
QPP Programming Guide
Rev. <1.2> — 4 April 2018 Application note

Document information
Info Content
Keywords QPP Server, QPP client in Android, QPP client in IOS

Abstract This document demonstrates with example about how to create
application working as QPP server in BLE peripherals device and
application as QPP client role in BLE central device.

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

2 of 21

Revision history
Rev Date Description
0.1 20140519 Initial release

1.0 20150330 Merged programing in BLE, iOS client, Android client in one
document;
Migrated to NXP template.

1.1 20150925 Updated some description

1.2 20180404 Updated some description

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

3 of 21

Contact information
For more information, please visit: http://www.nxp.com

http://www.nxp.com/

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

4 of 21

Contents

Contents .. 3
1. Introduction ... 4
2. QPP Server .. 4
2.1 Project Example ... 4
2.2 Software Description .. 4
2.2.1 User Configuration ... 4
2.2.2 Initialization .. 4
2.2.3 Data Processing .. 4
2.3 API and Handler .. 5
2.3.1 qpps_init() .. 5
2.3.2 qpps_set_service_uuid() 5
2.3.3 app_qpps_create_db() 5
2.3.4 app_qpps_enable_req() 6
2.3.5 app_qpps_data_send() 6
2.3.6 app_qpps_create_db_cfm_handler () 7
2.3.7 app_qpps_disable_ind_handler () 7
2.3.8 app_qpps_error_ind_handler () 8
2.3.9 app_qpps_data_send_cfm_handler () 8
2.3.10 app_qpps_cfg_indntf_ind_handler () 8
2.3.11 app_qpps_data_ind_handler () 9
3. QPP Client Overview ... 10
3.1 Features ... 10
3.2 Overview ... 10
4. QPP Client Integration-Android 11
4.1 Flowchart .. 11
1.1 API and Callback Description 12
4.1.1 Class QppApi .. 13
4.1.2 Interface iQppCallback 14
4.2 Integration Note .. 15
4.2.1 Initialize ... 15
4.2.2 Rx Data ... 15
4.2.3 Tx Data ... 16
4.3 Example code ... 16
5. QPP Client Integration-IOS 16
5.1 Flowchart .. 16
5.2 API and Delegate Description 17
5.2.1 qppRegUUIDs() .. 17
5.2.2 qppSendData() ... 18
5.2.3 didQppReceiveData() 18
5.3 Integration Note .. 18
5.4 Example code ... 19
6. References ... 19
7. Legal information ... 20
7.1 Definitions ... 20
7.2 Disclaimers ... 20
7.3 Trademarks .. 20
8. List of figures ... 21

Contact information
For more information, please visit: http://www.nxp.com

http://www.nxp.com/

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

5 of 21

1. Introduction

The QPP (Proprietary Profile) is used to transfer the raw data between BLE devices.
This document demonstrates with example about how to create application
working as QPP server in BLE peripherals device and application as QPP client
role in BLE central device.

2. QPP Server

2.1 Project Example
The project can be opened with the following IAR and KEIL workspace file:
C:\QBlue\QN9020\QBlue-X.X.X\Projects\BLE\prj_qpps\iar\qpps.eww
C:\QBlue\QN9020\QBlue-X.X.X\Projects\BLE\prj_qpps\keil\qpps.uvproj

2.2 Software Description
The QPP application is implemented in the following files:

 app_qpps.c: Application QPPS API
 app_qpps_task.c: Task handling functions
 qpp.lib and qpps_task.h and qpp_common.h: QPP Profile

2.2.1 User Configuration
The following macro shall be defined in the ‘usr_config.h’.

 #define CFG_PRF_QPPS
 #define CFG_TASK_QPPS TASK_PRF8 (Mandatory)
 #define QPPS_NOTIFY_NUM 7(Max : 7 , Min :０)

2.2.2 Initialization

The initialization of the application occurs in two phases: Firstly, the qpps_init()
function is called by the profiles register function(prf_init_reg(prf_init)). This
function register QPPS task into kernel. Secondly, the
app_qpps_create_db(uint8_t char_num) function is called by the
app_create_server_service_DB() function. This function used to create server
service database, the application can define the number of Characteristics used
to send data to a client through notify.
NOTE: char_num: Max=7 Min = 0. If char_num increases, transmission speed
will be faster, but more and more space will be occupied.

