
Freescale Semiconductor
Application Note

AN2817
Rev. 1.1, 06/2005

Table of Contents
1 Overview ... 2
1.1 Basic Watchdog .. 2
1.2 MPC5500 Watchdog 2
2 Example Implementation Methods 3
2.1 Method 1 - Periodic Service Routine without

Interrupt Handler ... 3
2.2 Method 2 - Periodic Service Routine with

Interrupt Handler ... 6
2.3 Method 3 - Interrupt Driven Watchdog Service

Routine .. 11
3 MPC5500 Watchdog Registers 15
3.1 Setting the Watchdog Reset Control 15
3.2 Setting the Watchdog Timeout Value 15
3.3 Enabling Interrupts 17
3.4 Enabling the Time Base 18
3.5 Servicing the Watchdog 18
4 Enabling the Watchdog Timer Using the Boot

Assist Module (BAM)..................................... 20
5 Enabling the Watchdog in Software 20
A Example Code... 21

MPC5500 Watchdog Timer
Configuration and Operation
by: Bill Terry

TECD MPC5500 Applications
Members of the MPC5500 family of devices that utilize
the e200z6 core provide a watchdog timer function that
is different from many previous Freescale
microcontrollers. This application note describes the
basic function of the watchdog and provides example
code for typical configurations.

It is recommended that the user obtain the “e200z6
PowerPCTM Core Reference Manual”, Rev. 0, for
complete details of the registers and timer features
discussed in this document.

The following three methods for watchdog
implementation are discussed.

• Periodic Service Routine
• Periodic Service Routine with Interrupt Handler
• Interrupt Driven Service Routine
© Freescale Semiconductor, Inc., 2004. All rights reserved.

This document contains information on a new product. Specifications and information herein
are subject to change without notice.

Overview
1 Overview
A watchdog timer is a common feature on many MCUs. The purpose of the watchdog is to allow the
system or application a means to recover in the case of errant code execution or other events that may cause
uncontrolled operation of the MCU.

1.1 Basic Watchdog
Typically, a watchdog is a continuously running timer that may be configured by the application so that it
expires or rolls over at a predetermined time interval. This interval is usually determined by the system
clock frequency (as in the case of the MPC5500 devices) and a watchdog timeout value that is set by the
application.

The application must perform some specific action before the timeout occurs, which causes a reset of the
watchdog timer, and a restart of the timeout count. The required action may be writing a specific location
in memory, setting or clearing a bit, or some other method. The application must service the watchdog
periodically at intervals short enough to prevent the timeout.

If the watchdog interval expires before the watchdog is serviced by the application, the system or
application is assumed to be in an unknown state and the hardware may generate an interrupt or reset the
MCU. The hardware response to a watchdog timeout can vary, depending on the MCU.

The watchdog period may be set for short times in the case of critical, time-sensitive applications, at the
expense of increased overhead to service the watchdog. Conversely, the watchdog may be set for longer
periods, requiring less intervention from the application, at the expense of slower detection of potential
software or system problems.

1.2 MPC5500 Watchdog
The design philosophy of the watchdog timer implemented in the e200z6 core differs somewhat from
typical watchdog operation. The MPC5500 devices recognize both a first and second occurrence of a
watchdog timeout event. A watchdog timeout event may optionally be configured to generate an interrupt
or an MCU reset. Essentially, this two-event, programmable mechanism provides the application an
opportunity to correct a problem before resorting to a full reset of the device.

The key registers associated with the control of the watch dog timer are the timer control register (TCR)
and the timer status register (TSR). The machine state register (MSR) and time base (TB) are also used.
Each of these registers is described in detail in the e200z6 Reference Manual.

The state transition of the watchdog timer is dependent on the enable next watchdog (TSR[ENW]) and
watchdog interrupt status (TSR[WIS]) bits. The effect of these bits on the state transitions is shown in
Table 1.
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor2

Example Implementation Methods
2 Example Implementation Methods
Based on the watchdog state operation described in Table 1, there are three ways in which the watchdog
may be implemented/serviced.

• Periodic service routine without interrupt handler
• Periodic service routine with interrupt handler
• Interrupt driven watchdog service routine

These are discussed in the following sections.

2.1 Method 1 - Periodic Service Routine without Interrupt
Handler

The first method is very similar to the basic watchdog operation described in Section 1.1 and will likely
be the method used by most customers. TSR[ENW] is set so that a watchdog timeout event causes
TSR[WIS] to be set, but TCR[WIE] is cleared, thus preventing an interrupt with associated overhead. The
application provides a periodic service routine that clears the TSR[WIS] bit at a period less than the
programmed watchdog timeout, thus preventing a reset. Note that the TSR[ENW] bit can not be written
directly by the application. An initial timeout must be allowed to set this bit before the service routine
begins running. A flow diagram of this method is shown in Figure 1.

Table 1. Watchdog Timer Control

Current Bit States
Action When Timeout Occurs

TSR[ENW] TSR[WIS]

0 0 TSR[ENW] is set to 1.

0 1 TSR[ENW] is set to 1.

1 0 TSR[ENW] remains set to 1, TSR[WIS] is set to 1.
If TCR[WIE] and MSR[CE] are enabled, generate
an interrupt.

