
Freescale Semiconductor
Application Note

Document Number: AN3523
Rev. 0, 09/2007

Contents

Introduction . 1
Accelerometer-based USB Mouse 2
USB RC Servo (PWM) Controller and Analog Monitor . 12
USB Host Enumeration Sniffer (Host Driver Example) . 19
USB Flash Stick-based Analog Data Logger
(Mass-Storage Class) . 25
USB Flash Stick-based WAV Player / Simple Text to
Speech Engine . 37

Advanced Applications for the
Freescale USB_Lite by CMX
by: Eric Gregori
Product Specialist – Embedded Firmware
1 Introduction
This document covers advanced CMX USB
applications. The CMX USB stack is covered in detail in
AN3492, “USB and Using the CMX Stack.” AN3492
covers USB in general, enumeration, and both the host
and device side stack APIs. The firmware discussed in
this document, AN3523, is at the application layer of the
stack.

The CMX USB stack includes both host and device side
stacks. The stack currently runs on both the ColdFire®
and the 8 bit JM60. The stack will also be available on
future versions of the low-power V1 core.

The applications discussed here are built on top of the
USB stack firmware. The stack can be downloaded with
source from freescale.com. Available for download with
this document are binaries that can be programmed on a
board, demonstrating the applications discussed.

1
2
3
4
5

6

© Freescale Semiconductor, Inc., 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

Accelerometer-based USB Mouse
Currently there are three demo boards available supporting the CMX USB stack; M52221DEMO,
M52223EVB, M52211EVB, and the 8 bit DEMO9S08JM60. The JM60 currently only supports the
device-side demos.

2 Accelerometer-based USB Mouse
The accelerometer based USB mouse firmware, demonstrates the CMX USB stack being used as a HID
mouse. The accelerometer is used to detect the demo board’s orientation relative to gravity. SW1 and
SW2 on the demo board are used as the mouse left and right buttons.

The accelerometer part number is MMA7260Q. It is a 3-axis accelerometer with programmable
sensitivity from 1.5G to 6G. The tilt information is output in the form of a voltage, requiring a A/D
converter on the MCU.

• Tilt the board left or right to move the mouse pointer left or right.

• Tilt the board forward or backwards to move the mouse pointer up

or down.

• The more tilt, the faster the pointer moves.

Tilt board to move mouse pointer (notice connectors on right) Mouse buttons
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor2

Accelerometer-based USB Mouse
2.1 Using the A/D Converter to Read the Accelerometer
The ColdFire ADC’s characteristics include the following:

• 12-bit resolution
• Maximum ADC clock frequency of 5.0 MHz, 200 ns period
• Sampling rate up to 1.66 million samples per second.

• Single conversion time of 8.5 ADC clock cycles (8.5 × 200 ns = 1.7 μs)
• Additional conversion time of 6 ADC clock cycles (6 × 200 ns = 1.2 μs)
• Eight conversions in 26.5 ADC clocks (26.5 × 200 ns = 5.3 μs) using simultaneous mode
• Ability to simultaneously sample and hold 2 inputs
• Ability to sequentially scan and store up to 8 measurements
• Internal multiplex to select 2 of 8 inputs
• Power saving modes allow automatic shutdown/startup of all or part of ADC
• Those inputs not selected tolerate injected/sourced current without affecting ADC performance,

supporting operation in noisy industrial environments.
• Optional interrupts at the end of a scan, if an out-of-range limit is exceeded (high or low), or at zero

crossing
• Optional sample correction by subtracting a pre-programmed offset value
• Signed or unsigned result
• Single-ended or differential inputs for all input pins with support for an arbitrary mix of input types

The ADC function, shown below, consists of two four-channel input select functions, interfacing with two
independent Sample and Hold (S/H) circuits, which feed two 12-bit ADCs. The two converters store their
results in a buffer, awaiting further processing.

