
Introduction

Many of Freescale’s microprocessors feature a JTAG port–a 

port compatible with the IEEE® 1149.1 standard for performing 

boundary scans and debugging embedded applications. The 

development of the IEEE 1149.1 standard was started by the 

Joint Test Action Group in mid 80s, and the activity was later 

moved under the IEEE organization. As a result, a test access 

port compliant with the IEEE 1149.1 standard is usually  

called a JTAG port after the group that initiated the 

standardization process. 

Today, the JTAG port is used for chip boundary scans 

and programming and debugging purposes. Any JTAG 

implementation compatible with the IEEE 1149.1 standard  

is not limited to the functions specified by the standard—it can 

freely extend functionality. For example, the IEEE-ISTO 5001 

Forum™ standard defining a debug interface for embedded 

processors based its interface on JTAG.

The IEEE 1149.1 standard defines a general-purpose test 

access port (TAP) as a physical layer for accessing JTAG 

functions. Further, the standard specifies the TAP controller that 

controls the signals used for accessing JTAG functions and 

other possible incorporated circuitries such as a debugging 

module. The TAP controller is a synchronous finite state 

machine that responds to the changes at the TAP pins. To 

access a particular JTAG function, you have to step the TAP 

controller through its states. For learning the purpose of each 

TAP controller state and other JTAG specification details, refer 

to the IEEE 1149.1 standard.

This article presents a simple and efficient algorithm for 

stepping the TAP controller along the shortest path from the 

current TAP state to any other of its states. Programmers 

usually step through the TAP controller by writing sequences 

of instructions manipulating the TAP input pins. As a result, 

writing the stepping code for a comprehensive software module 

mediating JTAG’s and associated functionalities can easily 

become a difficult, tedious and error-prone task. Our algorithm 

eliminates the sequences of TAP controlling instructions by a 

routine that navigates the TAP controller to the desired state. As 

a result, you just call the routine, for example GoTo(dstate) 

and the TAP controller is stepped to the desired state dstate.

The Stepping Algorithm

In the TAP controller state machine, depicted in Figure 1, a 

transition is followed at the time of the clock rising edge (pin 

TCK) if it is enabled by the logical signal level (0 or 1) at the TAP 

TMS pin and if the TAP is in the transition’s initial state. The 

arrow labels 0 and 1 in Figure 1 represent the enabling logical 

signal levels.

The diagram in Figure 1 can be viewed as graph consisting of 

vertices and oriented edges where a vertex is a TAP controller 

state and an oriented edge is a transition. Finding the shortest 

path between any two vertices is a classical, solved problem. In 

the TAP state machine, the shortest paths are quite obvious and 

can be found manually. Thus, we need an efficient mechanism 

for storing the shortest paths, so they can be followed without 

being discovered again.

For storing the shortest paths, we utilize the following corollary. 

Suppose there is the shortest path from a state s1 to a state  

sn and the path goes through a state sk. Thus, the path is  

s1,…,sk,…sn. Then, the path sk,…,sn is the shortest path 

between the states sk and sn. If this path wasn’t the shortest, 

David Baca

Efficient Control of JTAG TAP
JTAG TAP stepping made easy

22   freescale.com/beyondbits

Test-Logic-Reset

Run-Test/Idle Select-DR-Scan Select-IR-Scan

Capture-DR Capture-IR

Shift-DR Shift-IR

Exit1-DR Exit1-IR

Pause-DR Pause-IR

Exit2-DR Exit2-IR

Update-DR Update-IR

0

00

0

0

1

1

0

1 1

1

0

01

1

1 0

0

0

0

1

1

0

1

0

01

1

1 0

0

		Figure	1:	TAP	Controller	State	Diagram



then we could shorten the path between s1 

and sn and the original path wouldn’t be the 

shortest, which is a contradiction. 

As a result, it is sufficient for any of the shortest 

paths starting at s1 and ending at sn to store 

the very next state following the state s1 on the 

path. The repository that stores the very next 

state for each of the shortest paths is called a 

routing table, similarly defined in networks to 

route messages. Unlike networks where every 

node stores a vector of the very next nodes, our 

routing table is a matrix because the traversing 

is controlled via the TAP interface. The TAP 

routing table is depicted in Table 1.