1 1 Do action as set by TCR[WRC], copy contents of
TCR[WRC] to TSR[WRS].
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 3

Example Implementation Methods
Figure 1. Flow Diagram - Method 1

2.1.1 Configuration - Method 1

2.1.2 Periodic Service Routine - Method 1
Method 1 requires an independent periodic service routine that prevents the watchdog from resetting the
part. The function of the service routine is outlined in Table 3.

Table 2. Watchdog Configuration Sequence (no Interrupt)

Step Description Bit Field Pseudo Code

Configure watchdog

Set for reset on 2nd timeout,
Set timeout for 3.3554432 seconds

(at 80MHz system clock)

TCR[WRC]
TCR[WP]
TCR[WPEXT]

SPR TCR[WRC] = 0b01
SPR TCR[WP] = 0b00
SPR TCR[WPEXT] = 0b1001

Enable time base HID0[TBEN] SPR HID0[TBEN] = 1

Watchdog interrupt
disabled and

timeout period and
action configured

No

Yes

Yes

TCR[WIE] = 0
TCR[WP] and TCR[WPEXT] = timeout config
TCR[WRC] = desired action configuration
MSR[CE] = 1
TSR[ENW] = 1 (an intiial timeout sets this bit)
TSR[WIS] = 0

Service

Do configured
action (TCR[WRC])

TSR[WIS] = 1

Routine Run?

TSR[WIS] = 1?

Watchdog
Timeout?

TSR[WIS] = 0

No

Yes

The path inside this block
is the flow during normal
program operation.

Watchdog
Counting

No
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor4

Example Implementation Methods
2.1.3 Timing Considerations - Method 1
This method of operation does not incur the overhead of interrupt handling, however it requires a periodic
service routine. The TSR[ENW] bit is always set and the service routine must clear the TSR[WIS] often
enough to prevent a reset from occurring.

The TSR[WIS] bit must be cleared between watchdog timeouts as shown in Figure 2. This implies that to
keep the timeout from generating a reset, the service routine must run at least once each watchdog period.
Therefore the service routine should execute at a period less than the watchdog period. As with the service
routine discussed in method 2 (See Section 2.2), it is advisable to make the service routine period enough
shorter than the watchdog period to insure it runs at least once at some time not near the beginning or end
of the watchdog period.

Figure 2. Watchdog Service Routine TIming - Method 1

The effective watchdog reset timeout is determined by the period of the service routine and at what time
within a watchdog timeout the problem occurs. See Figure 3 for an illustration.

Table 3. Watchdog Service Routine (Method 3)

Step Description Bit Field Pseudo Code

Service watchdog
Prevent a watchdog timeout reset by
clearing the watchdog interrupt
status bit.

TSR[WIS] SPR TSR[WIS] = 1

Time

WD Event 1
TSR[ENW] = 1

(b)

*SR = Service Routine, TSR[WIS] = 0

SR* SR SR SR SR SR SR

TSR[WIS] = 1

1 watchdog period

WD Event 2
TSR[ENW] = 1
TSR[WIS] = 1

WD Event 3
TSR[ENW] = 1
TSR[WIS] = 1

WD Event 4
TSR[ENW] = 1
TSR[WIS] = 1
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 5

Example Implementation Methods
Figure 3. Effective Watchdog Reset Timeout - Method 1

2.2 Method 2 - Periodic Service Routine with Interrupt
Handler

The second method uses a periodic service routine. This routine runs periodically to repeatedly clear the
TSR[ENW] bit so that a first timeout event is avoided and no timeout exception occurs. Depending on the
count of the watchdog timer when the TSR[ENW] bit is cleared, the software has between one and two
full timeout periods before an exception can occur and be indicated by TSR[WIS]. If this happens before
the application clears TSR[ENW] again, an interrupt is generated and the interrupt handler runs.

When the handler runs, it is assumed that the software is not operating normally and the handler may either
try to store relevant debug information before the impending reset on the next timeout, or clear both
TSR[ENW] and TSR[WIS] in an attempt to avoid another watchdog interrupt.

Time

1 watchdog period (WP)

If problem

WD Event
TSR[ENW] = 1
TSR[WIS] = 1

occurs here:

Minimum

WD Event
TSR[WRS] = TSR[WRC]

Reset

≅ .5 x WP

SR* SR

(The next and subsequent
SRs do not run)

Time

Maximum ≅ 1 x WP

*SR = Service Routine, TSR[WIS] = 0

SR* SR
If problem

occurs here:
(The next and subsequent

SRs do not run)

WD Event
TSR[ENW] = 1
TSR[WIS] = 1

WD Event
TSR[WRS] = TSR[WRC]

Reset

SR

WD Event
TSR[ENW] = 1
TSR[WIS] = 1

WD Event
TSR[ENW] = 1
TSR[WIS] = 1
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor6

Example Implementation Methods
Figure 4. Flow Diagram - Method 2

Watchdog interrupt
enabled and

timeout period and
action configured

No

Yes

Yes

Generate Interrupt

Handler
Runs

No

TCR[WIE] = 1
TCR[WP] and TCR[WPEXT] = timeout config
TCR[WRC] = desired action configuration
MSR[CE] = 1
TSR[ENW] = 0
TSR[WIS] = 0

TSR[WIS] = 1
MSR[CE] = 0

Service

Do configured
action (TCR[WRC])

TSR[WIS] = 0

Routine Run?

