ANS317

Loading Code on Cortex-M from U-Boot/Linux for the i.MX
Asymmetric Multi-Processing Application Processors

Rev. 2 — 18 November 2021

1 Introduction

There is a growing number of embedded use cases that require concurrent
execution of isolated and secure software environments. Multiple software
execution environments are useful for:

» Off-loading tasks and improving real-time performance
* Increasing system integrity and security
» Optimizing power consumption

The i.MX 8M, i.MX 8, i.MX 8X, i.MX 7D/S/UL, and i.MX 6SoloX SoC families
offer Asymmetric Multi-Processing (AMP) solutions with both Arm® Cortex™-A
processors and Cortex-M4 microcontroller on a single SoC. The cores can be
partitioned into two respective processing domains that can be programmed
to run a different OS to cater for the real-time latency and application
processing requirements.

In some applications, it is very useful to have the Arm Cortex-A processors
reload code into the Cortex-M4 microcontroller. This application note shows

Application Note

Contents
1 Introduction..........ccceeeeeiieceenseceennnns 1
2 Overview of i.MX 8QM/QXP
implementations..........ccc.ccceeeenn.. 2
3 Overview of i.MX 8M family
implementations...........ccccovnieecenne 2
4 Overview of i.MX 7Dual/7Solo and
i.MX 6SoloX implementations......... 2
5 Reloading code on i.MX 8QM/QXP
.. 3
6 Reloading code on i.MX 8M family
.. 3
7 Reloading code on i.MX 7Dual/7Solo
.. 5
8 Reloading code on i.MX 6SoloX..... 6
9 Linux Remote Processor (RPROC)
framework.........cccvveeeeiieceeeeeee e 8
10 References.......ccccoceniiriveiriccncennne 14
11 Revision history..........cccccvviieiinnnee 14

how to reload code on Cortex-M from the Linux shell/U-Boot using the Arm Cortex-A processor. The same method can be used

for any other OS or bare metal implementation.

This application note shows how to load code into Cortex-M from the software running on Cortex-A cores.

The following table lists some NXP SoCs that can be used in the AMP configuration and the software support for Cortex-M loading

from a side in U-Boot and Linux starting with NXP Linux BSP versions = L5.10.35_2.0.0.

Table 1. Examples of NXP SoCs that can be used in AMP configuration

SoC name U-Boot - Cortex-M load support RemoteProc support
i.MX 8QM) Y
i.MX 8QXP Y v
i.MX 8MP Y v
i.MX 8MQ Y v
i.MX 8MM Y Y
i.MX 8MN Y Y
i.MX 7D/S Y Y
i.MX 6SoloX Y Y

h
P

https://source.codeaurora.org/external/imx/linux-imx/tag/?h=lf-5.10.35-2.0.0

NXP Semiconductors

Overview of i.MX 8QM/QXP implementations

2 Overview of i.MX 8QM/QXP implementations

The i.MX 8QM application processor provides a powerful fully coherent core complex based on a dual (2x) Cortex-A72 cluster for
use cases requiring high computing performances, a quad (4x) Cortex-A53 cluster running most of the use cases at a lower power
consumption and two clusters, each with one Cortex-M4 for real-time performance.

The i.MX 8QXP application processor provides a quad Arm Cortex-A35 cluster providing full 64-bit ARMv8-A support while
maintaining seamless backward compatibility with 32-bit ARMv7-A software and a single Arm Cortex-M4.

The current U-Boot source code for both i.MX 8QM and i.MX 8QXP application processors provides a boofaux and a
loadm4image_<coreiad> command that helps with loading the code to the Cortex-M4 core and bringing it up. For example, loading
the sensor_demo.binfile to location 0x80280000 and booting the Cortex-M4_0 core with the image loaded can be done by running
the following command: ‘run m4boot_0”which implementation is “run loadm4image_0; dcache flush,; bootaux $floadaddr} O,
where loadm4image _0Ois ‘fatload mmc $fmmcdev}.$3{mmcpart} $floadaddr} ${m4_0_image}” with loadaddr=0x80280000 and
m4_0_image= sensor_demo.bin.

This U-Boot feature is useful to bring the Cortex-M4 core up as soon as possible after the boot up or power-on reset, with the
existing implementation every time a user wants to modify the application. U-Boot must be reconfigured. i.MX 8QM/iIMX 8QXP
introduces the System Controller Firmware (SCFW) for interaction with hardware. Controlling the Cortex-M4 from Linux is easier,
enabling users to start, stop, and reload it. This implementation does not allow users to reload another application while a task is
already running on the Cortex-M4 core. This application note describes the interaction with Cortex-M4 cores from the Linux shell
via SCFW API.

3 Overview of i.MX 8M family implementations

The i.MX 8MQ/i.MX 8MM application processors offer a quad Arm Cortex-A53 cluster providing full 64-bit ARMv8-A support and
also a single Arm Cortex-M4 processor.

The i.MX 8MP/i.MX 8MN application processors provide a quad Arm Cortex-A53 cluster and a single Arm Cortex-M7 processor.

The current U-Boot source code for both i.MX 8MM and i.MX 8MN application processors provides bootfaux and fatload
commands that help users with loading the code into the Cortex-M4/Cortex-M7 core and bringing it up. For example, “fatload
mmec 0:1 0x7e0000 sensor_demo.bir’ loads the sensor_demo.bin file to location 0x7e0000 and “bootaux Ox7e00000 boots the
Cortex-M4/Cortex-M7 core with the image loaded at 0x007e_0000.