Figure 1. ColdFire A/D Block Diagram

The mouse uses 2 A/D channels (AN4, AN5) to read the X (AN4) and Y (AN5) signals from the
MMA7260 accelerometer. The A/D is configured for continuous conversion.
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 3

Accelerometer-based USB Mouse
2.1.1 A/D Initialization Function
/***
* init_adc - Analog-to-Digital Converter (ADC) *
**/
void init_adc (void)
{
 // Scan mode = Loop parallel, converters A and B run simultaneously
 // ADC clock frequency = 10.67 MHz
 // Voltage reference supplied by VDDA and VSSA
 // All ADC interrupts disabled
 //
 // Sample list for converter A:
 // Sample 0 : ANA0
 // Low limit = $000, High limit = $FFF, Offset = $000
 // Sample 1 : ANA1
 // Low limit = $000, High limit = $FFF, Offset = $000
 // Sample 2 : ANA2
 // Low limit = $000, High limit = $FFF, Offset = $000
 // Sample 3 : ANA3
 // Low limit = $000, High limit = $FFF, Offset = $000
 //
 // Sample list for converter B:
 // Sample 4 : ANB0
 // Low limit = $000, High limit = $FFF, Offset = $000
 // Sample 5 : ANB1
 // Low limit = $000, High limit = $FFF, Offset = $000
 // Sample 6 : ANB2
 // Low limit = $000, High limit = $FFF, Offset = $000
 // Sample 7 : ANB3
 // Low limit = $000, High limit = $FFF, Offset = $000

 // Initialise ADC

 // CLST1[SAMPLE3] = %011
 // CLST1[SAMPLE2] = %010
 // CLST1[SAMPLE1] = %001
 // CLST1[SAMPLE0] = 0
 MCF_ADC_ADLST1 = MCF_ADC_ADLST1_SAMPLE3(0x3) |
 MCF_ADC_ADLST1_SAMPLE2(0x2) |
 MCF_ADC_ADLST1_SAMPLE1(0x1);

 // CLST2[SAMPLE7] = %111
 // CLST2[SAMPLE6] = %110
 // CLST2[SAMPLE5] = %101
 // CLST2[SAMPLE4] = %100
 MCF_ADC_ADLST2 = MCF_ADC_ADLST2_SAMPLE7(0x7) |
 MCF_ADC_ADLST2_SAMPLE6(0x6) |
 MCF_ADC_ADLST2_SAMPLE5(0x5) |
 MCF_ADC_ADLST2_SAMPLE4(0x4);

 // CTRL2[STOP1] = 1
 // CTRL2[START1] = 0
 // CTRL2[SYNC1] = 0
 // CTRL2[EOSIE1] = 0
 // CTRL2[SIMULT] = 1
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor4

Accelerometer-based USB Mouse
 // CTRL2[DIV] = $2
 MCF_ADC_CTRL2 = MCF_ADC_CTRL2_DIV(3);

 // Power up ADC converter(s) in use

 // PWR[ASB] = 0
 // PWR[PUDELAY] = $d
 // PWR[APD] = 0
 // PWR[PD2] = 1
 // PWR[PD1] = 0
 // PWR[PD0] = 0
 MCF_ADC_POWER = MCF_ADC_POWER_PUDELAY(4);

 // CTRL1[STOP0] = 1
 // CTRL1[START0] = 0
 // CTRL1[SYNC0] = 0
 // CTRL1[EOSIE0] = 0
 // CTRL1[ZCIE] = 0
 // CTRL1[LLMTIE] = 0
 // CTRL1[HLMTIE] = 0
 // CTRL1[CHNCFG3] = 0
 // CTRL1[CHNCFG2] = 0
 // CTRL1[CHNCFG1] = 0
 // CTRL1[CHNCFG0] = 0
 // CTRL1[SMODE] = %010
 MCF_ADC_CTRL1 = MCF_ADC_CTRL1_SMODE(2);

 /* Pin assignments for port AN
 Pin AN7 : Analog input AN7
 Pin AN6 : Analog input AN6
 Pin AN5 : Analog input AN5
 Pin AN4 : Analog input AN4
 Pin AN3 : Analog input AN3
 Pin AN2 : Analog input AN2
 Pin AN1 : Analog input AN1
 Pin AN0 : Analog input AN0
 */
 MCF_GPIO_DDRAN = 0;
 MCF_GPIO_PANPAR = MCF_GPIO_PANPAR_PANPAR7 |
 MCF_GPIO_PANPAR_PANPAR6 |
 MCF_GPIO_PANPAR_PANPAR5 |
 MCF_GPIO_PANPAR_PANPAR4 |
 MCF_GPIO_PANPAR_PANPAR3 |
 MCF_GPIO_PANPAR_PANPAR2 |
 MCF_GPIO_PANPAR_PANPAR1 |
 MCF_GPIO_PANPAR_PANPAR0;
}

2.1.2 Starting the A/D Converter

The start_AD() function is used to start the continuous conversion. After the start_AD() function is called,
the A/D converter will continuously scan analog channels 0–7, and store the result in result registers 0–7.

