Freescale USB Host Stack

Users Guide

Document Number: USBHOSTUG
Rev. 6
03/2012

frees,calpm

semicon ductor

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the bodly,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

freescale"

semiconductor

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© 1994-2008 ARC™ International. All rights reserved.

© Freescale Semiconductor, Inc. 2010-2012. All rights reserved.

Document Number: USBHOSTUG
Rev. 6
03/2012

Revision history

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be
the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Revision Revision -
Number Date Description of Changes

Rev. 1 04/2010 Launch release.

¢ Added support for CFV2 devices.

Rev. 2 06/2010 ¢ Rebranded Medical Applications USB Stack Host to Freescale USB Stack
with PHDC Host.

¢ Added support for CodeWarrior 10

Rev. 3 09/2010 * Fig 2-1: Freescale USB Stack with PHDC — Host Directory Structure
updated
Rev. 4 01/2011 ¢ Added Audio Host demo

¢ Updated document name to USBHOSTUG.

Rev. 7/2011
ev. 5 07/20 ¢ Updated figures in Appendix A

¢ Added chapters “FAT File System” and “AppendixJ_FATFS_Demo_Test”

* Replaced the term "Freescale USB Stack with PHDC" with "Freescale USB
Rev. 6 03/2012 Stack"

e Updated Installer screenshots

* Editorial Changes

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
© Freescale Semiconductor, Inc., 2010-2012. All rights reserved.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor iii

http://www.freescale.com

—_ ol
aOrhwND =

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

41
4.2

5.1

Chapter 1
Before You Begin

About Freescale USB Stack — Host Architecture
About thisbook
Reference material
Acronyms and abbreviations
Important terms
Chapter 2
Getting Familiar
Introduction
Software suite
Directory structure
Chapter 3
Freescale USB Stack — Host Architecture
Architecture overview
Host application
Class-driver library e
Common-class APl
USB Chapter O APl
HOSt APl .. e
KHCI (Host Controller Interface)
Chapter 4
Developing Applications
Background
Developing an application
421 Createaproject i
4.2.2 Defineadriverinfotable i
4.2.3 Main application functionflow
4.2.3.1 Initializing hardware
4.2.3.2 Initializing the host controller
4.2.3.3 RegiSter serviCes
4234 Runtheprocesstask
4.2.4 Eventcallback function
4.2.5 Selecting aninterface onthedevice
4.2.6 Retrievingand storingpipehandles
4.2.7 Sending/receiving data to/fromdevice
Chapter 5
FAT File System
Introduction

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

5.2 File Allocation Table Overview e 19
5.3 Software Module 21
531 USBFATFES Feature e 21
532 Module license 21
5.4 Directory StruCtUre 22
5.5 USB FATFS Architecture e e 22
5.6 Architecture Overview e 22
5.7 FATFS Module OVEIVIEW e 23
5.7.1 FATFS APIs . . 23
5.7.2 Diskl/Ointerface e 23
5.8 Developing Applications for FATFES 24
5.8.1 Background 24
5.8.2 Configuration options 24
5.8.3 Create a project i e 29

Appendix A

Working with the Software

A INtrodUCHiON . .. 31
A.1.1 Preparingthe setup 31
AddaSoftware setup 31
Al 1.2Hardware setupo 34
A.1.2 Building the application with CodeWarrior 6 and CodeWarrior7 35
A.1.3 Running the application with CodeWarrior6 38
A.1.4 Building and running the application with CodeWarrior10 40
A2 SetupHyperTerminaltogetlog e 44
A.3 Uninstall Freescale USB Stack Software 48

Appendix B

Human Interface Device (HID) Demo

B.1 Settingupthedemo 51
B.2 Runningthe demo 51
B.2.1 MoUSE dEMO e 52
B.2.2 Keyboard demo 54
B.2.3 Mouse and keyboard demo 57

Appendix C

Virtual Communication (COM) Demo

C.1 Settingupthedemo 59
C.2 Runningthe demo 59

Appendix D

Mass Storage Device (MSD) Demo
D.1 Settingupthe demo e 63
D.2 Runningthe demo 63
USBHOST Users Guide, Rev. 6

v Freescale Semiconductor

Appendix E
Audio Host Demo

E.1 Settingupthedemo 65
E. 1.1 Hardware setup e 65

E.1.2 Setup HyperTerminaltogetlog 66

E.1.3 Runningthedemo 69

Appendix F
USB FAT File System Demo

F.1 Settingupthedemo 75
F.2 Runningthe demo 75
F2.1 Mouse demo 75

F.3 FATFS Test Application e e e 82
F3.1 Settingupthedemo 82

F.3.2 Runningthedemo 82
F.3.21Test Group 1 ... 83

F.3.2.2Test Group 2 . ..ot e 86

F.3.2.83Test Group 3o e 87

USBHOST Users Guide, Rev. 6

Freescale Semiconductor vi

Chapter 1 Before You Begin

1.1 About Freescale USB Stack — Host Architecture

Universal Serial Bus, commonly known as USB, is a serial bus protocol that can be used to connect
external devices to the host computer. In today’s world, it is one of the most popular interfaces connecting
devices such as microphones, keyboards, storage devices, cameras, printers, and many others. USB
interconnects are also becoming more and more popular in the medical segments.

1.2 About this book

This book describes the Freescale USB Stack — Host Architecture class functionality. The following table
shows the summary of chapters included in this book.

Table 1-1. USBHOSTUG summary

Chapter Title Description
Before You Begin This chapter provides the prerequisites for reading this book.
Getting Familiar This chapter provides the information about the Freescale USB stack with PHDC

software suite.

Freescale USB stack with PHDC — | This chapter discusses the architecture design of the Freescale USB suite.
Host Architecture

Developing applications This chapter provides the steps a developer must take to develop applications on
top of the pre-developed classes.

Working with the software This chapter provides the steps to building, running the applications.

Human Interface Device (HID) This chapter provides the setup and running HID demo for CFV1 and CFV2
Demo processors.

Virtual Communication (COM) This chapter provides the setup and running CDC demo for CFV1 and CFV2
Demo processors.

Mass Storage Device (MSD) Demo | This chapter provides the setup and running MSD demo for CFV1 and CFV2
processors.

USB Audio Host Demo This chapter provides the setup and running the USB Audio Host demo

1.3 Reference material

Use this book in conjunction with:
» Freescale USB Stack API Reference Manual (document USBAPIRM)
» USB Host source code
» ColdFire V2 USB Device Source Code

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 1

Before You Begin

We assume that you are familiar with the following reference material:

1.4

1.5

USB Specification Revision 1.1

USB Specification Revision 2.0

USB Device Class Definition for Audio Devices Revision 1.1
MCF52259 Reference Manual

CodeWarrior Help

Acronyms and abbreviations

Table 1-2. Acronyms and abbreviations

API Application Programming Interface
CDC Communication Device Class
CFVA ColdFire V1 (MCF51JM128 CFV1 device is used in this
document)
CFv2 ColdFire V2 (MCF52221 and MCF52259 CFV2 devices are
used in this document)
COM Communication
HID Human interface device
IDE Integrated development environment
KHCI Host Controller Interface
MSD Mass storage device
PC Personal computer
TR Transfer Request
uSB Universal Serial Bus

Important terms

The following table shows the terms used throughout the book.

Table 1-3. Important terms

Term Description
Class Driver These offer a generic control interface for a family of devices.
Enumerate A process in the USB protocol by which the host identifies the
devices connected to it.
USB Low Level USB low level drivers are the driver software layers that
Drivers interface with hardware and abstract them for the class drivers.

USB Chapter 9 These are the framework requests made by the host to the
Request device that the device must respond to. These are defined in
Chapter 9 of the USB specification document.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

Chapter 2 Getting Familiar

2.1 Introduction

The Freescale USB Stack — Host Architecture contains the low level driver code, commonly used class
drivers, and some basic applications. This document intends to help you gain an insight into the stack and
capabilities to develop your own classes and applications. It is targeted for firmware application
developers who would like to develop the applications using USB as the transport.

2.2 Software suite

The software suite comprises the USB low level drivers for the CFV1 and CFV2 families, generic class
drivers, and applications. The class drivers are programmed with generic code, so they can be used with
other processors like CFV1 and CFV2 if the low level drivers comply with the driver interface.

2.3 Directory structure

The software suite has a standard directory structure. You can extend it easily to accommodate more
applications, classes, and low level drivers for different processor families.

The following figure shows the directory structure:

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 3

PR 4

Getting Familiar

=20
= [examples
[cde_serial
= |5y common
1) cfvl
) cfwz
= 5 hid
IC5) kevboard
IC5) kevboard_mouse
£ mouse
=) msd
= |55 codewarrior
I=) cFv1ushjezse
[C) cFvlushimizs
[cFvlusbmmzse
I3 mszzz1demo
IC5) mszze9evh
= [C3) cwio
=) cFvlushbjezse
=) cfvlushimizs
[=) cFv1usbmmzss
£ m5zz21demo
IC2) mS2259evh
= |5y phdc
IC5) 11073Manager_Demo
= [T source
=) bsp
I msz22 1demo
) m5225%evh
IC5) mS2277evh
IC5) mcFS 1M
IC5) mcFS 1M
= T classes
I3 cdc
IC=) common
I hid
I hub
I msd
I phdc
[driver
£ host_comman

Figure 2-1. Freescale USB Stack — Host Directory Structure

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

Chapter 3 Freescale USB Stack — Host Architecture

3.1 Architecture overview

The purpose of the Freescale USB Stack — Host Architecture is to provide an abstraction of the USB
hardware controller core. A software application written using the USB host API can run on full speed or
low speed core with no information about the hardware. In the USB, the host interacts with the device
using logical pipes. After the device is enumerated, a software application needs the capability to open and
close the pipes.

After a pipe is opened with the device, the software applications can queue transfer in either direction and
is notified with the transfer result through an error status. In short, the communication between host and
device is done using logical pipes that are represented in the stack as pipe handles. Figure 3-1 shows each
of the blocks as part of the host API.

Host application

Y

Class driver library

'

Common class

v

Ch9 API

A J Y

Host API

Y

KHCI host controller interface

Figure 3-1. USB Host Architecture

3.2 Host application

A host embedded application software (also called a device driver) is implemented for a target device or
a class of devices. The Freescale USB Host Stack comes with examples for a few classes of devices.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 5

Freescale USB Stack — Host Architecture

Application software can use API routines to start and stop communication with a USB bus. It can suspend
the bus or wait for a resume signal for the bus.

3.3 Class-driver library

The class-driver library is a set of wrapper routines that can be linked into the application. These routines
implement standard functionality of the class of device, defined by USB class specifications. It is
important to note that even though a class library can help in reducing some implementation effort at the
application level, some USB devices do not implement class specifications, making it extremely difficult
to write a single application code that can talk to all the devices.

34 Common-class API

Common-class API is a layer of routines that implements the common-class specification of the USB. This
layer interacts with the host API layer function. It is difficult to say which routines belong to this layer. It
is a deliberate design attempt to reuse routines to minimize the code size.

Routines inside the common-class layer take advantage of the fact that in USB all devices are enumerated
with the same sequence of commands. When a USB device is plugged into the host hardware, it generates
an interrupt, and the lower-level driver calls the common-class layer to start the device. Routines inside
the common-class layer allocate memory, assign the USB address, and enumerate the device. After the
device descriptors are identified, the common-class layer searches for applications that are registered for
the class or device plug-in.

The following figure illustrates how device plug-in works.

USBHOST Users Guide, Rev. 6

6 Freescale Semiconductor

Freescale USB Stack — Host Architecture

USE Software Application/Class Library

AN AN

back

Commeon-Class Routines

Allocate mamory for device handle and add Search the pont fromwhich device is
device to the linked list of devices detached
Azsign USE address from Oto 127 Search the device list to find the device

instance created
Get descriptors
Generate a callback event for the application
Scan driverinfo tables for an application that
has registered for the device Close all open pipes on device and free all
memory related to device

call call

Lower layer
Devie plugged in
or unplugged Attach Detach

=

Figure 3-2. How devices are attached and detached

3.5 USB Chapter 9 API

The USB specification document includes chapter 9, which is dedicated to a standard command protocol
implemented by all USB devices. Every USB device is required to respond to a certain set of requests from
the host. This is a low-level API that implements all USB chapter 9 commands. All customer applications
can be written to use only this API without the common-class API or class libraries.

The USB chapter 9 commands are outside the scope of this document and require a good familiarity with
USB protocol and higher level abstraction of USB devices. Here are some of the example routines that are
implemented by this API. See the source code for implementation details.

* usb_host ch9 dev_req() — For sending control pipe setup packets.
* _usb_ch9_clear_fearture() — For a clear feature USB command.
* _usb_host_ch9 get descriptor() — For receiving descriptors from device.

USBHOST Users Guide, Rev. 6

7 Freescale Semiconductor

Freescale USB Stack — Host Architecture

3.6 Host API

The Host API is the hardware abstraction layer of the Freescale USB host. This layer implements routines
independent of underlying USB controllers. For example, usb_host_init() initializes the host controller by
calling the proper hardware-dependent routine. Similarly usb_host _shutdown() shuts down the proper
hardware host controller. Here are the architecture functions implemented by this layer.
» Allocating pipes from a pool of pre-allocated pipe memory structures when
usb_host_open_pipe() is called.
* Maintaining a list of all transfers pending per pipe. This is used in freeing memory when the pipe
is closed.

» Maintaining a list of all services (callbacks) registered with the stack. When a specific hardware
event such as attach and detach occurs, this layer generates a callback and informs the upper layers.

» Providing routines to cancel USB transfers by calling hardware-dependent functions.
* Providing other hardware-control routines such as the ability to shut down the controller, suspend
the bus, and so on.

