
1 Introduction
This application note explains the challenges of motor control
in an operating system (OS). It evaluates the possible
implementation approaches, and guidance for writing motor
control applications in the Freescale operating system MQX.

1.1 Motor control and MQX
Embedded applications are becoming more complex and is
putting more pressure on embedded system software
programmers. In a complex system, a number of tasks must
run in parallel in real time in an operating system. Examples
include Ethernet, USB, SDHC, and so on. One such task is an
electrical motor control, like DC, Brushless DC, stepper, or
even a 3-phase sinusoidal motors such as the PMSM, or AC
induction motors. The motor control algorithm requires
precise timing of the control tasks, such as the output signal
generation, which is based on the scheduled tasks of the
opposing rotor position in the operating system (OS), and with
significant latency. Therefore, the inclusion of motor control
tasks in an operating system requires special care. Motor
control in this document means a process that controls
electrical motors such as AC induction, BLDC, PM
synchronous, or DC MQX.

Freescale Semiconductor Document Number: AN4254

Application Note Rev. 0, 5/2011

Motor Control Under the Freescale
MQX Operating System
by: Libor Prokop

Czech Republic
Roznov

© 2011 Freescale Semiconductor, Inc.

Contents

1 Introduction...1

2 Typical Motor Control Application............................3

3 Integration of motor control in MQX.......................10

4 Demonstrating a BLDC Motor Control Application
under MQX ..20

5 BLDC Motor Control under MQX – Code Examples
...20

6 Bibliography...23

7 Definitions and Acronyms..23

Motor Control
Process

RTCS Process
Embedded Internet

Stack
(Networking)

MFS
Embedded File

System
(File Management)

Peripheral
Drivers

Other Processes

Task
Arbitration

Interrupts
Arbitration

MQX
Real Time Operating System

System
Initializations

Other
Processes from

MQX Library

Application software under MQX

Other Processes

Figure 1. MQX and other applications with motor control in the MQX

1.2 MQX real time operating system for high-end
microcontrollers

Here are basic features of the MQX operating system. MQX is a run-time library of functions that programs use to become
real-time multi-tasking applications. The main features are its scalable size, component-oriented architecture, and easy use.
The MQX supports multi-processor applications and can be used with flexible embedded I/O products for networking, data
communications, file management, and control. The main MQX application area is for large controller devices like the
Kinetis (ARM®Cortex™-M4) or MCF5441x (ColdFire®) families with peripheries for Ethernet, USB, SDHC, and other
support. Some of those devices are equipped with a PWM module and other peripherals designed or suitable for motor
control. MQX is not exclusively a motor control dedicated operating system, but using MQX operating system for motor
control brings some benefits to applications that combine motor control with other significant processes.

The Freescale MQX RTOS comes with the support of a complete software stack combined with basic core drivers, class
drivers, and plenty of sample programs that can be used to achieve the desired target product. The MQX Real-Time
Operating System from the MQX Embedded has been designed for a uni-processor, multi-processor, and distributed-
processor embedded real-time systems. To leverage the success of the MQX operating system, Freescale Semiconductor
adopted this software platform for its ColdFire, PowerPC™ and ARM Cortex families of microprocessors. Comparing to the
original MQX distributions, the Freescale MQX distribution was made simpler to configure and use. One single release now
contains the MQX operating system plus all the other software components supported for a given microprocessor part.

Introduction

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

2 Freescale Semiconductor, Inc.

2 Typical Motor Control Application
There are several motor types that differ in construction and also in the control approach. This must be reflected in the
implementation under the MQX OS.

2.1 Motor types
The most common electrical motor control applications according to motor type are:

• DC motors
DC (direct current) motor control

• Commutating motors
Brush-less DC (BLDC) motor control
Stepper motor control

• Stepper motor control
Permanent Magnet Sinusoidal motor (PMSM) control
AC induction motor control
Stepper motor control

2.2 Motor control techniques
The key motor control applications according to the control techniques.

2.2.1 According to the sensor
• Sensored control

A sensor is used for rotor position and speed estimation. Most common sensor types are:
— Hall sensor
— Incremental encoder
— Sin cos sensor
— Tachogenerator

• Sensorless control

— The rotor position and speed is estimated from the motor current and voltage without using other sensors

