
Freescale USB Host Stack
Users Guide

Document Number: USBHOSTUG
Rev. 6

03/2012

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© 1994-2008 ARC™ International. All rights reserved.

© Freescale Semiconductor, Inc. 2010–2012. All rights reserved.

Document Number: USBHOSTUG
Rev. 6
03/2012

USBHOST Users Guide, Rev. 6

Freescale Semiconductor iii

Revision history

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be
the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
© Freescale Semiconductor, Inc., 2010–2012. All rights reserved.

Revision
Number

Revision
Date Description of Changes

Rev. 1 04/2010 Launch release.

Rev. 2 06/2010
• Added support for CFV2 devices.
• Rebranded Medical Applications USB Stack Host to Freescale USB Stack

with PHDC Host.

Rev. 3 09/2010
• Added support for CodeWarrior 10
• Fig 2-1: Freescale USB Stack with PHDC — Host Directory Structure

updated

Rev. 4 01/2011 • Added Audio Host demo

Rev. 5 07/2011
• Updated document name to USBHOSTUG.
• Updated figures in Appendix A

Rev. 6 03/2012

• Added chapters “FAT File System” and “AppendixJ_FATFS_Demo_Test”
• Replaced the term "Freescale USB Stack with PHDC" with "Freescale USB

Stack"
• Updated Installer screenshots
• Editorial Changes

http://www.freescale.com

USBHOST Users Guide, Rev. 6

Freescale Semiconductor iv

Chapter 1
Before You Begin

1.1 About Freescale USB Stack — Host Architecture .1
1.2 About this book .1
1.3 Reference material .1
1.4 Acronyms and abbreviations .2
1.5 Important terms .2

Chapter 2
Getting Familiar

2.1 Introduction .3
2.2 Software suite .3
2.3 Directory structure .3

Chapter 3
Freescale USB Stack — Host Architecture

3.1 Architecture overview .5
3.2 Host application .5
3.3 Class-driver library .6
3.4 Common-class API .6
3.5 USB Chapter 9 API .7
3.6 Host API .8
3.7 KHCI (Host Controller Interface) .8

Chapter 4
Developing Applications

4.1 Background .9
4.2 Developing an application .9

4.2.1 Create a project .9
4.2.2 Define a driver info table .11
4.2.3 Main application function flow .13

4.2.3.1 Initializing hardware .13
4.2.3.2 Initializing the host controller .13
4.2.3.3 Register services .13
4.2.3.4 Run the process task .13

4.2.4 Event callback function .14
4.2.5 Selecting an interface on the device .16
4.2.6 Retrieving and storing pipe handles .16
4.2.7 Sending/receiving data to/from device .16

Chapter 5
FAT File System

5.1 Introduction .19

USBHOST Users Guide, Rev. 6

v Freescale Semiconductor

5.2 File Allocation Table Overview .19
5.3 Software Module .21

5.3.1 USB FATFS Feature .21
5.3.2 Module license .21

5.4 Directory structure .22
5.5 USB FATFS Architecture .22
5.6 Architecture overview .22
5.7 FATFS Module overview .23

5.7.1 FATFS APIs .23
5.7.2 Disk I/O interface .23

5.8 Developing Applications for FATFS .24
5.8.1 Background .24
5.8.2 Configuration options .24
5.8.3 Create a project .29

Appendix A
Working with the Software

A.1 Introduction .31
A.1.1 Preparing the setup .31

A.1.1.1Software setup .31
A.1.1.2Hardware setup .34

A.1.2 Building the application with CodeWarrior 6 and CodeWarrior 7 35
A.1.3 Running the application with CodeWarrior 6 .38
A.1.4 Building and running the application with CodeWarrior 1040

A.2 Set up HyperTerminal to get log .44
A.3 Uninstall Freescale USB Stack Software .48

Appendix B
Human Interface Device (HID) Demo

B.1 Setting up the demo .51
B.2 Running the demo .51

B.2.1 Mouse demo .52
B.2.2 Keyboard demo .54
B.2.3 Mouse and keyboard demo .57

Appendix C
Virtual Communication (COM) Demo

C.1 Setting up the demo .59
C.2 Running the demo .59

Appendix D
Mass Storage Device (MSD) Demo

D.1 Setting up the demo .63
D.2 Running the demo .63

USBHOST Users Guide, Rev. 6

Freescale Semiconductor vi

Appendix E
Audio Host Demo

E.1 Setting up the demo .65
E.1.1 Hardware setup .65
E.1.2 Set up HyperTerminal to get log .66
E.1.3 Running the demo .69

Appendix F
USB FAT File System Demo

F.1 Setting up the demo .75
F.2 Running the demo .75

F.2.1 Mouse demo .75
F.3 FATFS Test Application .82

F.3.1 Setting up the demo .82
F.3.2 Running the demo .82

F.3.2.1Test Group 1 .83
F.3.2.2Test Group 2 .86
F.3.2.3Test Group 3 .87

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 1

Chapter 1 Before You Begin

1.1 About Freescale USB Stack — Host Architecture

Universal Serial Bus, commonly known as USB, is a serial bus protocol that can be used to connect
external devices to the host computer. In today’s world, it is one of the most popular interfaces connecting
devices such as microphones, keyboards, storage devices, cameras, printers, and many others. USB
interconnects are also becoming more and more popular in the medical segments.

1.2 About this book

This book describes the Freescale USB Stack — Host Architecture class functionality. The following table
shows the summary of chapters included in this book.

1.3 Reference material

Use this book in conjunction with:

• Freescale USB Stack API Reference Manual (document USBAPIRM)

• USB Host source code

• ColdFire V2 USB Device Source Code

Table 1-1. USBHOSTUG summary

Chapter Title Description

Before You Begin This chapter provides the prerequisites for reading this book.

Getting Familiar This chapter provides the information about the Freescale USB stack with PHDC
software suite.

Freescale USB stack with PHDC —
Host Architecture

This chapter discusses the architecture design of the Freescale USB suite.

Developing applications This chapter provides the steps a developer must take to develop applications on
top of the pre-developed classes.

Working with the software This chapter provides the steps to building, running the applications.

Human Interface Device (HID)
Demo

This chapter provides the setup and running HID demo for CFV1 and CFV2
processors.

Virtual Communication (COM)
Demo

This chapter provides the setup and running CDC demo for CFV1 and CFV2
processors.

Mass Storage Device (MSD) Demo This chapter provides the setup and running MSD demo for CFV1 and CFV2
processors.

USB Audio Host Demo This chapter provides the setup and running the USB Audio Host demo

Before You Begin

USBHOST Users Guide, Rev. 6

2 Freescale Semiconductor

We assume that you are familiar with the following reference material:

• USB Specification Revision 1.1

• USB Specification Revision 2.0

• USB Device Class Definition for Audio Devices Revision 1.1

• MCF52259 Reference Manual

• CodeWarrior Help

1.4 Acronyms and abbreviations

1.5 Important terms

The following table shows the terms used throughout the book.

Table 1-2. Acronyms and abbreviations

API Application Programming Interface

CDC Communication Device Class

CFV1 ColdFire V1 (MCF51JM128 CFV1 device is used in this
document)

CFV2 ColdFire V2 (MCF52221 and MCF52259 CFV2 devices are
used in this document)

COM Communication

HID Human interface device

IDE Integrated development environment

KHCI Host Controller Interface

MSD Mass storage device

PC Personal computer

TR Transfer Request

USB Universal Serial Bus

Table 1-3. Important terms

Term Description

Class Driver These offer a generic control interface for a family of devices.

Enumerate A process in the USB protocol by which the host identifies the
devices connected to it.

USB Low Level
Drivers

USB low level drivers are the driver software layers that
interface with hardware and abstract them for the class drivers.

USB Chapter 9
Request

These are the framework requests made by the host to the
device that the device must respond to. These are defined in
Chapter 9 of the USB specification document.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 3

Chapter 2 Getting Familiar

2.1 Introduction

The Freescale USB Stack — Host Architecture contains the low level driver code, commonly used class
drivers, and some basic applications. This document intends to help you gain an insight into the stack and
capabilities to develop your own classes and applications. It is targeted for firmware application
developers who would like to develop the applications using USB as the transport.

2.2 Software suite

The software suite comprises the USB low level drivers for the CFV1 and CFV2 families, generic class
drivers, and applications. The class drivers are programmed with generic code, so they can be used with
other processors like CFV1 and CFV2 if the low level drivers comply with the driver interface.

2.3 Directory structure

The software suite has a standard directory structure. You can extend it easily to accommodate more
applications, classes, and low level drivers for different processor families.

The following figure shows the directory structure:

Getting Familiar

USBHOST Users Guide, Rev. 6

4 Freescale Semiconductor

Figure 2-1. Freescale USB Stack — Host Directory Structure

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 5

Chapter 3 Freescale USB Stack — Host Architecture

3.1 Architecture overview

The purpose of the Freescale USB Stack — Host Architecture is to provide an abstraction of the USB
hardware controller core. A software application written using the USB host API can run on full speed or
low speed core with no information about the hardware. In the USB, the host interacts with the device
using logical pipes. After the device is enumerated, a software application needs the capability to open and
close the pipes.

After a pipe is opened with the device, the software applications can queue transfer in either direction and
is notified with the transfer result through an error status. In short, the communication between host and
device is done using logical pipes that are represented in the stack as pipe handles. Figure 3-1 shows each
of the blocks as part of the host API.

Figure 3-1. USB Host Architecture

3.2 Host application

A host embedded application software (also called a device driver) is implemented for a target device or
a class of devices. The Freescale USB Host Stack comes with examples for a few classes of devices.

Host application

Class driver library

Common class

Ch9 API

Host API

KHCI host controller interface

Freescale USB Stack — Host Architecture

USBHOST Users Guide, Rev. 6

6 Freescale Semiconductor

Application software can use API routines to start and stop communication with a USB bus. It can suspend
the bus or wait for a resume signal for the bus.