The algorithm that steps the TAP controller via 

the shortest path to the desired state is very 

simple. Suppose that the current TAP state 

is maintained in the variable tap_state and 

the two dimensional array RoutingTable 

holds the content of Table 1. The function 

GoTo(dstate) works as follows.

GoTo(dstate) 
{ 
   while(tapstate != dstate)  
      step(RoutingTable[tapstate][dstate]); 
   return; 
} 
step(tms) 
{ 
      set TMS pin to tms (typically on a parallel port); 
      generate clock pulse on the TCK pin; 
   tap_state = next_state(tap_state,tms); //
update the current state 
}

The function next_state(tap_state,tms) uses another 

table that provides the very next successor for each state given 

the TMS pin value.

Implementation

We implemented the described algorithm in C++. A singleton 

class called JTAG controls the signals for the TAP controller, 

maintains the current state, and steps the TAP controller to 

the desired state. When the class is being instantiated, the 

routing table along with other tables is loaded in memory 

and the TAP controller is reset to its initial state test-logic-

Efficient Control of JTAG TAP   2�

Table	1:	TAP	Routing	Table

States Te
st

-l
o

g
ic

-r
es

et

R
un

-t
es

t/
id

le

S
el

ec
t-

D
R

-s
ca

n

C
ap

tu
re

-D
R

S
hi

ft
-D

R

E
xi

t1
-D

R

P
au

se
-D

R

E
xi

t2
-D

R

U
p

d
at

e-
D

R

S
el

ec
t-

IR
-s

ca
n

C
ap

tu
re

-I
R

S
hi

ft
-I

R

E
xi

t1
-I

R

P
au

se
-I

R

E
xi

t2
-I

R

U
p

d
at

e-
IR

Test-logic-reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Run-test/idle 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Select-DR-scan 1 1 x 0 0 0 0 0 0 1 1 1 1 1 1 1

Capture-DR 1 1 1 x 0 1 1 1 1 1 1 1 1 1 1 1

Shift-DR 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

Exit1-DR 1 1 1 1 0 x 0 0 1 1 1 1 1 1 1 1

Pause-DR 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

Exit2-DR 1 1 1 1 0 0 0 x 1 1 1 1 1 1 1 1

Update-DR 1 0 1 1 1 1 1 1 x 1 1 1 1 1 1 1

Select-IR-scan 1 1 1 1 1 1 1 1 1 x 0 0 0 0 0 0

Capture-IR 1 1 1 1 1 1 1 1 1 1 x 0 1 1 1 1

Shift-IR 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

Exit1-IR 1 1 1 1 1 1 1 1 1 1 1 0 x 0 0 1

Pause-IR 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

Exit2-IR 1 1 1 1 1 1 1 1 1 1 1 0 0 0 x 1

Update-IR 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 x

reset. The JTAG singelton interface provides a method called 

AssertTAPState(tapstate) to make sure the current TAP 

controller state is tapstate. If the current state is different,  

the method steps the TAP controller to the right state.

The JTAG singleton steps the TAP controller by manipulating  

the pins of the parallel port that is connected to the JTAG 

physical interface on the embedded processor. The methods 

that control the JTAG pins via the parallel port are implemented 

in another singleton called JTAGPort, which is accessed solely 

from JTAG.

Conclusion

We showed that writing the tedious sequence of instructions 

stepping the TAP controller can be eliminated by keeping the 

shortest paths between any two TAP controller states in a small 

routing table. The associated overhead caused by performing 

methods or function calls and by looking up the TMS pin value 

is negligible considering the current computer’s speed and 

the maximal frequency achievable at the parallel port (around 

1 MHz). Furthermore, the JTAG port communication speed is 

limited by the processor clock frequency.

David Baca is an application engineer at Freescale. He has been with the company for almost two years. He holds masters degrees  
in electrical engineering and business administration and is a PhD candidate in artificial intelligence. Before joining Freescale,  
Baca worked on R&D projects sponsored by agencies such as NASA and the Air Force.