2.2.2 According to the control signal
• Sinusoidal scalar control

• Classical control technique for sinusoidal PMSM or AC induction motors

• Vector control (FOC)

Typical Motor Control Application

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 3

• Advanced control technique for sinusoidal PMSM or AC induction motors for high dynamic and precision drives

• Commutation control
• BLDC motor commutation control
• Stepper motor stepping control

• Other control techniques

2.3 Motor application characteristic requirements

Figure 2. General motor control topology

Figure 2 shows a general 3-phase motor control topology. The topology is based on a 3-phase power stage with drivers that
are controlled by the MCU. The MCU inputs are current, voltage, and positional feedback. Those signals are processed by
the control software. The PWM generates the required signals for the 3-phase power stage. Motor control application
characteristic requirements are elaborated in the next sections.

2.3.1 Motor control process in terms of time execution
The motor control process consists of synchronous and asynchronous tasks. These events are physically determined. The time
duration between the events depends on the system time constants.

• Motor electrical time constants (winding) are usually tens of microseconds
• Mechanical (rotor mechanical inertia)

Physically determined asynchronous events must be serviced within one to tens of microseconds.
• Low interrupt latency
• High priority interrupts

Typical Motor Control Application

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

4 Freescale Semiconductor, Inc.

2.3.2 Motor control process in terms of algorithms complexity
The motor control processes discuss various complexities of algorithms depending on the kind of control application. For
example:

• Simple read -> modify -> write port
• BLDC motor commutation according to Hall sensors

• Low complexity algorithms such as the PI speed controller
• Medium complexity algorithms such as the back
• EMF observer for sensorless control -Complex algorithms such as sensorless non-linear AC-induction motor control

See Tables 1,2,3 and 4 for details.

2.4 Typical motor control examples
There are many types of motor control algorithms, the focus here is on two typical algorithms:

• BLDC motor control—Represents the commutation type with asynchronous commutation events
• PMSM motor control—Represents the advanced control technique with periodic execution of control tasks independent

of motor speed

2.4.1 Low complexity application example — BLDC motor control
with Hall sensors

One typical low complexity application is the BLDC motor control with Hall sensors. The BLDC motor uses a rotor with a
permanent magnet. The motor rotation is provided by a 6-step commutation of the stator flux vectors. This is provided by the
3-phase voltage system displayed in Figure 3. The commutation period depends on the rotor speed and its duration may be as
short as 200 s. For example a 4-pole, 3-phase BLDC motor running at 10 000 rpm is commutating with a time period of 500
s. The commutation instant is synchronized using Hall sensors. The voltage amplitude is controlled with the pulse width
modulation (PWM) technique.

Figure 3. BLDC motor control commutations

Typical Motor Control Application

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 5

The BLDC motor control system is displayed in Figure 4.The Hall sensors are read by a decoder. This is serviced in the
commutation control block to provide a six step commutation of the PWM. This block also provides a commutation period
for speed control. The required BLDC vector is sent to the PWM block. The motor speed and torque limitation is controlled
with a controller. The required PWM duty cycle is sent to the PWM block. The PWM block sets the required phase signals
according to the required BLDC vector and the PWM duty cycle. The motor DC bus current needs to be sampled
synchronously with the PWM signal, therefore the PWM module is linked to the AD convertor. The sampled DC-bus current
is used for the torque limitation.

Figure 4. BLDC motor control

The Hall sensor BLDC speed control application is based on three tasks:
• ADC—Current (and voltage) sampling—Periodical (a constant period, typically a 50 µs)
• Commutation—Synchronized with a Hall sensor change event (variable duration of 20 ms to 200 µs depending on the

motor and speed)
• Speed control —Periodical (a constant period, typically a 1 ms to 5 ms period)

The most critical timing of the elaborated BLDC motor control application is the commutation and current sampling. While
the speed control loop runs in the background, the highest execution frequency required is the current sampling. However this
task execution duration is usually short (the current controller is usually not used). The commutation at a Hall sensor event
has a variable frequency of calls. The duration of its execution (complexity) depends on the control technique and on the
hardware support for the PWM module, but it is short due to the low complexity. The commutation task must be resolved
within a short time response. Some Freescale devices have a hardware support to minimize the delay and simplify the control
software.