Notice, the start_AD() function is starting conversions on the A converter (START0 in the CTRL1
register). When the SIMULT bit in the CTRL2 register is set, the A and B converters are both started and
stopped using the START0 or STOP0 bits.
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 5

Accelerometer-based USB Mouse
2.1.2.1 start_AD() function
void start_AD(void)
{

/* Clear stop bits */
MCF_ADC_CTRL1 &= ~MCF_ADC_CTRL1_STOP0;
MCF_ADC_CTRL2 &= ~MCF_ADC_CTRL2_STOP1;

/* Set start bit */
MCF_ADC_CTRL1 |= MCF_ADC_CTRL1_START0;

}

2.1.3 Reading the A/D Converter

With the A/D converter in continuous mode, A/D results are constantly being updated in the ADRSLT
registers. These registers can be read at anytime by the application. The read_AD(channel) function
returns a 16 bit value representing the AD conversion result for the channel specified.
short read_AD(int channel)
{

switch(channel)
{

case 0:
return(((MCF_ADC_ADRSLT0&0x7FF8)>>3));

case 1:
return(((MCF_ADC_ADRSLT1&0x7FF8)>>3));

case 2:
return(((MCF_ADC_ADRSLT2&0x7FF8)>>3));

case 3:
return(((MCF_ADC_ADRSLT3&0x7FF8)>>3));

Table 1. CTRL2 Register

Field Description

5
SIMULT

A/D Converter Simultaneous Mode. This bit only affects parallel scan modes.

When SIMULT=1 (default value) parallel scans operate in simultaneous mode. The scans in the A and B
converter operate simultaneously and always result in pairs of simultaneous conversions in the A and B
converter. START0, STOP0, SYNC0, and EOSIE0 control bits and the SYNC0 input are used to start and stop
scans in both converters simultaneously. A scan ends in both converters when either converter encounters a
disabled sample slot. When the parallel scan completes, the EOSI0 triggers if EOSIE0 is set. The CIP0 status
bit indicates that a parallel scan is in process.

When SIMULT=0, parallel scans in the A and B converters operate independently. The B converter has its own
independent set of the above controls (START1, STOP1, SYNC1, EOSIE1, SYNC1) designed to control its
operation and report its status. Each converter’s scan continues until its sample list is exhausted (four
samples) or a disabled sample is encountered. For looping parallel scan mode, each converter starts its next
iteration as soon as the previous iteration in that converter is complete and continues until the STOP bit for
that converter is asserted.

0 = Parallel scans done independently
1 = Parallel scans done simultaneously (default)
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor6

Accelerometer-based USB Mouse
case 4:
return(((MCF_ADC_ADRSLT4&0x7FF8)>>3));

case 5:
return(((MCF_ADC_ADRSLT5&0x7FF8)>>3));

case 6:
return(((MCF_ADC_ADRSLT6&0x7FF8)>>3));

case 7:
return(((MCF_ADC_ADRSLT7&0x7FF8)>>3));

}

return(0);
}

2.2 HID Mouse Report Overview
The mouse uses the HID class to communicate with the PC. The HID class is discussed in detail in
AN3492, “USB and Using the CMX Stack.” The PC will automatically recognize the device as a mouse
based on the report descriptor.

A HID report descriptor is used to identify a object, and how data is stored in a object. The HID report
structure is defined in the document “Device Class Definition for Human Interface Devices (HID) Version
1.11” available at www.usb.org.

Report descriptors are groups of items, with each item defining a piece of information. Each piece of
information (item) is composed of tags followed by value. The tag determines the type of information, and
the value contains the actual configuration data. For example, a mouse descriptor contains a USAGE tag
that defines the report as being for a mouse. It contains another USAGE tag defining a section of the report
to be for buuton1, and another for button2, and finally 2 additional USAGE tags to define X and Y
positioning.

INPUT tags define data from the device to the PC, while OUTPUT tags define data leaving the PC going
to the device. Data can be variable or constant.

