
MPC574xP Clock Calculator Guide
How to use MPC5744P tool to easily calculate device frequency domains

by: NXP Semiconductors

1 Introduction
NXP’s MPC574xP is a lockstep, dual-core 32-bit microcontroller intended for
safety and chassis applications. This application note will refer to any device
in the MPC574xP family, MPC5741P, MPC5742P, MPC5743P, and MPC5744P,
as simply “MPC5744P.”

The MPC5744P supports an 8-44 MHz external oscillator (XOSC), a 16 MHz
internal RC oscillator (IRCOSC), and two phase locked loops (PLL) for a
maximum operating frequency of 200 MHz. The IRCOSC is selected out of
reset so increasing the operating frequency from 16 MHz requires additional
configuration. The MPC574xP clock calculator is meant to complement the
reference manual. It seeks to simplify the clock configuration process by
providing a graphical, interactive tool to help the user find the correct register
settings in order to achieve the desired clock frequencies.

Accompanying this application note is the clock calculator. You can download
it from MPC574xP_Clock_Calculator.

The clock calculator makes use of macros to perform functions like resetting
the spreadsheet to initial values, configuring all clock frequencies to the
maximum allowable settings, and copying generated code. Macros must be
enabled in the user's MS Excel to access these features. If macros are turned
off however, the tool will still be able to calculate clock frequencies, but the
aforementioned features will be disabled. To turn on macros in MS Excel 2016,
go to the Developer tab on the top toolbar and click on Macro Security. A popup
window will appear. In it, select Enable all macros.

Figure 1. Enabling macros

Contents

1 Introduction..1

2 Clock calculator design...................... 2
2.1 Tree... 3
2.2 Oscillator control..................... 6
2.3 Peripheral domains................. 6
2.4 LFAST clocking....................... 7
2.5 PLLx..9
2.6 Reference Tables

(pll0_phi, pll0_phi1, and
pll1_phi)...................................9

2.7 Summary...............................10
2.8 Limits.....................................13

3 Clock tool example use case:
configure ADC to PLL0 at 80 MHz. 14

3.1 Configure ADC_CLK............. 15
3.1.1 Configure the

oscillator.................... 16
3.1.2 Configure PLL0.......18
3.1.3 Finish setting

ADC_CLK..................23
3.2 Configure ADC bus clock

to 40 MHz PLL.......................24
3.3 Observe the registers............25
3.4 Copy the code.......................26

4 Conclusion... 27

5 Revision history.................................27

NXP Semiconductors Document Number: AN5393

Application Note Rev. 9, April 2018

https://www.nxp.com/docs/en/application-note-software/AN5393SW.zip
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/ultra-reliable-mpc574xp-mcu-for-automotive-industrial-safety-applications:MPC574xP?utm_medium=AN-2021

2 Clock calculator design

The MPC574xP clock calculator takes the form of an interactive Microsoft Excel spreadsheet organized into multiple tabs as shown
in the following figure.

Figure 2. MPC574xP clock calculator setup

Clock sources (e.g. oscillators and PLLs) propagate to the various clock domains from which the MCU modules take their clocks.
Most cells representing clock domain frequencies are not to be modified manually. The user is meant to enter frequencies to the
few select clock sources and all clock domain frequencies derive from these sources. Several clock domain inputs are meant to
be modified manually as they represent external clocks that are driven into a pin. There are also input cells that set muxes and
clock dividers. All cells that take entries have blue borders instead of black, shown below.

Figure 3. Input cells vs. output cells

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
2 NXP Semiconductors

There are limits to what frequencies can be entered to the input frequency cells. Values that are out of range will be rejected and
the user will receive an error message. Invalid clock domain frequencies that arise from valid input values and legal, but improper,
dividers will be shaded in red, as will be explained in greater depth later in this application note.