Typical Motor Control Application

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

6 Freescale Semiconductor, Inc.

Figure 5. BLDC motor control ADC sampling and commutation timing

The speed controller task is called with a low execution frequency. This call frequency is constant. This constant period of
calls is usually 1 ms to 10 ms according to the motor type.

2.4.2 High complexity application example ― vector control
A typical high complexity motor control application is a vector control. This is used for sinusoidal motors (AC induction
motor or permanent magnet sinusoidal motor). A typical vector control application is speed control with an internal current
loop. See Figure 6.

Typical Motor Control Application

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 7

Figure 6. Speed control with an internal current loop

The application structure of a speed vector control application is displayed in detail in Figure 7. The motor is supplied by a
sinusoidal PWM voltage. It has two software control loops:

• Slow outer (speed) control loop (1–5 msec)
• Fast inner (current) control loop (25–200 µsec)

Slow outer (speed) control loop and inner fast (current) control loop. The most critical part in terms of execution time is the
current control loop, which is usually called with a period of 25 to 100 µs. This software control loop provides transformation
from a 3-phase current system into the two-dimensional stator relative coordinate system α β. The inner loop also evaluates
the rotor flux position and transforms the currents into the rotor flux relative system with d, q coordinates. The d and q axis
currents are controlled by current controllers. After decoupling, it is backwardly transformed into 3-phase PWM signals.
Therefore, the inner loop is a medium to high complex algorithm with a short period of calls. The outer loop with speed
detection and a controller is much less sophisticated with a longer period of call. It is not time critical.

Typical Motor Control Application

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

8 Freescale Semiconductor, Inc.

Figure 7. Sophisticated motor control — vector control

The fast loop timing for the 12 kHz PWM is displayed in Figure 8. The required currents can be processed once per PWM
cycle, usually in the ADC interrupt subroutine. The main part of the timing is the fast control loop execution. The rest of the
CPU time is used for a slow control loop and other tasks.

Figure 8. Vector control – fast loop timing

Typical Motor Control Application

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 9

3 Integration of motor control in MQX
This chapter will elaborate in the integration of a motor control application into MQX.

3.1 Typical system application example with motor control under
the MQX

Figure 9. Web controlled application with two motors and analogue measurement

Figure 9 is an example of a motor control application typical for implementation under MQX. Motor control is usually one of
the application functionalities (compared with pure motor control applications running on one CPU). The application controls
one BLDC motor and one DC motor with dedicated sensors. Other application functionalities are communication using
Ethernet and Analog quantities sampling and processing. The Ethernet task arbitration and other functionalities are supported
by the MQX system. The entire application runs on a single MCU.

3.2 When to use motor control under MQX
MQX is not a typical operating system for motor control application. The MQX OS is suitable for large applications with
advanced features, such as web control, USB, and SDHC card reading running on a dedicated device (usually one core). The
primary strength of MQX is that it includes libraries for RTCS, Ethernet, USB communication, MFS file system, and many
other applications.

In terms of the time scheduling, advanced motor control applications are naturally based on constant sampling (for example,
ACIM and PMSM sinusoidal motor control) or asynchronous events (for example, BLDC motor commutation control) with a
fast system response requirement. The required response of the most critical events is usually one to tens of microseconds.

Integration of motor control in MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

10 Freescale Semiconductor, Inc.

The MQX is a complex system with dynamic allocations and POSIX scheduling. It has a system default tick duration of 5
ms. This is ideal for the majority of applications. However, this also means, that the MQX task time resolution is more than
1000 times longer when compared to the motor control requirements. Therefore, it is evident that the motor control process
needs to be serviced with interrupts of a high priority. This can be provided with standard MQX interrupt routines. The time
duration from the interrupt request to the service routines execution is usually units of a microsecond (depending on the CPU
version and clock speed). And, if necessary, the motor control algorithms can be implemented using the kernel interrupts.
The kernel interrupts are natural CPU interrupts with no MQX overhead and minimal execution duration. The disadvantage
of the kernel interrupt is that no MQX functionalities such as events, or semaphores are supported.