2.2.3 Data Processing
The application has three data processing functions, app_qpps_data_send(),
app_qpps_data_send_cfm_handler() and app_qpps_data_ind_handler(). The
app_qpps_data_send() function is used by the application to send raw data. The
app_qpps_data_send_cfm_handler() function is used to report to the application
a confirmation. The app_qpps_data_ind_handler() function is used to handle the
data sent form peer device.

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

6 of 21

The diagrams below shows the relationships between APP and Profile:

Prototype:
void app_qpps_create_db (uint8_t char_num);

Parameters:

in param QPPS’s UUID

APP Profile

app_qpps_data_send() QPPS_DATA_SEND_REQ

app_qpps_data_send_cfm_handler() QPPS_DATA_SEND_CFM

Figure 1 Data Sending

APP Profile

QPPS_DAVA_VAL_IND

Figure 2 Data Receiving

2.3 API and Handler
2.3.1 qpps_init()

Prototype:
void qpps_init(void);

Description:
This function performs all the initializations of the QPPS module.

2.3.2 qpps_set_service_uuid()
Prototype:

void qpps_set_service_uuid(uint8_t param[ATT_UUID_128_LEN]);

Parameters:

Description:
This function should be called before adding QPP service into the database.

2.3.3 app_qpps_create_db()

in char_num The number of Characteristic used to send data

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

7 of 21

Response:
QPPS_CREATE_DB_CFM

Description:
This function shall be used to add an instance of the Proprietary Profile service
into the database. This should be done during the initialization phase of the
device.

Note:
Application can define the number of Characteristic used to send data to

client through notify.

2.3.4 app_qpps_enable_req()
Prototype:

void app_qpps_enable_req (uint16_t conhdl, uint8_t sec_lvl, uint8_t
con_type, uint16_t ntf_en).

Parameters:
in conhdl Connection handle
in sec_lvl Security level required for protection of HRS

attributes: Service Hide and Disable are not
permitted. Possible values are:

PERM_RIGHT_ENABLE
PERM_RIGHT_UNAUTH
PERM_RIGHT_AUTH

in con_ty
pe

Connection type: configuration(0) or
discovery(1)

in ntf_en Notification configuration

Response:
None

Description:
This function is used for enabling the Server role of the Proprietary service.

2.3.5 app_qpps_data_send()
Prototype:

void app_qpps_data_send (uint16_t conhdl, uint8_t index, uint8_t length,
uint8_t * data).

Parameters:
in conhdl Connection handle
in index Index of Characteristic to be sent
in length Length of data to be sent
in data Pointer to data to be sent

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

8 of 21

2.3.6 app_qpps_create_db_cfm_handler ()
Prototype:

int app_qpps_create_db_cfm_handler (ke_msg_id_t const msgid, struct
qpps_create_db_cfm * param, ke_task_id_t const dest_id, ke_task_id_t
const src_id)

Parameters:

Returns:
As it is a message handler, the related handling result for the message will

be saved in related ‘struct qpps_create_db_cfm * param’ depending on the
message was handled or not.

Description:
This handler will be triggered after a database creation. It contains status of

database creation.

2.3.7 app_qpps_disable_ind_handler ()
Prototype:

int app_qpps_disable_ind_handler (ke_msg_id_t const msgid, struct
qpps_disable_ind * param, ke_task_id_t const dest_id, ke_task_id_t const
src_id)

Parameters:

Response:
QPPS_DATA_SEND_CFM

Description:
This function is used by the application to send a raw data.

in msgid QPPS_CREATE_DB_CFM
in param struct qpps_create_db_cfm
in dest_id TASK_APP
in src_id TASK_QPPS

in msgid QPPS_DISABLE_IND
in param Pointer to the struct qpps_disable_ind
in dest_id TASK_APP
in src_id TASK_QPPS

Returns:
As it is a message handler, the related handling result for the message will

be saved in related ‘struct qpps_disable_ind * param’ depending on whether the
message was handled or not.