A good understanding of the source inside the API layer can be developed by reading the API routine and
tracing it to the hardware drivers.

3.7 KHCI (Host Controller Interface)

KHCT is a completely hardware-dependent set of routines responsible for queuing and processing of USB
transfers and searching for hardware events. Source understanding of this layer requires understanding of
hardware.

USBHOST Users Guide, Rev. 6

8 Freescale Semiconductor

Chapter 4 Developing Applications

4.1 Background

In the USB system, the host software controls the bus and talks to the target devices under the rules defined
by the specification. A device is represented by a configuration that is a collection of one or more
interfaces. Each interface comprises one or more endpoints. Each endpoint is represented as a logical pipe
from the application software perspective.

The host application software registers for services with the USB host stack and describes the callback
routines inside the driver info table. When a USB device is connected, the USB host stack driver
enumerates the device automatically and generates interrupts for the application software. One interrupt
per interface is generated on the connected device. If the application must talk to an interface, it can select
that interface and receive the pipe handles for all the endpoints. Refer to Freescale USB S tack with PHDC
Host API Reference Manual (Freescale document USBHOSTAPIRM) with the source code example to see
what routines are called to find pipe handles. After the application software receives the pipe handles, it
can start communication with the pipes. If the software must interact with another interface or
configuration, it can call the appropriate routines again to select another interface.

The USB host stack is a few lines of code executed before starting communication with the USB device.
Examples on the USB stack can be written with only a host API. However, most examples supplied with
the stack are written using class drivers. Class drivers work with the host API as a supplement to the
functionality. They make it easy to achieve the target functionality (see example sources for detail) without
dealing with the implementation of standard routines. The following code steps are taken inside a host
application driver for any specific device.

4.2 Developing an application

421 Create a project

Perform these steps to develop a new application:

1. To develop a new application, create an application sub-directory under /host/app directory.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 9

Developing Applications

=) host
= 2 app
+ |) cde_serial
|2 common
+ | =) hid_kewvboard
+ |) hid_kevboard_mouse
4) hid_mouse
+ () msd
] ne Spp
+) source

Figure 4-1. Create directory for application

2. Copy the usb_classes.h file from similar pre-existing applications. usb_classes.h is used to define
classes that are used in an application.

Example: If you want to create an application that uses HID and HUB, you can define them as:

#define USBCLASS INC HID
#define USBCLASS INC HUB

3. Create the CodeWarrior directory where the project files for a new application can be created.

¥ | C)codewarrior

2 usl:u_u:lasses

Figure 4-2. Create CodeWarrior project and usb_classes.h file

4. Create new files for creating the main application function and the callback.

¥ | jcodewarrior

A new_app.l:
new_app.h
usl:u_u:lasses.h

Figure 4-3. Create header and code file

— The new_app.h file contains application types and definitions:
Examples:

Define states of device:

/* Used to initialize USB controller */

#define MAX FRAME SIZE 1024
#define HOST CONTROLLER NUMBER 0
#define HID BUFFER SIZE 4

#define USB DEVICE IDLE (0)
#define USB DEVICE ATTACHED (1)
#define USB DEVICE CONFIGURED (2)
#define USB DEVICE SET INTERFACE STARTED (3)

USBHOST Users Guide, Rev. 6

10 Freescale Semiconductor

Developing Applications

#define USB DEVICE INTERFACED
#define USB DEVICE SETTING PROTOCOL
#define USB DEVICE INUSE

#define USB DEVICE DETACHED

#define USB DEVICE OTHER

O J o U1 Wb

/*
** Following structs contain all states and pointers
** used by the application to control/operate devices.

*/
typedef struct device struct ({
uint 32 DEV_STATE; /* Attach/detach state */
_usb _device instance handle DEV_HANDLE;
_usb _interface descriptor handle INTF HANDLE;
CLASS CALL_STRUCT CLASS INTF; /* Class-specific info */

} DEVICE STRUCT, _PTR DEVICE STRUCT PTR;
/* Alphabetical list of Function Prototypes */

#ifdef cplusplus
extern "C" {
#endif

void usb host hid recv _callback(usb pipe handle, pointer, uchar ptr,
uint 32,

uint 32);
void usb host hid ctrl callback(usb pipe handle, pointer, uchar ptr,
uint 32,

uint 32);
void usb host hid mouse event(usb device instance_ handle,

_usb _interface descriptor handle, uint 32);

#ifdef cplusplus

}
#endif

— Thenew_app.c file contains driver informations, callback functions, event functions, and main
function.

4.2.2 Define a driver info table

A driver information table defines devices that are supported and handled by this target application. This
table defines the PID, VID, class, and subclass of the USB device. The host/device stack generates an
attached callback when a device matches this table entry. The application now can communicate with the
device. The following structure defines one member of the table. If the Vendor-Product pair does not match
for a device, Class, Subclass, and Protocol are checked to match. Use OXFF in Subclass and Protocol struct
member to match any Subclass/Protocol.

/* Information for one class or device driver */

typedef struct driver info

{

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 11

Developing Applications

uint 8 idVendor[2]; /* Vendor ID per USB-IF */
uint 8 idProduct[2]; /* Product ID per manufacturer */
uint 8 bDeviceClass; /* Class code, OxFF if any */
uint 8 bDeviceSubClass; /* Sub-Class code, OxFF if any */
uint 8 bDeviceProtocol; /* Protocol, O0xFF if any */
uint 8 reserved; /* Alignment padding */

event callback attach call; /* event callback function*/

} USB_HOST DRIVER INFO, PTR USB HOST DRIVER INFO PTR;

The following is a sample driver info table. See the example source code for samples. Note the following
table defines all HID MOUSE devices that are boot subclasses. A terminating NULL entry in the table is
always created for search end.

Because two classes (HID and HUB) are used in the HID MOUSE application, the DriverInfoTable
variable has three elements. There are two event callback functions for two classes:
usb_host_hid_keyboard_event for HID class and usb_host_hub_device_event for HUB class.

/* Table of driver capabilities this application wants to use */

static USB_HOST DRIVER INFO DriverInfoTable[] = {
{
{0x00, 0x00}, /* Vendor ID per USB-IF */
{0x00, 0x00}, /* Product ID per manufacturer */
USB_CLASS HID, /* Class code */

USB_SUBCLASS HID BOOT, /* Sub-Class code */
USB_PROTOCOL HID KEYBOARD, /* Protocol */
0, /* Reserved */
<add the name of your event callback function here>
usb_host hid keyboard event /* Application call back function */
}I
/* USB 1.1 hub */
{

{0x00, 0x00}, /* Vendor ID per USB-IF */
{0x00, 0x00}, /* Product ID per manufacturer */
USB_CLASS HUB, /* Class code */

USB_SUBCLASS HUB NONE, /* Sub-Class code */
USB_PROTOCOL HUB LS, /* Protocol */
0, /* Reserved */

<add the name of your event callback function here>
usb_host hub device event /* Application call back function */

s

{0x00, 0x00}, /* All-zero entry terminates */
{0x00, 0x00}, /* driver info list. */

USBHOST Users Guide, Rev. 6

12 Freescale Semiconductor

Developing Applications

4.2.3 Main application function flow

In the main application function, it is necessary to follow these steps:
1. Initializing hardware
2. Initializing the host controller
3. Registering service
4. Calling tasks in a forever loop

4231 Initializing hardware
The first step to run an application is hardware initialization. It is necessary to initialize the processor
(mode and clock), SCI (to use UART), and real-time clock (to use some delay functions).

4.2.3.2 Initializing the host controller

The second step required to act as a host is to initialize the stack in a host mode. This allows the stack to
install a host interrupt handler and initialize the necessary memory required to run the stack. The following
example illustrates this:

status = usb host init (HOST CONTROLLER NUMBER, /* Use value in header file */
MAX FRAME SIZE, /* Frame size per USB spec */
&host handle) ; /* Returned pointer */

The second argument (MAX FRAME SIZE) in the above code is the size of the periodic frame list. Full
speed customers can ignore this argument.

4.2.3.3 Register services

Once the host is initialized, the USB host stack is ready to provide services. An application can register for
services as documented in Freescale USB Stack Host API Reference Manual (document
USBHOSTAPIRM). The host API document describes how the application is registered for this device
because the driver info table already registers a callback routine. The following example shows how to
register for a service on the host stack:
/ *
** since we are going to act as the host driver, register the driver
** information for wanted class/subclass/protocols

*/
status = usb host driver info register (host handle, DriverInfoTable);
if (status != USB OK) {

printf ("\nDriver Registration failed. STATUS: %$x", status);
fflush (stdout) ;
exit (1) ;

4.2.3.4 Run the process task

The last step in the main application function is to call _usb_khci_task() and the application task. These
tasks are called in the forever loop.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 13

3
4

y
A

Developing Applications

424

for (;;) {

<User call the application task here>
_usb_khci task();
__RESET WATCHDOG(); /* feeds the dog */

} /* loop forever */

Event callback function

After the software has registered the driver info table and register for other services, it is ready to handle
devices. In the USB Host stack, customers do not have to write any enumeration code. As soon as the

device is connected to the host controller, the USB Host stack enumerates the device and finds how many
interfaces are supported. Also, for each interface it scans the registered driver info tables and finds which
application has registered for the device. It provides a callback if the device criteria matched the table. The
application software has to choose the interface. You can implement the event callback function as follows:

void usb _host hid keyboard event (

}

/* [IN] pointer to device instance */

_usb _device instance handle dev_handle,

/* [IN] pointer to interface descriptor */

_usb _interface descriptor handle intf handle,

/* [IN] code number for event causing callback */
uint 32 event code)

INTERFACE DESCRIPTOR_PTR intf_ptr = (INTERFACE DESCRIPTOR PTR) intf_handle;
switch (event code) {

case USB ATTACH EVENT:

case USB _CONFIG EVENT:

<Add your code here>

break;

case USB _INTF EVENT:
<Add your code here>
break;

case USB DETACH EVENT:
<Add your code here>
break;

}

Here is sample code for the HID MOUSE application. In this code, the hid device variable contains all
states and pointers used by the application to control/operate the device:

void usb _host hid keyboard event (

/* [IN] pointer to device instance */

_usb _device instance_handle dev_handle,

/* [IN] pointer to interface descriptor */
_usb_interface descriptor handle intf handle,

/* [IN] code number for event causing callback */
uint 32 event code)

INTERFACE DESCRIPTOR PTR intf ptr = (INTERFACE DESCRIPTOR PTR) intf handle;

USBHOST Users Guide, Rev. 6

14

Freescale Semiconductor

Developing Applications

fflush (stdout) ;
switch (event code) {

case USB ATTACH EVENT:
printf ("-—---- Attach Event ----- \r\n");
/* Drop through config event for the same processing */
case USB CONFIG EVENT:
printf ("State = %d", hid device.DEV_STATE) ;
printf (" Class = %d", intf ptr->bInterfaceClass);
printf (" SubClass = %d", intf ptr->bInterfaceSubClass);
printf (" Protocol = %d\r\n", intf ptr->bInterfaceProtocol);
fflush (stdout) ;

—_~ o~ o~ —~

if (hid device.DEV_STATE == USB DEVICE IDLE) ({
hid device.DEV_HANDLE = dev_handle;
hid device.INTF HANDLE = intf handle;
hid device.DEV_STATE = USB DEVICE ATTACHED;
}
else {
printf ("HID device already attached\r\n");
fflush (stdout) ;
}

break;

case USB INTF EVENT:

printf ("-—---- Interfaced Event ----- \r\n") ;
hid_device.DEV_STATE = USB DEVICE INTERFACED;
break;

case USB DETACH EVENT:
/* Use only the interface with desired protocol */

printf ("\r\n----- Detach Event ----- \r\n");

printf ("State = %d", hid device.DEV_STATE) ;

printf (" Class = %d", intf ptr->bInterfaceClass);

printf (" SubClass = %d", intf ptr->bInterfaceSubClass);
printf (" Protocol = %d\r\n", intf ptr->bInterfaceProtocol);
fflush (stdout) ;

hid_device.DEV_HANDLE = NULL;
hid_device.INTF_HANDLE = NULL;

hid device.DEV_STATE = USB DEVICE DETACHED;
break;

/* notify application that status has changed */
_usb event set (&USB Event, USB EVENT CTRL);

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 15

Developing Applications

NOTE

The example shows how a mouse can be connected to the host directly or
using a hub. However, the hid device global structure limits this usage to
one single device. It will not work with multiple devices connected through
the hub.

4.2.5 Selecting an interface on the device

If the interface handle has been obtained, application software can select the interface that a retrieve pipe
handles. The following code demonstrates this procedure:
case USB_DEVICE ATTACHED:

printf ("Keyboard device attached\n");
hid device.DEV_STATE = USB DEVICE SET INTERFACE STARTED;

status = usb hostdev_select interface(hid device.DEV_HANDLE,

hid device.INTF HANDLE, (pointer) & hid device.CLASS INTF);

if (status != USB OK) {
printf ("\nError in usb hostdev_select interface: %x", status);
fflush (stdout) ;
exit (1);

}

break;

As internal information, usb_hostdev_select _interface caused the stack to allocate memory and to do the
necessary preparation to start communicating with this device. This routine opens logical pipes and
allocates bandwidths on periodic pipes. This allocation of bandwidths can be time-consuming under
complex algorithms.

4.2.6 Retrieving and storing pipe handles

If the interface has been selected, pipe handles can be retrieved by calling as shown in this example:

pipe = usb hostdev find pipe handle (hid device.DEV_HANDLE,
hid device.INTF HANDLE, USB INTERRUPT PIPE, USB RECV);

In this code, pipe is a memory pointer that stores the handle (see code example for details). Note that this
routine specified the type of pipe retrieved. The code shows how to communicate with a mouse that has
an interrupt to obtain the pipe handle for the interrupt pipe.

