE 11073 Manager

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 5-3

Figure 5-1. PHDC Host class interaction with the MQX USB services

The following sub-chapters present the interaction between the Application / PHDC Class driver and the
used MQX USB layers.

5.4.2 MQX Host API

The MQX Host API is an abstraction of the host controller driver, providing interfaces independent of the
underlying USB controllers.

The PHDC Application / IEEE 11073 Manager is responsible of initializing the Host controller and handle
the USB attach and detach events issued by this layer.

The following MQX Host API services are used by the Application layer:

• _usb_host_init this function will initialize the USB Host stack. This function is called under
application control as the application can manage multiple interfaces.

IEEE 11073 Manager

MEDCONLIB Users Guide, Rev. 5

5-4 Freescale Semiconductor

The PHDC Host class is responsible of handle the Bulk / Interrupt data transfers with the connected device
using the MQX Host API pipe send / receive services:

• _usb_host_send_data this is a non blocking function that schedules a block of data for USB
transmission and registers a callback for the send data complete event. The PHDC class calls this
function following the Application request of sending a PHDC data (metadata or opaque data) to
the connected agent.

• _usb_host_recv_data this is a non blocking function that schedules an USB data reception and
registers a callback for the data received complete event. The PHDC class calls this function
following the Application request of interrogating the connected Agent for measurement data.

5.4.3 MQX Chapter 9 Services

The MQX Chapter 9 layer implements the dedicated services specific to the USB Ch9 commands.

The Application / IEEE 11073 Manager is responsible of handling the relevant Chapter 9 indication
events:

• USB_ATTACH_EVENT this event is sent to the application as the result of a PHDC device
connection to the Host. The application uses this event to select the PHDC class interface on the
Host (See the MQX Common Class)

• USB_DETACH_EVENT this event is sent to the application when the Device has disconnected
from the host.

The PHDC Host class driver uses the MQX Chapter 9 services to transmit PHDC Specific requests
(SET_FEATURE, CLEAR_FEATURE, GET_STATUS) using the control pipe:

• _usb_hostdev_cntrl_request this function is used by the MQX Ch9 Layer to process standard
USB, class or vendor specific control pipe device requests. The PHDC class uses this service to
send the PHDC class specific requests to the device and also USB standard requests as
CLEAR_FEATURE (ENDPOINT_HALT)

5.4.4 MQX Common-class Services

The MQX Common-Class layer implements the common-class USB specifications. It interacts with the
Host API as well as with the Chapter 9 layer in order to enumerate the attached device. After the device
descriptors are identified, the common class layer searches for applications that are registered for the class
or device plugged in.

The Application / IEEE 11073 Manager is responsible of handling the PHDC interface selection after the
device has attached and getting the full descriptors of the PHDC device for a proper identification of the
connected agent and QoS managing.

• _usb_hostdev_select_interface this function will select a new interface on the attached device,
open the pipes associated to that interface and create the pipe bundle. This function also initializes
the corresponding class driver by calling its registered initialization function. The application calls
this interface after receiving the USB_ATTACH_EVENT from the Host API in order to set the
PHDC interface and to initialize the PHDC class.

IEEE 11073 Manager

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor 5-5

The PHDC Host class driver uses the Common-Class services to collect the PHDC class specific
descriptors (QoS descriptor and the optional Metadata descriptor) for all the endpoints opened by the
attached device:

• _usb_hostdev_get_descriptor this function returns the requested descriptor based on the provided
descriptor type and descriptor index. The PHDC class calls this function in order to get the
identification information from the connected device, after receiving the USB_ATTACH event
from the Host API. The PHDC uses the PHDC specific descriptors in order to collect the data from
the connected agent with regards to the supported QoS.

5.5 System Decomposition

Figure 5-2. PHDC class module decomposition

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor A-1

Appendix A Working with the Software

A.1 Introduction
This chapter gives you insight on how to use the Medical Connectivity Library software. The following
sections are described in this chapter:

• Preparing the setup

• Building the application

• Running the application

Knowledge of CodeWarrior IDE will be helpful to understand this section. While reading this chapter,
practice the steps mentioned.