4 Overview of i.MX 7Dual/7Solo and i.MX 6SoloX implementations

There are many similarities between the i.MX 7Dual/7Solo and i.MX 6SoloX application processors in terms of where the TCM_U
and TCM_L (Tightly Coupled Memory - Upper/Lower) memories are located. However, the boot vector and the specific register
to issue the platform reset and reset the Cortex-M4 are different on the two application processors. The bit locations inside the
registers for both i.MX 7Dual/7Solo and i.MX 6SoloX application processors are also different.

The i.MX 7Dual/7Solo application processor provides a multicore solution of Arm Cortex-A7 cores (dual or single) and a single
Arm Cortex-M4 core.

The i.MX 6SoloX application processor provides a single Arm Cortex-A9 and a single Arm Cortex-M4. The Arm Cortex-A7 on
i.MX 7Dual/7Solo and the Arm Cortex-A9 on i.MX 6SoloX are both capable of booting using different interfaces and they are also
responsible for bringing up the different interfaces of the chip. It is the responsibility of Cortex-A7 on i.MX 7Dual/7Solo application
processors and Cortex-A9 on i.MX 6SoloX application processors to enable the Cortex-M4 core.

The current U-Boot source code for both i.MX 7Dual/7Solo and i.MX 6SoloX application processors provides bootauxand fatload
commands that help users with loading the code to the Cortex-M4 core and bringing it up. For example, “fatload mmc 0:1 Ox7f8000
sensor_demo.bin’ loads the sensor_demo.bin file to location 0x7f8000 and “bootaux Ox7f80000" boots the Cortex-M4 core with
the image loaded at Ox007f 8000.

Although this feature is useful to bring the Cortex-M4 core up as soon as possible after the boot up or power-on reset (with the
existing implementation every time a user wants to modify the application), the U-Boot must be reconfigured. This implementation
does not allow users to reload another application while a task is already running on the Cortex-M4 core. This application note
describes the registers that are required to be programmed to reload the application from the Linux shell.

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021
Application Note 2/15

NXP Semiconductors

Reloading code on i.MX 8QM/QXP

For this application note, we assume that the Cortex-M4 core is compiled to execute from the TCM_L and TCM_U on the chip
memories. We also assume that the Cortex-M4 clock is enabled. Users using U-Boot can enable the clock with the boofaux
command by loading a primary image which, on the Cortex-M4 side, tells the Linux kernel not to disable the Cortex-M4 clock when
the Linux kernel takes over. If you do not run the U-Boot and want to enable the clock of the Cortex-M4, see the respective clock
chapters in the .MX 7Dual Applications Processor Reference Manual (document IMX7DRM) and the . MX 6SoloX Applications
Processor Reference Manual (document IMX6SXRM).

5 Reloading code on i.MX 8QM/QXP

5.1 On-chip memory view from each Arm core on i.MX 8QM/8QXP

The memory view of different peripherals is different between the Cortex-A and Cortex-M4 sides. Table 2 shows only the memory
areas relevant for this application note. For more details, see the Memory Map chapter in the .MX 8QM/QXP Applications
Processor Reference Manual.

NOTE
The TCM memory can be accessed from the A cores using the Cortex M4 platform-specific areas from the system
memory map. The TCM memory is mapped in the same address ranges as those that Cortex-M4 cores see as their
TCM memory.

i.MX 8QM has two Cortex-M4 cores, each with their own cluster. i.MX 8QXP has one Cortex-M4 core. The Cortex-M4_0 from both
platforms has the memory map even for the TCM memory.

Table 2. Start and end addresses of different memories from Cortex-M4 side on i.MX

Peripheral Start address End address Start address End address Size
Cortex-M4_0 Cortex-M4_0 Cortex-M4_1 Cortex-M4_1
TCM_L 0x34FE_0000 0x34FF_FFFF 0x38FE_0000 0x38FF_FFFF 128 KB
TCM_H 0x3500_0000 0x3501_FFFF 0x3900_0000 0x3901_FFFF 128 KB

5.2 Detailed procedure

To reload the code on the Cortex-M4 core using the Cortex-A processor on i.MX 8QM/QXP, follow the steps below if M4 resources
belong to the Cortex-A partition:

1. Open an IPC channel to communicate with the SCFW that runs on the SCU using the sc_ipc_open (sc_ipc_t _ ipc,
sc_ipc_id_t id) function.

2. Issue a software platform stop for the Cortex-M4 core using the sc_pm_cpu_start (sc_ipc_t ipc, sc_rsrc_t resource, bool
enable, sc_faddr_t address) function.

3. Issue a software platform power off for the Cortex-M4 core using the sc_pm_set_resource_power_mode (sc_ipc_t ipc,
sc_rsrc_t resource, sc_pm_power_mode_t mode) function. Power on the Cortex-M4 core using the above function. This
step ensures that the TCM_L memory is reset.

4. Load the code for the Cortex-M4 processor into the TCM_L memory. For this application, we assume that the Cortex-
M4 code is linked to the TCM_L memory. Program the FreeRTOS binary file to the TCM_L address.

5. When the image is loaded, start the Cortex-M4 core using the sc_pm_cpu_start (sc_ipc_t ipc, sc_rsrc_t resource, bool
enable, sc_faddr_t address) function.