4.2.7 Sending/receiving data to/from device

The USB packet transfers on the USB software function in terms of transfer requests (TR). A similar term
in Windows and Linux is URB. In Windows, drivers keep sending URBs down the stack and wait for
events or callbacks for USB completion. There is one callback or event per URB completion. The USB
stack concept is the same except that the fields inside a TR can be different. A TR is a memory structure
that describes a transfer in its entirety. The USB stack provides a helper routine called
usb_hostdev_tr_init() that can be used to initialize a TR. Every TR down the stack has a unique number
assigned by the tr_init() routine. The following code example shows how this routine is called:

usb_hostdev_tr init(&tr, usb _host hid recv callback, NULL);

USBHOST Users Guide, Rev. 6

16 Freescale Semiconductor

Developing Applications

The routine takes the tr pointer to the structure that needs to be initialized and the name of the callback
routine that is called when this TR completes. An additional parameter can be supplied that is called back
when TR completes. The user can throw away TR immediately after it was used in _usb_host recv_data.
The reason is that TR is copied to the pipe handle. The user does not need to save all the information
because a copy is already used for the USB stack, so perhaps the best method is to allocate TRs on the
stack.

After TR is initialized and the pipe handle is available, it is easy to send and receive data to the device.
USB devices that use periodic data need a periodic call to send or receive data. It is recommended to use
timers to ensure that a receive or send data call is done in a timely manner, so the packets to and from the
device are not lost. These USB driver design details are outside the scope of this document. The following
code provides an example of how the data is received.

status = usb host recv _data(host handle, pipe, &tr);

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 17

Chapter 5 FAT File System

5.1 Introduction

The FATFS module is developed based on MSD host class of Freescale USB Stack Software Suite. Its
architecture contains USB driver code, disk I/O interface functions, FAT APIs, and some applications. This
document intends to help you gain an insight into the File Allocation Table and capabilities to develop your
own applications. The document is targeted for firmware application developers who would like to
develop the applications using FATFS file system module.

5.2 File Allocation Table Overview

The mass storage media is organized logically as a Master Boot Record and several partitions. Figure 5-1
describes the logical structures of a mass storage medium.

Master Boot Record

Extended Partition 1

Extended Partition 2

Extended Partition N

Figure 5-1. Logical structure of mass storage media

The Master Boot Record is located at sector zero. It contains three items: an area for executable code, a
partition table, and a boot signature. The partition table enables defining one or more partitions, or logical
volumes, in the storage media. Many devices have just one volume. The partition table in the MBR sector
has room for four 16-byte entries that specify the sectors that belong to a partition.

A FAT partition composed of four different sections as shown in the following figure.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 19

FAT File System

Reserved Region

Boot Sector
FS Information Sector (FAT32 only)
More reserved sectors (optional)

FAT Region
File Allocation Table #1
File Allocation Table #2

Root Directory Region (FAT12/16 only)

Data Region (for files and directories)

Figure 5-2. FAT partition structure

Reserved Region These sectors are located at the very beginning. The first reserved sector (sector
0) is the Boot Sector (Partition Boot Record). It includes an area called the BIOS Parameter Block
(with some basic file system information, in particular its type, and pointers to the location of the
other sections) and usually contains the operating system's boot loader code. The total count of

reserved sectors is indicated by a field inside the Boot Sector. For FAT32 file systems, the reserved
sectors include a File System Information Sector at Sector 1 and a Backup Boot Sector at Sector 6.

FAT Region. This typically contains two copies of the File Allocation Table for the sake of
redundancy checking, although the extra copy is rarely used, even by disk repair utilities. These
are maps of the Data Region, indicating which clusters are used by files and directories. In FAT16
and FAT12, they immediately follow the reserved sectors.

Root Directory Region. This is a Directory Table that stores information about the files and
directories located in the root directory. It is only used with FAT12 and FAT16, and imposes on the
root directory a fixed maximum size which is pre-allocated at creation of this volume. FAT32 stores
the root directory in the Data Region, along with files and other directories, allowing it to grow
without such a constraint. Therefore, for FAT32, the Data Region starts here.

Data Region. This is where the actual file and directory data is stored and takes up most of the
partition. The size of files and subdirectories can be increased arbitrarily (as long as there are free
clusters) by simply adding more links to the file's chain in the FAT. Note that the files are allocated
in units of clusters, so if a 1 KB file resides in a 32 KB cluster, 31 KB are wasted. FAT32 typically
commences the Root Directory Table in cluster number 2, the first cluster of the Data Region.

FAT uses little endian format for entries in the header and the FAT(s).

USBHOST Users Guide, Rev. 6

20

Freescale Semiconductor

/wiki/Boot_sector
/wiki/BIOS_parameter_block
/wiki/Boot_loader
/wiki/Endianness

FAT File System

53 Software Module

5.3.1 USB FATFS Feature

The USB FATFS software module uses class MSD’s APIs of Freescale USB Stack Host to access mass
storage device. The module supports:

* FAT sub-types: FAT12, FAT16, and FAT32

* Number of open files: Unlimited, depends on available memory

* Multi-partition: Number of volumes (up to 10)

» File size: Depends on FAT specs (up to 4 GB)

* Volume size: Depends on FAT specs (up to 2 TB on 512 bytes/sector)
» Cluster size: Depends on FAT specs (up to 64 KB on 512 bytes/sector)
» Sector size: Depends on FAT specs (up to 4 KB)

* Long file name support in ANSI/OEM or Unicode

* Multiple ANSI/OEM code pages including DBCS

» Code size reduction depending on user configuration

The class drivers are programmed with generic code, so they can be used with other processors if standard
SCSI commands are provided like MSD class of the Freescale USB Host Stack.

5.3.2 Module license

FATES is an open source module. It follows the BSD-style license. Redistributions of source code must
retain the following copyright notice.

I* /
| FATFS - FAT file system module R0.08b (C)ChaN, 2011

/ /

/ FATFS module is a generic FAT file system module for small embedded systems.
/ This is a free software that opened for education, research and commercial

/ developments under license policy of following terms.

/

/ Copyright (C) 2011, ChaN, all right reserved.

/

/ * The FATFS module is a free software and there is NO WARRANTY.

/ * No restriction on use. You can use, modify and redistribute it for

| personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.

/

/ /

Because, FATFS is for embedded projects, the conditions for redistributions in binary form, such as
embedded code, hex file, and binary library are not specified to increase its usability. The documentation
of the distributions need not include FATFS and its license notice.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 21

FAT File System

5.4 Directory structure

The software module has a standard directory structure. You can extend it easily to accommodate more

applications for different processor families.

Figure 5-3 shows the directory structure:

1=V o

=l) ezamples

s
¥
i
s
5

F

F

=l [} source

F

+

F

) audio

) cdc_serial
ILZ) corrmon

= hid

) msc

) msc_mfs_genetic
=l |) codewarrior

+) chvlushiezse
+) chelushim125
+ () cfvlusbmmzsa
) m32221demn
+) m32259demn

) m3225%vh

=l) cwln

+ () chelushim1zs
4) kinetis

+) m32221demn
*) m32Z59demn

+) m3225%vh
) msc_mfs_generic_tes:
I phde

I bsp

) classes

20 driver

YY Y Y Y Y Y YYYYY Y Y Y Y YYYYYYYY VY YY

IL2) hos:_commaon

USE Host code
Ezarnple code

Lndio &pplication

CDC Virtual COM & pplication

Cornon files for all application

HID Spplication

Ilass Storage Device Sppileation

WED FATFS code and Derao A pplication

CodeWarrior Project Files
Project for CFV1JEZ56

Project for CEV1IL123
Project for CFV 1VIVE 56

Project for 52221 Derao
Project for W522590e ro0

Project for MS2239EV R
Code Warrior 10 Project Files

Project for CEVIIN12E

Project for K40
Project for WI52221 Derao

Project for 522590 mo
Project for BSZ239EVE

WED FATES Test Applications

PHIC Application

Class ditver and low leve] sowrce code
Ceperdent source code in Jow lewel layer

Soumwe code for different TSB classes
Driver source code

Host cormrnon source code

Figure 5-3. MSD FATFS with Freescale USB Host Stack directory structure

5.5 USB FATFS Architecture

This chapter provides an overview of USB FATFS architecture and its software flow.

5.6 Architecture overview

The architecture of USB FATFS is shown in the following figure.

USBHOST Users Guide, Rev. 6

22

Freescale Semiconductor

FAT File System

Host Applications

FATF S Applications

¥
FAT Module

Disk O Interface

Host Stack

¥
IJSEB Host Controller

Figure 5-4. FATFS Architecture

The remainder of the document describes only the FATFS module. For more information about the host
stack structure and functionality or about the demo application for the different USB classes, refer to the
Freescale USB Stack Host Users Guide (document USBHOSTUG).

5.7 FATFS Module overview

5.7.1 FATFS APIs

The FATFS APIs layer implements file system APIs such as f open, f read, f writes, and so on. This layer
is independent with USB Host Stack. It uses Disk I/O interface to communicate with mass storage device.
The set of APIs is divided into four groups:

Group of APIs that operates with logical volume or partition.
Group of APIs that operates with directory.

el e

Group of APIs that operates with file.
4. Group of APIs that operates with both file and directory.

APIs of FATFS are listed in Section 5.8.2, “Configuration options.”

5.7.2 Disk 1/0O interface

The Disk I/O Interface consists of six APIs that are used by FATFS API to access and manage data in mass
storage device. To confirm with FATFS APIs, the functions must follow the prototype described in section
Disk I/0O Interface of FatFs Generic File System Module document. The layer operates with USB Host

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 23

http://elm-chan.org/fsw/ff/00index_e.html

V¥ ¢
i

FAT File System

Stack via three SCSI commands: READ10, WRITE10, and READ CAPACITY that are implemented on
Host stack.

The following table lists the APIs of Disk I/O Interface layer.
Table 5-1. Disk 1/O interface APIs

APls Descriptions

disk_initialize | Initialize disk drive

disk_status Get disk status

disk_read Read data sector(s) from mass storage device
disk_write Write data sector(s) to mass storage device
disk_ioctl Get information about sector size, sector count and physical volume size.

get_fattime Get current time of system.
At this time, system time utility has not been implemented, so that the function always returns to a fixed
date.

5.8 Developing Applications for FATFS

5.8.1 Background

FATFS module contains various configuration options. Therefore, this chapter provides information to
help user select proper options depending on his requirement to reach the highest performance. Moreover,
how to create a new FATFS project is also mentioned here.

5.8.2 Configuration options

The following table shows the options for module size reduction.
Table 5-2. Module size reduction options

_FS_READ | USE_STR
AP _FS_MINIMIZE ONLY FUNG

_USE_MKF | _USE_FOR

_FS_RPATH S WARD

0 1 2 3 0 1 0 1 0 1 2 0 1 0 1

f_mount

f_open

f_close

f_read

f_write X

f_sync X

f_Iseek X

f_opendir X X

f_readdir X X

USBHOST Users Guide, Rev. 6

24 Freescale Semiconductor

Table 5-2. Module size reduction options

FAT File System

API _FS_MINIMIZE —F%—':T_EYAD —UEEN?:TR _FS_RPATH —USES—MKF 'Uv?/i{:? R
1 2 3 0 1 0 1 1 0 1 0 1
f_stat X X X
f_getfree X X X X
f_truncate X X X X
f_unlink X X X X
f_mkdir X X X X
f_chmod X X X X
f_utime X X X X
f_remane X X X X
f_chdir
f_chdrive
f_getcwd X X
f_mkfs X
f_forward X
f_putc X X
f_puts X X
f_printf X X
f_gets X
f_eof
f_error
f_tell
f_size
x- APl is removed
USBHOST Users Guide, Rev. 6
Freescale Semiconductor 25

FAT File System

Other configuration options for FATFS module are described in the following table.
Table 5-3. General FATFS configuration options

Feature Option Value Description
_VOLUMES 1to 4 Number of volumes to be used
Multi-partitions | '+)1 11 PARTITIO 0 Disable multi-partitions feature
N 1 Enable multi-partitions feature
0 Retrieve data from FAT volume byte by byte
Memory | \worD_ACCESS
access 1 Retrieve data from FAT volume word by word
integer Number of files can be opened simultaneously for write
Open _FS_SHARE 9 P y
multi-files
0 FATFS uses the sector buffer in the system for file data transfer.
This reduces memory consumption 512 bytes each file object
Memory size _FS_TINY
1 FATFS uses a sector buffer for the individual file object for file
data transfer
. 512, 1024, Maximum sector size to be handled
Sector size _MAX_SS 2048, 4096

USBHOST Users Guide, Rev. 6

26 Freescale Semiconductor

FAT File System

Table 5-3. General FATFS configuration options (continued)

Feature Option Value Description
437 Used U.S. (OEM)
720 Used Arabic (OEM)
737 Used Greek (OEM)
775 Used Baltic (OEM)
850 Used Multilingual Latin 1 (OEM)
858 Used Multilingual Latin 1 + Euro (OEM)
852 Used Latin 1 (OEM)
855 Used Cyrillic (OEM)
866 Used Russian (OEM)
857 Used Turkish (OEM)
862 Used Hebrew (OEM)
_CODE_PAGE
874 Used Thai (OEM, Windows)
1 ASCII only (valid for non - LFN configuration)
1250 Used Central Europe (Windows)
1251 Used Cyrillic (Windows)
Long File Name 1252 Used Latin 1 (Windows)
1253 Used Greek (Windows)
1254 Used Turkish (Windows)
1255 Used Hebrew (Windows)
1256 Used Arabic (Windows)
1257 Used Baltic (Windows)
1278 Used Vietnam (OEM, Windows)
0 Disable LFN feature. MAX_LFN and LFN_UNICODE have no
effect
USE LFN 1 Enable LFN with static working buffer on the BSS
2 Enable LFN with dynamic working buffer on the STACK
3 Enable LFN with dynamic working buffer on the HEAP
-MAX_LFN 12 to 255 Maximum LFN length to handle
0 The character code set on FATFS APls is ANSI/OEM
_LFN_UNICODE
1 The character code set on FATFS APIs is Unicode
0 Disable relative path
_FS_RPATH
1 Enable relative path

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

27

FAT File System

Table 5-3. General FATFS configuration options (continued)

Feature Option Value Description
_VOLUMES 1to 4 Number of volumes to be used
Multi-partitions | '\)1 11 PARTITIO 0 Disable multi-partitions feature
N 1 Enable multi-partitions feature
0 Retrieve data from FAT volume byte by byte
Memory | \worD ACCESS
access 1 Retrieve data from FAT volume word by word
integer Number of files can be opened simultaneously for write
Open _FS_SHARE 9 P y
multi-files
0 FATFS uses the sector buffer in the system for file data transfer.
This reduces memory consumption 512 bytes each file object
Memory size _FS_TINY
1 FATFS uses a sector buffer for the individual file object for file
data transfer
. 512, 1024, Maximum sector size to be handled
Sector size _MAX_SS 2048, 4096
NOTE

Some USB sticks may pass check fs() function because the boot signature
in the BIOS parameter block may differ from 0xAASS (offset 0x1FE) and
also because "FAT" string differs for FAT12/16 (offset 0x36) or for FAT32
(0x52). This is an indication that the file system was not properly formatted

to FAT.