TSR[ENW] = 1?

Yes

TSR[ENW] = 0

No

Watchdog
Timeout?

TSR[ENW] = 0

No

TSR[ENW] = 1

Yes
TSR[WIS] = 1?

The path inside this block
is the flow during normal
program operation.

Watchdog
Counting

Application
attempts to avoid
another interrupt

- OR -

Application generates crash/debug log
in preparation for reset. TSR[ENW]
and TSR[WIS] are left unchanged.

TSR[WIS] = 1

TSR[ENW] = 1
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 7

Example Implementation Methods
2.2.1 Configuration - Method 2
Table 4 lists the actions required to configure the watchdog for this method.

2.2.2 Interrupt Vector Setup - Method 2
The e200z6 core provides a set of registers that allow the interrupt vector addresses to be programmed.
The watchdog timer uses interrupt vector 12. The address of the handler for this interrupt is set by writing
the upper 16 bits of the handler address to the interrupt vector prefix register (IVPR) and the lower 16 bits
of the handler address to interrupt vector offset register 12 (IVOR12). When interrupted, the MCU
determines the interrupt source and concatenates the IVPR and relevant IVOR to create the actual handler
address. The e200z6 Reference Manual contains a complete description of the IVPR and IVOR register
functions. Table 5 lists the actions required to setup the watchdog interrupt vector.

2.2.3 Interrupt Handler - Method 2
This section provides information for implementing the required watchdog interrupt handler.

Context Switching and Alignment

The critical save and restore registers 0 and 1 (CSRR0 and CSRR1) must be preserved across the interrupt.
The MPC5500 devices automatically save the MSR and program resume address information in these two
registers when a critical interrupt occurs. This particular example also saves one general purpose register
on the stack so that it may be used for temporary storage in the handler.

Table 4. Watchdog Configuration Sequence (with Interrupt)

Step Description Bit Field Pseudo Code

Configure watchdog

Enable watchdog interrupt
Set for reset on 3nd timeout,
Set timeout for 4.194304 seconds
(at 80MHz system clock)

TCR[WIE]
TCR[WRC]
TCR[WP]
TCR[WPEXT]

SPR TCR[WIE] = 0b1
SPR TCR[WRC] = 0b01
SPR TCR[WP] = 0b00
SPR TCR[WPEXT] = 0b1001

Enable critical interrupts MSR[CE] MSR[CE] = 1

Enable time base HID0[TBEN] SPR HID0[TBEN] = 1

Table 5. Initializing the Watchdog Interrupt Vector

Step Description Bit Field Pseudo Code

Initialize watchdog vector

Load IVPR with upper 16-bits of WD
handler address.

Load IVOR12 with lower 16-bits of
WD handler address

IVPR

IVOR12

SPR IVPR = handler_ address[0:15]

SPR IVOR12 = handler_address[16:31]
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor8

Example Implementation Methods
2.2.4 Periodic Service Routine - Method 2
Method 2 requires an independent periodic service routine that prevents the watchdog from resetting the
part. The function of the service routine is outlined in Table 7.

2.2.5 Timing Considerations - Method 2
In this method, a periodic watchdog service routine resets the TSR[ENW] bit often enough to prevent an
interrupt from being generated. The sequence of updates to the TSR[ENW] and TSR[WIS] bits must occur
as shown in Figure 5. This implies that to keep the TSR[WIS] bit from being set and an interrupt being
generated, the service routine must run at least once each watchdog period. Therefore the service routine
should execute at a period less than the watchdog period. It is advisable to make the service routine period
enough shorter than the watchdog period to insure it runs at least once at some time not near the beginning
or end of the watchdog period, (as is shown in Figure 5a, at WD Event 3 and WD Event 4).

Table 6. Interrupt Handler (Method 2)

Step Description Bit Field Pseudo Code

Save context

Allocate 16 bytes of stack space
Save a working register.
Save CSSRn registers

stack pointer (sp)
r6
CSSR0
CSSR1

sp = sp - 16
addr (sp + 4) = r6
addr (sp + 8) = SPR CSRR0
addr (sp + 12) = SPR CSRR1

Option 1

Create a crash record

Recognize that the application is
unstable and save state information
to assist in debug. Next timeout will
cause a reset.

User defined User defined

Option 2

Service watchdog
timeout and return

Clear the watchdog interrupt status
and enable next watchdog bits, by
writing them with 1. Assume the
system will correct the problem and
avoid further timeouts.

TSR[WIS]
TSR[ENW]

SPR TSR[WIS] = 1
SPR TSR[ENW] = 1

Restore context

Restore CSSRn registers

Restore r6
Restore stack pointer

CSSR1
CSSR0
r6
sp

SPR CSSR1 = addr (sp + 12)
SPR CSSR0 = addr (sp + 8)
r6 = addr (sp + 4)
sp = sp + 16

Return Return from critical interrupt – rfci (restores machine state and
reenables critical interrupts)

Table 7. Watchdog Service Routine (Method 2)

Step Description Bit Field Pseudo Code

Service watchdog
Prevent an initial watchdog timeout
by clearing the next watchdog event
bit.