6 Reloading code on i.MX 8M family

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021
Application Note 3/15

http://www.com/doc/IMX7DRM
http://www.nxp.com/doc/IMX6SXRM

NXP Semiconductors

Reloading code on i.MX 8M family

6.1 On-chip memory view from each Arm core on i.MX 8M SoC

The memory view of different peripherals is different between the Cortex-A53 and Cortex-M4/M7 sides. Table 3 and Table 4 show
only the memory areas relevant for this application note. For more details, see the Memory Map chapter in the .MX SMM/EMN
Applications Processor Reference Manual.

NOTE
The TCM memory can be accessed from the A cores using the Cortex M platform-specific areas from the system
memory map. The TCM memory is mapped in the same address ranges as those that Cortex-M cores see as their
TCM memory.

Table 3. Start and end addresses of different memories from Cortex-M4 side on i.MX8MQ and i.MX8MM

Peripheral Start address End address Start address End address Size
Cortex-A53 Cortex-A53 Cortex-M4 Cortex-M4
TCM_L 0x007E_0000 0x007F_FFFF 0x1FFE_0000 Ox1FFF_FFFF 128 KB
TCM_H 0x0080_0000 0x0081_FFFF 0x2000_0000 0x2001_FFFF 128 KB
Table 4. Start and end addresses of different memories from Cortex-M7 side on i.MX8MN and i. MX8MP
Peripheral Start address End address Start address End address Size
Cortex-A53 Cortex-A53 Cortex-M7 Cortex-M7
ITCM 0x007E_0000 0x007F_FFFF 0x0000_0000 0x0001_FFFF 128 KB
DTCM 0x0080_0000 0x0081_FFFF 0x2000_0000 0x2001_FFFF 128 KB

6.2 Detailed procedure
To reload the code on the Cortex-M4 core using the Cortex-A53 processor on i.MX 8MM, follow the steps below:

1. Issue a software platform reset by setting up SW_M4P_RST (Bit 2) in the SRC_M4RCR (SRC_M4RCR][2]) register.
Issuing a platform reset resets the Cortex-M4 cores and their associated memories. The address of the SRC_M4RCR
register is 0x3039_000C for the i.MX 8MM SoC.

2. Load the code for the Cortex-M4 processor into the TCM_L memory. For this application, we assume that the Cortex-
M4 code is compiled to execute from the TCM_L memory. In Table 3, the TCM_L address for the Cortex-A53 side is
0x007E_0000. Program the FreeRTOS binary file to that address.

3. When the file is loaded, the next step is to set ENABLE_M4 (Bit 3) in the SRC_M4RCR (SRC_M4RCR[3])
register. Because boofaux already booted a primary image, this bit should be 1. Performing a platform reset using
SW_M4P_RST (Bit 2) in the SRC_M4RCR (SRC_M4RCR[2]) register does not clear this bit. The last step is to set
the SW_M4C_RST (Bit 1) in the SRC_M4RCR (SRC_M4RCR[1]) register, which boots the new code in the Cortex-M4
processor.

To reload the code on the Cortex-M7 core using the Cortex-A53 processor on i.MX 8MN, follow the steps below:

1. Issue a software core reset by setting up SW_M7C_RST (Bit 1) in the SRC_M7RCR (SRC_M7RCR[2]) register. Issuing
a core reset resets the Cortex-M7 core and the associated memories. The address of the SRC_M7RCR register is
0x3039_000C for the i.MX 8MN SoC.

2. Load the code for the Cortex-M7 processor into the ITCM memory. For this application, we assume that the Cortex-
M7 code is compiled to execute from the ITCM memory. In Table 4, the ITCM address for the Cortex-A53 side is
0x007E_0000. Program the binary file generated by FreeRTOS to that address.

3. When the file is loaded, the next step is to set the ENABLE_M7 (Bit 3) in the SRC_M7RCR (SRC_M7RCR[3]) register.
Because bootaux already booted a primary image, this bit should be 1. Performing a core reset using SW_M7C_RST

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021
Application Note 4/15

NXP Semiconductors

Reloading code on i.MX 7Dual/7Solo

(Bit 1) in the SRC_M7RCR (SRC_M7RCR][1]) register does not clear this bit. The last step is to set the SW_M7C_RST
(Bit 1) in the SRC_M7RCR (SRC_M7RCR][1]) register, which boots the new code in the Cortex-M4 processor.

7 Reloading code on i.MX 7Dual/7Solo

7.1 On-chip memory view from each Arm core on i.MX 7Dual/7Solo

The memory view of different peripherals is different between the Cortex-A7 and Cortex-M4 sides. Table 5 shows only the memory
areas relevant for this application note. For more details, see the Memory Map chapter in the .MX 7Dual Applications Processor
Reference Manual (document IMX7DRM).

NOTE
Oni.MX 7Dual/7Solo, the boot vector for the Cortex-M4 core is located at the start of the OCRAM_S (On-Chip RAM
- Secure), whose address is 0x0018_0000 for Cortex-A7.