Frequency values are linked across tabs, so FRAY_CLK in the Tree tab will always be the same as FRAY_CLK in the Peripheral
Domains tab. Hyperlinks are provided to duplicate domain names to link back to their points of origin. For example, FRAY_CLK
originates in Tree. Therefore, clicking the FRAY_CLK textbox in Peripheral Domains will take the user to FRAY_CLK in Tree.
Textboxes that are links, when hovered over, will cause the mouse cursor to turn into a hand icon and a pop-up to appear showing
the address of the destination, as shown in the following figure.

Figure 4. Clicking on a link

The following subsections will explain in depth the purpose of each tab.

2.1 Tree
Tree is the centerpiece of the tool. This tab is the starting point for all clock frequency calculations. It is organized to resemble the
MPC5744P clock tree as presented in the following figure.

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 3

Figure 5. MPC5744P Reference Manual clock tree

The following figure shows, in part, the diagram’s clock tool counterpart. The difference between the two is that the latter is
interactive.

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
4 NXP Semiconductors

Figure 6. Clock calculator tree

The flow of the diagram generally goes from left to right. On the left are the MPC5744P clock sources and on the right are the
clock domains. MCU modules run on one or more of these clock domains.

Clock domain frequency values are displayed in the outlined cells next to their labels. Most cells are not meant to be written to;
their values are dependent on the frequencies generated by preceding steps in the clock tree. Take MOTC_CLK, for example: its
value is sourced from either the IRCOSC, XOSC, or PLL0_PHI. Now, look at the IRCOSC block. IRCOSC is at 16 MHz, but the
frequency that propagates depends on the next block, IRCOSC Source Controller. Therefore, the actual input frequency received
by blocks that take IRCOSC as a source is the IRCOSC frequency of 16 MHz, filtered by the IRCOSC Source Controller block.
The same goes for XOSC. PLL0_PHI is configured in the PLL0 tab. MOTC_CLK selects from these three clock sources by selecting
the value of the AUX Clock Selector 0 block. Then finally, the selected signal is divided by the MOTC_CLK prescaler value.

Each auxiliary clock and the system clock can feed into multiple domains that each have their own dividers. The number to the
left of the prescaler shows the number of the divider that is associated with that clock. In the case of MOTC_CLK, the number “0”
is shown next to the MOTC_CLK divider. This means that MOTC_CLK is configured by Divider 0 of Auxiliary Clock 0.

This tab also features two buttons, Reset and Max. They only have function when macros are enabled. Clicking on these buttons
with macros disabled will return an error. If macros are enabled, the Reset button will set all blocks to their reset value, as described
in the reference manual. The Max button sets all blocks in this tool to values that configure the system and auxiliary clock domains
to their respective maximum allowable frequencies. Below is a screenshot of the buttons.

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 5

Figure 7. Buttons

2.2 Oscillator control
Oscillator Control controls the generation of the external oscillator (XOSC) frequency. MPC5744P supports two ways of XOSC
generation. The chip has two external oscillator pins, XTAL and EXTAL. An 8-44 MHz external oscillator can be connected to both
pins. This external oscillator is also referred to simply as the XTAL. If the XOSC Select block selects XTAL, XOSC will derive its
frequency from the 8-44 MHz external oscillator (XTAL) block. Alternatively, a waveform can be driven directly to the EXTAL pin.
This signal is also referred to simply as EXTAL. When the XOSC Select block selects EXTAL, XOSC will derive its frequency from
the EXTAL pin. Shown below is a screenshot.

Figure 8. Oscillator control

2.3 Peripheral domains
Peripheral Domains is an in-depth diagram of MPC5744P modules. Where Tree leaves off at the clock domain level, Peripheral
Domains picks up and progresses to the module level, shown below.

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
6 NXP Semiconductors

Figure 9. Peripheral domains

The clock domains are color-coded. Black lines are reserved for clock domains that only a few modules use. For example, the
SAR ADC module takes both PBRIDGEx_CLK and ADC_CLK. ADC_CLK is black because only the ADC uses that clock. As a
rule of thumb, clock domains are represented with black lines if all modules using it can fit within a single window without having
to scroll. The frequencies on this tab are not meant to be modified and are dependent on frequency values in the Tree tab.