3.3 Motor control under MQX – two approaches
There are two approaches to writing motor control software under MQX:

• Dedicated motor control driver
The motor control process is provided by one or more kernel interrupts (MQX functionalities like events are not
supported) or MQX highest priority interrupt tasks. The motor control process (task) software is then similar to a
standard non-operating system approach. However, the software can possibly (though not necessarily) use some
MQX device peripheral drivers (included in the MQX installation).
In this approach, the MQX system is then used for:

• Initialization of all tasks including motor control
• No motor control related tasks

Figure 10. Dedicated motor control driver

• True MQX approach

Integration of motor control in MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 11

The motor control application is provided by (usually more than one) MQX tasks and interrupts. The software
usually uses some MQX or customer written device peripheral drivers. Interrupts service time critical events (such as
commutation, PWM update, position sensor service), and MQX tasks service non-critical tasks where the MQX tick
duration delay is not critical (possibly the speed control loop).

Figure 11. True MQX approach

3.4 Dedicated motor control driver example
An example of an application in MQX with a dedicated motor control driver and other application functionalities is shown in
Figure 12. This application example is the PMSM vector control.

The application features are:
• PMSM vector control
• Ethernet communication
• USB interface
• Other MQX tasks

For the functional diagram, refer to Figure 7. The Ethernet based CGI interface, USB control task are running under MQX.
The application control shell task is provided by MQX Task 1. The motor control upper software layer is realized by the
MQX Task 2. The motor control process driver is provided as a set of ADC and timer peripheral callback functions. The
interrupt callbacks may be initialized as kernel interrupts, that are independent of the MQX system. However, a standard
MQX interrupt is possible for applications where the additional delay of MQX interrupt processing (typically 2 µs depending
on the CPU speed) is not critical.

Integration of motor control in MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

12 Freescale Semiconductor, Inc.

The benefit of a standard MQX interrupt is that the MQX events and flags can be used as an API for other MQX processes.
The MQX system manages all the MCU registers and interrupt flag backups.

Dedicated motor control driver advantages:
• Full control of the motor control events timing — no delay caused by MQX arbitration
• Time critical motor control tasks can only be serviced using MQX or kernel interrupt subroutines

Disadvantages
• Software development is more complex (MQX arbitration is not used)
• Peripherals are fully assigned for the driver

Figure 12. Motor control process under MQX with a dedicated driver

Integration of motor control in MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 13

3.5 True MQX approach example
An example of an application under MQX with motor control and a true MQX approach is in Figure 13. This application
example is BLDC motor control with Hall sensors.

The application features are:
• BLDC motor control with Hall sensors
• Ethernet communication
• USB interface
• Other MQX tasks

For a functional diagram, see fig 4 . The Ethernet based CGI interface, USB control task and other tasks are running under
MQX. The application control shell task is provided by MQX Task 1.

The motor control process is provided using an MQX approach, using MQX Tasks 2, and 3, with the ADC and Hall sensor
interrupt callback functions. The interrupt callbacks are initialized in MQX Task 2 as MQX system interrupts. The benefit of
a standard MQX interrupt is that the MQX events and flags can be used as an API for other MQX tasks. The MQX system
handles all MCU register and interrupt flags.

Dedicated motor control driver advantages:
• Software development is simpler (MQX task arbitration, event, and semaphores are used)

Disadvantages
• Time critical motor control tasks can not be serviced this way due to the MQX limitation (5 ms tick). Dedicated

interrupts must be used
• Time delay of the motor control functions under MQX

Integration of motor control in MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

14 Freescale Semiconductor, Inc.

Figure 13. Motor control process under MQX – true MQX approach

3.6 Motor control applications and implementation under MQX
The actual implementation of motor control under MQX depends on the motor type, control algorithm, and application
requirements. The following tables show the required tasks and MQX realization of the motor control process for a wide
spread of motor versions. The required tasks of the dedicated motor control process depend on the control technique. Each
motor control technique consists of periodical and asynchronous tasks. The tables show the period of the task calls and

Integration of motor control in MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 15

typical task complexity. The task complexity depends on the exact software implementation, so the value in a table is an
example of a time duration on a 50 MHz clocked by 32-bit MCU. The function call is elaborated in Sections 3.3, 3.4, 3.5.
The last columns show the recommended implementation under MQX and the MQX approach.