3.3 Class-driver library

The class-driver library is a set of wrapper routines that can be linked into the application. These routines
implement standard functionality of the class of device, defined by USB class specifications. It is
important to note that even though a class library can help in reducing some implementation effort at the
application level, some USB devices do not implement class specifications, making it extremely difficult
to write a single application code that can talk to all the devices.

3.4 Common-class API

Common-class API is a layer of routines that implements the common-class specification of the USB. This
layer interacts with the host API layer function. It is difficult to say which routines belong to this layer. It
is a deliberate design attempt to reuse routines to minimize the code size.

Routines inside the common-class layer take advantage of the fact that in USB all devices are enumerated
with the same sequence of commands. When a USB device is plugged into the host hardware, it generates
an interrupt, and the lower-level driver calls the common-class layer to start the device. Routines inside
the common-class layer allocate memory, assign the USB address, and enumerate the device. After the
device descriptors are identified, the common-class layer searches for applications that are registered for
the class or device plug-in.

The following figure illustrates how device plug-in works.

Freescale USB Stack — Host Architecture

USBHOST Users Guide, Rev. 6

7 Freescale Semiconductor

Figure 3-2. How devices are attached and detached

3.5 USB Chapter 9 API

The USB specification document includes chapter 9, which is dedicated to a standard command protocol
implemented by all USB devices. Every USB device is required to respond to a certain set of requests from
the host. This is a low-level API that implements all USB chapter 9 commands. All customer applications
can be written to use only this API without the common-class API or class libraries.

The USB chapter 9 commands are outside the scope of this document and require a good familiarity with
USB protocol and higher level abstraction of USB devices. Here are some of the example routines that are
implemented by this API. See the source code for implementation details.

• usb_host_ch9_dev_req() — For sending control pipe setup packets.

• _usb_ch9_clear_fearture() — For a clear feature USB command.

• _usb_host_ch9_get_descriptor() — For receiving descriptors from device.

Freescale USB Stack — Host Architecture

USBHOST Users Guide, Rev. 6

8 Freescale Semiconductor

3.6 Host API

The Host API is the hardware abstraction layer of the Freescale USB host. This layer implements routines
independent of underlying USB controllers. For example, usb_host_init() initializes the host controller by
calling the proper hardware-dependent routine. Similarly usb_host_shutdown() shuts down the proper
hardware host controller. Here are the architecture functions implemented by this layer.

• Allocating pipes from a pool of pre-allocated pipe memory structures when
usb_host_open_pipe() is called.

• Maintaining a list of all transfers pending per pipe. This is used in freeing memory when the pipe
is closed.

• Maintaining a list of all services (callbacks) registered with the stack. When a specific hardware
event such as attach and detach occurs, this layer generates a callback and informs the upper layers.

• Providing routines to cancel USB transfers by calling hardware-dependent functions.

• Providing other hardware-control routines such as the ability to shut down the controller, suspend
the bus, and so on.

A good understanding of the source inside the API layer can be developed by reading the API routine and
tracing it to the hardware drivers.

3.7 KHCI (Host Controller Interface)

KHCI is a completely hardware-dependent set of routines responsible for queuing and processing of USB
transfers and searching for hardware events. Source understanding of this layer requires understanding of
hardware.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 9

Chapter 4 Developing Applications

4.1 Background

In the USB system, the host software controls the bus and talks to the target devices under the rules defined
by the specification. A device is represented by a configuration that is a collection of one or more
interfaces. Each interface comprises one or more endpoints. Each endpoint is represented as a logical pipe
from the application software perspective.

The host application software registers for services with the USB host stack and describes the callback
routines inside the driver info table. When a USB device is connected, the USB host stack driver
enumerates the device automatically and generates interrupts for the application software. One interrupt
per interface is generated on the connected device. If the application must talk to an interface, it can select
that interface and receive the pipe handles for all the endpoints. Refer to Freescale USB S tack with PHDC
Host API Reference Manual (Freescale document USBHOSTAPIRM) with the source code example to see
what routines are called to find pipe handles. After the application software receives the pipe handles, it
can start communication with the pipes. If the software must interact with another interface or
configuration, it can call the appropriate routines again to select another interface.

The USB host stack is a few lines of code executed before starting communication with the USB device.
Examples on the USB stack can be written with only a host API. However, most examples supplied with
the stack are written using class drivers. Class drivers work with the host API as a supplement to the
functionality. They make it easy to achieve the target functionality (see example sources for detail) without
dealing with the implementation of standard routines. The following code steps are taken inside a host
application driver for any specific device.

4.2 Developing an application

4.2.1 Create a project

Perform these steps to develop a new application:

1. To develop a new application, create an application sub-directory under /host/app directory.

Developing Applications

USBHOST Users Guide, Rev. 6

10 Freescale Semiconductor

Figure 4-1. Create directory for application

2. Copy the usb_classes.h file from similar pre-existing applications. usb_classes.h is used to define
classes that are used in an application.

Example: If you want to create an application that uses HID and HUB, you can define them as:
#define USBCLASS_INC_HID
#define USBCLASS_INC_HUB

3. Create the CodeWarrior directory where the project files for a new application can be created.

Figure 4-2. Create CodeWarrior project and usb_classes.h file

4. Create new files for creating the main application function and the callback.

Figure 4-3. Create header and code file

— The new_app.h file contains application types and definitions:

Examples:

Define states of device:
/* Used to initialize USB controller */
#define MAX_FRAME_SIZE 1024
#define HOST_CONTROLLER_NUMBER 0

#define HID_BUFFER_SIZE 4

#define USB_DEVICE_IDLE (0)
#define USB_DEVICE_ATTACHED (1)
#define USB_DEVICE_CONFIGURED (2)
#define USB_DEVICE_SET_INTERFACE_STARTED (3)

Developing Applications

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 11

#define USB_DEVICE_INTERFACED (4)
#define USB_DEVICE_SETTING_PROTOCOL (5)
#define USB_DEVICE_INUSE (6)
#define USB_DEVICE_DETACHED (7)
#define USB_DEVICE_OTHER (8)

/*
** Following structs contain all states and pointers
** used by the application to control/operate devices.
*/

typedef struct device_struct {
 uint_32 DEV_STATE; /* Attach/detach state */
 _usb_device_instance_handle DEV_HANDLE;
 _usb_interface_descriptor_handle INTF_HANDLE;
 CLASS_CALL_STRUCT CLASS_INTF; /* Class-specific info */
} DEVICE_STRUCT, _PTR_ DEVICE_STRUCT_PTR;

/* Alphabetical list of Function Prototypes */

#ifdef __cplusplus
extern "C" {
#endif

void usb_host_hid_recv_callback(_usb_pipe_handle, pointer, uchar_ptr,
uint_32,
 uint_32);
void usb_host_hid_ctrl_callback(_usb_pipe_handle, pointer, uchar_ptr,
uint_32,
 uint_32);
void usb_host_hid_mouse_event(_usb_device_instance_handle,
 _usb_interface_descriptor_handle, uint_32);

#ifdef __cplusplus
}
#endif

— The new_app.c file contains driver informations, callback functions, event functions, and main
function.

4.2.2 Define a driver info table

A driver information table defines devices that are supported and handled by this target application. This
table defines the PID, VID, class, and subclass of the USB device. The host/device stack generates an
attached callback when a device matches this table entry. The application now can communicate with the
device. The following structure defines one member of the table. If the Vendor-Product pair does not match
for a device, Class, Subclass, and Protocol are checked to match. Use 0xFF in Subclass and Protocol struct
member to match any Subclass/Protocol.

/* Information for one class or device driver */
typedef struct driver_info
{

Developing Applications

USBHOST Users Guide, Rev. 6

12 Freescale Semiconductor

 uint_8 idVendor[2]; /* Vendor ID per USB-IF */
 uint_8 idProduct[2]; /* Product ID per manufacturer */
 uint_8 bDeviceClass; /* Class code, 0xFF if any */
 uint_8 bDeviceSubClass; /* Sub-Class code, 0xFF if any */
 uint_8 bDeviceProtocol; /* Protocol, 0xFF if any */
 uint_8 reserved; /* Alignment padding */
event_callback attach_call; /* event callback function*/
} USB_HOST_DRIVER_INFO, _PTR_ USB_HOST_DRIVER_INFO_PTR;

The following is a sample driver info table. See the example source code for samples. Note the following
table defines all HID MOUSE devices that are boot subclasses. A terminating NULL entry in the table is
always created for search end.

Because two classes (HID and HUB) are used in the HID MOUSE application, the DriverInfoTable
variable has three elements. There are two event callback functions for two classes:
usb_host_hid_keyboard_event for HID class and usb_host_hub_device_event for HUB class.

/* Table of driver capabilities this application wants to use */
static USB_HOST_DRIVER_INFO DriverInfoTable[] = {
 {
 {0x00, 0x00}, /* Vendor ID per USB-IF */
 {0x00, 0x00}, /* Product ID per manufacturer */
 USB_CLASS_HID, /* Class code */
 USB_SUBCLASS_HID_BOOT, /* Sub-Class code */
 USB_PROTOCOL_HID_KEYBOARD, /* Protocol */
 0, /* Reserved */
<add the name of your event callback function here>
 usb_host_hid_keyboard_event /* Application call back function */
 },
 /* USB 1.1 hub */
 {
 {0x00, 0x00}, /* Vendor ID per USB-IF */
 {0x00, 0x00}, /* Product ID per manufacturer */
 USB_CLASS_HUB, /* Class code */
 USB_SUBCLASS_HUB_NONE, /* Sub-Class code */
 USB_PROTOCOL_HUB_LS, /* Protocol */
 0, /* Reserved */
<add the name of your event callback function here>
 usb_host_hub_device_event /* Application call back function */
 },
 {
 {0x00, 0x00}, /* All-zero entry terminates */
 {0x00, 0x00}, /* driver info list. */
 0,
 0,
 0,
 0,
 NULL},
}

Developing Applications

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 13

4.2.3 Main application function flow

In the main application function, it is necessary to follow these steps:

1. Initializing hardware

2. Initializing the host controller

3. Registering service

4. Calling tasks in a forever loop

4.2.3.1 Initializing hardware

The first step to run an application is hardware initialization. It is necessary to initialize the processor
(mode and clock), SCI (to use UART), and real-time clock (to use some delay functions).