TSR[ENW] SPR TSR[ENW] = 1
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 9

Example Implementation Methods
Figure 5b illustrates a better method of service routine timing, with a service routine period of about 1/2
of the watchdog period.

Figure 5. Watchdog Service Routine Timing - Method 2

When method 2 is implemented, the minimum and maximum effective timeouts before a reset can occur
are determined by at what point during a watchdog timeout the problem occurs, and by how often the
service routine runs. Using a service routine of approximately 1/2 of a watchdog period gives a minimum
effective reset time of about 1.5 watchdog periods, and a maximum effective reset time of about 3
watchdog periods. Figure 6 provides an illustration of the timing for both cases.

Time

WD Event 2
TSR[ENW] = 1

WD Event 1
TSR[ENW] = 1

WD Event 3
TSR[ENW] = 1

WD Event 4
TSR[ENW] = 1

1 watchdog period

Time

WD Event 2
TSR[ENW] = 1

WD Event 1
TSR[ENW] = 1

WD Event 3
TSR[ENW] = 1

WD Event 4
TSR[ENW] = 1

(a)

(b)

*SR = Service Routine, TSR[ENW] = 0

SR* SR SR SR

SR SR SR SR SR SR SR
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor10

Example Implementation Methods
Figure 6. Effective Watchdog Reset Timeout - Method 2

2.3 Method 3 - Interrupt Driven Watchdog Service Routine
This section describes a method for an interrupt driven watchdog implementation/service. Detailed
information about the registers and bits that are referenced in this section is found in Section 3.

In this method, the TCR[WIE] bit (watchdog interrupt enable), the MSR[CE] bit (critical interrupt enable),
and the TSR[ENW] bit (enable next watchdog) are all set, so that every watchdog event sets the TSR[WIS]
and consequently generates an interrupt. Note that the TSR[ENW] bit can not be written directly by the
application. An initial timeout must be allowed to set this bit. The application services each watchdog
timer interrupt when pending, and never attempts to prevent its occurrence. The handler clears the
TSR[WIS] status bit, thus clearing the interrupt, but the TSR[ENW] remains set so that each subsequent
watchdog event will trigger a new interrupt.

The state flow of this method is shown in Figure 7.

Time

WD Event 2
TSR[ENW] = 1

WD Event 1
TSR[ENW] = 1

WD Event 3
TSR[ENW] = 1

*SR = Service Routine, TSR[ENW] = 0

SR* SR SR

WD Event 4
TSR[WRS] = TSR[WRC]

ResetTSR[WIS] = 0 TSR[WIS] = 0 TSR[WIS] = 1

Minimum ≅ 1.5 x WP

If problem
occurs here:

(The next and subsequent SRs do not run)

Time
SR

If problem
occurs here:

SR

(Immediately after a SR runs,

Maximum ≅ 3 x WP

WD Event 2
TSR[ENW] = 1
TSR[WIS] = 0

WD Event 1
TSR[ENW] = 1
TSR[WIS] = 0

WD Event 3
TSR[ENW] = 1

WD Event 4
TSR[WRS] = TSR[WRC]

ResetTSR[WIS] = 1

subsequent SRs do not run)
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 11

Example Implementation Methods
Figure 7. Flow Diagram - Method 3

2.3.1 Configuration - Method 3
Table 8 lists the actions required to configure the watchdog for this method.

Watchdog interrupt
enabled and

timeout period and
action configured

Watchdog
Counting

No

Yes

Yes

Generate Interrupt

Interrupt
cleared?

No

TCR[WIE] = 1
TCR[WP] and TCR[WPEXT] = timeout config
TCR[WRC] = desired action configuration
MSR[CE] = 1
TSR[ENW] = 1 (an initial timeout sets this bit)
TSR[WIS] = 0

TSR[WIS] = 1
MSR[CE] = 0

Watchdog

Do configured
action (TCR[WRC])

TSR[WIS] = 0

Timeout?

TSR[WIS] = 1?

Yes

TSR[WIS] = 1 No

The path inside this block
is the flow during normal
program operation.
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor12

Example Implementation Methods
2.3.2 Interrupt Vector Setup - Method 3
The interrupt vector for this method is setup in the same manner as for Method 2, described in
Section 2.2.2.

2.3.3 Interrupt Handler - Method 3
This section provides information for implementing the required watchdog interrupt handler.

Context Switching

The context switching and alignment requirements for this method are the same as described in
Section 2.2.3.

Alignment

The least significant 4 bits of the interrupt handler address must always be 0, that is, the handler starting
address must be on a quad-word (16-byte) boundary. See the e200z6 Reference Manual for more
information on this requirement. Various methods may be used to insure this alignment, depending on the
toolset being used.

Table 9 lists the actions that must be performed by the interrupt handler.

