
Freescale Semiconductor
Application Note

Document Number: AN3513
Rev. 0, 09/2007

Contents

Introduction . 1
ATA Host Controller. 2

2.1 External Signal Description 3
ATA Functional Description . 4

3.1 Endianess . 5
3.2 Sector Addressing . 5
3.3 Programming Model . 5
Initialization . 7

4.1 ATA Host Controller Initialization. 8
4.2 Data Access . 11

ColdFire ATA Host Controller

by: Juan Mendoza
Freescale 32-bit Consumer and Industrial Operations
1 Introduction
This application note describes the ColdFire® ATA host
controller. It covers signal description, functional
description, programming model, and initialization.

The ATA host controller is used to connect:
• Hard disks
• CD-ROMs
• DVDs
• Flash storage devices

Features include:
• Programmable timing on the ATA bus. Works

with wide range of bus frequencies
• 128-byte FIFO
• FIFO receive, transmit, and end of transmission

alarms to DMA unit
• Zero wait-state transfers between DMA bus and

FIFO

1
2

3

4

© Freescale Semiconductor, Inc., 2007. All rights reserved.

ATA Host Controller
2 ATA Host Controller
The figure below illustrates the block diagram of the ATA host controller:

Figure 1. Block Diagram

The ColdFire ATA host controller is fully compatible with: ATA/ATAPI-6 specification (AT Attachment
with Packet Interface Extension). The ColdFire ATA host controller can control up to two ATA devices as
defined in ATA/ATAPI-6 specification and supports all three modes:

• PIO mode 0, 1, 2, 3 and 4 for up to 16.7 MBytes/sec
• Multiword DMA mode 0, 1 and 2 for up to up to 16.7 MBytes/sec
• Ultra DMA modes

— Modes 0, 1, 2, 3 and 4 with bus clock of 50 MHz or higher for up to 66.7 MBytes/sec
— Mode 5 with system bus clock of 80 MHz or higher for 100 MBytes/sec

The ColdFire ATA controller is accessible by both the CPU and DMA. Before accessing the ATA bus, the
host must program the timing parameters on the ATA bus. A set of timing registers for each transfer mode
control the timing on the ATA bus. Most timing parameters are programmable as a number of clock cycles
(1 to 255).

FIFO
128 bytes

ATA_RESET

ATA_DIOR

ATA_DIOW

ATA_CS[1:0]

ATA_DA[2:0]

ATA_DMARQ

ATA_DMACK

ATA_INTRQ

ATA_IORDY

ATA_DATA[15:0]

ATA
Protocol
Engine

Timing
Parameters

Control
Register

Interrupt
Interface

FIFO
control

Bus
Interface

CPU
Bus

DMA
Bus
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor2

ATA Host Controller
2.1 External Signal Description

• ATA_RESET — When asserted, the ATA bus is in reset. After power-on, the ATA bus is in reset.
• ATA_DIOR — During PIO and Multiword DMA transfer, this signal functions as a read strobe.

During Ultra DMA in burst, this signal functions as HDMARDY. During Ultra DMA out burst,
this signal functions as host strobe.

• ATA_DIOW — During PIO and Multiword DMA transfer, this signal functions as a write strobe.
During Ultra DMA burst, this signal functions as STOP and is asserted when the host wants to
terminate a running UDMA transfer.

• ATA_CS[1:0] — The chip selects for the ATA bus.
• ATA_DA[2:0] — The address lines of the ATA bus.
• ATA_DMARQ — Device asserts to transfer data using Multiword DMA or Ultra DMA mode.
• ATA_DMACK — The host negates this signal when it grants the DMA request.
• ATA_INTRQ — The device asserts this signal to interrupt the host CPU.
• ATA_IORDY — This signal has three functions:

— IORDY — Active low wait during PIO cycles
— DDMARDY — Active low device ready during Ultra DMA out transfers
— DSTROBE — Device strobe during Ultra DMA in transfers

• ATA_DATA[15:0]) — This is the bidirectional, three-state ATA data bus.
• ATA_BUFFER_EN — ATA buffer directional control signal.