Description:

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

9 of 21

This handler is used to inform the Application of a correct disable. The
configuration that the client has set in ntf_en field must be conserved for
bonded devices.

2.3.8 app_qpps_error_ind_handler ()
Prototype:

int app_qpps_error_ind_handler (ke_msg_id_t const msgid, struct
qpps_error_ind * param, ke_task_id_t const dest_id, ke_task_id_t const
src_id)

Parameters:
in msgid QPPS_ERROR_IND
in param Pointer to the struct qpps_error_ind
in dest_id TASK_APP
in src_id TASK_QPPS

Returns:
As a message handler, the result will be saved in the related ‘struct
qpps_error_ind * param’ depending on whether the message was handled or
not.

Description:
This handler is used to inform the Application of an occurred error.

2.3.9 app_qpps_data_send_cfm_handler ()
Prototype:

int app_qpps_data_send_cfm_handler (ke_msg_id_t const msgid, struct
qpps_data_send_cfm * param, ke_task_id_t const dest_id, ke_task_id_t
const src_id)

Parameters:
in msgid QPPS_DATA_SEND_CFM
in param Pointer to the struct qpps_data_send_cfm
in dest_id TASK_APP
in src_id TASK_QPPS

Returns:
As a message handler, the result will be saved in the related ‘struct
qpps_error_ind * param’ depending on whether the message was handled or
not.

Description:
This handler is used to report to the application a confirmation or error status
of a notification request being sent by application.

2.3.10 app_qpps_cfg_indntf_ind_handler ()
Prototype:

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

9 of 21

Returns:
As it is a message handler, the related handling result for the message will
be saved in related ‘struct qpps_cfg_indntf_ind * param’ depending on the
message was handled or not.

Description:
This handler is used to inform application that peer device has changed
notification configuration.

2.3.11 app_qpps_data_ind_handler ()
Prototype:

int app_qpps_data_ind_handler (ke_msg_id_t const msgid, struct
qpps_data_val_ind * param, ke_task_id_t const dest_id, ke_task_id_t const
src_id)

Parameters:

Returns:
As it is a message handler, the related handling result for the message will
be saved in related ‘struct qpps_data_val_ind * param’ depending on the
message was handled or not.

Description:
This handler is used to handle the data sent form peer device.

int app_qpps_cfg_indntf_ind_handler (ke_msg_id_t const msgid, struct
qpps_cfg_indntf_ind * param, ke_task_id_t const dest_id, ke_task_id_t const
src_id)

Parameters:
in msgid QPPS_CFG_INDNTF_IND
in param Pointer to the struct qpps_cfg_indntf_ind
in dest_id TASK_APP
in src_id TASK_QPPS

in msgid QPPS_DAVA_VAL_IND
in param Pointer to the struct qpps_data_val_ind
in dest_id TASK_APP
in src_id TASK_QPPS

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

10 of 21

3. QPP Client Overview

The QPP (Proprietary Profile) is used to transfer the raw data between BLE
devices.
The libQBlueQPP library acts as QPP client role, which is used by application to
transfer and receive the raw data between BLE devices.

3.1 Features
Transmit free raw data between BLE devices. Single free raw data package
maximum length is 20bytes, minimal is 1byte.

3.2 Overview
The QPP client diagram consists of three parts:
App Layer:
 Send connection requests to BluetoothGatt, and configure API layer.
 Send data to API layer.
 Receive data from API layer.

API Layer:
 Receive data from App layer and deliver the data received to BluetoothGatt.
 Receive data from BluetoothGatt and deliver the data received to App layer.

BluetoothGatt Layer:
 Receive request from API layer.
 Update value to API layer.

The QPP client diagram for Android is shown in Figure 1

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

11 of 21

API

App

CoreBluetooth

Down
Data

Up
Data

Down
Data

Up
Data

Figure 3 QPP Client Diagram for Android

The QPP client diagram for iOS is shown in

Connection Connection
Request Delegate

Up
Data

Figure 4 QPP Client Diagram for iOS

Down
Data

Up
Data

QPP Profile

Down
Data

4. QPP Client Integration-Android

4.1 Flowchart
The QPP client general flowchart is the following:
 Scan BLE devices around.

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

12 of 21

 Establish a connection with the device which is built-in QPP profile server.
 Discover services and characteristics.
 Register user’s special UUIDs (including QPP service UUID and write

characteristic UUID), here you’d call the method: qppEnable.
 User receives data in the onQppReceiveData function, or sends data by the

QppSendData function.