4.2.3.2 Initializing the host controller

The second step required to act as a host is to initialize the stack in a host mode. This allows the stack to
install a host interrupt handler and initialize the necessary memory required to run the stack. The following
example illustrates this:

status = _usb_host_init(HOST_CONTROLLER_NUMBER, /* Use value in header file */
 MAX_FRAME_SIZE, /* Frame size per USB spec */
 &host_handle); /* Returned pointer */

The second argument (MAX_FRAME_SIZE) in the above code is the size of the periodic frame list. Full
speed customers can ignore this argument.

4.2.3.3 Register services

Once the host is initialized, the USB host stack is ready to provide services. An application can register for
services as documented in Freescale USB Stack Host API Reference Manual (document
USBHOSTAPIRM). The host API document describes how the application is registered for this device
because the driver info table already registers a callback routine. The following example shows how to
register for a service on the host stack:

/*
 ** since we are going to act as the host driver, register the driver
 ** information for wanted class/subclass/protocols
 */
 status = _usb_host_driver_info_register(host_handle, DriverInfoTable);
 if(status != USB_OK) {
 printf("\nDriver Registration failed. STATUS: %x", status);
 fflush(stdout);
 exit(1);
 }

4.2.3.4 Run the process task

The last step in the main application function is to call _usb_khci_task() and the application task. These
tasks are called in the forever loop.

Developing Applications

USBHOST Users Guide, Rev. 6

14 Freescale Semiconductor

for(;;) {
 <User call the application task here>
 _usb_khci_task();
 __RESET_WATCHDOG(); /* feeds the dog */
 } /* loop forever */

4.2.4 Event callback function

After the software has registered the driver info table and register for other services, it is ready to handle
devices. In the USB Host stack, customers do not have to write any enumeration code. As soon as the
device is connected to the host controller, the USB Host stack enumerates the device and finds how many
interfaces are supported. Also, for each interface it scans the registered driver info tables and finds which
application has registered for the device. It provides a callback if the device criteria matched the table. The
application software has to choose the interface. You can implement the event callback function as follows:

void usb_host_hid_keyboard_event(
/* [IN] pointer to device instance */
_usb_device_instance_handle dev_handle,
/* [IN] pointer to interface descriptor */
_usb_interface_descriptor_handle intf_handle,
/* [IN] code number for event causing callback */
uint_32 event_code)

{
INTERFACE_DESCRIPTOR_PTR intf_ptr = (INTERFACE_DESCRIPTOR_PTR) intf_handle;
switch (event_code) {

case USB_ATTACH_EVENT:
case USB_CONFIG_EVENT:
<Add your code here>
break;

case USB_INTF_EVENT:
<Add your code here>
break;

case USB_DETACH_EVENT:
<Add your code here>
break;

 }
}

Here is sample code for the HID MOUSE application. In this code, the hid_device variable contains all
states and pointers used by the application to control/operate the device:

void usb_host_hid_keyboard_event(
 /* [IN] pointer to device instance */
 _usb_device_instance_handle dev_handle,
 /* [IN] pointer to interface descriptor */
 _usb_interface_descriptor_handle intf_handle,
 /* [IN] code number for event causing callback */
 uint_32 event_code)
{
 INTERFACE_DESCRIPTOR_PTR intf_ptr = (INTERFACE_DESCRIPTOR_PTR) intf_handle;

Developing Applications

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 15

 fflush(stdout);
 switch (event_code) {

 case USB_ATTACH_EVENT:
 printf("----- Attach Event -----\r\n");
 /* Drop through config event for the same processing */
 case USB_CONFIG_EVENT:
 printf("State = %d", hid_device.DEV_STATE);
 printf(" Class = %d", intf_ptr->bInterfaceClass);
 printf(" SubClass = %d", intf_ptr->bInterfaceSubClass);
 printf(" Protocol = %d\r\n", intf_ptr->bInterfaceProtocol);
 fflush(stdout);

 if(hid_device.DEV_STATE == USB_DEVICE_IDLE) {
 hid_device.DEV_HANDLE = dev_handle;
 hid_device.INTF_HANDLE = intf_handle;
 hid_device.DEV_STATE = USB_DEVICE_ATTACHED;
 }
 else {
 printf("HID device already attached\r\n");
 fflush(stdout);
 }
 break;

 case USB_INTF_EVENT:
 printf("----- Interfaced Event -----\r\n");
 hid_device.DEV_STATE = USB_DEVICE_INTERFACED;
 break;

 case USB_DETACH_EVENT:
 /* Use only the interface with desired protocol */
 printf("\r\n----- Detach Event -----\r\n");
 printf("State = %d", hid_device.DEV_STATE);
 printf(" Class = %d", intf_ptr->bInterfaceClass);
 printf(" SubClass = %d", intf_ptr->bInterfaceSubClass);
 printf(" Protocol = %d\r\n", intf_ptr->bInterfaceProtocol);
 fflush(stdout);

 hid_device.DEV_HANDLE = NULL;
 hid_device.INTF_HANDLE = NULL;
 hid_device.DEV_STATE = USB_DEVICE_DETACHED;
 break;
 }

 /* notify application that status has changed */
 _usb_event_set(&USB_Event, USB_EVENT_CTRL);
}

Developing Applications

USBHOST Users Guide, Rev. 6

16 Freescale Semiconductor

NOTE

The example shows how a mouse can be connected to the host directly or
using a hub. However, the hid_device global structure limits this usage to
one single device. It will not work with multiple devices connected through
the hub.

4.2.5 Selecting an interface on the device

If the interface handle has been obtained, application software can select the interface that a retrieve pipe
handles. The following code demonstrates this procedure:

case USB_DEVICE_ATTACHED:
printf("Keyboard device attached\n");
hid_device.DEV_STATE = USB_DEVICE_SET_INTERFACE_STARTED;
status = _usb_hostdev_select_interface(hid_device.DEV_HANDLE,
hid_device.INTF_HANDLE, (pointer) & hid_device.CLASS_INTF);
if(status != USB_OK) {

printf("\nError in _usb_hostdev_select_interface: %x", status);
fflush(stdout);
exit(1);

}
break;

As internal information, usb_hostdev_select_interface caused the stack to allocate memory and to do the
necessary preparation to start communicating with this device. This routine opens logical pipes and
allocates bandwidths on periodic pipes. This allocation of bandwidths can be time-consuming under
complex algorithms.

4.2.6 Retrieving and storing pipe handles

If the interface has been selected, pipe handles can be retrieved by calling as shown in this example:

pipe = _usb_hostdev_find_pipe_handle(hid_device.DEV_HANDLE,
hid_device.INTF_HANDLE, USB_INTERRUPT_PIPE, USB_RECV);

In this code, pipe is a memory pointer that stores the handle (see code example for details). Note that this
routine specified the type of pipe retrieved. The code shows how to communicate with a mouse that has
an interrupt to obtain the pipe handle for the interrupt pipe.

4.2.7 Sending/receiving data to/from device

The USB packet transfers on the USB software function in terms of transfer requests (TR). A similar term
in Windows and Linux is URB. In Windows, drivers keep sending URBs down the stack and wait for
events or callbacks for USB completion. There is one callback or event per URB completion. The USB
stack concept is the same except that the fields inside a TR can be different. A TR is a memory structure
that describes a transfer in its entirety. The USB stack provides a helper routine called
usb_hostdev_tr_init() that can be used to initialize a TR. Every TR down the stack has a unique number
assigned by the tr_init() routine. The following code example shows how this routine is called:

usb_hostdev_tr_init(&tr, usb_host_hid_recv_callback, NULL);

Developing Applications

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 17

The routine takes the tr pointer to the structure that needs to be initialized and the name of the callback
routine that is called when this TR completes. An additional parameter can be supplied that is called back
when TR completes. The user can throw away TR immediately after it was used in _usb_host_recv_data.
The reason is that TR is copied to the pipe handle. The user does not need to save all the information
because a copy is already used for the USB stack, so perhaps the best method is to allocate TRs on the
stack.

After TR is initialized and the pipe handle is available, it is easy to send and receive data to the device.
USB devices that use periodic data need a periodic call to send or receive data. It is recommended to use
timers to ensure that a receive or send data call is done in a timely manner, so the packets to and from the
device are not lost. These USB driver design details are outside the scope of this document. The following
code provides an example of how the data is received.

status = _usb_host_recv_data(host_handle, pipe, &tr);

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 19

Chapter 5 FAT File System

5.1 Introduction

The FATFS module is developed based on MSD host class of Freescale USB Stack Software Suite. Its
architecture contains USB driver code, disk I/O interface functions, FAT APIs, and some applications. This
document intends to help you gain an insight into the File Allocation Table and capabilities to develop your
own applications. The document is targeted for firmware application developers who would like to
develop the applications using FATFS file system module.

5.2 File Allocation Table Overview

The mass storage media is organized logically as a Master Boot Record and several partitions. Figure 5-1
describes the logical structures of a mass storage medium.

Figure 5-1. Logical structure of mass storage media

The Master Boot Record is located at sector zero. It contains three items: an area for executable code, a
partition table, and a boot signature. The partition table enables defining one or more partitions, or logical
volumes, in the storage media. Many devices have just one volume. The partition table in the MBR sector
has room for four 16-byte entries that specify the sectors that belong to a partition.

A FAT partition composed of four different sections as shown in the following figure.