Table 1. External Signals

Name Function Reset State I/O

ATA_RESET ATA bus reset signal 0 O

ATA_DIOR ATA bus read strobe 1 O

ATA_DIOW ATA bus write strobe 1 O

ATA_CS[1:0] ATA bus chip selects 1 O

ATA_DA[2:0] ATA bus address lines 0 O

ATA_DMARQ ATA bus DMA request — I/O

ATA_DMACK ATA DMA acknowledge 1 O

ATA_INTRQ ATA bus interrupt request — I/O

ATA_IORDY ATA bus I/O channel ready — O

ATA_DATA[15:0] ATA data bus (little endian) Hi-Z Three-state I/O

ATA_BUFFER_EN ATA buffer direction control signal 0 O
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor 3

ATA Functional Description
3 ATA Functional Description
The ATA interface provides two ways to communicate with the ATA peripherals connected to the ATA bus.
After programming the appropriate timing parameters, two protocols can be active at the same time on the
ATA bus.

• PIO Mode — Can be performed at any time by the host CPU or the host DMA to the ATA bus.
During a PIO transfer the incoming bus cycle is translated to an ATA PIO bus cycle by the ATA
protocol engine. During PIO mode, the FIFO is not active, so no buffering of data occurs and the
host CPU/DMA cycle is stalled until the ATA bus read data is available, or the bus data can be put
on the ATA bus during a write. PIO mode is a slow protocol, mainly intended to program the ATA
disk drive, but can be used to transfer data to/from the disk drive.

• DMA Mode — Two different DMA protocols are supported on the ATA bus: Ultra DMA mode
(UDMA) and Multiword DMA mode (MDMA). Selection is made using the ATA host control
register (ATA_CR). Data is transferred between the ATA bus and the FIFO, no direct interface
exists between the ATA bus and the CPU/DMA. The ColdFire ATA host controller initiates DMA
transfers by:
1. Writing the appropriate command sequence to the device registers for DMA transfer request.
2. After the command register is written, command execution begins.
3. The device will then request either a transfer or receive request to the DMA.

• The ColdFire ATA host controller must be programmed to accept the DMA request from the
device. Once started, data transfer is organized between the ATA bus and the FIFO. The FIFO
informs the ColdFire DMA unit when it needs to be refilled or emptied. In either case, it sends an
alarm flag to the ColdFire DMA unit. When the ColdFire DMA unit receives the FIFO transmit
alarm, it must write some data to the FIFO (typically 32bytes). When the ColdFire DMA unit
receives the FIFO receive alarm, it should read some data from the FIFO (typically 32 bytes). The
FIFO level at which the alarms are produced is programmable. For completeness, a third alarm to
the ColdFire DMA unit is provided. This alarm signals the end of the transfer. The end of transfer
has two possible outcomes.
— If the microprocessor is reading data from the device and there are less than FIFO_ALARM

bytes remaining in the FIFO, the host must transfer the bytes remaining in the FIFO to memory.
The number of halfwords remaining in the FIFO are reported in the FIFO_FILL register.

— If the microprocessor is writing data to the device, no FIFO manipulation is required after
transfer completion.

All transfers between the FIFO and CPU or DMA are zero wait-state transfers. When a PIO access is
performed during a running DMA transfer, the DMA transfer pauses, the PIO access finishes, and the
DMA transfer resumes again.

The ColdFire ATA controller offers a buffer directional control signal, ATA_BUFFER_EN, which is used
to control the direction of any bidirectional buffer requiring direction control. TIME_ON and TIME_OFF
are timing registers that control data flow to avoid bus contention when switching the buffer on or off.
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor4

ATA Functional Description
3.1 Endianess
The ATA interface operates in big endian mode. When the DRIVE_DATA register is accessed, the bytes
to/from the ATA bus are swapped. The byte order in 16-bit or 32-bit registers is:

• bits [7:0] : byte 0
• bits [15:8] : byte 1
• bits [23:8] : byte 2
• bits [31:24] : byte 3

This requires that when reading device information via the DRIVE_DATA register, a byte swapping
mechanism be implemented in software. For example:

uint16 readDriveRegisterData(void)
{

uint16 temp, returnValue;
return Value = DRIVE_DATA; returnValue = (*(vuint16*)(0x900000A0));
temp = (returnValue & 0xff00) >> 8;
returnValue = returnValue << 8;
return (returnValue | temp);

}

For data written by the CPU/DMA, no byte swap is necessary.