Table 8. Watchdog Configuration Sequence (with Interrupt)

Step Description Bit Field Pseudo Code

Configure watchdog

Enable watchdog interrupt
Set for reset on 2nd timeout,
Set timeout for 3.3554432 seconds

(at 80MHz system clock)

TCR[WIE]
TCR[WRC]
TCR[WP]
TCR[WPEXT]

SPR TCR[WIE] = 0b1
SPR TCR[WRC] = 0b01
SPR TCR[WP] = 0b00
SPR TCR[WPEXT] = 0b1001

Enable critical interrupts MSR[CE] MSR[CE] = 1

Enable time base HID0[TBEN] SPR HID0[TBEN] = 1

Table 9. Interrupt Handler (Method 1)

Step Description Bit Field Pseudo Code

Save context

Allocate 16 bytes of stack space
Save working register.
Save CSSRn registers

stack pointer (sp)
r6
CSSR0
CSSR1

sp = sp - 16
addr (sp + 4) = r6
addr (sp + 8) = SPR CSRR0
addr (sp + 12) = SPR CSRR1

Service watchdog
timeout

Clear the watchdog interrupt status
bit, by writing it with 1.

TSR[WIS] SPR TSR[WIS] = 1

Restore context

Restore CSSRn registers CSSR1
CSSR0
r6
sp

SPR CSSR1 = addr (sp + 12)
SPR CSSR0 = addr (sp + 8)
r6 = addr (sp + 4)
sp = sp + 16

Return Return from critical interrupt – rfci (restores machine state and
reenables critical interrupts)
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 13

Example Implementation Methods
2.3.4 Timing Considerations - Method 3
In this mode of operation, the watchdog generates an interrupt periodically, and the interrupt handler resets
the TSR[WIS] bit to avoid a reset (or whatever response is configured by the TCR[WRC] bits). See
Figure 8 for an illustration of the timing sequence.

The first watchdog timeout sets the TSR[WIS] bit and generates the interrupt that clears the TSR[WIS] bit.
If the interrupt does not run, a second timeout with TSR[WIS] set will trigger a reset or the response
determined by TCR[WRC]. Therefore, the maximum effective timeout before a reset is approximately 2
times the configured timeout value, and the minimum effective timeout before a reset is approximately 1
times the configured timeout value. See Figure 9.

Since there is no periodic service routine, the only software timing constraint is that the interrupt handler
complete execution before the end of a watchdog period. Unless the watchdog is configured for an
extremely short timeout period, this is should not be a problem.

NOTE
It is possible that the watchdog interrupt could occur during a critical
external input interrupt, causing the service routine to miss its deadline due
to the occurrence of an event with a lower priority. This possibility should
be taken into consideration when determining the watchdog timeout period.

Figure 8. Interrupt Handler Sequence - Method 3

Figure 9. Effective Watchdog Reset Timeout - Method 3

Time

1 watchdog period (WP)

TSR[ENW] = 1
TSR[WIS] = 0

Interrupt
Handler Runs
TSR[ENW] = 1

WD Event 1
TSR[ENW] = 1
TSR[WIS] = 1

TSR[WIS] = 0

WD Event 2
TSR[ENW] = 1
TSR[WIS] = 1

Interrupt
Handler Runs
TSR[ENW] = 1
TSR[WIS] = 0

WD Event 3
TSR[ENW] = 1
TSR[WIS] = 1

Interrupt
Handler Runs
TSR[ENW] = 1
TSR[WIS] = 0

Initialized

Time

1 watchdog period (WP)

If problem

WD Event
TSR[ENW] = 1
TSR[WIS] = 1

occurs here
If problem
occurs here

Maximum

Minimum

WD Event
TSR[WRS] = TSR[WRC]

Reset

≅ 2 x WP

≅ 1 x WP
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor14

MPC5500 Watchdog Registers
3 MPC5500 Watchdog Registers
This section describes the various registers and actions required for configuring and controlling the
MPC5500 watchdog.

3.1 Setting the Watchdog Reset Control
The MPC5500 device may be configured to do one of three things upon detection of the second1 timeout
event; 1) nothing, 2) force a processor checkstop, or 3) force a processor reset. The watchdog timeout
action is set by the TCR[WRC] bits.

The TCR[WRC] bits function is defined as follows:

The TCR[WRC] bits may be written only once by software after reset. Further writes to these bits will have
no effect until they are cleared by a reset.

3.2 Setting the Watchdog Timeout Value
The watchdog timeout period is configured using the TCR register, shown in Figure 11. The relevant bits
are highlighted.

1. Depending on the method of implementation, this could be the third timeout event instead.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R WP WRC WIE DIE FP FIE ARE 0 WPEXT FPEXT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FPEXT 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPR SPR 340

Figure 10. Timer Control Register - Watchdog Reset Control Bits (TCR[WRC])

WRC[0] WRC[1] Function

0 0 No action

0 1 Force a processor checkstop.

1 0 Force a processor reset.

1 1 Reserved.
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 15

MPC5500 Watchdog Registers

R 1

C 3

R 3

C

MPC5500 Time Base

The MPC5500 incorporates a 64-bit time base consisting of two 32-bit registers, time base upper (TBU)
and (TBL), where TBU represents the most significant 32 bits of the 64-bit counter. The time base is
incremented at the system clock frequency. The time base registers are illustrated below.