USBHOST Users Guide, Rev. 6

28 Freescale Semiconductor

h

FAT File System

5.8.3 Create a project

Perform these steps to develop a new application:

1. Create a new project under /host/examples/msd_mfs_generic/codewarrior or /host/examples/
msd_mfs_generic/cw10 directory.

=) host
=) examples
1) audio
I cdc_serial
I comman
i) hid
1) msd
= |5) msd_mfs_generic
=) codewarrior
I5) cfviushiessa
) cfvinshimiza
I5) cfviusbmmzse
) ms2221demn
[=5) ms2259demo
) m52253evh
= o _project
I3 bin
=) emd
[C3) Mew_Project_Data
=) prm
@ Sources
=) ewlo
I5) msd_mfs_generic_test
| phdc
) source

Figure 5-5. Create a new project

2. Add cesbes.h, diskio.h, diskio.c, ff.h, ff.c, ffconf.h, main.c, usb_class.h, msd_fat_demo.c, and
other files to the created project similar to the pre-existing FATFS applications.

3. Modify FATFS module options in the file ffconf.h.
4. Modify FATFS application task in the file msd_fat_demo.c (fat_demo function) as you want.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 29

Appendix A Working with the Software

A.1 Introduction

This chapter gives you insight on how to use the USB Stack with PHDC software. The following sections
are described in this chapter:

* Preparing the setup

* Building the application

* Running the application

Knowledge of CodeWarrior IDE will be helpful to understand this section. While reading this chapter,
practice the steps mentioned.

A1.1 Preparing the setup

A1.11 Software setup

1. Double-click the Freescale USB_Stack v[current version].exe installer executable.

2. The Freescale USB Stack Setup window appears as shown in the following figure. Click on the
Next button to continue.

Freescale USB Stack v3.2.0 Setup SR

Welcome to the Freescale USB
Stack v3.2.0 Setup Wizard

This wizard will guide you through the installation of
Freescale USE Stack w3.2.0.

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Mext to continue.

[Mext> f | Cancel

Figure A-1. Freescale USB Stack Setup Wizard

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 31

PR 4

Working with the Software

3.

Please review the license terms before installing Freescale USE Stack v3.2.0. :

In the following figure, click on the I Agree button to accept the license agreement.

o ﬁ
¢ Freescale USB Stack v3.2.0 Setup [

License Agreement .
-

Press Page Down to see the rest of the agreement.

IMPORTAMNT. Read the following Freescale Software License Agreement (“Agreement”) =
completely. By selecting the "I Accept” button at the end of this page, you indicate that D
you accept the terms of this Agreement and you also adknowledge that you have the
authority, on behalf of your company, to bind your company to such terms. You may

then download or install the file.

FREESCALE EMD-USER SOFTWARE LICEMSE AGREEMENT
This is a license agreement between you (either as an individual or as an authorized

representative acting on behalf of your employer) and Freescale Semiconductor, Inc.
("Freescale”). It concerns your rights to use the software provided to you in binary or -

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Freescale USBE Stack v3.2.0.

[< Back " I Agree I[Cancel

)

Figure A-2. Freescale USB Stack setup license agreement

4. In the following figure, select USB low level stack and other class components to install and click

on the Next button.

Choose which features of Freescale USB Stack v3.2.0 you want to install, :

= Freescale USE Stack v3.2.0 Setup [

Choose Components -

Chedk the compenents you want to install and unchedk the components you don't want to
install. Click Mext to continue.

. L pe— Description
Select components to install: -[+]
= LEB Deice i Paosition wour mouse

USB Low LE""EB over a corponent ko
PHDC - Multi 5~ see jts description.
PHDC - Weigh
HID Maouse

HID Keyboard
CDC - Virtual ¢
Mass Storage
| s Y " - N

Space required: 58.6MB I
4 1 3

| <Back || mMext> | [cancel

Figure A-3. Freescale USB Stack components

USBHOST Users Guide, Rev. 6

5. Inthe following figure, select the location of the folder where you want to install the Freescale USB
Stack software and click on the Install button.

32

Freescale Semiconductor

g |

Working with the Software

,

Choose Install Location .
Choose the folder in which to install Freescale USE Stack v3.2.0. : -

Setup will install Freescale USE Stack v3.2.0 in the following folder. To install in a different
folder, didk Browse and select another folder. Click Install to start the installation.

Destination Folder

:\Program Files\Freescale USE Stadk v3.2.0

Space required: 58.6MB
Space available: 145.8GE

[< Back][Install l [Cancel l

Figure A-4. Freescale USB Stack installation folder location

6. Click on the Finish button to successfully complete the Freescale USB Stack Setup Wizard.

-
© Freescale USE Stack v3.2.0 Setup |

Completing the Freescale USB
Stack v3.2.0 Setup Wizard

Freescale USB Stack v3.2.0 has been installed on your
computer,

Click Finish to dose this wizard.

Figure A-5. Freescale USB Stack installation finish

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

33

PR 4

Working with the Software

7. Click Start — Programs — Freescale USB Stack — Source — USB Host to launch the project.

4] [@ Docurnentation »
@’ Set Progran Access and Defadlks ™ [@ LSE Device ¢

f‘j Uninstall
rﬂ Programs

w Favorites 3

Daocurnents 4

Settings]
Seatch »
Help and Suppork

Run...

Undock Computer

CE 0@ vRb

Windows XP Professional

Shut Down, .

;'\:‘
w
—
o
~

Figure A-6. Freescale USB Stack source program for launch

A1.1.2 Hardware setup

Set up the connections as shown in the following figure.

USBHOST Users Guide, Rev. 6

34 Freescale Semiconductor

Working with the Software

Host System
displaying log Host System running
CodeW arrior

COM connection

USB for Power and
CodeWarrior

i Device connection

Figure A-7. Coldfire V1 and V2 USB setup

1. Make the first USB connection between the personal computer where the software is installed and
the DemoJM board where the silicon is mounted. This connection is required to provide power to
the board and for downloading the image to the flash.

2. Make the second connection between the DemoJM board and the personal computer, to display the
log of DemoJM.

3. Make the third connection between the device and DemoJM.

A.1.2 Building the application with CodeWarrior 6 and CodeWarrior 7

The host software for CFV 1 is built with CodeWarrior 6.3. In addition, the host software for CFV2 is built
with CodeWarrior 7.2. Therefore, it contains application project files that can be used to build the project.

Before starting the process of building the project, make sure CodeWarrior 6.3 is installed on your
computer.

To build the ColdFire V1 project:
1. Navigate to the project file and open cfvljm128 xxx.mcp project file in CodeWarrior IDE.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 35

Working with the Software

= 155 host | lucma
= I25) examples E:]pm —
2 3 cdc_serial . cfv1im1 28 _cdc.mcp
= 125 codewarrior derivative.h
El] chv1ushiml 25
=) Bin
[cnd
I prm
I3 comman
I hid
I msd
|5 phdc
I source

Figure A-8. Open cfv1jm128_xxx.mcp project file

USBHOST Users Guide, Rev. 6

36 Freescale Semiconductor

N

Working with the Software

2. After you have opened the project, the following window appears. To build the project, click the
button as shown in the following figure.

Freescale CodeWarrior

Fle Edt Vww Sewch Project Processor Expert Devie Intiskzation Window Help

ThesE v <haA A edRysEER
‘=l

chvtjmni2s_cde.mcp |

[revamiriomre - @B ¥ B %

Fies | Link Order | Tangets |

- Fie Coge
L=
=Eqbap
= S mcfS1IM
B wbomcfS1Me

£
.

L LR E R RN
=
8
&
Ie o

bbbl

ol
=
- -T-T-X-T-1-X-%-X-F-F-F-X-2-1-F-T-X-1-F-X-I-1-

—rR-R-R-E-F-J-X-F-X_-J-R-3-N-R-R-F_R-J_J-X_B-R-J1-X_

el
W

Figure A-9. Build a project

3. After the project is built, the code and data columns must appear filled across the files.

NOTE
Use the above mentioned steps to build the CFV2 projects also.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 37

N

Working with the Software

A13

Running the application with CodeWarrior 6

Refer to the board documentation and CodeWarrior manual for details on how to program the flash
memory on the evaluation board used. The following steps are presented as an example about how to run

the application with DemoJM128 board using a P&E-micro debugger.

Freescale CodeWarrior

To run the application, click the button as shown in the following figure.

File Edt View Search Project Processor Expert Device Initialization ‘Window Help

A Eoc<hAaA AN uSh . EER

=
efvijm128_cdc.mcp |
[D PE Muliek/Cyciore Po. | il 1B ¥ B B
Files | Link Order | Targets |
¥ | Fie Code | Data |4 |
=4 source * =la
=3 bsp 176 0+ =5
El=] 176 0+ =
) usb_mef510M.c 176 0+ =
=3 2pp 326 M2 . =
) cdc_senale 2652 N3 o+ =
R tee 218 24 « =
i scic 356 =1 |
=& clasves 14436 76« =
= ede 2316 16 « =
B usb_host_cdc.c 6228 0« =
) usb_host_cde_intl.c 2588 16 « =
#13 hid 1020 4.3
#2hub 4500 B e
3 med 0 0 =
i ush_classesc 1] 48 « =
= 53 drives §462 1084 = =
8 kheic 5294 872 - =
-~ usbewente 196 0« =
i usbmegq.e 726 212 « =
- i usbsem.c 246 0. =
= £ hast commion 17406 120 » =
@ host_ch3c 4156 16 « =
bl clea e Ty
72 fbex 77792 5595
< >

Figure A-10. Running the application

USBHOST Users Guide, Rev. 6

38

Freescale Semiconductor

b -

Working with the Software

2. Click the Connect (Reset) button to connect to hardware, as shown in the following figure.

P&E MCF51xx Connection Manager - v3.30.00.00

Please select connection interface. port. and settings in order to connect to
target.

Connection part and Interface Type
Add LPT Port

Refresh List

Interface: |USB HC508/HCE12/CRA Multilink - USE Port

Port: |USB1 : EWESTJM128 [DEVY] (PESOT4955) j
Interface Detected : Firrnware Yersion :
Target CPL Information

CFU: ColdFire Processor - Autodetect

MCU rezet line: MCU Volage:

Reset Options
[~ Delay after Reset and before communicating to target for 0 millizeconds [decimal).

Iw If a secure device is detected, perform flash erase to enter debug mode [will prompt before erasure)

Cyclone Pro Power Control [Woltage --»> Power-Out Jack)

v Provide power to target Fiegulator Dutput Yoltage Power Down Delap 250 ms
[Power off target upon software exit N - Pawer Up Delay 280 s
Trirn Control

Default trim reference frequency iz © 3125000 Hz. [Valid Range: 3125000 to 39062 50 Hz)
[Use custom trim reference frequency | Hz Click Far trirm details.

Connect (Resef) | Hotsync | Abort

[Show this dialog before attempting to contact target [Otherwise only display on Error)

Figure A-11. Connection manager

3. The pop-up in the following figure shows the progress while erasing and programming the built
image to JM128 flash.

NVYM Erasing and Programmation Arming E'

50%

Figure A-12. Erasing and programming window

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

39

) 4

Working with the Software

4. The pop-up in the following figure shows the progress while loading the built image to JM128
flash.

Loading Code

Loading 33692 bytes ..
(=4

CEEEEREE

Figure A-13. Loading window

5. After the built image is loaded in the flash, the debugger window shown in the following figure
appears. Click on the green arrow as shown to run the programmed image.