The tags and data are put together in a table that is read from start to finish by the report interpreter in the
host (PC). The interpretation of the data is defined in the specification noted above. A tool is available
on the usb.org website to assist in creating report descriptors
(http://www.usb.org/developers/hidpage/dt2_4.zip). Thankfully it includes many examples. The
www.usb.org specification “Universal Serial Bus HID Usage Tables version 1.12” specifically defines the
tags for the “mouse” usage.

2.3 Example Mouse Report Descriptor
 Tag, value description

 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */
 0x09, 0x02, /* USAGE (Mouse) */
 0xa1, 0x01, /* COLLECTION (Application) */
 0x09, 0x01, /* USAGE (Pointer) */
 0xa1, 0x00, /* COLLECTION (Physical) */
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 7

http://www.usb.org
http://www.usb.org
http://www.usb.org/developers/hidpage/dt2_4.zip

Accelerometer-based USB Mouse
 0x05, 0x09, /* USAGE_PAGE (Button) */
 0x19, 0x01, /* USAGE_MINIMUM (Button 1) */
 0x29, 0x03, /* USAGE_MAXIMUM (Button 3) */
 0x15, 0x00, /* LOGICAL_MINIMUM (0) */
 0x25, 0x01, /* LOGICAL_MAXIMUM (1) */
 0x95, 0x03, /* REPORT_COUNT (3) */
 0x75, 0x01, /* REPORT_SIZE (1) */
 0x81, 0x02, /* INPUT (Data,Var,Abs) */
 0x95, 0x01, /* REPORT_COUNT (1) */
 0x75, 0x05, /* REPORT_SIZE (5) */
 0x81, 0x01, /* INPUT (Cnst,Ary,Abs) */
 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */
 0x09, 0x30, /* USAGE (X) */
 0x09, 0x31, /* USAGE (Y) */
 0x15, 0x81, /* LOGICAL_MINIMUM (-127) */
 0x25, 0x7f, /* LOGICAL_MAXIMUM (127) */
 0x75, 0x08, /* REPORT_SIZE (8) */
 0x95, 0x02, /* REPORT_COUNT (2) */
 0x81, 0x06, /* INPUT (Data,Var,Rel) */
 0xc0, /* END_COLLECTION */
 0xc0 /* END_COLLECTION */

2.3.1 Mouse Report Descriptor Breakdown

USAGE_PAGE (Generic Desktop)
The « Generic Desktop » usage includes support for the following devices: pointer, mouse,
joystick, game pad, keyboard, keypad, multi-axis controller. This usage is defined in section 4.1 of
the “Universal Serial Bus HID Usage Tables version 1.12” specification.

USAGE (Mouse)
The « Mouse » is a device within the « Generic Desktop » category of devices selected above. This
line tells the PC (host) that this device is a mouse.

COLLECTION (Application)
A collection is a group of tags. In this case, this group of tags defines an application which is a
common device: mouse, keyboard, …

USAGE (Pointer)
The following data defines a pointing device.

COLLECTION (Physical)
”sensing devices which may need to associate sets of measured or sensed data with a single point.”
From “Device Class Definition for Human Interface Devices (HID) Version 1.11” section 6.2.2.6.

USAGE_PAGE (Button)
USAGE_MINIMUM (Button 1)
USAGE_MAXIMUM (Button 3)

The following tags describe 3 buttons (the 3 buttons on a mouse).
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor8

Accelerometer-based USB Mouse
LOGICAL_MINIMUM (0)
LOGICAL_MAXIMUM (1)

The buttons can only have 2 values, 0 or 1.

REPORT_COUNT (3)
REPORT_SIZE (1)

The button data will be contained in 3 bits (COUNT) in a single byte (SIZE).

INPUT (Data,Var,Abs)
The button USAGE information described above come from the device, into the PC. The data is
variable and absolute.

REPORT_COUNT (1)
REPORT_SIZE (5)
INPUT (Cnst,Ary,Abs)

Define a 5 bit padder, so the button data is contained in a single byte.
The padding data comes from the device into the PC, and is constant and arbitrary.

USAGE_PAGE (Generic Desktop)
USAGE (X)
USAGE (Y)

The X and Y data are subsets of the « Generic Desktop » usage. This usage is defined in section
4.2 of the “Universal Serial Bus HID Usage Tables version 1.12” specification.