QPP TX flowchart is shown in Figure 5:
App QPP Profile BluetoothGatt

QppSendData Send Data

QppSendData Send Data

Figure 5 QPP Client TX flowchart

QPP RX flowchart is shown in Figure 6:

App QPP Profile

onQppReceiveData

BluetoothGatt
Notify value for Characteristic

onQppReceiveData Notify value for Characteristic

Figure 6 QPP Client RX flowcharts

1.1 API and Callback Description

There are one public class QppApi and one interface iQppCallback in the
libQblueQpp library.
The class QppApi defines APIs. The interface iQppCallback declares callbacks.
There are five functions relevant: three API functions and two callback functions.
These API functions are responsible to enable register service’s UUIDs, transfer
data. These callback functions are used to receive data, get QPP service status.

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

13 of 21

4.1.1 Class QppApi
4.1.1.1 General Definition

4.1.1.2 API Description

public static boolean qppEnable()
Function public static boolean qppEnable(BluetoothGatt bluetoothGatt, String
qppServiceUUID, String writeCharUUID);
Brief Register customer’s UUIDs, in order to support customer’s devices using
customized QPP UUIDs.
Parameters:

In bluetoothGatt Android BluetoothGatt client handler
In qppServiceUUID UUID for QPP service in string

In writeCharUUID UUID for write Characteristic in string
Returns:

True The service is found and bluetoothGatt is not null.
False The service is not found or bluetoothGatt is null.

Note:
The qppServiceUUID must match the QPP UUID on the device side.

public static boolean qppSendData()
Function public static boolean qppSendData(BluetoothGatt bluetoothGatt, byte[]
qppData);
Brief Send raw data to QPP Profile.
Parameters:

In bluetoothGatt Android BluetoothGatt client handler
In qppData Data to send, the length should not be larger

than 20bytes
Returns:

True Argument is valid and sends data is successful.
False Argument is invalid or sends data is failed.

public static boolean setQppNextNotify ()
Function public static boolean setQppNextNotify(BluetoothGatt bluetoothGatt,

public class QppApi {
public static boolean qppEnable(BluetoothGatt bluetoothGatt, String

qppServiceUUID, String writeCharUUID);
public static boolean qppSendData(BluetoothGatt bluetoothGatt, byte[]

qppData);
public static boolean setQppNextNotify(BluetoothGatt bluetoothGatt, boolean

EnableNotifyChara);
public static void updateValueForNotification(BluetoothGatt bluetoothGatt,
BluetoothGattCharacteristic characteristic);
public static void setCallback(iQppCallback mCb);

};

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

14 of 21

public interface iQppCallback {
void onQppReceiveData(BluetoothGatt bluetoothGatt, String

qppUUIDForNotifyChar, byte[] qppData);
}

Returns:
True set characteristics is successful.
False set characteristics is failed.

public static boolean updateValueForNotification ()
Function public static void updateValueForNotification(BluetoothGatt
bluetoothGatt, BluetoothGattCharacteristic characteristic);
Brief Notify libQblueQpp that data have been received.
Parameters:

Returns:
None.

Note:
This function should be invoked in BluetoothGattCallback.

onCharacteristicChanged.

public void boolean setCallback ()
Function public static void setCallback(iQppCallback mCb);
Brief Set callback function handler.
Parameters:

Returns:
None.

4.1.2 Interface iQppCallback
General Definition

API Description

boolean EnableNotifyChara);
Brief Enable characteristics notification.
Parameters:

In bluetoothGatt Android BluetoothGatt client handler
In EnableNotifyChara ‘true’ to enable and ‘false’ to disable

In bluetoothGatt Android BluetoothGatt client handler
In characteristic Notify characteristic

In mCb iQppCallback object

void onQppReceiveData()
Function void onQppReceiveData(BluetoothGatt bluetoothGatt, String
qppUUIDForNotifyChar, byte[] qppData);
Brief Process the data that received from QPP Profile.
Parameters:

In bluetoothGatt Android BluetoothGatt client handler

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

15 of 21

In qppUUIDForNotifyChar UUID for notify characteristics.
Out qppData The received data from the notify

characteristics.
Returns:

None.