M aster B oot R ecord

F irst P rim ary Partition

Second P rim ary P artition (optiona l)

Th ird P rim ary P artition (op tiona l)

Extended Partition 1

Extended Partition 2

Extended Partition N

FAT File System

USBHOST Users Guide, Rev. 6

20 Freescale Semiconductor

Figure 5-2. FAT partition structure

• Reserved Region These sectors are located at the very beginning. The first reserved sector (sector
0) is the Boot Sector (Partition Boot Record). It includes an area called the BIOS Parameter Block
(with some basic file system information, in particular its type, and pointers to the location of the
other sections) and usually contains the operating system's boot loader code. The total count of
reserved sectors is indicated by a field inside the Boot Sector. For FAT32 file systems, the reserved
sectors include a File System Information Sector at Sector 1 and a Backup Boot Sector at Sector 6.

• FAT Region. This typically contains two copies of the File Allocation Table for the sake of
redundancy checking, although the extra copy is rarely used, even by disk repair utilities. These
are maps of the Data Region, indicating which clusters are used by files and directories. In FAT16
and FAT12, they immediately follow the reserved sectors.

• Root Directory Region. This is a Directory Table that stores information about the files and
directories located in the root directory. It is only used with FAT12 and FAT16, and imposes on the
root directory a fixed maximum size which is pre-allocated at creation of this volume. FAT32 stores
the root directory in the Data Region, along with files and other directories, allowing it to grow
without such a constraint. Therefore, for FAT32, the Data Region starts here.

• Data Region. This is where the actual file and directory data is stored and takes up most of the
partition. The size of files and subdirectories can be increased arbitrarily (as long as there are free
clusters) by simply adding more links to the file's chain in the FAT. Note that the files are allocated
in units of clusters, so if a 1 KB file resides in a 32 KB cluster, 31 KB are wasted. FAT32 typically
commences the Root Directory Table in cluster number 2, the first cluster of the Data Region.

FAT uses little endian format for entries in the header and the FAT(s).

Reserved Region

FAT Region

Root Directory Region (FAT12/16 only)

Data Region (for files and directories)

Boot Sector

FS Information Sector (FAT32 only)

More reserved sectors (optional)

File Allocation Table #1

File Allocation Table #2

/wiki/Boot_sector
/wiki/BIOS_parameter_block
/wiki/Boot_loader
/wiki/Endianness

FAT File System

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 21

5.3 Software Module

5.3.1 USB FATFS Feature

The USB FATFS software module uses class MSD’s APIs of Freescale USB Stack Host to access mass
storage device. The module supports:

• FAT sub-types: FAT12, FAT16, and FAT32

• Number of open files: Unlimited, depends on available memory

• Multi-partition: Number of volumes (up to 10)

• File size: Depends on FAT specs (up to 4 GB)

• Volume size: Depends on FAT specs (up to 2 TB on 512 bytes/sector)

• Cluster size: Depends on FAT specs (up to 64 KB on 512 bytes/sector)

• Sector size: Depends on FAT specs (up to 4 KB)

• Long file name support in ANSI/OEM or Unicode

• Multiple ANSI/OEM code pages including DBCS

• Code size reduction depending on user configuration

The class drivers are programmed with generic code, so they can be used with other processors if standard
SCSI commands are provided like MSD class of the Freescale USB Host Stack.

5.3.2 Module license

FATFS is an open source module. It follows the BSD-style license. Redistributions of source code must
retain the following copyright notice.

Because, FATFS is for embedded projects, the conditions for redistributions in binary form, such as
embedded code, hex file, and binary library are not specified to increase its usability. The documentation
of the distributions need not include FATFS and its license notice.

/*--/
/ FATFS - FAT file system module R0.08b (C)ChaN, 2011
/---/
/ FATFS module is a generic FAT file system module for small embedded systems.
/ This is a free software that opened for education, research and commercial
/ developments under license policy of following terms.
/
/ Copyright (C) 2011, ChaN, all right reserved.
/
/ * The FATFS module is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/ personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/---/

FAT File System

USBHOST Users Guide, Rev. 6

22 Freescale Semiconductor

5.4 Directory structure

The software module has a standard directory structure. You can extend it easily to accommodate more
applications for different processor families.

Figure 5-3 shows the directory structure:

Figure 5-3. MSD FATFS with Freescale USB Host Stack directory structure

5.5 USB FATFS Architecture

This chapter provides an overview of USB FATFS architecture and its software flow.

5.6 Architecture overview

The architecture of USB FATFS is shown in the following figure.

FAT File System

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 23

Figure 5-4. FATFS Architecture

The remainder of the document describes only the FATFS module. For more information about the host
stack structure and functionality or about the demo application for the different USB classes, refer to the
Freescale USB Stack Host Users Guide (document USBHOSTUG).

5.7 FATFS Module overview

5.7.1 FATFS APIs

The FATFS APIs layer implements file system APIs such as f_open, f_read, f_writes, and so on. This layer
is independent with USB Host Stack. It uses Disk I/O interface to communicate with mass storage device.
The set of APIs is divided into four groups:

1. Group of APIs that operates with logical volume or partition.

2. Group of APIs that operates with directory.

3. Group of APIs that operates with file.

4. Group of APIs that operates with both file and directory.

APIs of FATFS are listed in Section 5.8.2, “Configuration options.”

5.7.2 Disk I/O interface

The Disk I/O Interface consists of six APIs that are used by FATFS API to access and manage data in mass
storage device. To confirm with FATFS APIs, the functions must follow the prototype described in section
Disk I/O Interface of FatFs Generic File System Module document. The layer operates with USB Host

http://elm-chan.org/fsw/ff/00index_e.html

FAT File System

USBHOST Users Guide, Rev. 6

24 Freescale Semiconductor

Stack via three SCSI commands: READ10, WRITE10, and READ CAPACITY that are implemented on
Host stack.

The following table lists the APIs of Disk I/O Interface layer.

5.8 Developing Applications for FATFS

5.8.1 Background

FATFS module contains various configuration options. Therefore, this chapter provides information to
help user select proper options depending on his requirement to reach the highest performance. Moreover,
how to create a new FATFS project is also mentioned here.

5.8.2 Configuration options

The following table shows the options for module size reduction.

Table 5-1. Disk I/O interface APIs

APIs Descriptions

disk_initialize Initialize disk drive

disk_status Get disk status

disk_read Read data sector(s) from mass storage device

disk_write Write data sector(s) to mass storage device

disk_ioctl Get information about sector size, sector count and physical volume size.

get_fattime Get current time of system.
At this time, system time utility has not been implemented, so that the function always returns to a fixed
date.

Table 5-2. Module size reduction options

API
_FS_MINIMIZE

_FS_READ
ONLY

_USE_STR
FUNC

_FS_RPATH
_USE_MKF

S
_USE_FOR

WARD

0 1 2 3 0 1 0 1 0 1 2 0 1 0 1

f_mount

f_open

f_close

f_read

f_write x

f_sync x

f_lseek x

f_opendir x x

f_readdir x x

FAT File System

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 25

x- API is removed

f_stat x x x

f_getfree x x x x

f_truncate x x x x

f_unlink x x x x

f_mkdir x x x x

f_chmod x x x x

f_utime x x x x

f_remane x x x x

f_chdir x

f_chdrive x

f_getcwd x x x

f_mkfs x

f_forward x

f_putc x x

f_puts x x

f_printf x x

f_gets x

f_eof

f_error

f_tell

f_size

Table 5-2. Module size reduction options

API
_FS_MINIMIZE

_FS_READ
ONLY

_USE_STR
FUNC

_FS_RPATH
_USE_MKF

S
_USE_FOR

WARD

0 1 2 3 0 1 0 1 0 1 2 0 1 0 1

FAT File System

USBHOST Users Guide, Rev. 6

26 Freescale Semiconductor

Other configuration options for FATFS module are described in the following table.

Table 5-3. General FATFS configuration options

Feature Option Value Description

Multi-partitions

_VOLUMES 1 to 4 Number of volumes to be used

_MULTI_PARTITIO
N

0 Disable multi-partitions feature

1 Enable multi-partitions feature

Memory
access

_WORD_ACCESS
0 Retrieve data from FAT volume byte by byte

1 Retrieve data from FAT volume word by word

Open
multi-files

_FS_SHARE
integer Number of files can be opened simultaneously for write

Memory size _FS_TINY

0 FATFS uses the sector buffer in the system for file data transfer.
This reduces memory consumption 512 bytes each file object

1 FATFS uses a sector buffer for the individual file object for file
data transfer

Sector size _MAX_SS
512, 1024,
2048, 4096

Maximum sector size to be handled

FAT File System

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 27

Long File Name

_CODE_PAGE

437 Used U.S. (OEM)

720 Used Arabic (OEM)

737 Used Greek (OEM)

775 Used Baltic (OEM)

850 Used Multilingual Latin 1 (OEM)

858 Used Multilingual Latin 1 + Euro (OEM)

852 Used Latin 1 (OEM)

855 Used Cyrillic (OEM)

866 Used Russian (OEM)

857 Used Turkish (OEM)

862 Used Hebrew (OEM)

874 Used Thai (OEM, Windows)

1 ASCII only (valid for non - LFN configuration)

1250 Used Central Europe (Windows)

1251 Used Cyrillic (Windows)

1252 Used Latin 1 (Windows)

1253 Used Greek (Windows)

1254 Used Turkish (Windows)

1255 Used Hebrew (Windows)

1256 Used Arabic (Windows)

1257 Used Baltic (Windows)

1278 Used Vietnam (OEM, Windows)

_USE_LFN

0 Disable LFN feature. _MAX_LFN and _LFN_UNICODE have no
effect

1 Enable LFN with static working buffer on the BSS

2 Enable LFN with dynamic working buffer on the STACK

3 Enable LFN with dynamic working buffer on the HEAP

-MAX_LFN 12 to 255 Maximum LFN length to handle

_LFN_UNICODE
0 The character code set on FATFS APIs is ANSI/OEM

1 The character code set on FATFS APIs is Unicode

_FS_RPATH
0 Disable relative path

1 Enable relative path

Table 5-3. General FATFS configuration options (continued)

Feature Option Value Description

FAT File System

USBHOST Users Guide, Rev. 6

28 Freescale Semiconductor

NOTE

Some USB sticks may pass check_fs() function because the boot signature
in the BIOS parameter block may differ from 0xAA55 (offset 0x1FE) and
also because "FAT" string differs for FAT12/16 (offset 0x36) or for FAT32
(0x52). This is an indication that the file system was not properly formatted
to FAT.