Table 5. Start and end addresses of different memories for Cortex-A7 and Cortex-M4 sides

Peripheral Start address End address Start address End address Size
Cortex-A7 Cortex-A7 Cortex-M4 side Cortex-M4 side

OCRAM_S 0x0018_0000 0x0018_7FFF 0x2018_0000 0x2018_7FFF 32 KB

TCM_L 0x007F_8000 0x007F_7FFF 0x1FFF_8000 Ox1FFF_FFFF 32 KB

TCM_H 0x0080_0000 0x0080_7FFF 0x2000_0000 0x2000_7FFF 32 KB

7.2 Detailed procedure
To reload the code on the Cortex-M4 core using the Cortex-A7 processor on i.MX 7Dual/7Solo, follow the steps below:

1. Issue a software platform reset by setting up SW_M4P_RST (Bit 2) in the SRC_M4RCR (SRC_M4RCR[2]) register.
Issuing a platform reset resets the Cortex-M4 cores and associated memories. The address of the SRC_M4RCR
register is 0x3039_000C for i.MX 7Dual/7Solo SoC.

2. Load the code for the Cortex-M4 processor into the TCM_L memory. For this application, we assume that the Cortex-
M4 code is compiled to execute from the TCM_L memory. In Table 5, the TCM_L address from the Cortex-A7 side is
0x007F_8000. Program the FreeRTOS binary file to that address.

3. When the file is loaded, set up the Stack and PC pointer in the OCRAM_S memory. After reset, the processor uses the
OCRAM_S start address (0x0018_0000) as the first instruction. For this implementation, the stack value is the first four
bytes found in the binary file generated for the Cortex-M4 processor using FreeRTOS source. The PC value is also 4
bytes long and located at an offset of 0x4 in the binary file. This PC value is written to the OCRAM_S base address plus
4 which is (0x0018_0004) for this platform. Table 6 further clarifies the Stack and PC addresses.

Table 6. Boot vectors' location for Cortex-M4 core

OCRAM_S location for boot vectors Location of boot vectors in binary file

Boot vectors

0x0018_0000 First 4 bytes

Stack pointer

0x0018_0004 4 bytes after first 4 bytes

Program counter

4. When the start-up address in the OCRAM_S is adjusted according to the binary file, the file is loaded into the memory.
The next step is to set the ENABLE_M4 (Bit 3) in the SRC_M4RCR (SRC_M4RCR][3]) register. Because bootaux
already booted a primary image, this bit should be 1. Performing a platform reset using SW_M4P_RST (Bit 2) in the

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021
Application Note 5/15

http://www.nxp.com/doc/IMX7DRM

NXP Semiconductors

Reloading code on i.MX 6SoloX

SRC_M4RCR (SRC_M4RCR[2]) register does not clear this bit. The last step is to set the SW_M4C_RST (Bit 1) in the
SRC_M4RCR (SRC_M4RCR([1]) register, which boots the new code on the Cortex-M4 processor.

5. Repeat steps 1-3 to reload a new image. More details about the SRC_M4RCR register are shown in Figure 1.

Figure 1. Cortex-M4 reset control register (SRC_M4RCR)

Address: 3039_0000h base + Gh offset = 3039_000Ch

Bt 3 30 29 28 27 26 25 24

LOCK
DOMAINT
DOMAIND

DOM_EN
DOMAING
DOMAINZ

=]
=]
[=]
=]

Reset 0 0

Bit a B 7 5] 5 4 3 2 1
=
S |3

R = = —
o
S |5 25|82
5 =2 | MAsK wpoGa_RsT 4 |g | g
{45 |
r 2= - - 2 §I %I
) =

w g |8 5353
s |8
E

Resst 0 o0 o0 o0 © © o0 0|1 o0 1 o0 1 0o o0 o0

7.3 Steps for reloading code on i.MX 7Dual/7Solo

The steps required to reload code on i.MX 7Dual/7Solo are as follows:

1.

S

Issue a platform reset by setting the SRC_M4RCR[2] bit in the SRC_MRCR register.

Wait for SRC_M4RCRJ[2] to be cleared.

Set the stack pointer to the first 4 bytes of the binary file.

Set the PC pointer to the next 4 bytes after the first 4 bytes of the binary file.

Load the binary file starting at address 0x007F_8000.

Reset the Cortex-M4 microcontroller by setting the SRC_M4RCR[1] bit in the SRC_M4RCR register.

8 Reloading code on i.MX 6SoloX

8.1

On-chip memory view from each Arm core on the i.MX 6SoloX

The memory view of different peripherals is different between the Cortex-A9 and Cortex-M4 sides. Table 7 shows only the memory
areas relevant for this application note. For more details, see the Memory Map chapter in the . MX 6SoloX Applications Processor
Reference Manual (document IMX6SXRM).

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021

Application Note 6/15

http://www.nxp.com/doc/IMX6SXRM

NXP Semiconductors

Reloading code on i.MX 6SoloX

Table 7. Start and end addresses of different memories from Cortex-A9 and Cortex-M4 side

Peripheral Start address End address Start address End address Size
Cortex-A9 Cortex-A9 Cortex-M4 side Cortex-M4 side

TCM_L 0x007F_8000 0x007F_7FFF 0x1FFF_8000 Ox1FFF_FFFF 32 KB

TCM_U 0x0080_0000 0x0080_7FFF 0x2000_0000 0x2000_7FFF 32 KB

NOTE
The boot vector for the Cortex-M4 core is located at the start of the TCM_L, whose address is 0x007F_8000 from
the Cortex-A9 core. This is a location different from that on the i.MX 7Dual/7Solo.

8.2 Detailed procedure
To reload the code on the Cortex-M4 core using the Cortex-A9 processor on i.MX 6SoloX, follow the steps listed below:

1. Issue a software platform reset by setting up M4P_RST (Bit 12) in the SRC_SCR (SRC_M4RCR[12]) register. Issuing
a platform reset resets the Cortex-M4 cores and associated memories. The address of the SRC_SCR register is
0x020D_8000 for i.MX 6SoloX.