Table 1. DC Motor

Control
Technique

Major Tasks
Using the
Control

Technique

Task Period
and

Synchronizatio
n Event
Example

Task
Complexity

Example
(Duration at 50

MHz 32bit)

Task
Recommended
Implementatio
n under MQX

Task Call
under MQX

MC
Application

MQX
Approach

Position Control Periodic Task 1:
— Position
controller

Periodic

1ms

Low

(approx. 5 µs)

MQX Task (or
Interrupt MQX
Callback)

Controller

algorithms with
H-bridge Driver

MQX Task (/
MQX interrupt
timer callback)

True MQX

Periodic Task 2: Periodic

50 µs

Low

(approx. 3 µs)

Interrupt called
driver for ADC
sampling

MQX Interrupt
callback at ADC
conversion
done

Table 2. BLDC Motor

Control
Technique

Major Tasks
Using the
Control

Technique

Task Period
and

Synchronizatio
n Event
Example

Task
Complexity

Example
(Duration at
50MHz 32bit)

Task
Recommended
Implementatio
n under MQX

Task Call
under MQX

MC
Application

MQX
Approach

BLDC
Commutation
with Hall
Sensors

Periodic Task1:

— DC-bus
current and
voltage
sampling and
processing

Periodic

50 µs

synchronized
with PWM =>
ADC conversion
done

Low

(approx. 2 µs)

Interrupt called
driver for ADC
sampling with
PWM
synchronisation
and algorithms
for further
processing

MQX Interrupt
callback at ADC
conversion
done

True MQX

Periodic Task 2:

— Speed/
torque controller

Periodic

1 ms

Low

(approx. 5 µs)

MQX Task (or
Interrupt MQX
Callback)
Controller
algorithms with
PWM duty cycle
driver

MQX Task (time
delay)

Asynchronous
Task 3:

— Hall sensor
state read and
commutation
driver

Asynchronous

20 ms to 200 µs
at Hall sensor
change event

Low

Read/Write
PORT
Registers

Interrupt called
driver for timer
(—Hall sensor)
input and PWM
commutation
driver

MQX Interrupt
callback at timer
edge capture

Table continues on the next page...

Integration of motor control in MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

16 Freescale Semiconductor, Inc.

Table 2. BLDC Motor (continued)

Control
Technique

Major Tasks
Using the
Control

Technique

Task Period
and

Synchronizatio
n Event
Example

Task
Complexity

Example
(Duration at
50MHz 32bit)

Task
Recommended
Implementatio
n under MQX

Task Call
under MQX

MC
Application

MQX
Approach

Sensorless
BLDC
Commutation

Periodic Task1:
— DC-bus
current and
voltage
sampling and
processing

Periodic

50 µs
synchronized
with PWM =>
ADC conversion
done

Low

(approx.2 µs)

Interrupt called
driver for ADC
sampling with
PWM
synchronisation
and algorithms
for further
processing

MQX Interrupt
callback at ADC
conversion
done

Sensorless
BLDC control
Driver and (sub)
task drivers
(ADC sampling)

Periodic Task 2:

— Speed/
torque controller

Periodic

1 ms

Low

(approx. 5 µs)

PI Controller
algorithms with
PWM duty cycle
driver

MQX Interrupt
callback at timer
timeout

Asynchronous
Task 3:

— Back-EMF
zero crossing

— Commutation
timing

Asynchronous

— 20 ms to 200
µs at Back-EMF
zero crossing
event

Low to medium
(25 µs)

Interrupt called
Sensorless
BLDC driver

Part1: Back-
EMF zero-
crossing and
commutation
calculation and
timer setting

MQX Interrupt
callback
Comparator ->
timer input
capture

Asynchronous
Task 4: -BLDC
motor
commutation

Asynchronous
20 ms to 200 µs

Low

(10 µs)

Interrupt Called
Sensorless
BLDC

Driver Part2:
PWM
commutation
driver

MQX Interrupt
callback at timer
output compare

Integration of motor control in MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 17

Table 3. PMSM Control

Control
Technique

Major Tasks
Using the
Control

Technique

Task Period
and

Synchronizatio
n Event
Example

Task
Complexity

Example
(Duration at
50MHz 32bit)

Task
Recommended
Implementatio
n under MQX

Task Call
under MQX

MC
Application

MQX
Approach

Sinusoidal
PMSM Control
with Sensor

Periodic Task1:
— DC-bus
current and
voltage
sampling

— 3phase sine
generation

Periodic 50 µs
synchronized
with PWM =>
ADC conversion
done

Low

(10 µs)

Interrupt called
driver for ADC
sampling with
PWM
synchronisation
—driver for
3phase sine
generation

MQX Interrupt
callback at ADC
conversion
done

True MQX with
(sub)task
drivers (ADC
sampling, 3-
phase sine
generation)

Asynchronous
Task 2:

— Rotor
position
recognition.