The watchdog timeout period is controlled by the system clock frequency and the values programmed in
the TCR[WP] and TCR[WPEXT] bits. These two bit fields are concatenated to form a 6-bit binary value
that can represent a value from 0 to 63. This concatenated value represents and selects the corresponding
bit in the time base. When the selected bit in the time base transitions from 0 to 1, a watchdog timer
exception is signaled.

Example

In this example TCR[WP] = 0b00 and TCR[WPEXT] = 0b1001.
These two bit fields are concantenated (WPEXT represents the most significant bits) to form
0b100100, or decimal 36.
This is TBL[36], or bit 28 of the counter (see TBL diagram).
Assume a system clock frequency of 80 MHz. The timeout value is represented in seconds
as:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R WP WRC WIE DIE FP FIE ARE 0 WPEXT FPEXT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FPEXT 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPR SPR 340

Figure 11. Timer Control Register - Watchdog Period Bits (TCR[WP], TCR[WPEXT])

egister Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

ounter Bit 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 3

TBU

egister Bit 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6

ounter Bit 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

TBL

1
80 000 000, ,
------------------------------ 228× 3.3554432= Seconds
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor16

MPC5500 Watchdog Registers
NOTE
This timeout value is the period for one watchdog event. Depending on the
method being used to control the watchdog, the effective timeout before a
reset may vary significantly. See “Timing Considerations”, Section 2.1.3,
Section 2.2.5, and Section 2.3.4 for further information.

3.3 Enabling Interrupts
The watchdog timer may be configured to generate an interrupt by setting the watchdog interrupt enable
bit (TCR[WIE]). The TCR register is shown in Figure 12.

The TCR[WIE] bit function is defined as follows:

The critical interrupt is enabled by setting the MSR[CE] bit. The MSR register is show in Figure 13. A
complete description of the MSR register is found in the e200z6 reference manual.

The MSR[CE] bit function is defined as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R WP WRC WIE DIE FP FIE ARE 0 WPEXT FPEXT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FPEXT 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPR SPR 340

Figure 12. Timer Control Register - Watchdog Interrupt Enable (TCR[WIE])

TCR[WIE] Function

0 Watchdog interrupt is disabled.

1 Watchdog interrupt is enabled.

0 4 5 6 7 13 14 15

R 0 0 0 0 0 UCLE SPE 0 0 0 0 0 0 0 CE 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 31

R EE PR FP ME FE0 0 DE FE1 0 0 IS DS 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13. Machine State Register - Critical Interrupt Enable Bit (MSR[CE])
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 17

MPC5500 Watchdog Registers
3.4 Enabling the Time Base
The MPC5500 time base is the clock source for the watchdog and must be enabled by setting the
HID0[TBEN] bit. If the time base is disabled at some later time, the watchdog timer will also stop. The
time base must run continuously to assure watchdog timeouts.

The HID0[TBEN] bit function is defined as follows:

3.5 Servicing the Watchdog
Once enabled, the watchdog must be controlled by one of the methods described in Section 2. The TSR
register shown in Figure 15 is used for this function.

MSR[CE] Function

0 Critical input and watchdog timer interrupts are disabled.

1 Critical input and watchdog timer interrupts are enabled.

0 1 5 6 7 8 9 10 11 13 14 15

R 0 0 0 0 0 0 BPRED 0 0 0 0 0 0 ICR NHR

W 0 0 0 0 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 31

R 0 TBEN 0 DCLREE DCLRCE CICLRDE MCCLRDE DAPUEN 0 0 0 0 0 0 0 0

W 0 0 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPR SPR 1008

Figure 14. Hardware Implementation-Dependent Register 0 - Time Base Enable Bit (HID0[TBEN])

HIDO[TBEN] Function

0 Time base is disabled.

1 Time base is enabled.
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor18

MPC5500 Watchdog Registers
The enable next watchdog bit (TSR[ENW]) controls the action that occurs on the next timeout. This bit is
automatically manipulated by the watchdog logic and application intervention is not required. However,
the TSR[ENW] may be cleared by the application (as in Method 2). The TSR[ENW] bit is defined as
follows:

The watchdog interrupt status bit (TSR[WIS]) bit is defined as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ENW WIS WRS DIS FIS

W

Reset 0x(00 || WRS) Undefined on power on reset

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset Undefined on power on reset.

SPR SPR - 336

Figure 15. Timer Status Register (TSR)

TSR[ENW] Function

0 Action on next watchdog timer timeout is to set TSR[ENW].

1 Action on next watchdog timer timeout is governed by TSR[WIS].

TSR[WIS] Function

0 A watchdog timer event has not occurred.

1 A watchdog timer event occurred. When MSR[CE] = 1, TCR[WIE] = 1,
and TSR[ENW] = 1, a watchdog timer interrupt is taken.
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 19

Enabling the Watchdog Timer Using the Boot Assist Module (BAM)
4 Enabling the Watchdog Timer Using the Boot
Assist Module (BAM)

The MPC5500 family provides a boot assist module (BAM). This is software that resides on the device in
non-volatile memory. The BAM executes at reset and allows certain configuration options to be selected,
based on the state of the BOOTCFG[0:1] and RSTCFG pins and/or the value in a specific reset
configuration halfword (RCHW, provided by the user). The RCHW is located in either internal or external
flash, depending on the boot mode selected. This user provided half-word may be used to enable the
watchdog at boot time.