4.2 Integration Note
4.2.1 Initialize

4.2.1.1 Add ‘QppApi.qppEnable’ method
The method is used by the application to register user's UUIDs in order to
support customer’s devices using customized QPP UUIDs. The qppServiceUUID
must match the QPP UUID on the device side. Then profile discovery the
service, characteristic from bluetoothGatt and enable notification characteristics
to bluetoothGatt. The parameter bluetoothGatt is a connected BluetoothGatt.

Add this method in following function:

4.2.2 Rx Data
4.2.2.1 Add ‘QppApi.setQppNotify()’ method

This method is to enable the QPP notification characteristics.
Add this method in following function:

4.2.2.2 Add ‘QppApi.updateValueForNotification’ method
This method is to update value for notification characteristic.
Add this method in following function:

private final BluetoothGattCallback mGattCallback = new BluetoothGattCallback(){
{

… …
public void onServicesDiscovered(BluetoothGatt bluetoothGatt, int status) {

if(QppApi.qppEnable(bluetoothGatt, uuidQppService, uuidQppCharWrite))
isInitialize = true;

}
… …

}

public void onDescriptorWrite(BluetoothGatt bluetoothGatt, BluetoothGattDescriptor
descriptor, int status)

{
QppApi.setQppNextNotify(bluetoothGatt, true);

/// user code
}

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

16 of 21

4.2.2.3 Receive data
Refer to chapter 4.2.2 onQppReceiveData().

4.2.3 Tx Data
Call QppApi .qppSendData() to write data

4.3 Example code
There is one example named as ‘QPP_Android_xxx.zip’ in Collabnet which shows
how to use the lib‘libQBlueQPP.jar’
Qpp\libQBlueQpp\bin to transfer raw data between QN902x device and QPP client.

5. QPP Client Integration-iOS

5.1 Flowchart
The QPP general flowchart is the following:
 Register user’s special UUIDs (including QPP service UUID and write

characteristic UUID), here you’d call the method: qppRegUUIDs.
 Scan BLE peripherals around.
 Establish a connection with the device which is built-in QPP profile server.
 Discover services and characteristics.
 User receives data in the didQppReceiveData delegate function, or sends

data by the qppSendData function.

public void onCharacteristicChanged(BluetoothGatt bluetoothGatt,
BluetoothGattCharacteristic characteristic)
{

QppApi.updateValueForNotification(bluetoothGatt, characteristic);
/// user code

}

public void onCharacteristicWrite(BluetoothGatt bluetoothGatt,
BluetoothGattCharacteristic

characteristic,int status)
{

handlersend.postDelayed(runnableSend,20);
}

private Handler handlersend = new Handler();

final Runnable runnableSend = new Runnable()
{

public void run ()
{
QppApi.qppSendData(bluetoothGatt, qppDataSend);

}
};

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

17 of 21

QPP TX flowchart is shown in Figure 7:
App QPP Profile CoreBluetooth

qppSendData Send Data

qppSendData Send Data

Figure 7 QPP TX flowchart

QPP RX flowchart is shown in Figure 8:

App QPP Profile CoreBluetooth
Update value for Characteristic

Update value for Characteristic

Figure 8 QPP RX flowchart

5.2 API and Delegate Description

These functions consist of two API functions and one delegate function. API
functions implement to register user’s UUIDs and to transfer data, delegate
function used to receive data.

5.2.1 qppRegUUIDs()
Prototype:
(void)qppRegUUIDs : (NSString *)qppServiceUUID

withWrChar : (NSString *)writeCharUUID

Parameters:
in qppServiceUUID UUID for QPP service in string

in writeCharUUID UUID for write Characteristic in string

Returns:
None.