— 3phase sine
synchronisation

Asynchronous
min 100 µs at
sensor edge

Low

(approx. 5 µs)

Interrupt called
driver for timer
edge input
capture and
algorithm for
3phase sine
synchronisation

MQX Interrupt
callback at timer
edge input
capture

Periodic Task 3:
Speed/Torque
Controller

Periodic 1m Low

(approx. 5 µs)

PID controller
algorithm

Timer timeout
MQX Interrupt
callback

PMSM Vector
Control with
Sensor
(encoder, sin-
cos or other)

Periodic Task1:
— Current
sampling

— Position
recognition

—
Transformations
a,b,c->-
>d,q,

— Current
controllers

Periodic 50 µs
synchronized
with PWM =>
ADC conversion
done

Medium

(20 µs)

Interrupt called
PMSM Vector
Control Driver

Interrupt
callback at ADC
conversion
done

PMSM Vector
Control driver
and (sub) task
drivers

Periodic Task 2:
Speed/Torque
Controller

Periodic 1ms Low

(approx. µs)

PI controller
algorithm

MQX Interrupt
callback at timer
timeout

Table continues on the next page...

Integration of motor control in MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

18 Freescale Semiconductor, Inc.

Table 3. PMSM Control (continued)

Control
Technique

Major Tasks
Using the
Control

Technique

Task Period
and

Synchronizatio
n Event
Example

Task
Complexity

Example
(Duration at
50MHz 32bit)

Task
Recommended
Implementatio
n under MQX

Task Call
under MQX

MC
Application

MQX
Approach

Sensorless
PMSM Vector
Control

Periodic Task1:
— Current
sampling

—
Transformation
a,b,c->->d,q

— Current
controllers,

— Observer
calculation

Periodic 50 µs
synchronized
with PWM =>
ADC conversion
done

Medium to High
(40 µs)

Interrupt called
Sensorless
PMSM Vector
Control Driver

Interrupt
callback at
PWM sync or
ADC conversion
done

Sensorless
PMSM Vector
Control driver
and (sub) task
drivers

Periodic Task 2:

— Speed/
Torque
controller

Periodic 1m Low

(approx. 5 µs)

PID controller
algorithm

MQX Interrupt
callback at timer
timeout

Table 4. AC Induction motor control

Control
Technique

Major Tasks
Realizing the

Control
Technique

Task Period
and

Synchronisati
on Event
Example

Task
Complexity

Example
(Duration

@50MHz 32bit)

Task
Recommended
Implementatio
n under MQX

Task Call
under MQX

MC
Application

MQX
Approach

AC Induction
Motor Vector
Control with
Sensor
(encoder, sin-
cos or other

Periodic Task1:
— Current
Sampling

— Position
Recognition

—
Transformations
a,b,c->-
>d,q,

Flux estimator,
— Current
controllers

Periodic 50 µs
synchronized
with PWM =>
ADC conversion
done

Medium

(35 µs)

Interrupt called
ACIM Vector
Control Driver

Interrupt
callback at ADC
conversion
done

ACIM Vector
Control driver
and (sub) task
drivers

Periodic Task 2:
—Speed/
Torque
controller

Periodic 1ms Low

(approx. 5 µs)

PID controller
algorithm

MQX Interrupt
callback at timer
timeout

Integration of motor control in MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 19

4 Demonstrating a BLDC Motor Control Application under
MQX

To demonstrate motor control under MQX a BLDC motor control application was designed.

4.1 BLDC motor control under MQX – application characteristics
The BLDC uses Freescale TOWER modular hardware with a 3-phase power stage board and an MCF5441x controller board.
The application controls a 24 V BLDC motor with Hall sensors via the Ethernet. It is written under MQX . The Ethernet
communication uses the MQX library. The BLDC motor control is provided using a true MQX approach. See Figure 14.

Figure 14. Demonstrating an application of BLDC motor control under MQX

5 BLDC Motor Control under MQX – Code Examples
These are some examples of the code from the application described in Section4.1 BLDC motor control under MQX –
application characteristics

5.1 Code examples
The application uses a true MQX approach with user defined interrupt functions and MQX interrupt callback, and MQX
tasks. See Figure 14 for interrupts and MQX_Task reference.