3.2 Sector Addressing
The addressing of data sectors recorded on the device’s media is performed by logical sector address. In
accordance with ATA/ATAPI-6 specification the ColdFire ATA controller supports 27-bit and 48-bit
logical block addressing (LBA). In standards ATA/ATAPI-5 and earlier, a cylinder/head/sector addressing
(CHS) translation was defined. This translation is obsolete, but may be implemented as defined in
ATA/ATAPI-5.

3.3 Programming Model
The ColdFire ATA host controller has four groups of registers:

• ATA host controller registers — This set of registers contains the:
— ATA_CR — The ATA control register allows access to ATA reset/enable, FIFO control, DMA

request control, and handshake enabling/disabling.
— ATA_ISR — The ATA interrupt status register reports status of DMA requests, controller,

FIFO, and interrupts.
— ATA_IER — The ATA interrupt enable register allows for the enabling/disabling of various

FIFO and controller interrupts.
— ATA_ICR — The ATA interrupt clear register allows for the clearing of select FIFO error

interrupts.
— FIFO_ALARM — The ATA FIFO alarm register holds the value at which the FIFO requests

the DMA.
• ATA timing registers — This set contains the registers that hold the timing values for PIO, MDMA,

and UDMA modes. The timings for each particular mode are defined by the ATA/ATAPI-6
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor 5

ATA Functional Description
specification. Each register contains a number of clock cycles as calculated by dividing the timing
constraint from the specification by the period of the system bus.
— TIME_ON — tON parameter for buffer control to prevent bus contention
— TIME_OFF — tOFF parameter for buffer control to prevent bus contention
— PIO timing registers

– TIME_1 — t1
– TIME_2W — t2 write
– TIME_2R — t2 read
– TIME_AX — tA
– TIME_PIORDX — tRD
– TIME_4 — t4
– TIME_9 — t9

— MDMA timing registers
– TIME_M — tM
– TIME_JN — tN and tJ
– TIME_D — tD
– TIME_K — tk

— UDMA timing registers
– TIME_ACK — tACK
– TIME_ENV — tENV
– TIME_RPX — tRP
– TIME_ZAH — tZAH
– TIME_MLIX — tMLI
– TIME_DVH — tDVH
– TIME_DZFS — tDZFS
– TIME_DVS — tDVS
– TIME_CVH — tCVH
– TIME_SS — tSS
– TIME_CYC — tCYC and t2CYC
ColdFire offers a buffer signal, ATA_BUFFER_EN, for direction control of any buffer
requiring such control. To avoid bus contention when switching direction on the buffer, the
ATA controller has two timing registers that control the timing of the data bus with respect to
the ATA_BUFFER_EN signal.
– TIME_ON - Time after ATA_BUFFER_EN signal has asserted to start driving the ATA bus.
– TIME_OFF - Time before ATA_BUFFER_EN signal is deasserted to stop driving the ATA

bus.
• ATA FIFO registers — FIFO 16-bit and 32-bit data access registers.

— FIFO_DATA32 — 32-bit wide data port to/from FIFO
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor6

Initialization
— FIFO_DATA16 — 16-bit wide data port to/from FIFO
— FIFO_FILL — Reports number of halfwords present in FIFO

• ATA drive registers — Access to the registers physically located on the ATA drive
— DRIVE_DATA — Drive data register read/write used for host PIO data transfer
— DRIVE_FEATURES — If read, error register is read. If written, features register is written
— DRIVE_SECTOR_COUNT — Read/write drive sector count register
— DRIVE_LBA_LOW — Read/write drive LBA_LOW register
— DRIVE_LBA_MID — Read/write drive LBA_MID register
— DRIVE_LBA_HIGH — Read/write drive LBA_HIGH register
— DRIVE_DEV_HEAD — Read/write register for selecting device 0 or device 1
— DRIVE_COMMAND_STATUS — Read returns status, will write command register.
— DRIVE_ALT_STATUS/CONTROL — If read, register contains same information as

DRIVE_STATUS. If written, register programs DRIVE_CONTROL register.