Multi-partitions

_VOLUMES 1 to 4 Number of volumes to be used

_MULTI_PARTITIO
N

0 Disable multi-partitions feature

1 Enable multi-partitions feature

Memory
access

_WORD_ACCESS
0 Retrieve data from FAT volume byte by byte

1 Retrieve data from FAT volume word by word

Open
multi-files

_FS_SHARE
integer Number of files can be opened simultaneously for write

Memory size _FS_TINY

0 FATFS uses the sector buffer in the system for file data transfer.
This reduces memory consumption 512 bytes each file object

1 FATFS uses a sector buffer for the individual file object for file
data transfer

Sector size _MAX_SS
512, 1024,
2048, 4096

Maximum sector size to be handled

Table 5-3. General FATFS configuration options (continued)

Feature Option Value Description

FAT File System

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 29

5.8.3 Create a project

Perform these steps to develop a new application:

1. Create a new project under /host/examples/msd_mfs_generic/codewarrior or /host/examples/
msd_mfs_generic/cw10 directory.

Figure 5-5. Create a new project

2. Add ccsbcs.h, diskio.h, diskio.c, ff.h, ff.c, ffconf.h, main.c, usb_class.h, msd_fat_demo.c, and
other files to the created project similar to the pre-existing FATFS applications.

3. Modify FATFS module options in the file ffconf.h.

4. Modify FATFS application task in the file msd_fat_demo.c (fat_demo function) as you want.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 31

Appendix A Working with the Software

A.1 Introduction

This chapter gives you insight on how to use the USB Stack with PHDC software. The following sections
are described in this chapter:

• Preparing the setup

• Building the application

• Running the application

Knowledge of CodeWarrior IDE will be helpful to understand this section. While reading this chapter,
practice the steps mentioned.

A.1.1 Preparing the setup

A.1.1.1 Software setup

1. Double-click the Freescale_USB_Stack_v[current version].exe installer executable.

2. The Freescale USB Stack Setup window appears as shown in the following figure. Click on the
Next button to continue.

Figure A-1. Freescale USB Stack Setup Wizard

Working with the Software

USBHOST Users Guide, Rev. 6

32 Freescale Semiconductor

3. In the following figure, click on the I Agree button to accept the license agreement.

Figure A-2. Freescale USB Stack setup license agreement

4. In the following figure, select USB low level stack and other class components to install and click
on the Next button.

Figure A-3. Freescale USB Stack components

5. In the following figure, select the location of the folder where you want to install the Freescale USB
Stack software and click on the Install button.

Working with the Software

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 33

Figure A-4. Freescale USB Stack installation folder location

6. Click on the Finish button to successfully complete the Freescale USB Stack Setup Wizard.

Figure A-5. Freescale USB Stack installation finish

Working with the Software

USBHOST Users Guide, Rev. 6

34 Freescale Semiconductor

7. Click Start  Programs  Freescale USB Stack  Source  USB Host to launch the project.

Figure A-6. Freescale USB Stack source program for launch

A.1.1.2 Hardware setup

Set up the connections as shown in the following figure.

Working with the Software

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 35

Figure A-7. Coldfire V1 and V2 USB setup

1. Make the first USB connection between the personal computer where the software is installed and
the DemoJM board where the silicon is mounted. This connection is required to provide power to
the board and for downloading the image to the flash.

2. Make the second connection between the DemoJM board and the personal computer, to display the
log of DemoJM.

3. Make the third connection between the device and DemoJM.

A.1.2 Building the application with CodeWarrior 6 and CodeWarrior 7

The host software for CFV1 is built with CodeWarrior 6.3. In addition, the host software for CFV2 is built
with CodeWarrior 7.2. Therefore, it contains application project files that can be used to build the project.

Before starting the process of building the project, make sure CodeWarrior 6.3 is installed on your
computer.

To build the ColdFire V1 project:

1. Navigate to the project file and open cfv1jm128_xxx.mcp project file in CodeWarrior IDE.

Host System running

CodeWarrior

Host System

d isplaying log

USB for Power and

CodeWarrior

COM connection

Dev ice connection

Working with the Software

USBHOST Users Guide, Rev. 6

36 Freescale Semiconductor

Figure A-8. Open cfv1jm128_xxx.mcp project file

Working with the Software

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 37

2. After you have opened the project, the following window appears. To build the project, click the
button as shown in the following figure.

Figure A-9. Build a project

3. After the project is built, the code and data columns must appear filled across the files.

NOTE

Use the above mentioned steps to build the CFV2 projects also.

Working with the Software

USBHOST Users Guide, Rev. 6

38 Freescale Semiconductor

A.1.3 Running the application with CodeWarrior 6

Refer to the board documentation and CodeWarrior manual for details on how to program the flash
memory on the evaluation board used. The following steps are presented as an example about how to run
the application with DemoJM128 board using a P&E-micro debugger.

1. To run the application, click the button as shown in the following figure.

Figure A-10. Running the application

Working with the Software

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 39

2. Click the Connect (Reset) button to connect to hardware, as shown in the following figure.

Figure A-11. Connection manager

3. The pop-up in the following figure shows the progress while erasing and programming the built
image to JM128 flash.

Figure A-12. Erasing and programming window

Working with the Software

USBHOST Users Guide, Rev. 6

40 Freescale Semiconductor

4. The pop-up in the following figure shows the progress while loading the built image to JM128
flash.

Figure A-13. Loading window

5. After the built image is loaded in the flash, the debugger window shown in the following figure
appears. Click on the green arrow as shown to run the programmed image.

A.1.4 Building and running the application with CodeWarrior 10

The software for CFV1 and CFV2 targets is available to be build, download and debug using the
CodeWarrior 10 MCU.

Before starting the process of building the project, make sure CodeWarrior 10 MCU is installed on your
computer.

Working with the Software

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 41

To build the S08/CFV1/CFV2 project:

1. Navigate to the project folder (cfv1usbjm128) and locate the CodeWarrior10 project file (.project).

2. Open the project by dragging the .project file and dropping it into the CodeWarrior 10 project
space.

Working with the Software

USBHOST Users Guide, Rev. 6

42 Freescale Semiconductor

3. After you have opened the project, the following window appears. To build the project choose
"Build Project" from the Project menu.

NOTE

You must follow the above procedure to build CFV2 projects also.

Working with the Software

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 43

4. To run the application, first locate the CFV1JM128 Flash.launch configuration in the current
project space. Right-click it and choose Debug As > 1 CFV1JM128 Flash as in the window below.

Working with the Software

USBHOST Users Guide, Rev. 6

44 Freescale Semiconductor

5. After the image is programmed in the flash, the debugger window appears as shown in the next
figure. Click on the Green arrow in the Debug tab to run the image.

A.2 Set up HyperTerminal to get log

To ensure that applications run correctly, the HyperTerminal is used on your computer to get events from
the devices that connect to the CFV1 and CFV2. These steps are used to configure HyperTerminal:

1. Open HyperTerminal applications as shown in the following figure.

Working with the Software

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 45

Figure A-14. Launch HyperTerminal application

2. The HyperTerminal opens as shown in the following figure. Enter the name of the connection and
click on the OK button.

Figure A-15. HyperTerminal GUI

Working with the Software

USBHOST Users Guide, Rev. 6

46 Freescale Semiconductor

3. The window shown in the following figure appears. Select the COM port identical to the one that
shows up on the device manager.

Figure A-16. Connect using COM1

4. Configure the virtual COM port baud rate and other properties as shown in the following figure.

Figure A-17. COM1 properties

Working with the Software

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 47

5. Configure the HyperTerminal as shown in the following figure. Click on the OK button to submit
changes.

Figure A-18. Configure COM1_115200 — HyperTerminal

6. The HyperTerminal is now configured.

Figure A-19. COM1_115200 is configured

Working with the Software

USBHOST Users Guide, Rev. 6

48 Freescale Semiconductor

A.3 Uninstall Freescale USB Stack Software
1. From your computer, click Start  Settings  Control Panel  Add or Remove Programs.

Figure A-20. Launch “Add or Remove Programs” from Control Panel

Working with the Software

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 49

2. In the Windows Control Panel “Add/Romove Programs” Toolselect Freescale USB Stack and
click on the Change/Remove button.

3. The uninstall confirmation message appears. Click on Yes button to uninstall.

Figure A-21. Freescale USB Stack uninstall confirmation message

4. A message box appears. Click on the OK button to complete the uninstall operation.

Figure A-22. Freescale USB Stack uninstall completion message

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 51

Appendix B Human Interface Device (HID) Demo

B.1 Setting up the demo

Figure B-1. HID demo setup

The preceding figure shows the HID demo setup. The DemoJM is used as the USB host. DemoJM is
connected to the first personal computer using USB cables. This computer is used to supply power to the
board and is used to program the image to the flash. DemoJM is also connected to the second personal
computer via a COM port. This computer is used to log events happening in the USB host. The device
(mouse or keyboard) is connected to DemoJM. Although the proceeding figure shows two computers, the
connection can also be achieved using only one computer.

B.2 Running the demo

The HID project is located in \Freescale USB Stack\Source\USB Host\HID Class Demo Apps.