The RCHW is shown in Figure 16.

Figure 16. Reset Configuration Half Word (RCHW) Definition

The WTE bits of the RCHW determine whether the BAM enables the watchdog timer.

5 Enabling the Watchdog in Software
If serial boot mode is selected via the BOOTCFG[0:1] pins, or if the BAM fails to find a valid RCHW, the
watchdog timer is enabled by default. See the application note “MPC5500 Boot Assist Module” and the
BAM section of the MPC5554 Reference Manual and for more information about the watchdog service
requirements in this mode.

If the RCHW is valid and configured to disable the watchdog (WRC left cleared as at reset), the user
software can enable it by writing to the WRC bit. The WRC bit can only be written once by software,
including a write of the bit by the BAM. Once enabled the watchdog cannot be disabled.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WTE PS0 0 1 0 1 1 0 1 0

Boot Identifier = 0x5A

WTE Description

0 BAM does not write the e200z6 timebase registers (TBU and TBL) nor enable the e200z6
core Watchdog Timer.

1 BAM writes the e200z6 timebase registers (TBU and TBL) to 0x0000_0000_0000_0000
and enables the e200z6 core Watchdog timer with a time-out period of 3 x 217 system clock
cycles.

(Example: For 8 MHz crystal −> 12MHz system clock−> 32.7mS time-out.
For 20 MHz crystal −> 30 MHz system clock −> 13.1mS time-out)
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor20

Enabling the Watchdog in Software
A Example Code
This appendix contains example code for each of the watchdog implementation and service methods
described in this document.

A.1 Configuration

A.1.1 Method 1

#**

init_watchdog_no_irq()

#

This function sets up the watchdog timeout and sets the action on a
second watchdog event to be a device reset. The watchdog interrupt is
not enabled, so no interrupt handler is required.

#

Call with: Nothing

Returns: Nothing

#**

init_watchdog_no_irq:

set for reset on 2nd timeout, set timeout for 3.3554432 seconds

lis r6, 0x2012 # load r6

WPEXT = 0b1001, WP = 0b00

WRC = 0b01, reset

WIE = 0

ori r6, r6, 0@l # clear lower half-word

mtspr TCR, r6 # move r6 to TCR

enable time base

mfspr r6, HID0 # get HID0

ori r6, r6, 0x4000 # OR in the TBEN bit (bit 17)

mtspr HID0, r6 # move r6 to HID0

return

blr
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 21

Enabling the Watchdog in Software
A.1.2 Method 2 and 3
#**

init_watchdog_with_irq()

#

This function sets up the watchdog timeout, enables the watchdog interrupt,

and sets the action on a second watchdog event to be a device reset. This

configuration requires an interrupt handler to service the watchdog.

#

Call with: Nothing

Returns: Nothing

#**

init_watchdog_with_irq:

enable watchdog interrupt, set for reset on 2nd timeout, set timeout for 3.3554432
seconds

lis r6, 0x2812 # load r6

WPEXT = 0b1001, WP = 0b00

WRC = 0b01, reset

WIE = 1

ori r6, r6, 0@l # clear lower half-word

mtspr TCR, r6 # move r6 to TCR

enable critical irqs

mfmsr r6 # get MSR val

oris r6, r6, 0x0002 # OR in the CE bit (bit 14)

mtmsr r6 # store val to MSR

enable time base

mfspr r6, HID0 # get HID0

ori r6, r6, 0x4000 # OR in the TBEN bit (bit 17)

mtspr HID0, r6 # move r6 to HID0

return

blr
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor22

Enabling the Watchdog in Software
A.2 Interrupt Vector Setup

A.2.1 Methods 2 and 3
#**

init_wd_vector()

#

This function sets up the watchdog interrupt vector that is required

for any implementation method requiring an interrupt service routine.

Call with: Nothing

Returns: Nothing

#**

.extern init_wd_vector

init_wd_vector:

lis r3, irq_handler12@h # load r3 with upper 16-bits of handler
address

mtspr IVPR, r3 # move r3 to IVPR

li r3, irq_handler12@l # load r3 with lower 16-bits of handler

address

mtspr IVOR12, r3 # move r3 to IVOR12

blr # return

A.3 Interrupt Handler

A.3.1 Method 2
#**

irq_handler12_2()

#

This code is an interrupt handler that will only run when a periodic task

fails to service the watchdog in time to prevent an interrupt. The user

may choose to either save off debug information in preparation for a reset,

or just clear the interrupt and hope the application recovers.