File Wiew Run CFMultiinkCyclonePro Component Source Window Help
D|@(a| @[] 20| -a|z|e|e-] 9
B source

D:AProjects\FSL_CPY1_IUISE_Host PorthSShhostappthid_mousethidmouze.c Line: 125

static U3B_STATUS status = USE_OE;
uint_ 32 is

A6, #0
-16(47) ,A7

5L MKk initi);
seil_indt():
TimerInit();
DisableInterrupts;
22]|

[Procedure

main ()

Data:1 =)y
hidmouse. ¢ Auto Symb Global
hid_device <28> dewice_struct -
DriverInfoTable £36> array[3] of driver_ info
SrAatnA 0 am=irmed 1omer)
Data:2 O[] X
[miin | Aute | Symb | Local Breakpoint Ll
STARTED
RUNNING |
| >
For Help, press F1 |Automnatic {Hw Breakpoinks, Watchpoints and Trace possible) MCFS1IM128 |Breakpoint ﬁ

A.1.4 Building and running the application with CodeWarrior 10

The software for CFV1 and CFV2 targets is available to be build, download and debug using the
CodeWarrior 10 MCU.

Before starting the process of building the project, make sure CodeWarrior 10 MCU is installed on your
computer.

USBHOST Users Guide, Rev. 6

40 Freescale Semiconductor

Working with the Software

To build the SO8/CFV1/CFV2 project:
1. Navigate to the project folder (cfvlusbjm128) and locate the CodeWarrior10 project file (.project).

= 1) host A [aprm
=) examples
= 153 cde_serial .
[C3) codewarrior derivative.h
=) cwin = preprocessar. prefix

[chelusbiezss
=] chvlushjm128
2 prm
[cFelusbmmzss
I mszzzidemo

I3 mS2z59evh

2. Open the project by dragging the .project file and dropping it into the CodeWarrior 10 project
space.

IC++ - CodeWarrior Development Studio

File Edit Refactor Mavigate Search Project Profiler Run PEMicro - Processor Expert Window Help

iU E i f-N-R g &G R B [%5 Debug | jce+
g5 @ g

=0 - E| (®) Make Targets 52 = [

i c he oo
8213, <

SF
& P | File Name ® cfviushjm128

File Mame = File Edit View Favorites Tools Help]

Q- O 3% F | Powr [roe| B B X

Address |@ LISE ieknam filesiCW 10 portinglhostlesamplestcde_serialiow10hcfylushimlza | Go

Folders X | Hame =

A|| 2pm
=) examples | & cproject
=) cde_serial = project
) codewarrior I derivative.h
=) owio = preprocessor prefix
P Tasks 12 2 Properties] Blc) chvlushizzse
Ditems = 2 chvlushimiza
4 |1 Description 3 prm
) chvlushmmzse
[5) m52221dema
[55) m52259evh
[common
B 5 hid
[keyhoard
[keyboard_mouse
5 mouse
< il 21€ il 2 Qs
— = () codewarrior
D<} [cfviushiese
[chviushim12a
(5 cfvlushmm25é |

£ i EE 3
Type: PROJECT File Date Modified: 7/19/2010 10:47 AM Size 11.8KE j My Compuker

»

[

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 41

Working with the Software

3. After you have opened the project, the following window appears. To build the project choose
"Build Project" from the Project menu.

% CjC++ - CodeWarrior Development Studio

File Edit Refactor Mavigate Search REEEES Profiler Run PEMIcro - Processor Expert Window Help

D = i 4 Open Projeck o o —_—
: - : : - D o E53 Crebu CIC+H+
) C) lovh - & . g Close Projeck o Ef ﬁ;: . |7% ! |
-0 Q- 8 g
(s Bl Al Ctri+B — —
HE) CodeWarrior Projects 52 Build Canfigurations v O || @) Make Targets 53 8
Build Project 5 0 o & =
|E_§|J’ﬂz B = Y Build Working Set i’ =2 cfviushimizs
— Clean...
= qup File Mame Build Autormatically
File Mame = Make Target 3
= :I:E. chvlusbiml2d : MCFS1IM1ZE_In Generate Processor Expert Code
@]Includes Change Device/Connection Chrl+6
@ derivative b Propertics
[= Headers
= Libs
= preprocessor, prefix
== prm
&= Project Settings
= source
é Tasks (ﬁ Properties (E Consale &4 Tarqget Tasksw = B8
<terminated:= HCS0S, s08ushjme0.abs ® % B ﬁlElEl = B~ -

|A
|~

NOTE
You must follow the above procedure to build CFV2 projects also.

USBHOST Users Guide, Rev. 6

42 Freescale Semiconductor

h

4
Working with the Software

4. To run the application, first locate the CFV1JM128 Flash.launch configuration in the current
project space. Right-click it and choose Debug As > 1 CFV1JM128 Flash as in the window below.

@

CfC++ - CodeWarrior, Development Studio

File Edit Refactor MNawigate Search Project Profiler Run Processor Expert Window Help
3 il & F- - E- e @ R) %5 Detug | i+ |
- 0@ @ 2 g~
2] Codetwarrior Projects 53 = 0 =0 Make Targets &2 = O
= & =
|E§ |laz = =5 cfviushjmiza
B & Plreime | :
File: Name Open
= :L:‘f, chvlushjml2d : MCFS1IM1Z8_Intern Qpen Wwith »
LTy
@ analysis_chvl_setup_CFY1IM128]
ﬁb Eieris Exclude from build...
B crvid sh.launch
[Includes
@ derivative.h Build Configurations 4
(= Headers Make kargets 2
= Libs -
(= MCFS1JML28_Internal_Flash =| -opy
== prm
s
(= Project Settings ¥ Delete es | B Console 53 Target Tasks =8
= source Move, .. Bl B-H-
(== Trace_Profile_Resuls Rename. .. ~
Fug Import. ..
=] 3 1
g"ﬂExport... _t... cfv:!.ushjmlza.elf
dFire Linker'
w7 Refresh F5 lesh Freescaleh CW MCU

add Bookmark . ./NMCU/ColdFire Tools/Command Line Tools/mwl

bimlZ8.args" —-o "efviuskhjmliS.el£"

Clean Selected File(s) ding target: cfviushjmlZs.elf'

Build Selected File(s) -
< | Run As » hd
2 Debug &s 41 c BRaz N
: 0¥ oy Lushiml ZE/CFYL M1 28 Flash Dt R L ChVLIM

Team 4 N .)

Compare With » Debug Configurations. ..

Replace With 4

Properties

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

43

h o
g |

|
Working with the Software

5. After the image is programmed in the flash, the debugger window appears as shown in the next
figure. Click on the Green arrow in the Debug tab to run the image.

Debug - cfwlusbjm128/sourcefapp/cdc_serial.c - CodeWarrior Development Studio

=13

=g Thread [ID: 0x0] (Suspended: Signal '
= 2 main() D:worki USE Yietnam File
= 1 _startup() D:\workiUSE! Yietnan

_usb_host_handle host_handle;

f% Initialize the current platform.

File Edit Refactor Mavigate Search Project Profiler Run PEMicro - Processor Expert Window Help
|] &2) i e F-W - -0 Q- 5 | 35 pebug | EE cicH+
: o L3 <::| -
%5 pebug 53 = B || [€ cde_serial.c B2 S 0O|[@op = SEo|t=v|®p|r|mm| = O
= * Returned Valus : none had woid main(wvoid) S
* Comments % 0x00000d10 <mwain>: link
5 & b] 3 o
® = 2. * 0x00000d14 <msin+ds: lea
i o IE I # m - * USE_STATUS status
AEND ¥ m e e e e e 0x00000d18 <mwaintss: clr.l
= E CFY1M1 28 Flash [Codewarrior Download] B R) W .
= @ ColdFire, cfylustim1 28.eff (Suspended) roid main (void) O0x00000dla <mwain+l0s: mowve. 1
= ! ' USE_STATUS status = UIE_C _ush_host_handle host_k

/% Initialize the current g

oD K\UISEY Wisk fileshCw 10 ki
g DeworkdUSE istnam Filest porking', _bsp_platform init():

soil init():
s0i2 init():
TimerInit () ;
DisabhlelInterrupts;

#if (defined MCFS51MM256 H) || (detf

ush_int_disi():

#endif b
< | >

= consale é. Tasks 4@ Target Tas [3_\ Problems O Executabl

_b=p_platform initci):

Ox00000dle <main+14:>: jsr
seil _init () :

0x00000d24 <mwain+20>: jsr
sciZ_init () ;

Ox00000d2Za <main+26>: jsr
TimerInit (] :

0x00000d30 <main+3iz2=: jsr
DisablelInterruvnts: b

Ed
@J Progress ﬂ Memory =0

1w toe
FI]

3 Memory Br 3

| [NewTab]

Ox0 53

Ox00000000 00501004 00000715 00000945 000002 A5 0000094 ... 0. had
Ox00000014 00000945 00000SAS 00000948 000009 A5 000009 4AS B
Ox00000025 00000945 00000545 00000948 000009 A5 000009 AS

Ox0000003C 00000945 00000545 00000948 000009 A5 000009 AS

[nisinlninininini=tn] [alnininial=NE=Nalninigingi=R = alninininl=EE=alnininini=E= N alnln inlnl=E=1 :

A.2 Set up HyperTerminal to get log

To ensure that applications run correctly, the HyperTerminal is used on your computer to get events from
the devices that connect to the CFV1 and CFV2. These steps are used to configure HyperTerminal:

1. Open HyperTerminal applications as shown in the following figure.

USBHOST Users Guide, Rev. 6

44

Freescale Semiconductor

4
Working with the Software

All Programs . @ Ao

@ Freescale Medical Applications USE Stack 2,0

@ Motepad
Y Paint
©) Programn Compatibility wizard
€ Synchronize

& Tour Windows ¥P

[y windows Explorer

B ‘WordPad

ruLﬂ Communications

| % HyperTerminal

ﬁ.— Mekwark Connections

% Metwork Setup Wizard

Mews Connection Wizard

g Remote Desktop Connection

1

o Wireless Network Setup wWizard

@ HyperTerminal

i =8 Scanner and Camera Wizard

Figure A-14. Launch HyperTerminal application

2. The HyperTerminal opens as shown in the following figure. Enter the name of the connection and

click on the OK button.

"~ New Connection - HyperTerminal

File Edit Wiew <Call Transfer Help

[= @§ =0 B3

Connection Description

% MNew Conmection

Enter a hame and choose an icon for the connection:

MHame:

COM1_115200 |

leon:

Disconnected Auto detect

Auto detect

SCROLL CAPS MNUM Capture Print echo

Figure A-15. HyperTerminal GUI

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

45

N

Working with the Software

3. The window shown in the following figure appears. Select the COM port identical to the one that
shows up on the device manager.

< COM1_115200 - HyperTerminal

File Edit W%iew Call Transfer Help

e & @05

Connect To

% COM1_115200

Enter detailz for the phone number that you want to dial:

Country/region:

Phone number: | ‘

Connect using: | COM1 bt
TCPAP [Winsock]

k OK J Cancel

Disconnected

| Auto detect

SCROLL CEFS UM Capkure Print echo

Figure A-16. Connect using COM1

4. Configure the virtual COM port baud rate and other properties as shown in the following figure.

< COM1_115200 - HyperTerminal

File Edt view Cal Transfer Help

O & 08/

COM1 Properties

Paort Settings

Bits per zecond:

Data bits:

Parity:

Stop bits:

Elows contral:

Restare Defaults

L ak. J[Cancel][Lipply }

Disconnected

Auto detect

SCROLL | CAPS |gum | Capture | Print echo

Figure A-17. COM1 properties

USBHOST Users Guide, Rev. 6

46

Freescale Semiconductor

) 4

Working with the Software

5. Configure the HyperTerminal as shown in the following figure. Click on the OK button to submit
changes.

+ COM1_115200 - HyperTerminal
File Edit ‘iew Call Transfer Help

D& &8 DEH

ASCII Setup

COM1_115200 Properties

Conrect To | Settings ASCH Sending

Send line ends with line feeds

Line delay: D millizeconds.

Backspace key sends e
@ il O Dl O CulsH, Space, CilsH LCharacter delay: EI milizeconds.

Function, araw, and chl keys act a3
(&) Terminal keys) Windows keys

Emulation: ASCI Receiving

|Aut0 detect b | Teminal Setup... [&Append line feeds to incoming line ends
| [Force incoming data to 7-bit A5CH
wrap lines that exceed terminal width

Telnst teminal ID:~[ANSI

Backscroll buffer lines: |EDD E
[] Play zound when connecting or dizconnecting L 0K J [Cancel
[Input Translation...] [ASCI Setup...]
[ak] [Cancel]
Connected 0:00:58 Auto detect | Auto detect SCROLL CAPS | yup | Capture | Print echo

Figure A-18. Configure COM1_115200 — HyperTerminal

6. The HyperTerminal is now configured.

& COM1_115200 - HyperTerminal
File Edit WYiew Call Transfer Help

Dz @ & DB

Autn detect SCROLL CAPS UM Caplure Print echo

Figure A-19. COM1_115200 is configured

Connected 0:03:21 Auto detect

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

47

PR 4

Working with the Software

A3

Uninstall Freescale USB Stack Software

1. From your computer, click Start — Settings — Control Panel — Add or Remove Programs.

ana

3 . Mtk Connaciion
Sewm L
o & Jy Priviers s Fanes

PRl LegOFB1S01L..

Windows XP Profes

§) Fioo and Supoeet B Tadbee aed Shart ey

. acoesshiity Optiors
W And Harswane

L Frone aed Modem Cptons
3 Power Dptons

" p Privviess and Fases
Q Qudrme

W Ragionaland Langage Optons
Sy Scarrars and Camaras

) soecied Tasks

0 ety Cervier

@ Scuncs and Audc Dervces
o Sowech

44 Systam

o AR and Start ey

B e Azssonts

W Virciges Frgwal

5 e ek SR VRN
s Tnternal MIC Configuration
% Program Downkad Monitor
=) Rargse Cantrol

21 run agvertised Programs

T somate s

B Syteme Mgt

o Jave

B virwiows Cardipace

Trted) GMA Drives far obile

OO = o oo

Figure A-20. Launch “Add or Remove Programs” from Control Panel

USBHOST Users Guide, Rev. 6

48

Freescale Semiconductor

) 4

Working with the Software

2. Inthe Windows Control Panel “Add/Romove Programs” Toolselect Freescale USB Stack and
click on the Change/Remove button.