A simplified structure of these examples is displayed in . The figure does not show the detailed application description, it
shows some of the function calls and data structures that are evaluated in the code listing below. The data structures
BLDC_State. Event is a variable for an MQX event. The hsinput_dtim_info_ptr* is a structure pointed to by the
hsinput_dtim_info_ptr and includes Hall sensor input data that is used by the _hs_input_dtim_a_isr interrupt

Demonstrating a BLDC Motor Control Application under MQX

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

20 Freescale Semiconductor, Inc.

function and the HS_input_callback (see the code below). The MQX_template_list is an MQX structure that defines the
MQX tasks (priority, type, and so on). Details are described in the MQX documentation see the Section 6. Bibliography
number one and two.

Figure 15. BLDC motor control under MQX ― examples of function calls and data
structures

The MQX interrupt callback installation is provided initialization of the application using the MQX library function:

_int_install_isr.

……
 _int_install_isr(dtim_init_ptr_a->VECTOR,
 (void (_CODE_PTR_)(pointer))_hsinput_dtim_a_isr,
 (pointer) hsinput_dtim_info_ptr);
 …

BLDC Motor Control under MQX – Code Examples

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 21

The Hall sensor inputs are executed by the dtim modules of the MCF5441x processor. The dtim driver for the Hall sensor
input is serviced by the _hsinput_dtim_a_isr callback function. This function calculates the commutation period
hsinput_dtim_info_ptr->LAST_EDGE_PERIOD, reads the Hall sensor input hsinput_dtim_info_ptr->HS_STATE,
clears the peripheral pending flags, and finally calls the HSInputCallbackIsr algorithm: uint_32 _hsinput_dtim_a_isr.

(
 /* [IN] the address of the device specific information */
 MCF54XX_HSINPUT_DTIM_INFO_STRUCT _PTR_ hsinput_dtim_info_ptr,
)
{
 /* calculation of the period between Hall Sensor Edges */
 hsinput_dtim_info_ptr->PREV_EDGE_TIME = hsinput_dtim_info_ptr->LAST_EDGE_TIME;
 hsinput_dtim_info_ptr->LAST_EDGE_TIME = hsinput_dtim_ptr->DTCR;
 hsinput_dtim_info_ptr->LAST_EDGE_PERIOD = hsinput_dtim_info_ptr->LAST_EDGE_TIME –
hsinput_dtim_info_ptr->PREV_EDGE_TIME;

 /* read & mask GPIO */
 hsinput_dtim_info_ptr->HS_STATE = (*(hsinput_dtim_info_ptr->GPIO_STR.GPIO_PPDSDR_PTR) & \
 hsinput_dtim_info_ptr->GPIO_STR.PIN_MASK)>> \
 hsinput_dtim_info_ptr->GPIO_STR.PIN_SHFT;
 /* clear pending flags */
 periphBitSet(MCF54XX_DTIM_DTER_CAP, &(hsinput_dtim_info_ptr->DTIM_A_PTR->DTER));

 /* call HS_input_callback */
 if(hsinput_dtim_info_ptr->HSINP_CALLBACK_ISR != NULL)
 {
 hsinput_dtim_info_ptr->HSINP_CALLBACK_ISR (hsinput_dtim_info_ptr);
 }
 return(MQX_OK);
}

Interrupt callback algorithm HSInputCallbackIs is then called to provide PWM commutation according to the Hall sensor
state. It also processes the commutation period and sets the MQX event BLDC_HS_INPUT_CHANGED:

void HS_input_callback (pointer parameter)
{
 MCF54XX_HSINPUT_DTIM_INFO_STRUCT_PTR hsinput_dtim_info_ptr = parameter;
 /* set required sector_u8 variable according to table and Hall sensor input */
 sector_u8 = bldc_3pps_hs_table[hsinput_dtim_info_ptr->HS_STATE];
 /* commutate the pwm sector according to , sector_u8 variable */
 _3ppspwm_bldc_set_vector_sector_6s_ss_compl(pspwm_info_ptr, sector_u8);
 /* read Hall sensor period */
 BLDC_State.ActualPeriodSample = _hsinput_read_period(hsinput_info_ptr);
 /* set BLDC_HS_INPUT_CHANGED event */
 _lwevent_set(&BLDC_State.Event, BLDC_HS_INPUT_CHANGED);
}