There are three applications of HID classes:

• Mouse

• Keyboard

• Keyboard and mouse

Host System running

CodeWarrior

Host System

displaying log

USB for Power and

CodeWarrior

COM connection

Device connection

Human Interface Device (HID) Demo

USBHOST Users Guide, Rev. 6

52 Freescale Semiconductor

B.2.1 Mouse demo

Perform the following steps to run the mouse demo:

1. Open and load the image of mouse applications to the board.

2. After the image has been loaded successfully, HyperTerminal appears as shown in the following
figure.

Figure B-2. USB Host waiting for mouse attachment event

Human Interface Device (HID) Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 53

3. Plug the mouse into the board. The Hyperterminal screen appears as shown in the following figure.

Figure B-3. Mouse attached

4. When events are implemented (click right mouse, click left mouse, and so on), they are registered
as shown in the following figure.

Figure B-4. Events from mouse

Human Interface Device (HID) Demo

USBHOST Users Guide, Rev. 6

54 Freescale Semiconductor

5. Unplug the mouse from the board. HyperTerminal displays a message as shown in the following
figure.

Figure B-5. Mouse detached

B.2.2 Keyboard demo

Perform the following steps to run the keyboard demo:

1. Open and load the image to the board.

6. Run the demo. First, the USB host waits for the device attachment event. The HyperTerminal
displays a message as shown in the following figure.

Human Interface Device (HID) Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 55

Figure B-6. USB host waiting for keyboard attachment event

2. Plug in keyboard. HyperTerminal shows a message as in the following figure.

Figure B-7. Keyboard attached

3. Type some characters. The hexadecimal format of these characters will be displayed in
HyperTerminal as shown in the following figure.

Human Interface Device (HID) Demo

USBHOST Users Guide, Rev. 6

56 Freescale Semiconductor

Figure B-8. Characters from keyboard

NOTE

The HyperTerminal shows only the ASCII code, in hexadecimal, of each
character.

4. Unplug the keyboard. The HyperTerminal shows a message as shown in the following figure.

Human Interface Device (HID) Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 57

Figure B-9. Keyboard detached

B.2.3 Mouse and keyboard demo

This application combines the two above. It supplies a convenient choice for users by allowing them to
alternate which HID device (the mouse or the keyboard) they want to work with.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 59

Appendix C Virtual Communication (COM) Demo
The USB-to-serial demo implements the Abstract Control Model (ACM) subclass of the USB CDC class,
enabling the serial port applications on the host PC to transmit and receive serial data over the USB port.

C.1 Setting up the demo

Set up the system as described in Appendix B “Human Interface Device (HID) Demo.” To run this demo,
a CDC device is necessary.

In this demo, the data entered from the keyboard is echoed and displayed in HyperTerminal. The data flow
in the CDC demo is shown in the following figure.

Figure C-1. Data flow

C.2 Running the demo

To run the CDC demo, perform the following steps.

1. Open the CDC demo project and load the image to the board.

The CDC application project is located in \Freescale USB Stack\Source\USB Host\CDC Class
Demo Apps.

2. Connect COM1 of the board to the PC, using the steps shown in Section A.2, “Set up
HyperTerminal to get log.”

3. Run the demo. The HyperTerminal displays a message as shown in the following figure.

COM on PC
CDC Host
(DemoJM)

CDC Device

Send a Character

Send received character from COM

Echo received character

Send character from CDC Device

Virtual Communication (COM) Demo

USBHOST Users Guide, Rev. 6

60 Freescale Semiconductor

Figure C-2. USB Host waits for CDC device plug-in

6. Plug in the CDC device to the CDC host (board). HyperTerminal shows the message seen in the
following figure.

Virtual Communication (COM) Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 61

Figure C-3. Device information

4. Disconnect COM1 from PC, connect COM2 to PC, and type something on the keyboard. The result
is echoed and displayed in HyperTerminal.

Virtual Communication (COM) Demo

USBHOST Users Guide, Rev. 6

62 Freescale Semiconductor

Figure C-4. Character echoed and displayed in HyperTerminal

5. Unplug the CDC device. HyperTerminal displays:

Figure C-5. CDC device detached

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 63

Appendix D Mass Storage Device (MSD) Demo

D.1 Setting up the demo

Set up the system as described in Appendix B, “Human Interface Device (HID) Demo.”

D.2 Running the demo

To run this demo, perform the following steps.

1. Open the MSD demo project and load the image to the board. The MSD application project is
located in \Freescale USB Stack\Source\USB Host\MSD Class Demo Apps.

2. Run the demo. HyperTerminal displays a message as shown in the following figure.

Figure D-1. USB Host waits for USB mass storage to be attached

3. Attach USB mass storage to this board. HyperTerminal displays the test result as shown in the
following figure.

Mass Storage Device (MSD) Demo

USBHOST Users Guide, Rev. 6

64 Freescale Semiconductor

Figure D-2. Test result

The message shows that all test cases are passed.

4. Unplug the device. HyperTerminal displays the message about device detachment as shown in the
following figure.

Figure D-3. USB mass storage detached

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 65

Appendix E Audio Host Demo
This chapter is a quick guide on how to use the USB Audio Host Demo software package. The demo
application is used to control and communicate with Audio Devices. The operation of the demo depends
on Audio Device type:

• Speaker type (Audio Device with stream OUT supported): Sends audio data stream to the device.

• Microphone type (Audio Device with stream IN supported): Receives audio stream data from
devices and play it.

In both cases, the application supports sending specific requests to the Audio Devices such as Mute
Control. To take you through this guide, the demos are illustrated by using a MCF52259 Demo board.

NOTE

The Audio Host Demo supports either audio data transmit interface or audio
data receive interface over isochronous pipe. In case, the Audio Devices
support multi-data interfaces, the final audio data interface is supported
only.

E.1 Setting up the demo

E.1.1 Hardware setup

Set up the connections as shown in Figure E-1.

1. Make the first USB connection between the PC where the software is installed and the Demo board
where the silicon is mounted. This connection is required to provide power to the board and for
downloading the image to the flash.

2. Make the second connection between the Demo board and the PC to display the log of the Demo
board.

3. Make the third connection between the Audio Device and the Demo board.

4. Make the fourth connection between a speaker and the Audio Device. (In case Audio Device is
Microphone, the speaker is connected to Audio Host instead of Audio Device).

Audio Host Demo

USBHOST Users Guide, Rev. 6

66 Freescale Semiconductor

Figure E-1. Audio demo setup

E.1.2 Set up HyperTerminal to get log

To ensure that application run correctly, the HyperTerminal is used on the PC to get events from the device.
These steps are used to configure HyperTerminal:

1. Open HyperTerminal applications as shown in Figure E-2

Figure E-2. Launch HyperTerminal application

Audio Host Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 67

2. The HyperTerminal opens as shown in Figure E-3. Enter the name of the connection and click on
the OK button.

Figure E-3. HyperTerminal startup

3. The window shown in the following figure appears. Select the COM port.

Figure E-4. Connect using COM port

4. Configure the COM port baud rate and other properties as shown in Figure E-5

Audio Host Demo

USBHOST Users Guide, Rev. 6

68 Freescale Semiconductor

Figure E-5. COM properties

5. The HyperTerminal is now configured as shown in Figure E-6

Figure E-6. HyperTerminal

Audio Host Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 69

E.1.3 Running the demo

Perform the following steps to run the Audio Host Demo:

1. Open and load the image of Audio Demo application to the board.

2. After the image has been loaded successfully, HyperTerminal appears as shown in Figure 2 7.

Figure E-7. USB Host waiting for audio device attachment event

Audio Host Demo

USBHOST Users Guide, Rev. 6

70 Freescale Semiconductor

3. Plug the Audio Device into the board. The Audio Device will be attached. Device information is
shown as in Figure E-8 if Audio Device is Speaker type, in Figure E-9 if Audio Device is
Microphone type.

Figure E-8. Attached device is Speaker type

Figure E-9. Attached device is Microphone type

Audio Host Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 71

4. Press Switch 2 to set Mute ON/OFF. The HyperTerminal screen appears as shown in Figure E-10.

Figure E-10. Set Mute ON/OFF

5. Press Switch 1 to Start/Stop transferring audio data stream between the Audio Host and the Audio
Device.

– If attached device is Speaker type, you can hear the sound from the speaker, which is
connected to the Audio Device.

– If attached device is Microphone type, you can hear the sound from the speaker, which is
connected to the Audio Host.

Audio Host Demo

USBHOST Users Guide, Rev. 6

72 Freescale Semiconductor

The HyperTerminal screen appears as shown in Figure E-11

Figure E-11. Start/Stop transferring audio data

Audio Host Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 73

6. Unplug the Audio Device. The HyperTerminal shows a message as shown in Figure E-12

Figure E-12. Audio Device detached

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 75

Appendix F USB FAT File System Demo
The demo application demonstrates how to use application interface functions of the FATFS module to
operate with file and directory of mass storage devices.

F.1 Setting up the demo

Set the system as described in the Section A.1.1.2, “Hardware setup.”

F.2 Running the demo

F.2.1 Mouse demo

Perform the following steps to run the mouse demo:

1. Open and load the image of USB FATFS Demo application to the board.

2. After the image has been loaded successfully, the HyperTerminal appears as shown in Figure F-1.

Figure F-1. The USB Host is waiting the mass storage device attachment event

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

76 Freescale Semiconductor

3. Plug an USB Mass Storage Device into the board. The Mass Storage Device will be attached and
all functionalities of FATFS are implemented, sequentially and the results are shown in the
HyperTerminal. The detail of display content is shown as following:

FAT demo

Waiting for USB mass storage to be attached...

Mass Storage Device Attached

**

* FATfs DEMO *

* Configuration: LNF Enabled, Code page =1258 *

**

**

* DRIVER OPERATION *

**

1. Demo funciton: f_mount

 Initializing logical drive 0...

 Initialization complete

2. Demo funcitons:f_getfree, f_opendir, f_readdir

getting drive 0 attributes...............

Logical drive 0 attributes:

 FAT type = FAT32

 Bytes/Cluster = 512

 Number of FATs = 2

 Root DIR entries = 0

Sectors/FAT = 618

 Number of clusters = 78931

 FAT start (lba) = 158

 DIR start (lba,clustor) = 623

 Data start (lba) = 1394

...