2.4 LFAST clocking
The LFAST is a versatile, but intricate module. It supports its own PLL which generates multiple phases and generates a signal
within specification only if its inputs are certain frequencies. These intricacies make it necessary to give LFAST is own dedicated
tab. Peripheral Domains still hosts an LFAST block that shows its input clocks and is hyper-linked to LFAST Clocking, as shown
in the following figure.

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 7

Figure 10. LFAST in peripheral domains

LFAST Clocking presents a block diagram of the module with various clocks going into it. It also supports LFAST_PLL
configuration to increase the LFAST frequency up to 320 MHz. The LFAST also supports a low-speed mode as well as a high-
speed mode. This tool allows the user to select between the two modes. Below is a screenshot of the sheet.

Figure 11. LFAST block diagram

Since the LFAST signal must be generated from an input clock of 10, 13, 20, or 26 MHz, this tool blocks any input from the signal
RF_REF other than these four values. RF_REF can technically be set to any value, but any frequency that is not 10, 13, 20, or 26
MHz generates an invalid signal. Therefore, in this tool, RF_REF goes through the LFAST Input Filter block before becoming
lfast_sys_clk, which in turn is the signal that gets fed into the LFAST_PLL and phase generators, as shown in the following figure.

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
8 NXP Semiconductors

Figure 12. LFAST clocking input filter

If RF_REF is 10, 13, 20, or 26 MHz, lfast_sys_clk is also 10/13/20/26 MHz; otherwise, lfast_sys_clk is 0. MPC5744P does not
actually filter RF_REF the way this tool does. The purpose of the LFAST Input Filter block is to simulate how the user can technically
set RF_REF to any value, but the resulting LFAST output would be unusable. Therefore, if a user were to enter an invalid input
frequency (i.e. not 10, 13, 20, or 26 MHz), all subsequent frequencies would be 0, and the user would know to change the input.

2.5 PLLx
PLL0 and PLL1 are visual abstractions of the PLL digital interface, as shown in the following figure.

Figure 13. PLL0 control

The input source of PLL0 and PLL1 is selected by the auxiliary clock selectors, AUX Clock Selector 3 and AUX Clock Selector
4 in the Tree tab. Then, from the source, the dividers and multipliers located in the PLL0 and PLL1 tabs are set in order to achieve
the PLL output frequencies. The PLL output frequencies are in turn propagated to the PLLx_PHIn clock domains in the Tree tab.

2.6 Reference Tables (pll0_phi, pll0_phi1, and pll1_phi)
The three tabs pll0_phi, pll0_phi1, and pll1_phi are reference tables for the user to find the appropriate PLL dividers and multipliers
to achieve the desired PLL frequency. There is a tab for each PLL output because input frequencies and the range of acceptable

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 9

divider/multiplier values differ between each other. However, they all follow the same setup. Note that Columns A, B, and C of
these tabs are frozen so if the table looks cut off, just scroll left or right.

PLL frequencies are calculated from a reference frequency, a reference divider (RFD), a multiplier (MFD), and in PLL0, a prescaler
(PREDIV). The PLL reference is not manually configurable because there are a finite number of input values the PLL can take.
For example, PLL0 can only reference either the 16 MHz IRCOSC or the 8-44 MHz XOSC. PLL reference therefore comes from
the Tree tab. Configure AUX Clock Selector 3 and AUX Clock Selector 4 in Tree for PLL0 and PLL1, respectively. Once the PLL
reference frequency is configured, enter the desired PLL output frequency. Also, enter the PREDIV value when using PLL0_PHI
or PLL0_PHI1. The reference table then calculates the output frequency for each MFD and RFD setting. Like in the other sections,
frequencies are color-coded to define which values are valid and which are not. Shading will change automatically once the output
PLL frequencies are calculated. MFD and RFD settings that achieve the exact desired frequency is marked in green; values that
exceed the desired frequency, but are within MPC5744P hardware specifications are marked in yellow; and frequencies that
exceed the MPC5744P hardware specification are colored red. Below is a screenshot of the reference table for PLL0_PHI.