To take you through this chapter, USB Agent Demo for the MCS08JM60 is used as an example.

A.1.1 Preparing the Setup

A.1.1.1 Software Setup

Refer to Readme file for compatibility with Freescale USB Stack with PHDC.

To install Medical Connectivity Library software setup:

1. Double-click MEDCONLIB_SW.exe file..

2. The Freescale Medical Connectivity Library Setup window appears. The following example shows
the demonstration for Medical Connectivity Library 1.0 installation. You can follow the same
instructions for new versions.

Example:

1. Click on the Next button to continue with Medical Connectivity Library 1.0 installation.

Working with the Software

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor A-2

Figure A-1. Freescale Medical Connectivity Library 1.0 Setup Wizard

2. In Figure A-2, click on the I Agree button to accept the license agreement.

Figure A-2. Freescale Medical Connectivity Library 1.0 Setup License Agreement

3. In Figure A-3, select Medical Connectivity Library and PAN USB Agent demo application to
install and click on the Next button.

Working with the Software

MEDCONLIB Users Guide, Rev. 5

A-3 Freescale Semiconductor

Figure A-3. Freescale Medical Connectivity Library 1.0 Components

4. In Figure A-4, select the location of the folder where you require to install the Freescale Medical
Connectivity Library 1.0 software and click on the Install button.

Figure A-4. Freescale Medical Connectivity Library 1.0 Installation Folder Location

Working with the Software

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor A-4

CAUTION
Use the same destination folder where Freescale USB Stack with PHDC is
installed.

5. Click on the Finish button to successfully complete the Freescale Medical Connectivity Library
1.0 Setup Wizard.

Figure A-5. Freescale Medical Connectivity Library 1.0 Installation Finish

To launch the Medical Connectivity Library project:

1. Click Start > Programs > Freescale Medical Connectivity Library > Source.

Working with the Software

MEDCONLIB Users Guide, Rev. 5

A-5 Freescale Semiconductor

Figure A-6. Freescale Medical Connectivity Library Source Program for Launch

A.1.1.2 Hardware Setup

• Make the connections as shown in Figure A-7.

Figure A-7. Medical Connectivity Library USB Setup

— Make the first USB connection between the personal computer where the software is installed
and the DemoJM board where the silicon is mounted. This connection is required to provide
power to the board and downloading image to the flash.

— Make the second connection between the DemoJM board and the personal computer where
the demo is run.

Host Systems
running Windows XP

Host System running
CodeWarrior

USB for
Power and
CodeWarrior

Demo JM
boardUSB Demo

Connection

Working with the Software

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor A-6

NOTE
Although, we have used two personal computers in Figure A-7, in reality
you may achieve the same result by a single personal computer with two or
more USB ports.

A.1.2 Building the Application

The software for CFV1 is built using CodeWarrior 6.3. In addition, the software for CFV2 is built with
CodeWarrior 7.2. Therefore, it contains application project files that can be used to build the project.

Before starting the process of building the project, make sure CodeWarrior 6.3 is installed on your
computer.

To build the MC9S08JM60 project:

1. Navigate to the project file and open the s08usbjm60.mcp project file in CodeWarrior IDE.

Figure A-8. Open PAN.mcp Project File

2. After you have opened the project, the following window appears. To build the project, click the
button as shown in Figure A-9.

Working with the Software

MEDCONLIB Users Guide, Rev. 5

A-7 Freescale Semiconductor

Figure A-9. Build PAN.mcp Project

3. After the project is built, the code and data columns must appear filled across the files.

NOTE
You must follow the above procedure to build CFV1and CFV2 projects
also.

A.1.3 Running the Application

Refer to the board documentation and CodeWarrior manual for details on how to program the flash
memory on the evaluation board used. The following steps are presented as an example about how to run
the application with DemoJM60 board using a P&E-micro debugger.