39465 KB total disk space.

25666 KB available.

FAT type = FAT32

 Bytes/Cluster = 512

 Number of FATs = 2

Root DIR entries = 0

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 77

 Sectors/FAT = 618
 Number of clusters = 78931

 FAT start (lba) = 158

 DIR start (lba,clustor) = 623

 Data start (lba) = 1394

...

39465 KB total disk space.

25666 KB available.

**

* DRECTORY OPERATION *

**

1. Demo funcitons:f_opendir, f_readdir

 Directory listing...

 D---- 2010/12/23 15:41 0 New Folder

 DR--- 2010/12/25 23:30 0 Directory_1

 ----A 2010/12/23 15:42 33 dsgsgsg.dat

 D---- 2010/01/01 00:00 0 Directory_2

 ----A 2010/01/01 00:00 32 file_test.txt

 ----A 2010/12/28 16:26 1307648 FSL_USB_MSD_FATFS_Development_Design_v1.1.doc

 ----A 2010/12/09 08:43 826338 ff8a.zip

 D-HS- 2010/12/28 18:12 0 Recycled

 D-HS- 2010/12/28 18:12 0 System Volume Information

 ----A 2010/12/28 10:19 302592 FSL_USB_MSD_FATFS_Demo_SDD_V1.1.doc

 D---- 2010/12/28 18:19 0 Freescale USB Stack v2.6

 ----A 2010/12/30 17:52 65024 FSL_USB_MSD_FAT_Development_System Test
Case.v0.1.xls

 ----A 2010/12/29 19:15 477734 2010_12_29_MSD_FATFS_Source_Code.zip

 ----A 2010/12/29 16:23 3880022 fat-2006-12-03.zip

 8 File(s), 6859423 bytes total

 6 Dir(s)

2. Demo funcitons:f_mkdir

2.0. Create <Directory_1>

2.1. Create <Directory_2>

2.2. Create <Sub1> as a sub directory of <Directory_1>

2.3. Directory list

Directory listing...

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

78 Freescale Semiconductor

 D---- 2010/12/23 15:41 0 New Folder

 DR--- 2010/12/25 23:30 0 Directory_1

 ----A 2010/12/23 15:42 33 dsgsgsg.dat

 D---- 2010/01/01 00:00 0 Directory_2

 ----A 2010/01/01 00:00 32 file_test.txt

 ----A 2010/12/28 16:26 1307648 FSL_USB_MSD_FATFS_Development_Design_v1.1.doc

 ----A 2010/12/09 08:43 826338 ff8a.zip

 D-HS- 2010/12/28 18:12 0 Recycled

 D-HS- 2010/12/28 18:12 0 System Volume Information

 ----A 2010/12/28 10:19 302592 FSL_USB_MSD_FATFS_Demo_SDD_V1.1.doc

 D---- 2010/12/28 18:19 0 Freescale USB Stack v2.6

 ----A 2010/12/30 17:52 65024 FSL_USB_MSD_FAT_Development_System Test
Case.v0.1.xls

 ----A 2010/12/29 19:15 477734 2010_12_29_MSD_FATFS_Source_Code.zip

 ----A 2010/12/29 16:23 3880022 fat-2006-12-03.zip

 8 File(s), 6859423 bytes total

 6 Dir(s)

3. Demo funcitons:f_getcwd, f_chdir

3.0. Get the current directory

 CWD: 0:/

3.1. Change current directory to <Directory_1>

3.2. Directory listing

 Directory listing...

 D---- 2010/01/01 00:00 0 .

 D---- 2010/01/01 00:00 0 ..

 D---- 2010/01/01 00:00 0 sub1

 0 File(s), 0 bytes total

 3 Dir(s)

3.3. Get the current directory

 CWD: 0:/Directory_1

4. Demo funcitons:f_stat(File status), f_chmod, f_utime

4.1. Get directory information of <Directory_1>

 DR--- 2010/12/25 23:30 0 DIRECT~1

4.2 Change the timestamp of Directory_1 to 12.25.2010: 23h 30' 20

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 79

4.3. Set Read Only Attribute to Directory_1

4.4. Get directory information (Directory_1)

 DR--- 2010/12/25 23:30 0 DIRECT~1

5. Demo funcitons:f_rename

Rename <sub1> to <sub1_renamed> and move it to <Directory_2>

 Directory listing...

 D---- 2010/01/01 00:00 0 .

 D---- 2010/01/01 00:00 0 ..

 D---A 2010/01/01 00:00 0 sub1_renamed

 0 File(s), 0 bytes total

 3 Dir(s)

6. Demo funcitons:f_unlink

 Delete Directory_1/sub1_renamed

 Directory listing...

 D---- 2010/01/01 00:00 0 .

 D---- 2010/01/01 00:00 0 ..

 0 File(s), 0 bytes total

 2 Dir(s)

**

* FILE OPERATION *

**

1. Demo funcitons:f_open,f_write, f_printf, f_putc, f_puts, fclose

1.0. Create new file <New_File_1> (f_open)

 File size = 0

1.1. Write data to <New_File_1>(f_write)

1.2. Flush cached data

 File size = 52

1.3. Write data to <New_File_1> (f_printf)

1.4. Flush cached data

 File size = 103

1.5. Write data to <New_File_1> (f_puts)

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

80 Freescale Semiconductor

1.6. Flush cached data

 File size = 152

1.7. Write data to <New_File_1> uses f_putc function

1.8. Flush cached data

 File size = 199

1.9. Close file <New_File_1>

2. Demo funcitons:f_open,f_read, f_seek, f_gets, f_close

2.0. Open <New_File_1> to read (f_open)

2.1. Get a string from file (f_gets)

 Line 1: Write data to file uses f_write function

2.2 Get the rest of file content (f_read)

ine 2: Write data to file uses f_printf function

Line 3: Write data to file uses f_puts function

Line 4: Write data to file uses f_putc function Š

2.2. Close file (f_close)

2. Demo funcitons:f_stat, f_utime, f_chmod

3.1. Get information of <New_File_1> file (f_stat)

 ----A 2010/01/01 00:00 199 NEW_FI~1.DAT

3.2 Change the timestamp of Directory_1 to 12.25.2010: 23h 30' 20 (f_utime)

3.3. Set Read Only Attribute to <New_File_1> (f_chmod)

3.4. Get directory information of <New_File_1> (f_stat)

 -R--A 2010/12/25 23:30 199 NEW_FI~1.DAT

3.5. Clear Read Only Attribute of <New_File_1> (f_chmod)

3.6. Get directory information of <New_File_1>

 ----A 2010/12/25 23:30 199 NEW_FI~1.DAT

4. Demo funcitons:f_ulink

 Rename <New_File_1.dat> to <File_Renamed.txt>

 Directory listing...

 D---- 2010/01/01 00:00 0 .

 D---- 2010/01/01 00:00 0 ..

 ----A 2010/12/25 23:30 199 File_Renamed.txt

1 File(s), 199 bytes total

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 81

 2 Dir(s)

5. Demo funcitons:f_truncate

 Truncate file <File_Renamed.txt>

5.0. Open <File_Renamed.txt> to write

5.1. Seek file pointer

 Current file pointer: 0

 File pointer affter seeking: 102

5.2. Truncate file

 File size = 102

5.3. Close file

6. Demo funcitons:f_forward

6.0. Open <File_Renamed.txt> to read

6.1. Forward file to ternimal

Line 1: Write data to file uses f_write function

Line 2: Write data to file uses f_printf function

6.2. Close file

7. Demo funcitons:f_ulink

 Delete <File_Renamed.txt>

 Directory listing...

 D---- 2010/01/01 00:00 0 .

 D---- 2010/01/01 00:00 0 ..

 0 File(s), 0 bytes total

 2 Dir(s)

*------------------------------ DEMO COMPLETED ------------------------ *

**

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

82 Freescale Semiconductor

4. Unplug mouse from board. The HyperTerminal shows a message as shown in Figure F-2.

Figure F-2. Mass storage device detached

F.3 FATFS Test Application

The test application is used to verify whether or not application interface functions of the FAT module
work properly.

F.3.1 Setting up the demo

Set the system as described in the Section A.1.1.2, “Hardware setup.”

F.3.2 Running the demo

Steps to run test application are similar to demo application described in Section B.2, “Running the demo.”

NOTE

Make sure that your USB mass storage device under test is divided into two
partitions which do not contain any data.

There are some test cases that need special setting in FATFS module configuration (ffconf.h), so test case
set is divided into three exclusive running groups:

1. Test group 1

2. Test group 2

3. Test group 3

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 83

F.3.2.1 Test Group 1

The test group 1 contains the following subgroups:

To enable the test group, define the macro RUN_TEST_101_111_201_209_301 in file testcase.h.
Subgroups TestDir7, TestDir8, and TestDir10 contain test cases that make or create a lot of directories
and files. It takes long time, if created, the number of directories and files is large. How many directories
and files will be created is specified by macro NUM_REPEAT in testcase.h file.

Expected results of these test cases are shown in the HyperTerminal as follows.

Table 5-4. Test group 1

Subgroup Description FATFS module configuration

TestDir1 This test group is to test f_mkdir, f_unlink functions with 0
of recursive level

#define _FS_TINY 1
#define _FS_READONLY 0
#define _FS_MINIMIZE 0
#define _USE_STRFUNC 1
#define _USE_FORWARD 1
#define _USE_LFN 3
#define _MAX_LFN 255
#define _FS_RPATH 2
#define _MULTI_PARTITION 0
#define _VOLUMES 1

TestDir2 This test group is to test f_mkdir in cases of invalid
directory names

TestDir3 This test group is to test f_unlink in cases of invalid
directory names

TestDir4 This test group is to test f_mkdir, f_unlink functions with 1
of recursive level

TestDir5 This test group is to test f_mkdir, f_unlink functions with 2
of recursive level

TestDir6 This test group is to test f_chdir, f_getcwd, f_unlink
functions

TestDir7 This test group is to test f_mkdir and f_unlink many of
sub-directories

TestDir8 This test group is to test f_opendir, f_readdir functions

TestDir9 This test group is to test f_chdir function with ".." directory

TestDir10 This test group is to test f_readdir in case of there are
many files in read directory

TestDir11 This test group is to test f_stat, f_utime, f_chmod functions

TestFile1 This test group is to test f_open, f_close, and f_unlink
functions

TestFile2 This test group is to test f_write and f_read functions

TestFile3 This test group is to test f_lseek function

TestFile4 This test group is to test f_stat, f_utime, f_chmod functions

TestFile5 This test group is to test f_forward function

TestFile6 This test group is to test f_truncate function

TestFile7 This test group is to test f_sync function

TestFile8 This test group is to test string functions

TestDirFileMixu
p1

This test group is to test mix file and directory

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

84 Freescale Semiconductor

FAT test

Waiting for USB mass storage to be attached...