3. The uninstall confirmation message appears. Click on Yes button to uninstall.

Freescale USB Stack v3.2.0 Uninstal [——

@ Are you sure you want to completely remove Freescale USB Stack v3.2.0

and all of its components?

Figure A-21. Freescale USB Stack uninstall confirmation message

4. A message box appears. Click on the OK button to complete the uninstall operation.

@ Freescale USB Stack v3.2.0 was successfully removed from your

computer.

Figure A-22. Freescale USB Stack uninstall completion message

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 49

Appendix B Human Interface Device (HID) Demo

B.1 Setting up the demo

Host System
displaying log

Host System running
CodeWarrior

COM connection

USB for Power and
CodeWarrior

f Device connection

Figure B-1. HID demo setup

The preceding figure shows the HID demo setup. The DemoJM is used as the USB host. DemoJM is
connected to the first personal computer using USB cables. This computer is used to supply power to the
board and is used to program the image to the flash. DemoJM is also connected to the second personal
computer via a COM port. This computer is used to log events happening in the USB host. The device
(mouse or keyboard) is connected to DemoJM. Although the proceeding figure shows two computers, the
connection can also be achieved using only one computer.

B.2 Running the demo

The HID project is located in \Freescale USB Stack\Source\USB Host\HID Class Demo Apps.

There are three applications of HID classes:

* Mouse
* Keyboard
+ Keyboard and mouse

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 51

Human Interface Device (HID) Demo

B.2.1 Mouse demo

Perform the following steps to run the mouse demo:
1. Open and load the image of mouse applications to the board.

2. After the image has been loaded successfully, HyperTerminal appears as shown in the following
figure.

“& COM3_115200 - HyperTerminal

File Edit Wew Cal Transfer Help

Owr & 3 =05

|

USB HID Mouse
Waiting for USB Mouse to be attached. ..

Connecked 0:00:10 Auto dekect 115200 5-M-1 e Wi LM

Figure B-2. USB Host waiting for mouse attachment event

USBHOST Users Guide, Rev. 6

52 Freescale Semiconductor

b -

Human Interface Device (HID) Demo

3. Plug the mouse into the board. The Hyperterminal screen appears as shown in the following figure.

“& COM5_115200 - HyperTerminal
File Edit Wiew Call Transfer Help

=2 A DB E

USB HID Mouse

Waiting for USB Mouse to be attached...

————— Attach Event ———-

State = @ Class = 3 SubClass =1 Protocol = 2

Mouse device attached----- Interfaced Event ————-
Mouse interfaced, setting protocol...
Mouse device ready, try to move the mouse

Connected 0:00:46 Auko detect 115200 8-M-1 WM

Figure B-3. Mouse attached

4. When events are implemented (click right mouse, click left mouse, and so on), they are registered
as shown in the following figure.

“& COM5_115200 - HyperTerminal
File Edit Wiew Call Transfer Help

D& 2 DB F

USB HID Mouse

Waiting for USB Mouse to be attached. ..

————— Attach Event ———

State = @ Class = 3 SubClass =1 Protocol = 2

Mouse device attached-—-- Interfaced Event ———-
Mouse interfaced, setting protocol...
Mouse device ready, try to move the mouse

Right Click

Left Click
Middle Click

Wheel UP
Wheel Down

Right

Right

Right

Connected 0:00:57 Auto detect 115200 §-M-1 UM

Figure B-4. Events from mouse

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 53

-

Human Interface Device (HID) Demo

5. Unplug the mouse from the board. HyperTerminal displays a message as shown in the following

figure.

“& COM5_115200 - HyperTerminal

File Edit Wiew Call Transfer Help

(== a5 B

USB HID Mouse

Waiting for USB Mouse to be attached...

————— Attach Event ———-

State = @ Class = 3 SubClass =1 Protocol = 2

Mouse device attached-—--—- Interfaced Event —-—-
Mouse interfaced, setting protocol...
Mouse device ready, try to move the mouse

Right Click
Left Click

Right
Right
Right
Right
Middle Click

————— Detach Event ———-—-
State = 6 Class = 3 SubClass =1 Protocol = 2
Going to idle state

Connected 0:00:36 Auto deteck 115200 8-N-1 NUM

Figure B-5. Mouse detached

B.2.2 Keyboard demo

Perform the following steps to run the keyboard demo:

1. Open and load the image to the board.

6. Run the demo. First, the USB host waits for the device attachment event. The HyperTerminal

displays a message as shown in the following figure.

USBHOST Users Guide, Rev. 6

54

Freescale Semiconductor

h

Human Interface Device (HID) Demo

“& COM5_115200 - HyperTerminal
File Edit Wew Cal Transfer Help

D= 5 OB B

| >

USB HID Kevboard Demo
Waiting for USB Kevboard to be attached...

Connected 0:00:07 Auko detect 115200 8-M-1 MUM

Figure B-6. USB host waiting for keyboard attachment event

2. Plug in keyboard. HyperTerminal shows a message as in the following figure.

“# COM5_115200 - HyperTerminal
File Edit Yiew Cal Transfer Help

0= 2 DB &

>

USB HID Kevboard Demo

Waiting for USB Kevboard to be attached...

————— Attach Event ———-—-

State = @ Class =3 SubClass =1 Protocol =1
————— Interfaced Event ———-

Kevboard device interfaced, setting protocol...
Keyboard device ready, try to press the kevboard

Connected 0:00:42 Auko deteck 115200 8-M-1 MUM

Figure B-7. Keyboard attached

3. Type some characters. The hexadecimal format of these characters will be displayed in
HyperTerminal as shown in the following figure.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 55

}{—

Human Interface Device (HID) Demo

“& COM3_115200 - HyperTerminal
File Edit Yiew Call Transfer Help

1>

USB HID Keyboard Demo

Waiting for USB Kevhoard to be attached...

————— Attach Event ————

State = 0 Class = 3 SubClass =1 Protocol =1

————— Interfaced Event ———-

Kevboard device interfaced, setting protocol. ..

Kevboard device ready, trv to press the kevboard

\xSatxoaixnaixdI\xb I \xoa xnalxnai k6 2\ 162\ 62\ k0 I\ x0e kD8 \n61 A x0T \nda\xoa\r62\x62
ARE2AHO2 A6 2\ 162\ 10T \ x0TI\ DA KOO\ KO F A RO\ 61 Ao ch xDe \noarxob\x0 9\ x0a \xob \x6 2\ k6
2Ax62\x62\ %08\ 30 06 \x00 \xD0 0\ K0 T\ %08

Connecked 0:01:40 Auto detect 115200 8-H-1 UM

Figure B-8. Characters from keyboard

NOTE

The HyperTerminal shows only the ASCII code, in hexadecimal, of each
character.

4. Unplug the keyboard. The HyperTerminal shows a message as shown in the following figure.

USBHOST Users Guide, Rev. 6

56 Freescale Semiconductor

-

Human Interface Device (HID) Demo

“& COM5_115200 - HyperTerminal
File Edit View Call Transfer Help

USB HID Keyboard Demo

Waiting for USB Kevhoard to be attached...

————— Attach Event ———-

State = 8 Class = 3 SubClass =1 Protocol =1

————— Interfaced Event ———-

Keyboard device interfaced, setting protocol..

Kevboard device ready, try to press the keyboa rd
\x5a\x5a\x5a\x59\x59\x5a\x53\x5a\x62\x62\x62\x59\x5e\x58\x61\x5f\x5a\x5a\x62\x62
ARO2AN62%\162 5162 4D T A0 I A0 A\ 000\ KO T\ 6B 61\ k0 kD \xDa\xOb \x0 I\ xDa \xOb\x62\ k6
Ax62\ 62\ 158\ 5 A5 6 A x50 D50\ D T\x58

————— Detach Event -——-

State = 6 Class = 3 SubClass =1 Protocol =1

Going to idle state

Connected 0:02:11 Auto detect 115200 §-M-1 UM

Figure B-9. Keyboard detached

B.2.3 Mouse and keyboard demo

This application combines the two above. It supplies a convenient choice for users by allowing them to
alternate which HID device (the mouse or the keyboard) they want to work with.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 57

Appendix C Virtual Communication (COM) Demo

The USB-to-serial demo implements the Abstract Control Model (ACM) subclass of the USB CDC class,
enabling the serial port applications on the host PC to transmit and receive serial data over the USB port.

C.1 Setting up the demo

Set up the system as described in Appendix B “Human Interface Device (HID) Demo.” To run this demo,
a CDC device is necessary.

In this demo, the data entered from the keyboard is echoed and displayed in HyperTerminal. The data flow
in the CDC demo is shown in the following figure.

CDC Host .
COMon PC (DemoJM) CDC Device

Send a Character

Send received character from COM

Echo received character

Send character from CDC Device

Figure C-1. Data flow

C.2 Running the demo

To run the CDC demo, perform the following steps.
1. Open the CDC demo project and load the image to the board.

The CDC application project is located in \Freescale USB Stack\Source\USB Host\CDC Class
Demo Apps.

2. Connect COM1 of the board to the PC, using the steps shown in Section A.2, “Set up
HyperTerminal to get log.”

3. Run the demo. The HyperTerminal displays a message as shown in the following figure.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 59

Virtual Communication (COM) Demo

& COM5_115200 - HyperTerminal
File Edit WYiew Call Transfer Help

Initialization passed. Plug-in CDC device to USB port.
Use ttyb: as the infout port for CDC device data.

Connecked 0:00:26 Auto detect 115200 8-M-1 UM

Figure C-2. USB Host waits for CDC device plug-in

6. Plug in the CDC device to the CDC host (board). HyperTerminal shows the message seen in the
following figure.

USBHOST Users Guide, Rev. 6

60 Freescale Semiconductor

h

“& COM5_115200 - Hyper Terminal

Virtual Communication (COM) Demo

File Edit Wiew Call Transfer Help

Initialization passed. Plug-in CDC device to USB port.
Use ttyb: as the in/out port for CDC device data.

————— CDC control interface attach Event ———-

State = attached Class = 2 SubClass = 2 Protocol = 8
————— CDC data interface attach event ———

State = attached Class = 18 SubClass = 8@ Protocol = 0
————— CDC control interface selected ————

————— Device installed ——-

————— CDC data interface selected ——-

Connected 0:04:33 Auko detect 115200 8-N-1 LR

Figure C-3. Device information

4. Disconnect COM1 from PC, connect COM?2 to PC, and type something on the keyboard. The result

is echoed and displayed in HyperTerminal.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

61

}{—

Virtual Communication (COM) Demo

“& COMD_115200 - HyperTerminal E“E”s__q
File Edit wiew Call Transfer Help

hheelloowwoorrlldd
112233445566 77889900

Connecked 0:00:32 Auko detect 115200 8-M-1 LR

Figure C-4. Character echoed and displayed in HyperTerminal

5. Unplug the CDC device. HyperTerminal displays:

‘& COM5_115200 - HyperTerminal
File Edit Wew Cal Transfer Help

D& =8 0O

Initialization passed. Plug-in CDC device to USB port.
Use ttyb: as the infout port for CDC device data.

————— CDC control interface attach Event ————

State = attached Class = 2 SubClass = 2 Protocol = 0
————— CDC data interface attach event ———

State = attached Class = 180 SubClass = @ Protocol = 0
————— CDC control interface selected ———

————— Device installed ————

————— CDC data interface selected ——-

————— CDC control interface detach event ———-

State = detached Class = 2 SubClass = 2 Protocol =0

Connected 0:01:00 Auto detect 115200 8-M-1 LM

Figure C-5. CDC device detached

USBHOST Users Guide, Rev. 6

62 Freescale Semiconductor

h -

g |

Appendix D Mass Storage Device (MSD) Demo

D.1 Setting up the demo

Set up the system as described in Appendix B, “Human Interface Device (HID) Demo.”

D.2 Running the demo

To run this demo, perform the following steps.

1. Open the MSD demo project and load the image to the board. The MSD application project is
located in \Freescale USB Stack\Source\USB Host\MSD Class Demo Apps.

2. Run the demo. HyperTerminal displays a message as shown in the following figure.

“& COM5_115200 - HyperTerminal [{=0/E3

Filz Edit View Call Transfer Help

USB MSD Command test
Waiting for USB mass storage to be attached. ..

Connected 0:00:37 Auko detect 115200 §-M-1 LI

Figure D-1. USB Host waits for USB mass storage to be attached

3. Attach USB mass storage to this board. HyperTerminal displays the test result as shown in the
following figure.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

63

Mass Storage Device (MSD) Demo

‘& COM5_115200 - HyperTerminal
File Edit ‘Yiew Call Transfer Help

Waiting for USB mass storage to be attached. ..
Mass Storage Device Attached

=============8TART OF A NEW SESSION==================
Testing: GET MAX LUN Command.................... 0K
Testing: TEST UNIT READY Command................ 0K
Testing: REQUEST SENSE Command.................. 0K
Testing: INQUIRY Command........................ 0K
Testing: REQUEST SENSE Command.................. 0K
Testing: READ FORMAT CAPACITIES Command......... 0K
Testing: REQUEST SENSE Command.................. 0K
Testing: READ CAPACITY Command.................. 0K
Testing: REQUEST SENSE Command.................. 0K
Testing: READ{10)} Command....................... 0K
Testing: MODE SENSE Command..................... 0K
Testing: PREVENT-ALLOW MEDIUM REMOVAL Command...O0K
Testing: REQUEST SENSE Command.................. 0K
Testing: VERIFY Command......................... 0K
Testing: WRITE(18) Command...................... 0K
Testing: REQUEST SENSE Command.................. 0K
Testing: START-STOP UNIT Command................ 0K
Test done!