1. To run the application, click the button as shown in Figure A-10.

Working with the Software

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor A-8

Figure A-10. Running the Application

2. The dialog box in Figure A-11 appears. Click on the Connect (Reset) button to connect to
hardware as shown in Figure A-11.

Working with the Software

MEDCONLIB Users Guide, Rev. 5

A-9 Freescale Semiconductor

Figure A-11. Connection Manager

3. The pop-up in Figure A-12 appears. Click on the Yes button to load the built image to the JM60
flash.

Figure A-12. Erase and Program Flash Pop-Up

4. The pop-up in Figure A-13 appears to erase and program the built image to the JM60 flash.

Working with the Software

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor A-10

Figure A-13. Image Programmed in Flash

5. After the image is programmed in the flash, the debugger window as shown in Figure A-14
appears. Click on the Green Arrow as shown in Figure A-14 to run the programmed image.

Figure A-14. Simulator and Real-Time Debugger

Working with the Software

MEDCONLIB Users Guide, Rev. 5

A-11 Freescale Semiconductor

A.2 Uninstall Freescale Medical Connectivity Library 1.0 Software
1. From your computer, click Start > Settings > Control Panel > Add or Remove Programs.

Figure A-15. Add or Remove Programs Launch from Control Panel

Working with the Software

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor A-12

2. In Figure A-16, select Freescale Medical Connectivity Library 1.0 and click on the
Change/Remove button.

Figure A-16. Add or Remove Programs

3. The uninstall confirmation message appears. Click on the Yes button to uninstall.

Figure A-17. Freescale Medical Connectivity Library 1.0 Uninstall Confirmation Message

4. A message box appears. Click on the Ok button to complete the uninstall operation.

Figure A-18. Freescale Medical Connectivity Library 1.0 Uninstall Completion Message

Working with the Software

MEDCONLIB Users Guide, Rev. 5

A-13 Freescale Semiconductor

A.3 Important Files
Table A-1 shows the programming files that contain source code and header files.

Table A-1. Important Files

Files Description

device\app\phdc_medical_library\AgentLi
b\include\error.h

This header file contains error codes.

device\app\phdc_medical_library\AgentLi
b\include\ieee11073_dimstruct.h

This header file defines DIM structures to be used by device specialization.

device\app\phdc_medical_library\AgentLi
b\include\ieee11073_nom_codes.h

This header file contains IEEE11073 Nomenclature Codes.

device\app\phdc_medical_library\AgentLi
b\include\ieee11073_phd_types.h

This header file contains IEEE11073 Structure definitions.

device\app\phdc_medical_library\AgentLi
b\include\mds_config.h

This header file contains Medical Connectivity Library configuration (DO NOT
CHANGE THIS FILE).

device\app\phdc_medical_library\AgentLi
b\include\MedAgentLibInterface.h

This header file contains Medical Connectivity Library Interface definitions.

device\app\phdc_medical_library\AgentLi
b\include\mempool.h

This header file contains Memory Management Interface.

device\app\phdc_medical_library\AgentLi
b\include\stack.h

This header file contains Buffer Stack Interface definitions.

device\app\phdc_medical_library\AgentLi
b\include\type.h

This header file contains basic data type definitions.

device\app\phdc_medical_library\AgentLi
b\include\TransportLayer\til.h

This header file contains TIL Interface definitions.

device\app\phdc_medical_library\AgentLi
b\include\TransportLayer\UsbShimAgent.
h

This header file contains USB Shim Agent Interface definitions.

device\app\phdc_medical_library\AgentLi
b\src\TransportLayer\UsbShimAgent.c

This source file contains USB Shim Agent Source.

device\app\phdc_medical_library\AgentLi
b\lib\Ieee11073AgentLibCfv1.lib

This is Medical Connectivity Library for CFV1 devices.

device\app\phdc_medical_library\AgentLi
b\lib\ Ieee11073AgentLibJm60.lib

This is Medical Connectivity Library for JM60 device.