2. Load the code for the Cortex-M4 processor into the TCM_L memory. For this application, we assume that the M4
code is compiled to execute from the TCM_L memory. Program the binary file generated by FreeRTOS to the TCM_L
address from the Cortex-A9 side, which is 0x007F_8000, as listed in Table 7.

3. When the file is loaded, set up the stack and PC pointers in the TCM_L memory. After a reset, the processor uses the
TCM_L start address (0x007F_8000) as the first instruction. For this implementation, the stack value is the first 4 bytes
found in the binary file generated for the Cortex-M4 processor using the FreeRTOS source. The PC value is also 4
bytes long and located at an offset of 0x4 in the binary file. This PC value is written to the TCM_L base address plus
four, which is (0x007F_8004). Table 8 shows the stack and PC addresses.

Table 8. Boot vectors location for Cortex-M4 core

Boot vectors TCM_L location for boot vectors Location of boot vectors in binary file

Stack pointer 0x007F_8000 First 4bytes

Program counter 0x007F_8004 4 bytes after first 4 bytes

4. When the startup address in the TCM_L is modified according to the binary file and loaded into the memory, ensure
that the ENABLE_M4 (Bit 22) in the SRC_SCR (SRC_SCR[22]) register is set to 1. Because the boofaux already
booted a primary image, this bit should be 1. Performing a platform reset using MAP_RST (Bit 12) in the SRC_SCR
(SRC_SCR[12]) register does not clear this bit. The last step is to set the MAC_RST (Bit 3) in the SRC_SCR
(SRC_SCR[3]) register, which boots the new code on the Cortex-M4 processor.

5. Repeat steps 1-3 to reload a new image. More details about the SRC_SCR register are in Figure 2.

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021
Application Note 7/15

NXP Semiconductors

Linux Remote Processor (RPROC) framework

The Reset control register (SCR), contains bits that control operation of the reset
controller.

|Address: 20D_8000h base + Oh offset = 20D_8000h

Bit 31 a0 20 28 7 % 3 24 = 22 2 20 19 18 17 16
z i
=
" 18 ¢ B ! 5 | ™
» =) = 2 5 2 S
W | 8— = U‘J o
2 £ W | @ a @ a
mask_wdog3_rst mix_rst_strch| = = & 5 2 =
Ela | 0| <] 8 £ 3
i 218|858 2 5
- = 3 _Eé
Reset 1 0 1 0 0 0 0 0 0 1] 0 (1] 1 0 0 0
Bit 15 14 13 12 1 10] 8 7] 5 4 3 2 1 i}
r| 0 0 B 2
= J =
PJI B @ wanm_rst_] B SW_ %-
2 ! | mask_wdog_rst bypass ; } u
3 | 2| ¢ _wdog_ ypass_ | £ | o gpu_
g p! S count F-_’I ® st | 2
W 3 E
E g
Reset 0 0 0 1 1] 1 0 1 0 0 1 1 1 0 0 1

Figure 2. SRC control register (SRC_SCR)

8.3 Steps for reloading code on i.MX 6SoloX
The steps required to reload code on i.MX 6SoloX are as follows:
1. Issue a platform reset by setting the SRC_SCR[12] bit in the SRC_SCR register.
Wait for the SRC_SCR[12] bit to be cleared by the hardware.
Set the stack pointer to the first 4 bytes of the binary file.
Set the PC pointer to the next 4 bytes after the first 4 bytes of the binary file.
Load the binary file starting at address 0x007F_8000.
Reset the Cortex-M4 by setting the SRC_SCR[3] bit in the SRC_SCR register.

o o~ 0D

9 Linux Remote Processor (RPROC) framework

The majority of modern SoCs are heterogenous platforms presenting Asymmetric Multiprocessing (AMP) configuration with
different types of processors, which allows to run various instances of operating system (like Linux) in parallel with a real-time OS.

For example, i.MX 8MP presents a cluster of quad Cortex-A53 cores and a cluster with a Cortex-M7 core. The quad Cortex-A53
cluster usually runs Linux in SMP configuration and the Cortex-M7 core may run an RTOS.

The Remote Processor (RPROC) framework is a Linux community effort to introduce the possibility to control (power on, load
firmware, power off) the remote processors abstracting the hardware differences in the same time on AMP SoCs. It offers
monitoring and debug services for the remote coprocessor.

Later versions of the Linux kernel (= 5.x) implement the RPROC framework in the "remote proc" section of the Linux kernel
repository drivers/remoteproc. The Linux kernel community implemented the framework abstractization between the user
interaction (other Linux kernel modules, SysFs, Userspace) and the hardware to provide a uniform API which can be used in a
similar way for all platforms that support Linux RPROC.

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021
Application Note 8/15

https://source.codeaurora.org/external/imx/linux-imx/tree/drivers/remoteproc?h=lf-5.10.52-2.1.0

NXP Semiconductors

Linux Remote Processor (RPROC) framework

For the interaction with hardware, each SoC support must implement rporoc_ops callbacks. The following code snippet shows the
operations from rproc_ops.