Figure 14. PLL0_PHI reference table 2.6

2.7 Summary
Almost all blocks populating this clock calculator represent real register fields in silicon. The Summary tab collates all the
information from the rest of the clock calculator into a list of register values, a screenshot of which is shown in the following figure.
The values in the register summary are interactive, updating automatically when the associated block is changed. Registers listed
within Summary are only the ones whose values are affected by clock configuration, not every single register available in the SoC.

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
10 NXP Semiconductors

Figure 15. Register summary table

The register values are displayed in either hexadecimal or binary format, where a “0x” prefix represents hexadecimal and “0b”
denotes binary. A capital “X” represents a “don’t care” bit/half-byte. These bits do not affect the clock frequency, so users can set
these values to whatever suits their purposes. Users can best utilize Summary by setting the configuration they want in the clock
calculator and then copying the resulting register value into code. For example, taking from the figure above the register
MC_ME_DRUN_MC (among the MC_ME_<MODE>_MC registers) should be set to 0xX0XX0070. Assuming the instances of
“X” are “0”, the resulting S32DS C code would be: "MC_ME.DRUN_MC.R = 0x00000032;".

Summary also includes an overview of the clock domain frequencies. Since this tool consists of multiple interdependent
spreadsheets, it might cumbersome for users to weave through them all to find a clock domain. This table provides a place where
all of them can be found. The table is organized by module, followed by the clock type (i.e. BIU clock, peripheral clock, protocol
clock, etc.), and finally the frequency, as currently configured. Below is a screenshot.

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 11

Figure 16. Clock summary table

This tool also supports a degree of code generation. Summary provides two sample clock initialization functions, SysClk_Init for
configuring oscillators and PLLs and InitPeriClkGen for providing sources/dividers to auxiliary clocks. The dynamic C code in
these functions depend on tool settings just like the register summary. These functions can be copied and pasted to a source file
via Ctrl+C/Ctrl+V or by clicking on the associated Copy Code button if macros are enabled. The following figure shows Sysclk‐
_Init and its Copy Code button.

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
12 NXP Semiconductors

Figure 17. Sample initialization code

2.8 Limits
Limits is the reference tab for all the color-coding and code generation rules. The values in its tables are based on the MPC5744P’s
datasheet and reference manual, and therefore should not be modified by the user. The following figure is a screenshot of the
Limits tab.

Clock calculator design

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 13

Figure 18. MPC5744P frequency limits

3 Clock tool example use case: configure ADC to
PLL0 at 80 MHz

The following sections will present an example application of the MPC574xP clock calculator. This application note’s example will
configure the ADC to PLL0 at 80 MHz and will not only show the correct configurations, but also how the tool responds if improper
configurations are attempted.

When configuring clocks for a module, start at Peripheral Domains. As shown in the next figure, SAR ADC follows two clock
domains, PBRIDGEx_CLK for the bus interface unit and ADC_CLK for the actual converter.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
14 NXP Semiconductors

Figure 19. ADC clocks

PBRIDGEx_CLK and ADC_CLK are currently 10 MHz and 8 MHz, respectively. Configuring the clock calculator can be in any
order; this example will start with ADC_CLK.

3.1 Configure ADC_CLK
Click on ADC_CLK to forward to the ADC_CLK cell of Tree, as shown in the following figure.

Figure 20. ADC_CLK, Tree tab

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 15

Trace ADC_CLK all the way back to its point of origin. As shown in the figure, ADC_CLK is enabled and is sourced from AUX
Clock Selector 0, whose current value is 0. The cell is a drop-down menu and the accompanying textbox explains what each
available value represents. Currently, ADC_CLK is enabled and is sourced from the 16 MHz IRCOSC, divided by 2, for a final
frequency of 8 MHz.