Auto dekect 115200 8-N-1 MM

Figure D-2. Test result

The message shows that all test cases are passed.

4. Unplug the device. HyperTerminal displays the message about device detachment as shown in the

following figure.

‘& COM5_115200 - HyperTerminal

File Edit View Cal Transfer Help

0= E DB &

======5TART OF A NEW SESSION

Testing: GET MAX LUN Command.................... 0K
Testing: TEST UNIT READY Command................ 0K
Testing: REQUEST SENSE Command.................. 1] 4
Testing: INQUIRY Command........................ 0K
Testing: REQUEST SENSE Command.................. 1] 4
Testing: READ FORMAT CAPACITIES Command......... 0K
Testing: REQUEST SENSE Command.................. 0K
Testing: READ CAPACITY Command.................. 0K
Testing: REQUEST SENSE Command.................. 0K
Testing: READ(18) Command....................... 0K
Testing: MODE SENSE Command..................... [1]4
Testing: PREVENT-ALLOW MEDIUM REMOYAL Command...0K
Testing: REQUEST SENSE Command ..
Testing: VERIFY Command.............

Testing: WRITE(10) Command............ .
Testing: REQUEST SEWSE Command ..
Testing: START-STOP UNIT Command................ 0K
Test done!

Mass Storage Device Detached

fuko detect 115200 8-N-1 LM

Figure D-3. USB mass storage detached

USBHOST Users Guide, Rev. 6

64

Freescale Semiconductor

Appendix E Audio Host Demo

This chapter is a quick guide on how to use the USB Audio Host Demo software package. The demo
application is used to control and communicate with Audio Devices. The operation of the demo depends
on Audio Device type:

* Speaker type (Audio Device with stream OUT supported): Sends audio data stream to the device.
* Microphone type (Audio Device with stream IN supported): Receives audio stream data from
devices and play it.

In both cases, the application supports sending specific requests to the Audio Devices such as Mute
Control. To take you through this guide, the demos are illustrated by using a MCF52259 Demo board.
NOTE

The Audio Host Demo supports either audio data transmit interface or audio
data receive interface over isochronous pipe. In case, the Audio Devices
support multi-data interfaces, the final audio data interface is supported
only.

E.1 Setting up the demo

E.1.1 Hardware setup

Set up the connections as shown in Figure E-1.

1. Make the first USB connection between the PC where the software is installed and the Demo board
where the silicon is mounted. This connection is required to provide power to the board and for
downloading the image to the flash.

2. Make the second connection between the Demo board and the PC to display the log of the Demo
board.

3. Make the third connection between the Audio Device and the Demo board.

4. Make the fourth connection between a speaker and the Audio Device. (In case Audio Device is
Microphone, the speaker is connected to Audio Host instead of Audio Device).

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 65

Audio Host Demo

Host systam running
CodeWarrior

Audio device —* :D)

Figure E-1. Audio demo setup

E.1.2 Set up HyperTerminal to get log

To ensure that application run correctly, the HyperTerminal is used on the PC to get events from the device.
These steps are used to configure HyperTerminal:

1. Open HyperTerminal applications as shown in Figure E-2

G HyperTerminal
@ vt € Network Connactions
¥ P D Natwork Setup Weard
) Mosks Frefox 4 [5] Mew Connection Wizad
(3] Microsct Office Exce 7
) Reaic J % Remote Desktop Cornection
S Remate Desktop Cor
i) Mcrosalt Office Live Mesting d o Wirsless Nstwork Satup Wizard
) HyperTerming b

Figure E-2. Launch HyperTerminal application

USBHOST Users Guide, Rev. 6

66 Freescale Semiconductor

PR 4

Audio Host Demo

2. The HyperTerminal opens as shown in Figure E-3. Enter the name of the connection and click on

the OK button.

3. The window shown in the following figure appears. Select the COM port.

4. Configure the COM port baud rate and other properties as shown in Figure E-5

Connection Description

Enter a name and chooze an icon for the connechon;

Mame:
\COM_13200 |

lcon:

&
2

[Q. H Canecel]

Figure E-3. HyperTerminal startup

Connect To

& CoM_19200

Enter detailz for the phone number that you want to dial:

Country/region:

Area code: I:I

Phone number: |

Connect uzing: | COM1 b

COMIE
TCF/P [winsock]

Figure E-4. Connect using COM port

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

67

Audio Host Demo

COM1 Properties

Part Settings

Bits per second: | 19200 v|
Data bits: | & v|
Baiity: | Hone |

Stop bits: |1 |

Flow control. | [N - |

Restore Defaults

[0k J[Cancel l[Apply l

Figure E-5. COM properties

5. The HyperTerminal is now configured as shown in Figure E-6

& COM_19200 - HyperTerminal

File Edit WYew Call Transfer Help
D & 5 05
~
™
4 | >
Connected 0:00:37 Auto detect Auto detect SCROLL B N Capkure Print &cho

Figure E-6. HyperTerminal

USBHOST Users Guide, Rev. 6

68 Freescale Semiconductor

h

Audio Host Demo

E.1.3 Running the demo

Perform the following steps to run the Audio Host Demo:
1. Open and load the image of Audio Demo application to the board.
2. After the image has been loaded successfully, HyperTerminal appears as shown in Figure 2 7.

“& COM_19200 - HyperTerminal

File Edit Wiew Call Transfer Help
O = A D E
A
USB Host Audio Demo _
Waitting for USB Audio Device to be attached. ..
¥
13 | >
Connecked 0:01:05 Auko detect 19200 8-M-1]
Figure E-7. USB Host waiting for audio device attachment event
USBHOST Users Guide, Rev. 6
Freescale Semiconductor 69

g |

Audio Host Demo

3. Plug the Audio Device into the board. The Audio Device will be attached. Device information is
shown as in Figure E-8 if Audio Device is Speaker type, in Figure E-9 if Audio Device is
Microphone type.

“& COM_19200 - HyperTerminal

Fil= Edit Wiew Call Transfer Help
USB Host Audio Demo
Waitting for USB Audio Device to be attached. ..
————— Audio control interface: attach event —————
State = attached Class =1 SubClass = 1 Protocol =
————— Audio stream interface: attach event ————
State = attached Class =1 SubClass = 2 Protocol = 8
————— Audio control interface: interface event ————
————— Audio stream interface: inteface event———-
Audio device information:
— Device tupe : Speaker
— Frequency : 8 KHz
— Bit resolution : 8 bit
< >
Connected 0:00:59 Auto detect 19200 S-M-1 MM

Figure E-8. Attached device is Speaker type

“& COM_19200 - HyperTerminal
File Edit Wiew Call Transfer Help

USB Host Audio Demo

Waitting for USB Audio Device to be attached. ..
————— Audio control interface: attach event ——
State = attached Class = 1 SubClass = 1 Protocol
————— Audio stream interface: attach event ——
State = attached Class = 1 SubClass = 2 Protocol = 8
————— Audio control interface: interface event ————-—
————— Audio stream interface: inteface event—-———-

I
=

Audio device information:

— Device tvpe : Microphone
- Frequency : 8 KH=z
- Bit resolution : 8 bit
ot
< >
Connected 0:00:51 Auto detect 19200 &-M-1 UM

Figure E-9. Attached device is Microphone type

USBHOST Users Guide, Rev. 6

70 Freescale Semiconductor

g |

Audio Host Demo

4. Press Switch 2 to set Mute ON/OFF. The HyperTerminal screen appears as shown in Figure E-10.

“& COM_19200 - HyperTerminal
File Edit Miew Call Transfer Help

Waitting for USB Audio Device to be attached. .. ~
————— Audio control interface: attach event ———

State = attached Class = 1 SubClass = 1 Protocol = 0

————— Audio stream interface: attach event ——-

State = attached Class = 1 SuwbClass = 2 Protocol = 0

————— Audio control interface: interface event ———

————— Audio stream interface: inteface event——-

Audio device information:

- Device tvpe : Speaker

- Frequency : 8 KHz

- Bit resolution : 8 bit
Set Mute 0N

Set Mute successfully
Set Mute OFF

Set Mute successfully

Connecked 0:02:14 Auko deteck 19200 8-NM-1 FLIM

Figure E-10. Set Mute ON/OFF

5. Press Switch 1 to Start/Stop transferring audio data stream between the Audio Host and the Audio
Device.

— If attached device is Speaker type, you can hear the sound from the speaker, which is
connected to the Audio Device.

— If attached device is Microphone type, you can hear the sound from the speaker, which is
connected to the Audio Host.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 71

h o
g |

Audio Host Demo

The HyperTerminal screen appears as shown in Figure E-11

“& COM_19200 - HyperTerminal
File Edit “iew Call Transfer Help

USB Host Audio Demo

————— Audio control interface: attach event

————— Audio stream interface: inteface event

Audio device information:

— Device type : Speaker

- Freqguency : 8 KHz

- Bit resolution : 8 bit
Set Mute OH

Set Mute successfully
Set Mute OFF

Set Mute successfully
Plaving

Paused.

< |

Waitting for USB Audio Dewvice to be attached. ..

State = attached Class = 1 SubClass = 1 Protocol
————— Audio stream interface: attach event -
S5tate = attached Class = 1 SubClass = 2 Protocol

————— Audio control interface: interface event ———

| #

(%

CZonnecked 0:03:50 Auko dekect 19200 3-M-1 M

Figure E-11. Start/Stop transferring audio data

USBHOST Users Guide, Rev. 6

72

Freescale Semiconductor

g |

Audio Host Demo

6. Unplug the Audio Device. The HyperTerminal shows a message as shown in Figure E-12

“& COM_19200 - HyperTerminal

File Edik wiew Call Transfer

Help

Haitting for USB
State = attached
State = attached

— Device tvpe

- Frequency

- Bit resolut
Set Mute 0N

Set Mute OFF
Plaving
Paused.

————— Aud
State = detached

<

USB Host Audio Demo
————— Audio control interface: attach event ————
————— Audio stream interface: attach event ————

————— Audio control interface: interface event ————
————— Audio stream interface: inteface event————-—

Audio device information:

Set Mute successftully

Set Mute successfully

Audio Device to be attached. ..

Class = 1 SubClass = 1 Protocol

Class = 1 SubClass = 2 Protocol

Speaker
: 8 KH=z
ion : 8 bit

10 control interface: detach event ————
Class = 1 SubClass = 1 Protocol =8

Connecked 0:04:27 Auto deteck 12200 S-M-1 UM

Figure E-12. Audio Device detached

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

73

h o
g |

Appendix F USB FAT File System Demo

The demo application demonstrates how to use application interface functions of the FATFS module to
operate with file and directory of mass storage devices.

F.1 Setting up the demo

Set the system as described in the Section A.1.1.2, “Hardware setup.”

F.2 Running the demo

F.2.1 Mouse demo

Perform the following steps to run the mouse demo:
1. Open and load the image of USB FATFS Demo application to the board.
2. After the image has been loaded successfully, the HyperTerminal appears as shown in Figure F-1.

‘& COM_19200 - HyperTerminal M=1E3

File Edit Wiew Cal Transfer Help
O = A D H
.S
FAT demo
Waiting for USB mass storage to be attached. ..
¥
L [>
Connecked 0:03: 27 &Suko detect 19200 8-N-1 ML

Figure F-1. The USB Host is waiting the mass storage device attachment event

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 75

USB FAT File System Demo

3. Plug an USB Mass Storage Device into the board. The Mass Storage Device will be attached and
all functionalities of FATFS are implemented, sequentially and the results are shown in the
HyperTerminal. The detail of display content is shown as following:

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

USB FAT File System Demo

Sectors/FAT = 618

Number of clusters = 78931
FAT start (Iba) = 158

DIR start (Iba,clustor) = 623
Data start (Iba) = 1394

39465 KB total disk space.
25666 KB available.

ekkkkkkkkkkkkkkhhhhhkkkkkkkkkkkkhhhhhhkkkkkkkkkkkkhhhkhkkikkkkkkkkkkkhhhhkkkkikkk

* DRECTORY OPERATION *

ekkkkkkkkkkkkhhhhhhhkkkkkkkkhhkhhhhhkkkkkkkkkkhhhhhkkhhkkkkkkkkkhhhhkhhkikkkikk

1. Demo funcitons:f_opendir, f_readdir

Directory listing...
D---- 2010/12/23 15:41 0 New Folder
DR--- 2010/12/25 23:30 0 Directory_1
----A 2010/12/23 15:42 33 dsgsgsg.dat
D---- 2010/01/01 00:00 0 Directory_2
----A 2010/01/01 00:00 32 file_test.txt
-—--A 2010/12/28 16:26 1307648 FSL_USB_MSD_FATFS_Development_Design_v1.1.doc
----A 2010/12/09 08:43 826338 ff8a.zip
D-HS- 2010/12/28 18:12 0 Recycled
D-HS-2010/12/28 18:12 0 System Volume Information
----A 2010/12/28 10:19 302592 FSL_USB_MSD_FATFS_Demo_SDD_V1.1.doc
D---- 2010/12/28 18:19 0 Freescale USB Stack v2.6

----A 2010/12/30 17:52 65024 FSL_USB_MSD_FAT_Development_System Test
Case.v0.1.xls

---A 2010/12/29 19:15 477734 2010_12_29_MSD_FATFS_Source_Code.zip
---A 2010/12/29 16:23 3880022 fat-2006-12-03.zip

8 File(s), 6859423 bytes total
6 Dir(s)

2. Demo funcitons:f_mkdir

2.0. Create <Directory_1>

2.1. Create <Directory_2>

2.2. Create <Sub1> as a sub directory of <Directory_1>
2.3. Directory list

Directory listing...