LOGICAL_MINIMUM (-127)
LOGICAL_MAXIMUM (127)
REPORT_SIZE (8)
REPORT_COUNT (2)
INPUT (Data,Var,Rel)

The X and Y data are sent from the device to the PC as 2 bytes with a max of 127 and a min of
-127. The data should be read as Variable and Relative.
With this descriptor the PC will treat the X and Y data as relative data, adding it or subtracting it
from a base value. To move the pointer right, make X a positive number. The higher the number,
the faster the pointer will move. Same rules apply for the Y component. Microsoft requires that
both the X and Y components be either absolute or variable, not a combination of the 2.

END_COLLECTION
End of physical collection

END_COLLECTION
End of Application collection
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 9

Accelerometer-based USB Mouse
2.4 Firmware
The CMX USB stack device API is described in AN3492, “USB and Using the CMX Stack.” At the top
of the USB device firmware is the main() function. Data is sent and received via report queues. The mouse
uses a single in report queue (direction is always relative to host – PC).

The PC is expecting relative X and Y data, so a delta is calculated by subtracting the new A/D reading
from a reference A/D reading. The reference A/D reading is taken after reset. The board should be flat
on a table after reset, so that the reference A/D reading can be set correctly.

int hid_mouse(void)
{

int x=0;
 hcc_u8 in_report;
 unsigned char oldx, oldy;
 char delta;

// init HID state machine and USB driver
 HID_init(0, 0);

// Take a reference snapshot of the current A/D values
// for the X and Y position. Assume that this is base reading
// with the board flat on a table.

 oldx = (unsigned char)(read_AD(4)>>4);
 oldy = (unsigned char)(read_AD(5)>>4);

// Create a report queue of 3 bytes (see report descriptor)
 in_report=hid_add_report(rpt_in, 0, 3);

 while(1)
 {

// Process HID report queues
 hid_process();

// Only send new report if queue is empty
 if (!hid_report_pending(in_report))
 {
 // Assume no motion or button pushes
 DIR_REP_BUTTONS(hid_report) = 0;
 DIR_REP_X(hid_report) = 0;
 DIR_REP_Y(hid_report) = 0;

// Calculate delta from reference position (oldx)
delta = (char)(oldx - (read_AD(4)>>4));

// Hysterisys for us older folks
 if ((delta>THRESHOLD) || (delta<-THRESHOLD))
 {

// insert delta into X position in report
 DIR_REP_X(hid_report) = delta;
 }

// Calculate delta from reference position (oldy)
 delta = (char)(oldy - (read_AD(5)>>4));

// Hysterisys
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor10

Accelerometer-based USB Mouse
 if ((delta>THRESHOLD) || (delta<-THRESHOLD))
 {

// insert delta for Y position in report
 DIR_REP_Y(hid_report) = delta;
 }

// If SW1 pushed, set button 1 bit in report
 if (SW1_ACTIVE())
 DIR_REP_BUTTONS(hid_report) = 0x01;

// If SW2 pushed, set button 2 bit in report
 if (SW2_ACTIVE())
 DIR_REP_BUTTONS(hid_report) = 0x02;

// Insert report into queue
 hid_write_report(in_report, (hcc_u8*)hid_report);

}
 }

return(0);
}

2.5 Position of Data in Reports
The DIR_REP_X, DIR_REP_Y, and DIR_REP_BUTTONS macros insert data into the 3 byte report
declared by hid_add_report(). These bit positions were defined in the HID report descriptor.

REPORT_COUNT (3)
REPORT_SIZE (1)
REPORT_COUNT (1)
REPORT_SIZE (5)

The button information is stored in bits 0, 1, and 2 of byte 0 of the report, with button 1 being bit 0.
Microsoft defines button 1 as the “left” button, button 2 as the “right” button, and button 3 as the
“center” button.

USAGE (X)
USAGE (Y)
LOGICAL_MINIMUM (-127)
LOGICAL_MAXIMUM (127)
REPORT_SIZE (8)
REPORT_COUNT (2)

The X position is stored in byte 1 of the report, followed by the Y position in byte 2.
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 11

USB RC Servo (PWM) Controller and Analog Monitor
Figure 2. Mouse Data Structure

3 USB RC Servo (PWM) Controller and Analog Monitor
The RC Servo controller demonstrates the use of a custom ID device report descriptor, and the PC (host)
side software required to communicate with the custom device. Up to 8 RC servo motors can be controlled
via USB. This device side firmware also supports returning 8 bytes of analog data to the PC.