Since the only way to achieve 80 MHz is through the PLL and PLL0 is the only PLL that goes to ADC_CLK, trace PLL0_PHI back
to its own sources. PLL0 selects from either IRCOSC or XOSC via AUX Clock Selector 3. These oscillators are the point of origin
for all clock domains. The following figure shows the ADC_CLK being traced back to PLL0 and then finally to the oscillators.

Figure 21. ADC_CLK, Tree tab

3.1.1 Configure the oscillator
Now start going downstream, configuring from the oscillator down to ADC_CLK. The external oscillator is configured by the
Oscillator Control tab. Its frequency is application-dependent and can be any value between 8 MHz and 44 MHz. This tool has a
safeguard to prevent invalid values from being entered. The following figure shows an attempt to enter 7 MHz to the XOSC
frequency cell. A dialog box appears notifying the user that the value is not accepted when he/she tries to click away from the
cell.

Figure 22. Invalid frequency input

Set the XOSC frequency back to 40 MHz. Set the value of the XOSC Select block to 0 to select the XTAL, the external oscillator,
as shown in the following figure.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
16 NXP Semiconductors

Figure 23. Oscillator configuration

Return to Tree. Trace forward from the XOSC block to XOSC Source Controller. The value of XOSC Source Controller is 0,
meaning that the XOSC is turned off. The following figure circles the blocks that represent the XOSC crystal, the XOSC controller,
and the effective frequency as sensed by AUX Clock Selector 4 and CMU_0.

Figure 24. Actual XOSC frequency with source turned off

Switch the XOSC Source Controller value to 1 to turn on the XOSC. The output XOSC frequency is now 40 MHz, as shown in
the following figure.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 17

Figure 25. Figure 19. Actual XOSC frequency with source turned on

3.1.2 Configure PLL0
Follow the XOSC path to AUX Clock Selector 3. Change the AUX Clock Selector 3 value to 1, so that PLL0 sources from XOSC,
as shown in the following figure.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
18 NXP Semiconductors

Figure 26. PLL0 source to XOSC

Next, configure PLL0. Click on the PLL0 block to forward automatically to the PLL0 tab. This is the tab that sets up the PLL0_PHI
frequency. The PLL0 Input block of the figure below shows that PLL0 detects the 40 MHz XOSC as its source frequency.

Figure 27. PLL0 calculator

Configure the dividers to achieve 160 MHz. The correct configuration can be achieved by trial and error, but the MPC574xP clock
calculator provides a lookup table in the pll0_phi tab, as shown in the following figure.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 19

Figure 28. PLL0_PHI reference table

The PLL0 reference field is the frequency of the PLL0 input, in this case the 40 MHz XOSC. Set the target frequency and PREDIV
values. This example will target 160 MHz and change PREDIV to 2. The values and shading in the lookup table will automatically
change to fit these new settings. In the figure below, the table has changed and circled are the modified settings.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
20 NXP Semiconductors

Figure 29. PLL0_PHI table with new settings

The cells shaded green means there are two divider combinations that can achieve exactly 160 MHz given an input frequency of
40 MHz and a PREDIV of 2. This example uses a MFD of 16 and a RFD of 2, but before configuring the PLL0 tab, it is worth
noting what happens if the output PLL frequency is out of range.

In the following figure, the PLL has been configured so that the output frequency is 5.08 GHz. This obviously exceeds the maximum
hardware spec of 625 MHz. The associated voltage controlled oscillator (VCO) frequency, which can be back-calculated from
PLL0_PHI also exceeds the maximum VCO spec of 1250 MHz. Therefore, the output is crosshatched and shaded red.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 21

Figure 30. When PLL0_PHI exceeds VCO and PLL spec

Now, let’s configure the PLL correctly. Turn on the PLL in the PLL0 tab by setting the PLL0 Mode Control block to 1, set Prediv
to 2, Multiplier to 16, and RFDPHI to 2. As shown in the next figure, the output PLL0_PHI is 160 MHz and the cell remains
unshaded, meaning the configuration fits within spec.