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor B-1

Appendix B PAN USB Agent Demo
Personal healthcare application interacts with the host system using IEEE-11073 – 20601 and
(IEEE-11073 – 10415 (Weigh Scale), IEEE-11073 – 10407 (Blood Pressure Monitor), IEEE-11073 –
10417 (Glucose Meter), and IEEE-11073 – 10408 (Thermometer) protocol. To run this demo, a host
system is required that runs the same IEEE-11073 protocols. One example of such implementation is done
by Continua Alliance. In this demo, Continua Manager is used on the host system.

B.1 Setting Up the Demo
1. Set the systems as described in Section A.1.1.2, “Hardware Setup.”

2. Get the Continua Alliance (www.continuaalliance.org) CESL Reference Software V1.0 RC2.

3. Install the software on a host system

4. Program the JM60 flash with the PAN USB Agent Demo using CodeWarrior IDE. Refer to
Section A.1.2, “Building the Application” for more details.

NOTE
CESL reference software is not provided as part of the suite. You will have
to get this software independently from Continua Alliance.

B.2 Running the Demo
After the system has been set, you must follow these steps to run the demo:

1. Turn on the DemoJM board. Found New Hardware window appears.

www.continuaalliance.org

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

B-2 Freescale Semiconductor

Figure B-1. Found New Hardware Window

2. Select Install from a list or specific location (Advanced) option as shown in Figure B-1, and
click on the Next button. Search and installation options window appears as shown in Figure B-2.

Figure B-2. Search and Installation Options

3. Point the search path to the bin directory where the Continua CESL software was installed and
click on the Next button. The driver for the device will get installed.

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor B-3

Figure B-3. Installation Complete window

4. To verify the installation, open the device manager. You must see the Continua USB Interface
device entries.

Figure B-4. Continua USB Interface Device Entry in Device Manager

5. Launch the Continua Manager from Start > All Programs menu as shown in Figure B-5.

Figure B-5. Launch Continua Manager

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

B-4 Freescale Semiconductor

6. The Continua Manager GUI opens as shown in Figure B-5. Enter the name of the skim directory
and click on the Start Transport button.

Figure B-6. Host Entering Operating State

7. The Continua Manager now enters the Operating State using Extended Configuration
specialization. The Continua application window appears as shown in Figure B-7.

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor B-5

Figure B-7. Host Entering Operating State

8. After the host device is in operating state, Push Buttons on the device can be used to send weight
measurements to the host. Figure B-8 shows the function of these buttons.

Figure B-8. DemoJM Push Button Panel

9. Figure B-9 shows Domain Information Model screen of Manager. This screen describes Agent
Configuration.

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

B-6 Freescale Semiconductor

Figure B-9. Domain Information Model screen

10. When push button PTG1 is pressed, Blood Pressure measurement in Person Variable Format is
sent to host. Figure B-10 shows measurement data on host.

Figure B-10. Blood Preasure measurement in Person Variable Format

11. When push button PTG2 is pressed, Temperature measurement and Enumeration class
measurement in Fixed Format is sent to host. Figure B-11 shows measurement data on host.

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor B-7

Figure B-11. Temperature measurement and Enumeration class measurement in Fixed Format

12. To enable Episoidic Scanner Measurement, go to DIM tab and select Episoidic Scanner on
Continua Host. Click on Enable Scanning button.

Figure B-12. Enabling Episoidic Scanner

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

B-8 Freescale Semiconductor

13. Verify Episoidic Scanner is successfully enabled.

Figure B-13. Episoidic Scanner enabled

14. When push button PTG3 is pressed, Episoidic Scanner measurement is sent in Grouped Format to
host. Click on Device tab on Continua Host to see Episoidic Scanner data. Figure B-14 below
shows measurement data on the host. If Episoidic Scanner is not enabled, then no data is sent to
the host.

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor B-9

Figure B-14. Episoidic Scanner measurement

15. To disable Episoidic Scanner, go to DIM tab and select Episoidic Scanner on Continua Host.
Click on Disable Scanning button.