/**
* struct rproc ops - platform-specific device handlers
* @start: power on the device and boot it
* @stop: power off the device
* @kick: kick a virtqueue (virtqueue id given as a parameter)
* @da to va: optional platform hook to perform address translations
* @parse fw: parse firmware to extract information (e.g. resource table)
* @handle rsc: optional platform hook to handle vendor resources. Should return
* RSC_HANDLED if resource was handled, RSC IGNORED if not handled and a
* negative value on error
* @load rsc table: load resource table from firmware image
* @find_loaded _rsc_table: find the loaded resource table
* @load: load firmware to memory, where the remote processor
* expects to find it
* @sanity check: sanity check the fw image
* @get boot addr: get boot address to entry point specified in firmware
Y
struct rproc ops
{
int (*start) (struct rproc *rproc);
int (*stop) (struct rproc *rproc);
void (*kick) (struct rproc *rproc, int vgid);
void * (*da to_va) (struct rproc *rproc, u64 da, int len);
int (*parse fw) (struct rproc *rproc, const struct firmware *fw);
int (*handle rsc) (struct rproc *rproc, u32 rsc type, void *rsc,
int offset, int avail);
struct resource table *(*find loaded rsc table) (
struct rproc *rproc, const struct firmware *fw);
int (*load) (struct rproc *rproc, const struct firmware *fw);
int (*sanity check) (struct rproc *rproc, const struct firmware *fw);
u32 (*get boot addr) (struct rproc *rproc, const struct firmware *fw);
void * (*memcpy) (struct rproc *rproc, void *dest,
const void *src, size t count, int flags); };

RPROC Linux Documentation describes each API and their main functionality, which can be a useful resource when you start
implementing the SoC support from scratch.

9.1 i.MX Linux RPROC support

NXP Linux BSP provides support for i.MX Linux RPROC on the following platforms: i.MX 8MP, i.MX 8MQ, i.MX 8MM, i.MX 8MN,
i.MX8QM, i.MX 8QXP, i.MX 7D, i.MX 7UL, and i.MX 6SX. The implementation is realized in imx_rproc.c. The supported platforms
can be also identified in the code by checking compatible strings from the imx_rproc_of match structure.

RPROC implements the callback from rporoc_ops, following the recommendations listed in previous chapters. For example, the
i.MX 8/i.MX 8X RPROC uses the SCFW API to start/stop the M4. The i.MX 8M RPROC programs the SRC registers directly or
via ATF to start/stop the M4/M7.

The "imx_rproc" sets the memory map for each supported platform inside to know what memory areas are allowed for the
Cortex-M to contain code and date. Those limits are checked at runtime when the ELF is parsed and its sections are copied into
the targeted memories.

Figure 3 shows how the memory map for i.MX 8MN/i.MX 8MP is defined in "imx_rproc":

static const struct imx rproc_att imx rproc_att imx8mn[] = {
/* dev addr , sys addr , size , flags */
/* ITCM */
{ 0x00000000, 0x007E0000, 0x00020000, ATT OWN },

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021
Application Note 9/15

https://source.codeaurora.org/external/imx/linux-imx/tree/Documentation/staging/remoteproc.rst?h=lf-5.10.52-2.1.0
https://source.codeaurora.org/external/imx/linux-imx/tree/drivers/remoteproc/imx_rproc.c?h=lf-5.10.52-2.1.0

NXP Semiconductors

/* OCRAM S */

{ 0x00180000, 0x00180000, 0x00009000, O 1},
/* OCRAM */

{ 0x00900000, 0x00900000, 0x00020000, O 1},
/* OCRAM */

{ 0x00920000, 0x00920000, 0x00020000, O },

/* OCRAM */

{ 0x00940000, 0x00940000, 0x00050000, O 1},

/* QSPI Code - alias */

{ 0x08000000, 0x08000000, 0x08000000, O },

/* DDR (Code) - alias */
{ 0x10000000, 0x40000000, 0xOFFE0000, 0 },
/* DTCM */

{ 0x20000000, 0x00800000, 0x00020000, ATT OWN },
/* OCRAM S - alias */
{ 0x20180000, 0x00180000, 0x00008000, ATT OWN },
/* OCRAM */
{ 0x20200000, 0x00900000, 0x00020000, ATT OWN },
/* OCRAM */
{ 0x20220000, 0x00920000, 0x00020000, ATT OWN },
/* OCRAM */
{ 0x20240000, 0x00940000, 0x00040000, ATT OWN },
/* DDR (Data) */
{ 0x40000000, 0x40000000, 0x80000000, O },

};

Linux Remote Processor (RPROC) framework

Firstly, activate the RPROC framework in the kernel configuration, if it is not enabled by default.

Arrow keys navigate the menu. <Enter> selects submenus -—> (or empty X
submenus ----). Highlighted letters are hotkeys.
includes, <N> excludes, <M> modularizes features.

exit, <?> for Help, </> for Search. Legend:

Pressing <Y>
Press <Esc><Esc> to

[*] built-in []

1a9949ITIIS

b4
X
X
X
X
X
D4
). 4
b4
b4
m

<Select> < Exit > < Help >

Figure 3. Memory map for i.MX 8MN/i.MX 8MP defined in "imx_rproc"

[*] Support for Remote Processor subsystem
Remoteproc character device interface

< Save >

< Load >

X
b4
X
X
X
X

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021

Application Note

10/15

NXP Semiconductors

Linux Remote Processor (RPROC) framework

Secondly, the RPROC framework is enabled in the device tree using a dedicated DTS node. This required node is usually provided
in "imx-*-rpmsg.dts" by default in NXP Linux BSP. For example, i.MX 8MP uses the following DTS node, which specifies what

mailboxes are needed to communicate between Linux and the M7 SDK app:

imx8mp-cm7 {
compatible = "fsl, imx8mn-cm7";
rsc-da = <0x55000000>;
clocks = <&clk IMX8MP CLK M7 DIV>;
mbox-names = "tx", "rx", "rxdb";
mboxes = <&mu 0 1
&mu 1 1
&mu 3 1>;
memory-region = <&vdevbuffer>, <&vdevOvring0>, <&vdevOvringl>, <&rsc table>;
status = "okay";

}s

The memory-region attribute must contain the memory sections that are used by the firmware ELF to allow reloading from SysFS.