4 Initialization
ColdFire ATA host controller and device initialization covers three different groups of steps:

1. ATA module initialization
— Enable functionality of the ATA pins
— Reset the ATA module for interface programming
— Query device for status and capabilities

2. PIO initialization
— Set PIO timing registers
— Enable IORDY in ATA host configuration register (for PIO–3 and above)

3. MDMA/UDMA initialization
— Set either MDMA or UDMA timing registers

4.1 ATA Host Controller Initialization
1. Enable ATA functionality on the external pins. This involves modifying the pin assignment

registers (PAR) on various ports on the ColdFire device. Initialization varies amongst specific
ColdFire parts. The MCF5445x is used in the example that follows.

/**
* Configure port ATA for primary ATA functionality
* ATAL: ATA_RESET, ATA_DMARQ, ATA_IORDY
* ATAH: ATA_BUFFER_EN, ATA_CS[1:0], ATA_DA[2:0]
**/
MCF_GPIO_PAR_ATA = 0x07E7;
/**
* Configure port FEC1 for ATA functionality
* ATA_DATA 5,6,7,8,9,11,13,15 on FEC1H
* ATA_DATA[2:1], ATA_DATA10, ATA_DATA0, ATA_DATA[4:3], ATA_DATA 14,12
**/
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor 7

Initialization
MCF_GPIO_PAR_FEC = 0x10;
/**
* configure port FECI2C for ATA functionality
* ATA_DIOR, ATA_DIOW
**/
MCF_GPIO_PAR_FECI2C = 0x0A00;
/***
* configure port PCI for ATA functionality
* ATA_DMACK, ATA_INTRQ
**/
MCF_GPIO_PAR_PCI= 0x8080;

2. Execute power-on/hardware reset protocol. Executed immediately after power-on reset (POR) or
after a hardware reset. The host interrupt controller setup varies amongst specific ColdFire
microprocessors.

uint32 i;
/**
* Enable ATA interrupt at interrupt controller
***/
MCF_INTC1_IMRH &= (~MCF_INTC_IMRH_INT_MASK54); //allow interrupts from ATA
MCF_INTC1_ICR54 = 0x7; //Set level 7
asm_set_ipl(0); // Set status register IPL to allow all interrupts

MCF_ATA_CR = 0x0; //assertATAReset
wait_uS(25); //wait 25uS as specified by ATA/ATAPI-6
MCF_ATA_CR = 0x40; //deassertATAReset
wait_uS(20000); //wait 2ms as specified by ATA/ATAPI-6

MCF_ATA_IER |= 0x08; //Enable ATA interrupt from device

3. Query device for capabilities. After power-on/hardware reset the host should issue an IDENTIFY
DEVICE and/or IDENTIFY PACKET DEVICE command to determine the current status and
features implemented by the device(s). Because the ATA host controller operates in big endian
mode, it is necessary to byte swap the device information.

uint16 deviceIdInfo[256]; //512 byte sector/buffer

setTimingRegistersForPIOMode(0); // Set PIO mode 0
MCF_ATA_CR = 0x41; // Enable IORDY at Host, needed for PIO-3 and above

while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
DRIVE_DEV_HEAD = 0xE0; //Select Drive 0;
while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
while((DRIVE_ALT_STATUS_CONTROL & 0x40) != 0x40); //wait for DRDY bit set
DRIVE_COMMAND_STATUS = 0xEC; //Write IDENTIFY_DEVICE command
/*wait for interrupt to signal completion of command device ready for buffer read*/

/**
* ATA interrupt handler
***/
__interrupt__
void ata_interrupt(void)
{

uint8 DevStatus;
uint16 temp;

DevStatus = DRIVE_COMMAND_STATUS;
/***
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor8

Initialization
* Read Device info
**/

for(i=0;i<256;i++)
{

deviceIdInfo[i] = DRIVE_DATA;
temp = deviceIdInfo[i] >> 8;
deviceIdInfo[i] = deviceIdInfo[i] << 8;
deviceIdInfo[i] = deviceIdInfo[i] | temp;