Figure 31. PLL0_PHI configured to 160 MHz

Go back to Tree to observe that the PLL0_PHI frequency is now 160 MHz.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
22 NXP Semiconductors

Figure 32. PLL0_PHI propagated to Tree

3.1.3 Finish setting ADC_CLK
Next, follow the PLL0_PHI signal down to AUX Clock Selector 0. IRCOSC is the current source of MOTC_CLK, SGEN_CLK, and
ADC_CLK. Change the value of AUX Clock Selector 0 to 2 to follow PLL0_PHI. After this, make sure the associated Clk En block
is 1 and set the ADC_CLK divider, if necessary. The small number to the left of the divider block shows the divider number
associated with that clock. Since a “2” is present next to the ADC_CLK divider, the ADC_CLK is configured by Divider 2 of Auxiliary
Clock 0. The user input for the divider field is not the desired divider, but the bitfield value that one would have to enter to achieve
the desired divider. That is why the divider block says "/ (1+(0...31)) rather than simply "/1...32". The user provides a value between
0 and 31, to which the hardware automatically adds 1 to calculate a divider that is between 1 and 32. In this case, the divide block
is already set to 1: 160 MHz divided by (1+1) results in an ADC_CLK of 80 MHz. See the following figure.

Figure 33. ADC_CLK at 80 MHz PLL0

If, for example, the ADC_CLK divider is 1, ADC_CLK would be 160 MHz, which would exceed the maximum allowable ADC_CLK
frequency of 80 MHz. The tool will highlight the ADC_CLK cell red to signify that such a frequency is not allowed, as shown in the
following figure.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 23

Figure 34. ADC_CLK when frequency exceeds spec

3.2 Configure ADC bus clock to 40 MHz PLL
The ADC’s converter clock has been configured, but the ADC uses PBRIDGEx_CLK for its bus interface. Follow the same steps
as ADC_CLK to trace PBRIDGEx_CLK back to the oscillators. Circled in the next figure is the location of PBRIDGEx_CLK in Tree.

Figure 35. PBRIDGEx_CLK in Tree

XOSC and PLL0_PHI are already configured from the previous section, so there is no need to repeat those steps. PBRIDGEx_CLK
traces back to the System Clock Selector, which currently follows XOSC. Change the System Clock Selector to follow PLL0_PHI.

Figure 36. PBRIDGEx_CLK changed to follow PLL0_PHI

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
24 NXP Semiconductors

The PCFS block stands for Progressive Clock Frequency Switch. This is a feature supported in the MPC5744P to smooth the
transition of the system clock from one clock source to another. The block here is just a visual representation for the user to know
that the system clock filters through the progressive clock switch before propagating to the various system clock domains. PCFS
takes IRCOSC in this diagram because its logic is organized in terms of IRCOSC cycle. You can find more information on the
MPC5744P progressive clock switch in the application note “AN5304 – Initializing the MPC574xP Clock Generation Module and
Progressive Clock Switching Feature”.

Next set the PBRIDGEx_CLK divide value to 3: 160 MHz/(3+1) = 40 MHz. So, in closing, this example has achieved its goal: a
40 MHz XOSC driving a PLL that produces an output of 160 MHz, and from there the PLL running the PBRIDGEx_CLK at 40
MHz and the ADC_CLK at 80 MHz. Finally, the PBRIDGEx_CLK and ADC_CLK drive the ADC module.