Mass Storage Device Attached

Test Cases:

 101: Test Directory Functions - 1: f_mkdir, f_unlink functions with 0 of recursive level.

 102: Test Directory Functions - 2: f_mkdir in cases of invalid directory names.

 103: Test Directory Functions - 3: f_unlink in cases of invalid directory names.

 104: Test Directory Functions - 4: f_mkdir, f_unlink functions with 1 of recursive level.

 105: Test Directory Functions - 5: f_mkdir, f_unlink functions with 2 of recursive level.

 106: Test Directory Functions - 6: f_chdir, f_getcwd, f_unlink functions.

 107: Test Directory Functions - 7: Make maximum number of sub-directories.

 108: Test Directory Functions - 8: f_opendir, f_readdir functions.

 109: Test Directory Functions - 9: f_chdir function with .. directory.

 110: Test Directory Functions - 10: f_readdir in case of there are many files in read directory.

 111: Test Directory Functions - 11: f_stat, f_utime, f_chmod functions.

 201: Test File Functions - 1: f_open, f_close, and f_unlink

 202: Test File Functions - 2: f_write and f_read

 203: Test File Functions - 3: f_lseek

 204: Test File Funttions - 4: f_stat, f_utime, f_chmod

 205: Test File Functions - 5: f_forward

 206: Test File Functions - 6: f_truncate

 207: Test File Functions - 7: f_sync

 208: Test File Functions - 8: f_printf, f_puts, f_putc, f_gets

 209: Test File Functions - 9: f_rename

 301: File/Dir: file operations on dirs & vice versa

Test case 101: Test Directory Functions - 1: f_mkdir, f_unlink functions with 0 of recursive level.

Test case passed

Test case 102: Test Directory Functions - 2: f_mkdir in cases of invalid directory names.

Test case passed

Test case 103: Test Directory Functions - 3: f_unlink in cases of invalid directory names.

Test case passed

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 85

Test case 104: Test Directory Functions - 4: f_mkdir, f_unlink functions with 1 of recursive level.

Test case passed

Test case 105: Test Directory Functions - 5: f_mkdir, f_unlink functions with 2 of recursive level.

Test case passed

Test case 106: Test Directory Functions - 6: f_chdir, f_getcwd, f_unlink functions.

Test case passed

Test case 107: Test Directory Functions - 7: Make maximum number of sub-directories.

Test case passed

Test case 108: Test Directory Functions - 8: f_opendir, f_readdir functions.

Test case passed

Test case 109: Test Directory Functions - 9: f_chdir function with .. directory.

Test case passed

Test case 110: Test Directory Functions - 10: f_readdir in case of there are many files in read
directory.

Test case passed

Test case 111: Test Directory Functions - 11: f_stat, f_utime, f_chmod functions.

Test case passed

Test case 201: Test File Functions - 1: f_open, f_close, and f_unlink

Test case passed

Test case 202: Test File Functions - 2: f_write and f_read

Test case passed

Test case 203: Test File Functions - 3: f_lseek

Test case passed

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

86 Freescale Semiconductor

F.3.2.2 Test Group 2

This test group contains the following subgroup.

To enable the test group, define the macro RUN_TEST_112 in file testcase.h.

Expected results of the test case are shown in the HyperTerminal as follows.

Test case 204: Test File Funttions - 4: f_stat, f_utime, f_chmod

Test case passed

Test case 205: Test File Functions - 5: f_forward

Test case passed

Test case 206: Test File Functions - 6: f_truncate

Test case passed

Test case 207: Test File Functions - 7: f_sync

Test case passed

Test case 208: Test File Functions - 8: f_printf, f_puts, f_putc, f_gets

Test case passed

Test case 209: Test File Functions - 9: f_rename

Test case passed

Test case 301: File/Dir: file operations on dirs & vice versa

Test case passed

Test cases:

Executed: 21, Passed: 21, Failed: 0

Table 5-5. Test Group 2

Subgroup Description FATFS module configuration

TestDir12 This test group is to test f_chdrive, f_getfree, f_mount
functions. It also test multi-partition feature of FATFS
module

#define _FS_TINY 1
#define _FS_READONLY 0
#define _FS_MINIMIZE 0
#define _MULTI_PARTITION 1
#define _VOLUMES 2
#define _FS_RPATH 2

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 87

F.3.2.3 Test Group 3

The test group consists of following subgroups.

To enable the test group, define the macro RUN_TEST_210_213 in file testcase.h.

Expected results of these test cases are shown in the HyperTerminal as follows.

FAT test

Waiting for USB mass storage to be attached...

Mass Storage Device Attached

Test Cases:

 112: Test Directory Functions - 12: f_chdrive, f_getfree, f_mount functions.

Test case 112: Test Directory Functions - 12: f_chdrive, f_getfree, f_mount functions.

Disk '0':

 ClusterSize: 4096

 TotalClusterCount: 1994

 TotalFreeClusterCount: 1994

Disk '1':

 ClusterSize: 512

 TotalClusterCount: 94874

 TotalFreeClusterCount: 94873

Test case passed

Test cases:

Executed: 1, Passed: 1, Failed: 0

Table 5-6. Test Group 3

Subgroup Description FATFS module configuration

TestFile10 This test group is to test file sharing policy. #define _FS_TINY 1
#define _FS_READONLY 0
#define _FS_MINIMIZE 0
#define _MULTI_PARTITION 0
#define _VOLUMES 1
#define _FS_RPATH 0
#define _FS_SHARE 2
#define _USE_LFN 0

TestFile11 This test group is to test how FAT apis work when drive
status is invalid.

TestFile12 This test group is to test how FAT apis work when LFN is
disable.

TestFile13 This test group is to test how FAT apis work when
_RS_PATH = 0.

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

88 Freescale Semiconductor

FAT test

Waiting for USB mass storage to be attached...

Mass Storage Device Attached

Test Cases:

 210: Test File Functions - 10: file sharing policy

 211: Test File Functions - 11: invalid drive status - FR_NOT_ENABLED

 212: Test File Functions - 12: LFN disable

 213: Test File Functions - 13: _RS_PATH = 0

Test case 210: Test File Functions - 10: file sharing policy

Test case passed

Test case 211: Test File Functions - 11: invalid drive status - FR_NOT_ENABLED

Test case passed

Test case 212: Test File Functions - 12: LFN disable

Test case passed

Test case 213: Test File Functions - 13: _RS_PATH = 0

Test case passed

Test cases:

Executed: 4, Passed: 4, Failed: 0

	Freescale USB Host Stack
	Chapter 1 Before You Begin
	1.1 About Freescale USB Stack - Host Architecture
	1.2 About this book
	1.3 Reference material
	1.4 Acronyms and abbreviations
	1.5 Important terms

	Chapter 2 Getting Familiar
	2.1 Introduction
	2.2 Software suite
	2.3 Directory structure

	Chapter 3 Freescale USB Stack - Host Architecture
	3.1 Architecture overview
	3.2 Host application
	3.3 Class-driver library
	3.4 Common-class API
	3.5 USB Chapter 9 API
	3.6 Host API
	3.7 KHCI (Host Controller Interface)

	Chapter 4 Developing Applications
	4.1 Background
	4.2 Developing an application
	4.2.1 Create a project
	4.2.2 Define a driver info table
	4.2.3 Main application function flow
	4.2.3.1 Initializing hardware
	4.2.3.2 Initializing the host controller
	4.2.3.3 Register services
	4.2.3.4 Run the process task

	4.2.4 Event callback function
	4.2.5 Selecting an interface on the device
	4.2.6 Retrieving and storing pipe handles
	4.2.7 Sending/receiving data to/from device

	Chapter 5 FAT File System
	5.1 Introduction
	5.2 File Allocation Table Overview
	5.3 Software Module
	5.3.1 USB FATFS Feature
	5.3.2 Module license

	5.4 Directory structure
	5.5 USB FATFS Architecture
	5.6 Architecture overview
	5.7 FATFS Module overview
	5.7.1 FATFS APIs
	5.7.2 Disk I/O interface

	5.8 Developing Applications for FATFS
	5.8.1 Background
	5.8.2 Configuration options
	5.8.3 Create a project

	Appendix A Working with the Software
	A.1 Introduction
	A.1.1.1 Software setup
	A.1.1.2 Hardware setup

	A.2 Set up HyperTerminal to get log
	A.3 Uninstall Freescale USB Stack Software

	Appendix B Human Interface Device (HID) Demo
	B.1 Setting up the demo
	B.2 Running the demo

	Appendix C Virtual Communication (COM) Demo
	C.1 Setting up the demo
	C.2 Running the demo

	Appendix D Mass Storage Device (MSD) Demo
	D.1 Setting up the demo
	D.2 Running the demo

	Appendix E Audio Host Demo
	E.1 Setting up the demo

	Appendix F USB FAT File System Demo
	F.1 Setting up the demo
	F.2 Running the demo
	F.3 FATFS Test Application
	F.3.2.1 Test Group 1
	F.3.2.2 Test Group 2
	F.3.2.3 Test Group 3