}
}

4.1.1 PIO Initialization

Enabling PIO mode protocol requires the execution of the SET FEATURES command. The
DRIVE_SECTOR_COUNT and DRIVE_FEATURES registers are written with subcommand
information used by the SET FEATURES command. The ATA interrupt is enabled, allowing the device to
signal acceptance of command. The following example initializes device and host for PIO Mode 4.

while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
writeDriveRegister(DRIVE_DEV_HEAD, 0xE0); //Select Drive 0
while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
while((DRIVE_ALT_STATUS_CONTROL & 0x40) != 0x40); //wait for DRDY bit set
ATA_IER = 0x08;
DRIVE_SECTOR_COUNT = 0x08 | 0x04; // IORDY, PIO Mode 4 enabled
DRIVE_FEATURES = 0x03; // Set transfer mode according

to DRIVE_SECTOR_COUNT register
DRIVE_COMMAND_STATUS = 0xEF; //Execute SET_FEATURES command

/*wait for interrupt to signal command was executed and accepted*/
setTimingTimingRegistersForPIOMode(4); //

4.1.2 UDMA/MDMA Initialization

Enabling UDMA/MDMA Mode protocol requires the execution of the SET FEATURES command as
well. The DRIVE_SECTOR_COUNT and DRIVE_FEATURES registers are written with subcommand
information used by the SET FEATURES command. The ATA interrupt is enabled, allowing the device to
signal acceptance of command. The following example initializes device and host for MDMA mode 2.

#define MDMA 0x20
#define UDMA 0x40
#define MODE0 0x0
#define MODE1 0x1
#define MODE2 0x2
#define MODE3 0x3
#define MODE4 0x4
#define MODE5 0x5

while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
DRIVE_DEV_HEAD = 0xE0; //Select Drive 0;
while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
while((DRIVE_ALT_STATUS_CONTROL & 0x40) != 0x40); //wait for DRDY bit set
ATA_IER = 0x08;
/**
* Set subcommand in Features register
* Set transfer mode based on value in Sector Count Register
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor 9

Initialization
* Write command code 0xEF SET Features Section 8.46 ATAPI-6 Spec
***/
DRIVE_SECTOR_COUNT = MDMA | MODE2; //MDMA mode 2
DRIVE_FEATURES = 0x03;
DRIVE_COMMAND_STATUS = 0xEF;
/*wait for interrupt to signal command was executed and accepted*/
/***
* use setTimingRegistersForUDMAMode(4); // Set UDMA mode timing parameters
* to set timing parameters for UDMA mode.
**/
setTimingRegistersForMDMAMode(2); // Set MDMA Mode 2 timing parameters

4.2 Data Access
The following examples demonstrate simple read or write transfers using all three transfer protocols. The
examples transfer one sector using LBA.

4.2.1 PIO Data Out Protocol

After programming the PIO timing registers and having selected the desired device (device 0 or device 1),
the ColdFire ATA controller programs the device to execute the WRITE SECTOR(S) command to write
data to the device using the selected PIO mode. The device sets the DRQ bit to signal to the ATA host
controller that it is ready for data. The ATA IRQ line is asserted to signal that all data has been transferred.

while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
writeDriveRegister(DRIVE_DEV_HEAD, 0xE0); //Select Drive 0;
while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
while((DRIVE_ALT_STATUS_CONTROL & 0x40) != 0x40); //wait for DRDY bit set
DRIVE_SECTOR_COUNT = 0x01; //number of sectors to write
DRIVE_LBA_LOW = 0x01;
DRIVE_LBA_MID = 0x00;
DRIVE_LBA_HIGH = 0x00;
DRIVE_COMMAND_STATUS = 0x30; // WRITE SECTOR(S) command
while((DRIVE_ALT_STATUS_CONTROL & 0x08) != 0x08); //wait for DRQ bit set
for(i=0;i<256;i++)

DRIVE_DATA = i;
/*****wait for interrupt to signal completion of data transfer********/

4.2.2 PIO Data In Protocol

The PIO data read protocol is analogous to the PIO data out protocol. The microprocessor programs the
device to launch READ SECTOR(S) command to read data from the device using the selected PIO mode.
The device asserts its IRQ line to signal that it is ready to transfer data to the host.