Description: The method is used by the application to register user's UUIDs in
order to support customer’s devices using customized QPP UUIDs. The
qppServiceUUID must match the QPP UUID on the device side. The method is
called before discovery procedure.

didQppReceiveData

didQppReceiveData

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

18 of 21

5.2.2 qppSendData()
Prototype:
(void)qppSendData : (CBPeripheral *)aPeripheral

withData : (NSData*)qppData;

Parameters:
in aPeripheral The peripheral must be built-in QPP profile server
in qppData The raw data

Returns:
None.

Description: The function is used by application to send raw data to QPP
Profile.

5.2.3 didQppReceiveData()
Prototype:
(void)didQppReceiveData : (CBPeripheral *)aPeripheral

withCharUUID : (CBUUID *)qppUUIDForNotifyChar
withData : (NSData *)qppData;

Parameters:
Out aPeripheral The data received is from the peripheral.
Out qppUUIDForNotifyChar The UUID for notify characteristics.
Out qppData The data received is from the notify

characteristics.

Returns:
None.

Description: The function is used by application to process the data received from
QPP Profile.

5.3 Integration Note
a) Please insert the “bleDidUpdateCharForQppService” delegate method in

the didDiscoverCharacteristicsForService delegate. The delegate is to
update write characteristic and notify characteristic for QPP service.

- (void) peripheral : (CBPeripheral *)aPeripheral
didDiscoverCharacteristicsForService : (CBService *)service error : (NSError

*)error
{

/// for QPP profile delegate
[bleUpdateForQppDelegate bleDidUpdateCharForQppService :

aPeripheral

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

19 of 21

withService : aService
error : error];

/// user code
……

}

b) Please insert the “bleDidUpdateValueForQppChar” delegate method in the
“didUpdateValueForCharacteristic” delegate. The delegate is to update
value for notification characteristic.

- (void) peripheral:(CBPeripheral *)aPeripheral
didUpdateValueForCharacteristic:(CBCharacteristic *)characteristic
error:(NSError *)error
{

for (CBService *aService in aPeripheral.services)
{

[bleUpdateForQppDelegate
bleDidUpdateValueForQppChar : (CBPeripheral*)aPeripheral

withService : (CBService *)aService
withChar : (CBCharacteristic *)characteristic

error : (NSError *)error];
/// user code
……

}
}

5.4 Example code
There is an example iOS project named ‘QPP_IOS_xxx.zip’ in Collabnet. It shows
how to use the libQBlueQPP library to implement transfer raw data between
QN902x device and QppDemo.

6. References

Included with QBlue-X.X.X Release. The QBlue-X.X.X software has been installed to the
default path ‘C:\QBlue\QBlue-X.X.X’:
[1] C:\QBlue\QN9020\QBlue-X.X.X\ Documents\

QN9020 Device Database for IDE User Manual v1.0.pdf
[2] C:\QBlue\QN9020\QBlue-X.X.X\ Documents\QN9020 API Programming Guide
v1.0.pdf

[3] QN9020 Software Developer's Guide v1.5.pdf

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

20 of 21

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

7.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

QPP Programming Guide NXP Semiconductors

UM10997

Application note
All information provided in this document is subject to legal disclaimers.

Rev. <1.2> — 4 April 2018
© NXP Semiconductors N.V.2018. All rights reserved.

21 of 21

8. List of figures

Figure 1 Data Sending .. 5
Figure 2 Data Receiving.. 5
Figure 3 QPP Client Diagram for Android 11
Figure 4 QPP Client Diagram for iOS 11
Figure 5 QPP Client TX flowchart 12
Figure 6 QPP Client RX flowcharts 12
Figure 7 QPP TX flowchart ... 17
Figure 8 QPP RX flowchart ... 17

	QPP Programming Guide
	Contents
	1. Introduction
	2. QPP Server
	2.1 Project Example
	2.2 Software Description

	3. QPP Client Overview
	3.1 Features
	3.2 Overview

	4. QPP Client Integration-Android
	4.1 Flowchart
	4.2 Integration Note
	4.3 Example code

	5. QPP Client Integration-iOS
	5.1 Flowchart
	5.2 API and Delegate Description
	5.3 Integration Note
	5.4 Example code

	6. References
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Trademarks

	8. List of figures