#

#**

.extern irq_handler12_2 # make this handler visible
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 23

Enabling the Watchdog in Software
IVOR12 - watchdog interrupt

.align 4 # align on quad-word boundary (Green Hills)

irq_handler12_2:

save context (might be meaningless here)

stwu sp, -16(sp) # allocate 16 bytes on stack

stw r6, 4(sp) # save r6 on stack so it can be used in the handler

mfcsrr0 r6 # get CSRR0

stw r6, 8(sp) # save it on the stack

mfcsrr1 r6 # get CSRR1

stw r6, 12(sp) # save it on the stack

option 1 -

recognize that the app is in an uncontrolled state and save off

debug information in whatever manner is appropriate prior to

next timeout, which will cause a reset.

user debug/crash code goes here

option 2 -

service the WD timeout by clearing TSR[WIS] and TSR[ENW] then

hope for the best.

lis r6, 0xc000 # load r6 with TSR[ENW] and TSR[WIS] (bits 0,1)

mtspr TSR, r6 # move the val back to TSR

restore context

lwz r6, 12(sp) # get CSRR1 off stack

mtcsrr1 r6 # restore it

lwz r6, 8(sp) # get CSRR0 off stack

mtcsrr0 r6 # restore it

lwz r6, 4(sp) # get r6 off stack

addi sp, sp, 16 # restore stack pointer

return from critical interrupt -

rfci # restores machine state, including reenabling

critical interrupts MSR[CE].
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor24

Enabling the Watchdog in Software
A.3.2 Method 3
#**

irq_handler12_3()

#

This code is a simple interrupt handler that just clears the TSR[WIS] bit

so that the interrupt is cleared. TSR[ENW] remains unchanged. This handler

is intended to run once at each watchdog timeout. No periodic watchdog

service is required.

#

#**

.extern irq_handler12_3 # make this handler visible

IVOR12 - watchdog interrupt

.align 4 # align on quad-word boundary (Green Hills)

irq_handler12_3:

save context

stwu sp, -16(sp) # allocate 16 bytes on stack

stw r6, 4(sp) # save r6 on stack so it can be used in the handler

mfcsrr0 r6 # get CSRR0

stw r6, 8(sp) # save it on the stack

mfcsrr1 r6 # get CSRR1

stw r6, 12(sp) # save it on the stack

service the WD timeout by writing TSR[WIS] with 1

lis r6, 0x4000 # load r6 with TSR[WIS] bit (bit 1)

mtspr TSR, r6 # move the val back to TSR

 # restore context

lwz r6, 12(sp) # get CSRR1 off stack

mtcsrr1 r6 # restore it

lwz r6, 8(sp) # get CSRR0 off stack

mtcsrr0 r6 # restore it

lwz r6, 4(sp) # get r6 off stack

addi sp, sp, 16 # restore stack pointer

return from critical interrupt -

rfci # restores machine state, including reenabling

critical interrupts MSR[CE].
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 25

Enabling the Watchdog in Software
A.4 Periodic Watchdog Service Routine

A.4.1 Method 2
#**

clr_wd_next()

#

This function clears the TSR[ENW] bit by writing 1 to the bit location.

#

Call with: Nothing

Returns: Nothing

#**

.extern clr_wd_next

clr_wd_next:

prevent an initial watchdog timeout by writing TSR[ENW] with 1.

lis r6, 0x8000 # load r6 with TSR[ENW] bit (bit 0)

mtspr TSR, r6 # move the val back to TSR

blr # return

A.4.2 Method 3
#**

clr_wd_status()

#

This function clears the TSR[WIS] bit by writing 1 to the bit location.

#

Call with: Nothing

Returns: Nothing

#**

.extern clr_wd_status

clr_wd_status:

prevent a watchdog timeout reset by writing TSR[WIS] with 1 (clears the bit)

lis r6, 0x4000 # load r6 with TSR[WIS] bit (bit 1)

mtspr TSR, r6 # move the val back to TSR

blr # return
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor26

Enabling the Watchdog in Software
THIS PAGE INTENTIONALLY LEFT BLANK
MPC5500 Watchdog Timer, Rev. 1.1

Freescale Semiconductor 27

AN2817
Rev. 1.1, 06/2005

HOW TO REACH US:
USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components

in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use

Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.

	1 Overview
	1.1 Basic Watchdog
	1.2 MPC5500 Watchdog

	2 Example Implementation Methods
	2.1 Method 1 - Periodic Service Routine without Interrupt Handler
	2.1.1 Configuration - Method 1
	2.1.2 Periodic Service Routine - Method 1
	2.1.3 Timing Considerations - Method 1

	2.2 Method 2 - Periodic Service Routine with Interrupt Handler
	2.2.1 Configuration - Method 2
	2.2.2 Interrupt Vector Setup - Method 2
	2.2.3 Interrupt Handler - Method 2
	2.2.4 Periodic Service Routine - Method 2
	2.2.5 Timing Considerations - Method 2

	2.3 Method 3 - Interrupt Driven Watchdog Service Routine
	2.3.1 Configuration - Method 3
	2.3.2 Interrupt Vector Setup - Method 3
	2.3.3 Interrupt Handler - Method 3
	2.3.4 Timing Considerations - Method 3

	3 MPC5500 Watchdog Registers
	3.1 Setting the Watchdog Reset Control
	3.2 Setting the Watchdog Timeout Value
	3.3 Enabling Interrupts
	3.4 Enabling the Time Base
	3.5 Servicing the Watchdog

	4 Enabling the Watchdog Timer Using the Boot Assist Module (BAM)
	5 Enabling the Watchdog in Software
	A Example Code
	A.1 Configuration
	A.2 Interrupt Vector Setup
	A.3 Interrupt Handler
	A.4 Periodic Watchdog Service Routine