B1
Left

B2
right

B3
center

Byte 0
7 6 5 4 3 2 1 0

 X
Data

Byte 1
76543210

Byte 2
76543210

Y
Data

3 button mouse report
3 bytes (5 padding bits)
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor12

USB RC Servo (PWM) Controller and Analog Monitor
3.1 Controlling an RC Servo using the PWM Controller
A RC servo (Remote Control Servo) is a device used to control mechanical devices in the hobby world.
Remote control cars, trucks, boats, and robots all use RC servos for steering, throttles, and legs and arms.
The RC servo converts a PWM signal into a mechanical action. As the name implies, it is a servo with
feedback and closed loop control. The PWM signal sets a position between -90 and 90 degrees, the servo
locks in mechanically to a -90 to 90 degree position.

The PWM signal required to control a RC servo is a minimum of 3.3 volts peak (some servos will require
up to 5), with a period of about 20ms (this does not have to be exact, but should be greater then 15ms and
less then 50ms), and a high time of between 1ms and 2ms with a center of 1.5ms.

ColdFire
or

S08/V1

USB
Servo 1

Servo 2

Servo 3

Servo 4

Servo 5

Servo 6

Servo 7

Servo 8

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

PWM0

PWM5

PWM2

PWM3

PWM4

PWM1

PWM6

PWM7

AN0

AN2

AN1

AN3

AN4

AN5

AN6

AN7
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 13

USB RC Servo (PWM) Controller and Analog Monitor
With a PWM high time range of 1ms, and a mechanical travel of 180 degrees, the servo resolves to about
5.6μs / degree. The actual resolution a servo can resolve to is dependant on the servo. RC servos are
primarily analog devices (there are digital servos available) so their specifications vary somewhat.

For this design I wanted to support up to 8 servos. This requirement dictated that the ColdFire PWM
controller be used in the 8 channel by 8-bit mode. Using only an 8 bit counter, a period of 20ms would
yield a resolution of 78μs (14 degrees). This is not acceptable for most applications. A method needed to
be devised to provide a better resolution (less then 5 degrees) while still maintaining the 20ms period.

3.1.1 Using the ColdFire PWM Controller in “One Shot” Mode

The ColdFire PWM controller is uses a double buffering mechanism to eliminate glitches in the PWM
stream. This mechanism can be used to create a “one shot” mode. In this mode, the PWM controller only
creates a single pulse. This allows the full 8 bits of PWM counter resolution to be used within the pulse
instead of spanning across the entire period.

Figure 4. Standard PWM Configuration – Limits Resolution to 255 Counts Across Entire Period

PWM high time Servo position in degrees

~1ms -90 degrees

1.5ms 0 degrees

~2ms 90 degrees

Figure 3. Servo Position versus PWM High Time

Servo PWM in

20ms
1 – 2ms

Period set by PWM_PERIOD register (255 max)

Duty set by PWM_DUTY register
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor14

USB RC Servo (PWM) Controller and Analog Monitor
Figure 5. One-Shot Mode Uses PIT Timer to Create PWM Period, and PWM Module to Create Pulse

Using the one-shot mode, the high time resolution is increased significantly. The 8 bit PWM counter is
used entirely to create the high pulse, while the PWM period is created using a separate PIT timer. The
PIT timer creates a interrupt every PWM period, the PWM controller is then used to create a one-shot
pulse. The one-shot pulse is created by setting the PWM_DUTY register with the duty cycle, reset the
PWM_CONTER, then immediately setting the PWM_DUTY to 0. The PWM_DUTY = 0 settting does
not take effect immediately due to the double buffering, instead it takes effect when the PWM_PERIOD
register times out.

Figure 6. PWM Configuration

Period created with PIT timer, no effect on resolution

PWM controller creates one-shot

PWM_PERIOD

PIT interrupt

PWM_DUTY

PIT sets period

PWM_PERIOD = Period register in PWM controller
PWM_DUTY = Duty cycle register in PWM controller
PIT = Programmable Interrupt Timer (Timer interrupts on modulas)
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 15

USB RC Servo (PWM) Controller and Analog Monitor
The PWM duty cycle register is actually configured to 255 – desired duty cycle. The PWM controller is
configured to create a low going pulse. This results in the PWM controller setting the signal to zero after
each PWM_PERIOD.