For example, for i.MX 8MP, the following sections can be added:

» Memory regions definitions from the reserved-memory node:

m4_reserved: m4@0x80000000 {
no-map;
reg = <0 0x80000000 0 0x1000000>;
}i

m7_ddr_alias: m4@0x10000000 {
no-map;
reg = <0 0x10000000 0 0x1000000>;
b

m7_itcm: m4@0x7E0000 {
no-map;
reg = <0 0x7E0000 0 0x20000>;
}i

m7_dtcm: m4@0x800000 {
no-map;
reg = <0 0x800000 0 0x20000>;

}i

* RPROC DTS node referring to used memory nodes:

imx8mp-cm7 {
compatible = "fsl, imx8mn-cm7";
rsc-da = <0x55000000>;
clocks = <&clk IMX8MP CLK M7 DIV>;
mbox-names = "tx", "rx", "rxdb";
mboxes = <&mu 0 1
&mu 1 1
&mu 3 1>;
memory-region = <&vdevOvring0>, <&vdevOvringl>, <&vdevbuffer>, <&m4 reserved>, <&m7 ddr alias>,
<&m7 itcm>, <&m7 dtcm>;
// fsl,rproc-auto-boot = <1>;
// fsl,rproc-fw-name="imx8mp m7 TCM sai low power audio.elf";
status = "okay";

}s

9.1.1 How to use RPROC on i.MX platforms

This subsection shows the usage of RPROC on i.MX platforms using the i.MX 8MP platform as a reference.

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021

Application Note

NXP Semiconductors

Linux Remote Processor (RPROC) framework

There are the following 3 possibilities to load and start the remote processor firmware:
» The firmware can be started via the SysFS interface.
» The firmware can be started automatically by the "remoteproc" driver at the probing stage.

» Boot the firmware early using U-Boot and control the firmware using the SysFS interface.

NOTE
For i.MX 8M platforms, the root clock for M7/M4 must be kept always enabled by Linux to load the firmware
code and start Cortex M7/M4. By default, NXP Linux BSP keeps the root clock enabled for the M core when it is
started from U-Boot. Otherwise, if you need to firstly start the M core from the Linux booting phase, the clock driver
(drivers/clk/imx/clk-composite-8m.c) must be updated to always skip the gate registration to keep the root clock
always enabled for the M core.

9.1.1.1 Starting firmware using SYSFS interface
1. RPROC exports the RPROC functionalities to UserSpace using SysFS.

$ 1ls /sys/class/remoteproc/remoteprocQ/

consumers device name recovery subsystem uevent
coredump firmware power state suppliers
NOTE

If /sys/class/remoteproc/remoteproc/is empty, the RPROC framework is not enabled in the device tree. The
previous section describes how to enable RPROC.

2. If the ELF is not stored in /ib/firmware, set the new path.

echo -n <firmware path> > /sys/module/firmware class/parameters/path
$ echo -n /run/media/mmcblklpl/ > /sys/module/firmware class/parameters/path

3. If the filename of the firmware ELF is different from the default one, set it to the new one.

echo -n <firmware name.elf> > /sys/class/remoteproc/remoteproc<N>/firmware
$ echo -n imx8mp m7 TCM hello world.elf > /sys/class/remoteproc/remoteprocO/firmware

4. Check the state of the remote processor before starting it with a new firmware. If it is online, it should be stopped.

cat /sys/class/remoteproc/remoteproc<N>/state
$ cat /sys/class/remoteproc/remoteproc(O/state
offline

5. Start the remote processor with the new firmware.

echo start > /sys/class/remoteproc/remoteproc<N>/state
$ echo start > /sys/class/remoteproc/remoteprocO/state

S cat /sys/class/remoteproc/remoteprocO/state

running

6. Stop the remote processor.

echo stop > /sys/class/remoteproc/remoteproc<N>/state
S echo stop > /sys/class/remoteproc/remoteproc0O/state

S cat /sys/class/remoteproc/remoteprocO/state

offline

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021
Application Note 12/15

https://source.codeaurora.org/external/imx/linux-imx/tree/drivers/clk/imx/clk-composite-8m.c?h=lf-5.10.52-2.1.0

NXP Semiconductors

Linux Remote Processor (RPROC) framework

9.1.1.2 Starting firmware automatically by remote PROC driver during Linux Kernel boot time

Starting the firmware automatically by a remote PROC and not from U-Boot or Linux console is possible if fsl,rproc-auto-boot
property is set to 1 and fsl,rproc-fw-name is set to the firmware ELF name located in /ib/firmware.

imx8mp-cm7 {
compatible = "fsl,imx8mn-cm7";
rsc-da = <0x55000000>;
clocks = <&clk IMX8MP CLK M7 DIV>;
mbox-names = "tx", "rx", "rxdb";
mboxes = <&mu 0 1
&mu 1 1
&mu 3 1>;
memory-region = <&vdevOvring0>, <&vdevOvringl>,
<&vdevbuffer>, <&m4 reserved>, <&m7 ddr alias>,
<&m7_itcm>, <&m7_dtcm>;
fsl,rproc-auto-boot = <1>;
fsl,rproc-fw-name="imx8mp m7_TCM sai_low power audio.elf";
status = "okay";

}s

9.1.1.3 Booting firmware early using U-Boot and controlling firmware using SysFS interface

i.MX U-Boot can start Cortex-M from the U-Boot console level using the bootaux command. Depending on the used i.MX 8M, i.MX
8, or i.MX 8X platforms, some of them have already defined Cortex-M booting commands.