Task2 is an example of an MQX Task function, which in this case provides networking initialization, BLDC motor control
application initialization, and the motor control upper software layer (see Figure 13, Task 2):

void Task2 (uint_32 data)
{
 /* Initialize ethernet networking */
 initialize_networking();
 /* Initialize operating parameters to default values */
 BLDC_InitializeParameters();
 /* create light weight event structure */
 _lwevent_create(&BLDC_State.Event, 0);
 /* Configure and reset outputs */
 BLDC_InitializeIO();
 while(TRUE)
 {
 /* Motor Control Upper S/W Layer */
 …
 }

Arbitration of the Task1 function is provided by the MQX . The tasks list is defined in the standard way in the MQX:

BLDC Motor Control under MQX – Code Examples

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

22 Freescale Semiconductor, Inc.

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
 /* Task Index, Function, Stack, Priority, Name,
Attributes, Param, Time Slice */
 { TASK1, MQX_Task2 2000, 3, "BLDC",
MQX_AUTO_START_TASK, 0, 0 },
 { BLDC_CONTROL_TASK, MQX_Task3, 1500, 4, "BLDCCtrl",
0, 0, 0 },
 { SHELL_TASK, MQX_Task1, 2900, 12, "Shell",
MQX_AUTO_START_TASK, 0, 0 },

{, .., ., ..,
 , , ., ..
},
 {0}
};

6 Bibliography
1. Reference manual titled Freescale FSLMQX™ RTOS (document FSLMQXRM)
2. User guide titled Freescale FSLMQXTM Real-Time Operating System (document FSLMQXUG)
3. Design reference manual titled 3-Phase Sensorless BLDC Motor Control Using MC9S08MP16 (document DRM117)

Freescale Semiconductor 2009
4. Design reference manual titled Sensorless PMSM Vector Control with a Sliding Mode Observer for Compressors Using

MC56F8013 (document DRM099) Freescale Semiconductor 2008
5. 3-Phase PM Synchronous Motor Vector Control using DSP56F80x, by Prokop L., Grasblum P., AN1931, Motorola,

2002

7 Definitions and Acronyms
AN — Application Note

ACIM — Alternating Current Induction Motor

API — Application Interface

BLDC — Brush-less DC Motor

FOC — Field Oriented Control

Freescale MQX™ — Real-Time Operating System MQX adopted by Freescale Semiconductor

Motor control In this article, means a process which controls an electrical motor such as BLDC PMSM, AC-induction or
other

MQX™ — Real-Time Operating System

Tick — Operating system time unit (also reflects the minimal time resolution)

OS — Operating System

POSIX — Portable Operating System Interface, produced by IEEE and standardized by ANSI and ISO. MQX conforms to
POSIX.4 (real-time extensions), and POSIX.4a (threads extensions).

PMSM — Permanent Magnet Synchronous Motor

RTOS — Real Time Operating System

RTCS — Embedded Internet stack provides IP networking for the MQX platform. RTCS is provided with a rich assortment
of TCP/IP networking application protocols and uses the MQX RTOS drivers for Ethernet or serial connectivity.

Bibliography

Motor Control Under the Freescale MQX Operating System, Rev. 0, 5/2011

Freescale Semiconductor, Inc. 23

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4254
Rev. 0, 5/2011

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2011 Freescale Semiconductor, Inc.

	Introduction
	Motor control and MQX
	MQX real time operating system for high-end microcontrollers

	Typical Motor Control Application
	Motor types
	Motor control techniques
	According to the sensor
	According to the control signal

	Motor application characteristic requirements
	Motor control process in terms of time execution
	Motor control process in terms of algorithms complexity

	Typical motor control examples
	Low complexity application example — BLDC motor control with Hall sensors
	High complexity application example ― vector control

	Integration of motor control in MQX
	Typical system application example with motor control under the MQX
	When to use motor control under MQX
	Motor control under MQX – two approaches
	Dedicated motor control driver example
	True MQX approach example
	Motor control applications and implementation under MQX

	Demonstrating a BLDC Motor Control Application under MQX
	BLDC motor control under MQX – application characteristics

	BLDC Motor Control under MQX – Code Examples
	Code examples

	Bibliography
	Definitions and Acronyms