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

7

USB FAT File System Demo

D---- 2010/12/23 15:41 0 New Folder
DR--- 2010/12/25 23:30 0 Directory_1
----A 2010/12/23 15:42 33 dsgsgsg.dat
D----2010/01/01 00:00 0 Directory_2
----A 2010/01/01 00:00 32 file_test.txt

----A 2010/12/28 16:26 1307648 FSL_USB_MSD_FATFS_Development_Design_v1.1.doc

----A 2010/12/09 08:43 826338 ff8a.zip
D-HS- 2010/12/28 18:12 0 Recycled
D-HS-2010/12/28 18:12 0 System Volume Information

---A 2010/12/28 10:19 302592 FSL_USB_MSD_FATFS_Demo_SDD_V1.1.doc

D---- 2010/12/28 18:19 0 Freescale USB Stack v2.6

----A 2010/12/30 17:52 65024 FSL_USB_MSD_FAT_ Development_System Test

Case.v0.1.xls

----A 2010/12/29 19:15 477734 2010_12_29 MSD_FATFS_Source_Code.zip

----A 2010/12/29 16:23 3880022 fat-2006-12-03.zip

8 File(s), 6859423 bytes total
6 Dir(s)

3. Demo funcitons:f_getcwd, f_chdir

3.0. Get the current directory
CWD: 0:/
3.1. Change current directory to <Directory_1>
3.2. Directory listing
Directory listing...
D---- 2010/01/01 00:00 0.
D---- 2010/01/01 00:00 0 ..
D---- 2010/01/01 00:00 0 sub1

0 File(s), 0 bytes total
3 Dir(s)

3.3. Get the current directory
CWD: 0:/Directory_1

4. Demo funcitons:f_stat(File status), f_chmod, f_utime

4.1. Get directory information of <Directory_1>
DR--- 2010/12/25 23:30 0 DIRECT~1
4.2 Change the timestamp of Directory_1 to 12.25.2010: 23h 30' 20

USBHOST Users Guide, Rev. 6

78

Freescale Semiconductor

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

USB FAT File System Demo

1.6. Flush cached data
File size = 152
1.7. Write data to <New_File_1> uses f_putc function
1.8. Flush cached data
File size = 199
1.9. Close file <New_File_1>

2. Demo funcitons:f_open,f_read, f_seek, f_gets, f_close

2.0. Open <New_File_1> to read (f_open)
2.1. Get a string from file (f_gets)

Line 1: Write data to file uses f_write function
2.2 Get the rest of file content (f_read)
ine 2: Write data to file uses f_printf function
Line 3: Write data to file uses f_puts function
Line 4: Write data to file uses f_putc function §
2.2. Close file (f_close)

2. Demo funcitons:f_stat, f_utime, f_chmod

3.1. Get information of <New_File_1> file (f_stat)
----A 2010/01/01 00:00 199 NEW_FI~1.DAT
3.2 Change the timestamp of Directory_1 to 12.25.2010: 23h 30' 20 (f_utime)
3.3. Set Read Only Attribute to <New_File_1> (f_chmod)
3.4. Get directory information of <New_File_1> (f_stat)
-R--A 2010/12/25 23:30 199 NEW_FI~1.DAT
3.5. Clear Read Only Attribute of <New_File_1> (f_chmod)
3.6. Get directory information of <New_File_1>
----A 2010/12/25 23:30 199 NEW_FI~1.DAT

4. Demo funcitons:f_ulink

Rename <New_File_1.dat> to <File_Renamed.txt>
Directory listing...

D---- 2010/01/01 00:00 0.

D---- 2010/01/01 00:00 0 ..

----A 2010/12/25 23:30 199 File_Renamed.txt

1 File(s), 199 bytes total

USBHOST Users Guide, Rev. 6

80

Freescale Semiconductor

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 81

USB FAT File System Demo

4. Unplug mouse from board. The HyperTerminal shows a message as shown in Figure F-2.

& COM1_19200 - Hyper Terminal 9=13
Ehe Edt Yiew Cal Transfer Help
D @3 D i

1. Demo funcitons:f_ulink

Delete <File_Renamed. txt>
Directory listing...

D---- 2010/01/01 00:00 0
D---- 2010/01/01 0000 L1
0 Filels), 0 bytes total
2 Dirls)
Wi s DENO COMPLETER . oo ciiin e .

A e e

Hass Storage Device Detached

4 ¥
Cornected 0519:46 Auto detedt V200 8-M-1 i Lyl I

Figure F-2. Mass storage device detached

F.3 FATFS Test Application

The test application is used to verify whether or not application interface functions of the FAT module
work properly.

F.3.1 Setting up the demo

Set the system as described in the Section A.1.1.2, “Hardware setup.”

F.3.2 Running the demo

b

Steps to run test application are similar to demo application described in Section B.2, “Running the demo.’

NOTE
Make sure that your USB mass storage device under test is divided into two
partitions which do not contain any data.
There are some test cases that need special setting in FATFS module configuration (ffconf.h), so test case
set is divided into three exclusive running groups:
1. Test group 1
2. Test group 2
3. Test group 3

USBHOST Users Guide, Rev. 6

82 Freescale Semiconductor

F.3.2.1 Test Group 1

The test group 1 contains the following subgroups:

Table 5-4. Test group 1

USB FAT File System Demo

Subgroup Description FATFS module configuration
TestDir1 This test group is to test f_mkdir, f_unlink functions with 0 | #define _FS_TINY 1
of recursive level #define _FS_READONLY 0
. . . — - #define _FS_MINIMIZE 0
TestDir2 Thls test group is to test f_mkdir in cases of invalid #define _USE_STRFUNC 1
directory names #define _USE_FORWARD 1
TestDir3 This test group is to test f_unlink in cases of invalid #define _USE_LFN 3
directory names #define _MAX_LFN 255
#define _FS_RPATH 2
TestDir4 This test group is to test f_mkdir, f_unlink functions with 1 | #define MULTI_PARTITION 0
of recursive level #define _VOLUMES 1
TestDir5 This test group is to test f_mkdir, f_unlink functions with 2
of recursive level
TestDir6 This test group is to test f_chdir, f_getcwd, f_unlink
functions
TestDir7 This test group is to test f_mkdir and f_unlink many of
sub-directories
TestDir8 This test group is to test f_opendir, f_readdir functions
TestDir9 This test group is to test f_chdir function with ".." directory
TestDir10 This test group is to test f_readdir in case of there are
many files in read directory
TestDir11 This test group is to test f_stat, f_utime, f_chmod functions
TestFile1 This test group is to test f_open, f_close, and f_unlink
functions
TestFile2 This test group is to test f_write and f_read functions
TestFile3 This test group is to test f_Iseek function
TestFile4 This test group is to test f_stat, f_utime, f_chmod functions
TestFile5 This test group is to test f_forward function
TestFile6 This test group is to test f_truncate function
TestFile7 This test group is to test f_sync function
TestFile8 This test group is to test string functions
TestDirFileMixu | This test group is to test mix file and directory
p1

To enable the test group, define the macro RUN_TEST 101 111 _201 209 301 in file testcase.h.
Subgroups TestDir7, TestDir8, and TestDir10 contain test cases that make or create a lot of directories

and files. It takes long time, if created, the number of directories and files is large. How many directories
and files will be created is specified by macro NUM_REPEAT in testcase.h file.

Expected results of these test cases are shown in the HyperTerminal as follows.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

83

USB FAT File System Demo

FAT test

Waiting for USB mass storage to be attached...

Mass Storage Device Attached

Test Cases:

101: Test Directory Functions - 1: f_mkdir, f_unlink functions with 0 of recursive level.
102: Test Directory Functions - 2: f_mkdir in cases of invalid directory names.

103: Test Directory Functions - 3: f_unlink in cases of invalid directory names.

104: Test Directory Functions - 4: f_mkdir, f_unlink functions with 1 of recursive level.
105: Test Directory Functions - 5: f_mkdir, f_unlink functions with 2 of recursive level.
106: Test Directory Functions - 6: f_chdir, f_getcwd, f_unlink functions.

107: Test Directory Functions - 7: Make maximum number of sub-directories.

108: Test Directory Functions - 8: f_opendir, f_readdir functions.

109: Test Directory Functions - 9: f_chdir function with .. directory.

110: Test Directory Functions - 10: f_readdir in case of there are many files in read directory.
111: Test Directory Functions - 11: f_stat, f_utime, f_chmod functions.

201: Test File Functions - 1: f_open, f_close, and f_unlink

202: Test File Functions - 2: f_write and f_read

203: Test File Functions - 3: f_Iseek

204: Test File Funttions - 4: f_stat, f_utime, f_chmod

205: Test File Functions - 5: f_forward

206: Test File Functions - 6: f_truncate

207: Test File Functions - 7: f_sync

208: Test File Functions - 8: f_printf, f_puts, f putc, f_gets

209: Test File Functions - 9: f_rename

301: File/Dir: file operations on dirs & vice versa

Test case 101: Test Directory Functions - 1: f_mkdir, f_unlink functions with 0 of recursive level.

Test case passed

Test case 102: Test Directory Functions - 2: f_mkdir in cases of invalid directory names.

Test case passed

Test case 103: Test Directory Functions - 3: f_unlink in cases of invalid directory names.

Test case passed

USBHOST Users Guide, Rev. 6

84 Freescale Semiconductor

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

Freescale Semiconductor

USB FAT File System Demo

F.3.2.2 Test Group 2

This test group contains the following subgroup.
Table 5-5. Test Group 2

Subgroup Description FATFS module configuration
TestDir12 This test group is to test f_chdrive, f_getfree, f_mount #define _FS_TINY 1
functions. It also test multi-partition feature of FATFS #define _FS_READONLY 0
module #define _FS_MINIMIZE O

#define _MULTI_PARTITION 1
#define _VOLUMES 2
#define _FS_RPATH 2

To enable the test group, define the macro RUN_TEST 112 in file testcase.h.

Expected results of the test case are shown in the HyperTerminal as follows.

USBHOST Users Guide, Rev. 6

86 Freescale Semiconductor

USB FAT File System Demo

F.3.2.3 Test Group 3

The test group consists of following subgroups.
Table 5-6. Test Group 3

Subgroup Description FATFS module configuration
TestFile10 This test group is to test file sharing policy. #define _FS_TINY 1
- - - - - #define _FS_READONLY 0

TestFile11 This te_st _group is to test how FAT apis work when drive #define _FS_MINIMIZE 0

status is invalid. #define MULTI_PARTITION 0
TestFile12 This test group is to test how FAT apis work when LFN is | #define _VOLUMES 1

disable. #define _FS_RPATH 0

#define _FS_SHARE 2

TestFile13 This test group is to test how FAT apis work when #define _USE_LFN 0

_RS_PATH =0.

To enable the test group, define the macro RUN_TEST 210 213 in file testcase.h.

Expected results of these test cases are shown in the HyperTerminal as follows.

USBHOST Users Guide, Rev. 6

Freescale Semiconductor 87

USB FAT File System Demo

USBHOST Users Guide, Rev. 6

88 Freescale Semiconductor

	Freescale USB Host Stack
	Chapter 1 Before You Begin
	1.1 About Freescale USB Stack - Host Architecture
	1.2 About this book
	1.3 Reference material
	1.4 Acronyms and abbreviations
	1.5 Important terms

	Chapter 2 Getting Familiar
	2.1 Introduction
	2.2 Software suite
	2.3 Directory structure

	Chapter 3 Freescale USB Stack - Host Architecture
	3.1 Architecture overview
	3.2 Host application
	3.3 Class-driver library
	3.4 Common-class API
	3.5 USB Chapter 9 API
	3.6 Host API
	3.7 KHCI (Host Controller Interface)

	Chapter 4 Developing Applications
	4.1 Background
	4.2 Developing an application
	4.2.1 Create a project
	4.2.2 Define a driver info table
	4.2.3 Main application function flow
	4.2.3.1 Initializing hardware
	4.2.3.2 Initializing the host controller
	4.2.3.3 Register services
	4.2.3.4 Run the process task

	4.2.4 Event callback function
	4.2.5 Selecting an interface on the device
	4.2.6 Retrieving and storing pipe handles
	4.2.7 Sending/receiving data to/from device

	Chapter 5 FAT File System
	5.1 Introduction
	5.2 File Allocation Table Overview
	5.3 Software Module
	5.3.1 USB FATFS Feature
	5.3.2 Module license

	5.4 Directory structure
	5.5 USB FATFS Architecture
	5.6 Architecture overview
	5.7 FATFS Module overview
	5.7.1 FATFS APIs
	5.7.2 Disk I/O interface

	5.8 Developing Applications for FATFS
	5.8.1 Background
	5.8.2 Configuration options
	5.8.3 Create a project

	Appendix A Working with the Software
	A.1 Introduction
	A.1.1.1 Software setup
	A.1.1.2 Hardware setup

	A.2 Set up HyperTerminal to get log
	A.3 Uninstall Freescale USB Stack Software

	Appendix B Human Interface Device (HID) Demo
	B.1 Setting up the demo
	B.2 Running the demo

	Appendix C Virtual Communication (COM) Demo
	C.1 Setting up the demo
	C.2 Running the demo

	Appendix D Mass Storage Device (MSD) Demo
	D.1 Setting up the demo
	D.2 Running the demo

	Appendix E Audio Host Demo
	E.1 Setting up the demo

	Appendix F USB FAT File System Demo
	F.1 Setting up the demo
	F.2 Running the demo
	F.3 FATFS Test Application
	F.3.2.1 Test Group 1
	F.3.2.2 Test Group 2
	F.3.2.3 Test Group 3