Figure B-15. Disabling Episoidic Scanner

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

B-10 Freescale Semiconductor

16. To enable Periodic Scanner Measurement, go to DIM tab and select Periodic Scanner on Continua
Host. Click on Enable Scanning button.

Figure B-16. Enabling Periodic Scanner

17. Verify Periodic Scanner is successfully enabled.

Figure B-17. Periodic Scanner enabled

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor B-11

18. Periodic Scanner data is automatically sent by agent. Click on Device tab on Continua Host.
Measurement data gets updated on screen periodically. Figure B-18 below shows sample Periodic
Scanner data.

Figure B-18. Periodic Scanner measurement

19. To disable Periodic Scanner, go to DIM tab and select Periodic Scanner on Continua Host. Click
on Disable Scanning button.

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

B-12 Freescale Semiconductor

Figure B-19. Disabling Periodic Scanner

20. To fetch PM Store information, go to DIM tab and select Temperature (Name of PM Store) as
shown in Figure B-20.

Figure B-20. PM Store Segment information

21. To fetch “seg2” data, click on seg2 and press Get Segment Data button.

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor B-13

Figure B-21. Fetch PM Segment data

22. PM Segment "seg2" data is displayed on Continua Host as shown in Figure B-22.

Figure B-22. PM Segment data

23. To delete PM Segment ("seg1"), click on seg1 and then press Clear Segment button on Continua
Host.

PAN USB Agent Demo

MEDCONLIB Users Guide, Rev. 5

B-14 Freescale Semiconductor

Figure B-23. PM Segment delete

24. After PM Segment is deleted, the Continua Manager is updated and "seg1" entry is removed.

Figure B-24. PM Segment delete verification

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor C-1

Appendix C PAN Serial Bridge Demo
The Serial Bridge demo demonstrates the PAN device demo working on a serial agent. The setup consists
of two EVB51JM128 boards. The PHDC Medical Connectivity Library runs on one board with a serial
agent. This device communicates with the Continua Host via Serial Bridge which is running on the other
board. Continua Host Software detects Serial Bridge Device as PHDC Medical Connectivity Library USB
Agent.

C.1 Setting Up the Demo
1. Set the systems as shown below in Figure C- 1. The Serial connection between the two

EVB51JM128 boards uses COM1 port.

Figure C-1. Hardware Setup

2. Get the Continua Alliance (www.continuaalliance.org) CESL Reference Software V1.0 RC2.

3. Install the software on a host system

4. Program EVB51JM128 flash of Board 1 with the PHDC Serial Agent Demo application using
CodeWarrior IDE.

5. Program the EVB51JM128 flash of Board 2 with the Serial Bridge demo application using
CodeWarrior IDE.

NOTE
CESL reference software is not provided as part of the suite. You will have
to get this software independently from Continua Alliance.

www.continuaalliance.org

PAN Serial Bridge Demo

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor C-2

C.2 Running the Demo
After the system has been set, you must follow these steps to run the demo:

1. Power ON Serial Agent (Figure C-1 board 1).

2. Power ON Serial bridge (Figure C-1 board 2).

3. To run the demo, follow the steps given in Section B.2, “Running the Demo.” The push buttons
used to send measurement data are that of the Serial Agent (Figure C-1 board 1). The Push button
panel of EVB51JM128 is shown below in Figure C-2.

Figure C-2. EVB51JM128 Push Button Panel

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor D-1

Appendix D PHDC Manager Demo Application

D.1 Setting up the demo

D.1.1 Hardware setup

This demo runs on M52259DEMO ColdFire board and follows the hardware setup below:

Figure D-1. PHDC Manager demo setup

D.1.2 Set up HyperTerminal to get log

To ensure that application run correctly, the HyperTerminal is used on the PC to get events from the device.
These steps are used to configure HyperTerminal:

1. Open HyperTerminal application as shown in Figure D-2

Figure D-2. Launch HyperTerminal application

2. The HyperTerminal opens as shown in Figure D-3. Enter the name of the connection and click on
the OK button.

PHDC Manager Demo Application

MEDCONLIB Users Guide, Rev. 5

D-2 Freescale Semiconductor

Figure D-3. Hyper Terminal

PHDC Manager Demo Application

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor D-3

3. The window shown in the following figure appears. Select the COM port.

Figure D-4. Connect using COM port

4. Configure the COM port baud rate and other properties as shown in Figure D-5

PHDC Manager Demo Application

MEDCONLIB Users Guide, Rev. 5

D-4 Freescale Semiconductor

Figure D-5. COM properties

5. The HyperTerminal is now configured as shown in Figure D-6

PHDC Manager Demo Application

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor D-5

Figure D-6. HyperTerminal

D.1.3 Running the demo

Perform the following steps to run demo:

1. Open and load the image of PHDC manager demo application to the board.

2. After the image has been loaded successfully, HyperTerminal appears as shown in Figure D-7

PHDC Manager Demo Application

MEDCONLIB Users Guide, Rev. 5

D-6 Freescale Semiconductor

Figure D-7. Using PHDC Manager Demo attached event

3. Plug a PHDC agent device into the board. The phdc device examples which is included in this
package can be used as PHDC agent device. The agent will be associated with manager and the
manager enters operating state.

Figure D-8. USB PHDC Manager Demo operating

PHDC Manager Demo Application

MEDCONLIB Users Guide, Rev. 5

Freescale Semiconductor D-7

	Medical Connectivity Library
	Chapter 1 Before You Begin
	1.1 About Medical Connectivity Library
	1.2 About This Book
	1.3 Reference Material
	1.4 Acronyms and Abbreviations
	1.5 Important Terms

	Chapter 2 Getting Familiar
	2.1 Introduction
	2.2 Software Suite
	2.3 Directory Structure

	Chapter 3 Medical Connectivity Library Architecture
	3.1 Architecture Overview
	3.2 Software Flows
	3.2.1 Initialization Flow
	3.2.2 Association Flow
	3.2.3 Send Measurement Data Flow
	3.2.4 Send Person Measurement Flow

	Chapter 4 Developing New Device Specialization
	4.1 Introduction
	4.2 Directory Structure
	4.3 Medical Connectivity Library Interfaces
	4.3.1 Data Proto List
	4.3.2 DIM Variable
	4.3.3 MDS Object
	4.3.4 Device Configuration
	4.3.5 Metric Object
	4.3.6 Numeric Object
	4.3.7 Real-Time Sample Array (RT-SA) Object
	4.3.8 Enumeration Object
	4.3.9 Scanner
	4.3.10 Configurable Scanner
	4.3.11 Episodic Configurable Scanner
	4.3.12 Periodic Configurable Scanner
	4.3.13 PM Store Object
	4.3.14 PM Segment Object

	4.4 Application Design
	4.4.1 Main Application Function
	4.4.2 Application Task
	4.4.3 Callback Function

	Chapter 5 IEEE 11073 Manager
	5.1 Introduction
	5.2 Folder structure
	5.3 Module Usage/Aim
	5.4 Functional description
	5.4.1 MQX and Bare-Metal System Interraction
	5.4.2 MQX Host API
	5.4.3 MQX Chapter 9 Services
	5.4.4 MQX Common-class Services

	5.5 System Decomposition

	Appendix A Working with the Software
	A.1 Introduction
	A.1.1 Preparing the Setup
	A.1.1.1 Software Setup
	A.1.1.2 Hardware Setup

	A.1.2 Building the Application
	A.1.3 Running the Application

	A.2 Uninstall Freescale Medical Connectivity Library 1.0 Software
	A.3 Important Files

	Appendix B PAN USB Agent Demo
	B.1 Setting Up the Demo
	B.2 Running the Demo

	Appendix C PAN Serial Bridge Demo
	C.1 Setting Up the Demo
	C.2 Running the Demo

	Appendix D PHDC Manager Demo Application
	D.1 Setting up the demo
	D.1.1 Hardware setup
	D.1.2 Set up HyperTerminal to get log
	D.1.3 Running the demo