while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
writeDriveRegister(DRIVE_DEV_HEAD, 0xE0); //Select Drive 0;
while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
while((DRIVE_ALT_STATUS_CONTROL & 0x40) != 0x40); //wait for DRDY bit set
DRIVE_SECTOR_COUNT = 0x01; // number of sectors to be read
DRIVE_LBA_LOW = 0x01;
DRIVE_LBA_LOW = 0x00;
DRIVE_LBA_HIGH = 0x00;
DRIVE_COMMAND_STATUS = 0x20;
/*****wait for interrupt to signal device ready for reading by host*****/
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor10

Initialization
/**
* ATA interrupt handler
**/
__interrupt__
void ata_interrupt(void)
{

uint8 DevStatus;

DevStatus = DRIVE_COMMAND_STATUS;
/***
* Read Data
**/
for(i=0;i<256;i++)

deviceIdInfo[i] = DRIVE_DATA; //does not implement byte swap
}

4.2.3 MDMA/UDMA Data Read

After programming the respective MDMA or UDMA timing registers, programming the DMA module to
accept DMA requests from the device, and having selected the desired device (device 0 or device 1), the
ColdFire ATA controller sends the READ DMA command using PIO mode to the device. This causes the
device to request a DMA transfer. The device asserts its IRQ line to signal end of transfer. At the end of
transfer the CPU or DMA must read any remaining bytes left in the FIFO.

NOTE
There may be less than FIFO_ALARM bytes remaining so transfer is not
automatic by the DMA. The FIFO_FILL register reports the number of
halfwords remaining in the FIFO.

uint16 sectorInfo[256]; //512 byte sector

FIFO_ALARM = 0x20; //Set FIFO alarm to half the size of the 128 byte-buffer
ATA_CR = 0x40; //Reset FIFO
/**
* FIFO normal operation, FIFO empty by DMA, DMA burst, IORDY, MDMA
* if you want UDMA write 0xDD
***/
ATA_CR = 0xD9;
ATA_IER = 0x88;// allow DMA request and interrupt from device
/**
* Setup the eDMA for ATA RX, channel 14
* ***/
MCF_EDMA_CR = MCF_EDMA_CR_ERCA; //Round Robin priority
MCF_EDMA_ERQ = MCF_EDMA_ERQ_ERQ14; //Allow ATA RX - 14
MCF_EDMA_EEI = MCF_EDMA_EEI_EEI14; //Error interrupt enable for ATA RX
MCF_EDMA_TCD14_SADDR = MCF_EDMA_TCD_SADDR_SADDR(0x90000018); //Set the source Address
MCF_EDMA_TCD14_ATTR = MCF_EDMA_TCD_ATTR_SSIZE_32BIT | MCF_EDMA_TCD_ATTR_DSIZE_32BIT;
MCF_EDMA_TCD14_SOFF = MCF_EDMA_TCD_SOFF_SOFF(0x0);
MCF_EDMA_TCD14_NBYTES = MCF_EDMA_TCD_NBYTES_NBYTES(0x20); //32 byte
MCF_EDMA_TCD14_SLAST = 0x0; //No adjustment
MCF_EDMA_TCD14_DADDR = MCF_EDMA_TCD_DADDR_DADDR((uint32)§orInfo);
MCF_EDMA_TCD14_CITER_ELINK = 0x0;
MCF_EDMA_TCD14_CITER = 0x10;
MCF_EDMA_TCD14_DOFF = 0x4;
MCF_EDMA_TCD14_DLAST_SGA = 0x0;
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor 11

Initialization
MCF_EDMA_TCD14_BITER = 0x10;
MCF_EDMA_TCD14_BITER_ELINK = 0x0;
MCF_EDMA_TCD14_CSR = 0x0;

while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
writeDriveRegister(DRIVE_DEV_HEAD, 0xE0); //Select Drive 0;
while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
while((DRIVE_ALT_STATUS_CONTROL & 0x40) != 0x40); //wait for DRDY bit set
DRIVE_SECTOR_COUNT = 0x01; //sectors to be read
DRIVE_LBA_LOW = 0x1;
DRIVE_LBA_MID = 0x00;
DRIVE_LBA_HIGH = 0x00;
DRIVE_COMMAND_STATUS = 0xC8;
/*****wait for interrupt to signal end of dma transfer*****/

4.2.4 MDMA/UDMA Data Write

The DMA write protocol is analogous to the DMA read protocol. The ColdFire ATA controller sends the
WRITE DMA command using PIO mode to the device causing the device to request a DMA transfer. The
DMA request and interrupt request must be enabled. The device asserts its IRQ line to signal end of
transfer.