3.3 Observe the registers
The final register summary table, as displayed in Summary, is shown in the following figure. Note that most of these registers
would not have to be written in code to achieve the setup that this example just configured. For example, the register
MC_CGM_AC11_DC0 would not have to be included, since Auxiliary Clock 11 was untouched. Registers that would have to be
written would be ones like PLLDIG_PLL0DV and MC_CGM_AC0_DC2.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 25

http://cache.nxp.com/assets/documents/data/en/application-notes/AN5304.pdf?fsrch=1&sr=1&pageNum=1
http://cache.nxp.com/assets/documents/data/en/application-notes/AN5304.pdf?fsrch=1&sr=1&pageNum=1

Figure 37. Register summary after configuration

3.4 Copy the code
SysClk_Init and InitPeriClkGen provide dynamic clock generation C code. The code will configure the clocks to the settings as
configured in this clock calculator. It can be copied and pasted to a source file. The following figure shows SysClk_Init as configured
by this example. The solid-bordered highlight around the function means that the code has been copied with the Copy Code
button; a regular Ctrl+C causes a dashed-bordered highlight. In both cases, the code can be pasted into a source with a regular
Ctrl+V.

Clock tool example use case: configure ADC to PLL0 at 80 MHz

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
26 NXP Semiconductors

Figure 38. SysClk_Init after example

Therefore, to summarize, this example has achieved its goal: an ADC whose bus interface clock is driven by a PLL-sourced
PBRIDGEx_CLK at 40 MHz. The 40 MHz PBRIDGEx_CLK is divided down from a 160 MHz PLL output; and the PLL output in
turn is driven by the 40 MHz external oscillator. And finally, the ADC’s engine clock is driven by a 80 MHz PLLsourced ADC_CLK.

4 Conclusion

This application note gives an overview of the MPC5744P interactive clock calculator. It seeks to simplify clock configurations in
the form of a graphical tool so that a user can more easily visualize the device’s clock signals’ propagation. There are similar clock
calculators for other NXP products, including the MPC574xG and S32K14x. Visit nxp.com to find more of these tools.

5 Revision history

Rev. No. Date Substantive Change(s)

0 January 2017 Initial version

1 February 2017 Updated the clock divider scheme and corrections to errors.

Table
continues

on the next
page...

Conclusion

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
NXP Semiconductors 27

http://www.nxp.com

Table
continued
from the
previous
page...

Rev. No. Date Substantive Change(s)

2 May 2017 1. Updated the following section:

• Summary on page 10

2. Added the following new section:

• LFAST clocking on page 7

3. Replaced the following image:

• Register summary after configuration

4. Updated the document from the editorial perspective.

3 May 2017 1. Updated the following sections:

• Introduction on page 1

• Summary on page 10

• Tree on page 3

2. Added the following new section:

• Copy the code on page 26

4 July 2017 Editorial updates.

5 July 2017 1. Editorial updates.

2. Updated Finding the tools

3. Updated PLL0 source to XOSC

6 August 2017 1. Updated the MPC574xP_Clock_Calculator_Rev4.

2. Removed the figure Finding tools.

3. Updated the Introduction on page 1 section.

7 October 2017 Updated the associated MPC574xP_Clock_Calculator file.

8 February 2018 Updated the associated MPC574xP_Clock_Calculator file.

9 April 2018 Updated the associated MPC574xP_Clock_Calculator file.

Revision history

MPC574xP Clock Calculator Guide, Rev. 9, April 2018
28 NXP Semiconductors

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil,

SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture

and Power.org word marks and the Power and Power.org logos and related marks are trademarks

and service marks licensed by Power.org.

Ⓒ 2018 NXP B.V.

Document Number: AN5393
Rev. 9, April 2018

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Clock calculator design
	2.1 Tree
	2.2 Oscillator control
	2.3 Peripheral domains
	2.4 LFAST clocking
	2.5 PLLx
	2.6 Reference Tables (pll0_phi, pll0_phi1, and pll1_phi)
	2.7 Summary
	2.8 Limits

	3 Clock tool example use case: configure ADC to PLL0 at 80 MHz
	3.1 Configure ADC_CLK
	3.1.1 Configure the oscillator
	3.1.2 Configure PLL0
	3.1.3 Finish setting ADC_CLK

	3.2 Configure ADC bus clock to 40 MHz PLL
	3.3 Observe the registers
	3.4 Copy the code

	4 Conclusion
	5 Revision history