3.1.2 PIT Interrupt Handler
__declspec(interrupt:0) void PIT1_isr(void)
{

// disable PWM channels
// This avoids any possible glitches since we do not
// know the value of the PWM counter
MCF_PWM_PWME = 0;

// Write duty cycle
// Set PWM_DUTY to 255-desired duty cycle
MCF_PWM_PWMDTY4 = MCF_PWM_PWMDTY_DUTY(255-pwm_duty[0]);
MCF_PWM_PWMDTY6 = MCF_PWM_PWMDTY_DUTY(255-pwm_duty[1]);

// Reset counter, loads duty cycle
MCF_PWM_PWMCNT4 = 0;
MCF_PWM_PWMCNT6 = 0;

// enable output
 MCF_PWM_PWME = 0x50;

// Force to 0 after PWM_PERIOD – creating one-shot
MCF_PWM_PWMDTY4 = MCF_PWM_PWMDTY_DUTY(0);
MCF_PWM_PWMDTY6 = MCF_PWM_PWMDTY_DUTY(0);

 /* Clear interrupt at CSR */
 MCF_PIT_PCSR(1) |= MCF_PIT_PCSR_PIF;
}

PWM_PERIOD

PIT interrupt
PWM_DUTY set to 255-desired duty
PWM_COUNTER set to 0
PWM_DUTY set to 0

PWM_DUTY

PIT sets period

Double buffer loads PWM_DUTY of
0 setup in PIT interrupt, causing
signal to go low and stay low.
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor16

USB RC Servo (PWM) Controller and Analog Monitor
3.2 Reading the A/D Converter
This project uses the same A/D driver described in Section 2.1, “Using the A/D Converter to Read the
Accelerometer.”

3.3 HID Report Overview
See Section 2.2, “HID Mouse Report Overview,” for a complete description of report descriptors. For this
project I required a custom report descriptor. Using the tool from report descriptor tool from
http://www.usb.org/developers/hidpage/dt2_4.zip. I created a report descriptor that supports 8 byte IN and
OUT transfers.

Figure 7. 8 byte IN / OUT Custom Report

3.3.1 Custom Report Descriptor Overview

LOGICAL_MINIMUM (0)
LOGICAL_MAXIMUM (255)- Range of data
REPORT_SIZE (8)- 8 bits / piece of data
REPORT_COUNT (8)- 8 pieces of data for input and 8 for output
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 17

http://www.usb.org/developers/hidpage/dt2_4.zip

USB RC Servo (PWM) Controller and Analog Monitor
This report will transfer 8 bytes of data IN and 8 bytes of data out. The 8 bytes of data into the PC are used
to transfer the analog conversion results, and the 8 bytes of data OUT are used to adjust the PWM duty
cycles.

3.4 Firmware
void hid_generic(void)
{
 hcc_u8 out_report;
 hcc_u8 in_report;

 pwm_duty[0] = 78;
 pwm_duty[1] = 156;
 pwm_duty[2] = 156;
 pwm_duty[3] = 78;

 PIT_mode = 'P';
 init_PWM();
 init_PIT1();
 HID_init(500, 0);

 out_report=hid_add_report(rpt_out, 0, 8);
 in_report=hid_add_report(rpt_in, 0, 8);

 LED4_ON;

 while(!device_stp)
 {
 hid_process();

 /* Send switch status. */
 if (!hid_report_pending(in_report))
 {
 hcc_u8 tmp[8];

 if(period_counter > 1)
 {
 period_counter = 0;
 tmp[0] = (unsigned char)((read_AD(0)>>4)&0x00ff);
 tmp[1] = (unsigned char)((read_AD(1)>>4)&0x00ff);
 tmp[2] = (unsigned char)((read_AD(2)>>4)&0x00ff);
 tmp[3] = (unsigned char)((read_AD(3)>>4)&0x00ff);
 tmp[4] = (unsigned char)((read_AD(4)>>4)&0x00ff);
 tmp[5] = (unsigned char)((read_AD(5)>>4)&0x00ff);
 tmp[6] = (unsigned char)((read_AD(6)>>4)&0x00ff);
 tmp[7] = (unsigned char)((read_AD(7)>>4)&0x00ff);

 hid_write_report(in_report, (unsigned char *)&tmp);
 }
 }

 /* Set status leds if needed. */
 if (hid_report_pending(out_report))
 {
 hcc_u8 data[9];
 hid_read_report(out_report, (unsigned char *)&data);
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor18