NOTE
No FIFO manipulation is necessary at the end of transfer.

uint16 sectorInfo[256]; //512 byte sector

FIFO_ALARM = 0x20; //Set FIFO alarm to half the size of the 128 byte-buffer
ATA_CR = 0x40; //Reset FIFOuint16 sectorInfo[256]; //512 byte sector
/**
* FIFO normal operation, FIFO empty by DMA, DMA burst, IORDY, MDMA
* if you want UDMA write 0xEE
***/
ATA_CR = 0xEA;
ATA_IER = 0x88;
/**
* Setup the eDMA for ATA TX, channel 15
* ***/
MCF_EDMA_CR = MCF_EDMA_CR_ERCA; //Round Robin priority
MCF_EDMA_ERQ = MCF_EDMA_ERQ_ERQ15; //Allow ATA TX
MCF_EDMA_EEI = MCF_EDMA_EEI_EEI15; //Error interrupt enable for ATA TX
MCF_EDMA_TCD15_SADDR = MCF_EDMA_TCD_SADDR_SADDR((uint32)§orInfo);
MCF_EDMA_TCD15_ATTR = MCF_EDMA_TCD_ATTR_SSIZE_32BIT | MCF_EDMA_TCD_ATTR_DSIZE_32BIT;
MCF_EDMA_TCD15_SOFF = MCF_EDMA_TCD_SOFF_SOFF(0x4); //Size offset 4 bytes
MCF_EDMA_TCD15_NBYTES = MCF_EDMA_TCD_NBYTES_NBYTES(0x20);//32 byte or 8 longwords
MCF_EDMA_TCD15_SLAST = 0x0;
MCF_EDMA_TCD15_DADDR = MCF_EDMA_TCD_DADDR_DADDR(0x90000018);
MCF_EDMA_TCD15_CITER_ELINK = 0x0;
MCF_EDMA_TCD15_CITER = 0x10;
MCF_EDMA_TCD15_DOFF = 0x0;
MCF_EDMA_TCD15_DLAST_SGA = 0x0;
MCF_EDMA_TCD15_BITER = 0x10; //Make sure DMA does not transfer more than sector size
MCF_EDMA_TCD15_BITER_ELINK = 0x0;
MCF_EDMA_TCD15_CSR = 0x0;
while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
writeDriveRegister(DRIVE_DEV_HEAD, 0xE0); //Select Drive 0;
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor12

Initialization
while((DRIVE_ALT_STATUS_CONTROL & 0x80) == 0x80); //wait for BSY bit clear
while((DRIVE_ALT_STATUS_CONTROL & 0x40) != 0x40); //wait for DRDY bit set
DRIVE_SECTOR_COUNT = 0x01; //number of sectors to be written
DRIVE_LBA_LOW = 0x01;
DRIVE_LBA_MID = 0x00;
DRIVE_LBA_HIGH = 0x00;
DRIVE_COMMAND_STATUS = 0xCA;
/*****wait for interrupt to signal end of dma transfer*****/
ColdFire ATA Host Controller, Rev. 0

Freescale Semiconductor 13

Document Number: AN3513
Rev. 0
09/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 ATA Host Controller
	2.1 External Signal Description

	3 ATA Functional Description
	3.1 Endianess
	3.2 Sector Addressing
	3.3 Programming Model

	4 Initialization
	4.1 ATA Host Controller Initialization
	4.1.1 PIO Initialization
	4.1.2 UDMA/MDMA Initialization

	4.2 Data Access
	4.2.1 PIO Data Out Protocol
	4.2.2 PIO Data In Protocol
	4.2.3 MDMA/UDMA Data Read
	4.2.4 MDMA/UDMA Data Write