For example, to define an M7 boot command from TCM on i.MX 8MP, use the following commands in U-Boot:

@ M7 Bin Filename - stored on 1lst partition

=> setenv m7image ‘helloworld.bin’

M7 Load command

=> setenv load m7image 'fatload mmc 1:1 0x48000000 ${m7image}; cp.b 0x48000000 0x7e0000 0x20000;'
M7 Start Command

=> setenv m7boot 'run load m7image; bootaux 0x7e0000'

Start M7

=> run m7boot

After Cortex-M is started from U-Boot, Linux can be started until the console appears. To shut down and reload Cortex-M, perform
the following steps:

1. Stop the remote processor before deploying new firmware.

echo stop > /sys/class/remoteproc/remoteproc<N>/state
$ echo stop > /sys/class/remoteproc/remoteproc(O/state

2. If ELF is not stored in /lib/firmware, set a new path.

echo -n <firmware path> > /sys/module/firmware class/parameters/path
$ echo -n “/run/media/mmcblklpl/” > /sys/module/firmware class/parameters/path

3. If the filename of the firmware ELF is different from the default one, set it to a new one.

echo -n <firmware name.elf> > /sys/class/remoteproc/remoteproc<N>/firmware
$ echo -n imx8mp m7 TCM hello world.elf > /sys/class/remoteproc/remoteprocO/firmware

4. Start the remote processor with the new firmware.

echo start > /sys/class/remoteproc/remoteproc<N>/state
$ echo start > /sys/class/remoteproc/remoteproc(O/state

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021
Application Note 13/15

NXP Semiconductors

References

10 References

N

1.MX 8MP Applications Processor Reference Manual

L.MX 8MQ Applications Processor Reference Manual (document IMX8MDQLQRM)
1.MX 8MM Applications Processor Reference Manual (document IMX8MMRM)
.MX 8MN Applications Processor Reference Manual (document IMX8MNRM)
.MX 8QM Applications Processor Reference Manual (document IMX8QMRM)
.MX 8QXP Applications Processor Reference Manual (documentiIMX8DQXPRM)
1.MX 7Dual Applications Processor Reference Manual (document IMX7DRM)

.MX 6SoloX Applications Processor Reference Manual (document IMX6SXRM)

© © N o o »~ w0 D

Linux Remote Processor Framework documentation

11 Revision history

Table 9. Revision history

Revision number Date Substantive changes

0 08/2016 Initial release

1 08/2019 Introduced i.MX 8M support

2 18 November 2021 Introduced RPROC and updated the
look and feel of the document

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing Application Processors, Rev. 2, 18 November 2021
Application Note 14/15

http://www.nxp.com/doc/IMX8MDQLQRM
http://www.nxp.com/doc/IMX8MMRM
http://www.nxp.com/doc/IMX8MNRM
http://www.nxp.com/doc/IMX8QMRM
http://www.nxp.com/doc/IMX8DQXPRM
http://www.nxp.com/doc/IMX7DRM
http://www.nxp.com/doc/IMX6SXRM
https://source.codeaurora.org/external/imx/linux-imx/tree/Documentation/staging/remoteproc.rst?h=lf-5.10.35-2.0.0

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at

the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer

is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision

Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 18 November 2021
Document identifier: AN5317

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Overview of i.MX 8QM/QXP implementations
	3 Overview of i.MX 8M family implementations
	4 Overview of i.MX 7Dual/7Solo and i.MX 6SoloX implementations
	5 Reloading code on i.MX 8QM/QXP
	5.1 On-chip memory view from each Arm core on i.MX 8QM/8QXP
	5.2 Detailed procedure

	6 Reloading code on i.MX 8M family
	6.1 On-chip memory view from each Arm core on i.MX 8M SoC
	6.2 Detailed procedure

	7 Reloading code on i.MX 7Dual/7Solo
	7.1 On-chip memory view from each Arm core on i.MX 7Dual/7Solo
	7.2 Detailed procedure
	7.3 Steps for reloading code on i.MX 7Dual/7Solo

	8 Reloading code on i.MX 6SoloX
	8.1 On-chip memory view from each Arm core on the i.MX 6SoloX
	8.2 Detailed procedure
	8.3 Steps for reloading code on i.MX 6SoloX

	9 Linux Remote Processor (RPROC) framework
	9.1 i.MX Linux RPROC support
	9.1.1 How to use RPROC on i.MX platforms
	9.1.1.1 Starting firmware using SYSFS interface
	9.1.1.2 Starting firmware automatically by remote PROC driver during Linux Kernel boot time
	9.1.1.3 Booting firmware early using U-Boot and controlling firmware using SysFS interface

	10 References
	11 Revision history