USB Host Enumeration Sniffer (Host Driver Example)

 pwm_duty[0] = data[0];
 pwm_duty[1] = data[1];
 pwm_duty[2] = data[2];
 pwm_duty[3] = data[3];

 }

 busy_wait();
 }
}

3.5 PC Host Application
// Send slider data to USB driver
static void send_pwm(void)
{
 unsigned char lstate[8];

 lstate[0] = theApp.dlg->pwm0.GetPos();
 lstate[1] = theApp.dlg->pwm1.GetPos();
 lstate[2] = theApp.dlg->pwm2.GetPos();
 lstate[3] = theApp.dlg->pwm3.GetPos();
 lstate[4] = theApp.dlg->pwm4.GetPos();
 lstate[5] = theApp.dlg->pwm5.GetPos();
 lstate[6] = theApp.dlg->pwm6.GetPos();
 lstate[7] = theApp.dlg->pwm7.GetPos();

 HIDWrite(&lstate);
}

//Update bargraphs with analog data
static void get_analog(void)
{
 unsigned char lstate[32];
 if (HIDRead(&lstate))
 {

theApp.dlg->an0.SetPos(lstate[0]);
theApp.dlg->an1.SetPos(lstate[1]);
theApp.dlg->an2.SetPos(lstate[2]);
theApp.dlg->an3.SetPos(lstate[3]);
theApp.dlg->an4.SetPos(lstate[4]);
theApp.dlg->an5.SetPos(lstate[5]);
theApp.dlg->an6.SetPos(lstate[6]);
theApp.dlg->an7.SetPos(lstate[7]);

 }
}

4 USB Host Enumeration Sniffer (Host Driver Example)
The CMX USB Stack supports both the host and device side. The host side of the stack is demonstrated
here by showing the process of enumerating a device. Enumeration is the transfer of data structures
(referred to as descriptors) from the device to the host. This occurs when the device is initially plugged
into the host. Enumeration and the various descriptors are defined in the USB 2.0 specification from
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 19

USB Host Enumeration Sniffer (Host Driver Example)
www.usb.org. It is also described very thoroughly, along with a description of the host firmware API in
AN3492, “USB and Using the CMX Stack.”

Using this firmware, you can attach various devices to the demo or EVB board, and display the descriptors
sent from the device to the host. Using the descriptor definitions in the USB 2.0 specification, you can
decode the meaning of the descriptors.

Figure 8. Sniffer Result from Plugging into On-board ColdFire Debugger (M52221DEMO)
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor20

http://www.usb.org

USB Host Enumeration Sniffer (Host Driver Example)
Figure 9. Sniffer Results from Plugging in a USB Camera

4.1 Firmware

4.1.1 emg_host_demo()

The following code is an example of how to enumerate a device using the host API. In this example, the
firmware prints out the device and configuration descriptors to the serial port (38400, 8, n, 1). A new
function (not part of the standard stack) was written to request the string descriptors from the device.
//
// Enumerate device, and output device / configuration descriptors to the serial port in hex
// Serial descripors are also printed to the serial port
//
// Written by Eric Gregori(847) 651 - 1971
//
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 21

USB Host Enumeration Sniffer (Host Driver Example)
int main(void)
{
 hcc_u8 cfg, str1, str2, str3;
 hcc_u16 length, i;
 device_info_t dev_inf;
 cfg_info_t cfg_inf;

 hw_init();
 uart_init(38400, 1, 'n', 8);
 host_init();

 print("\r\nHost Demo by Eric Gregori\n\r");
 print("EMG Host application started.\r\n");

 while(1)
 {
 busy_wait();

 /* a device is already connected, wait till it is disconnected */
 print("Waiting for device removal.\r\n");
 while(host_has_device()); // Spin waiting for !ATTACH

 print("Device disconnected.\r\n");

 /* At this point no device is attached. Wait till attachment. */
 print("Waiting for device...\r\n");
 while(!host_scan_for_device()); // Spin waiting for ATTACH

 print("Device connected.\r\n");

 // Read and parse device descriptor
 // get_device_info() calls get_dev_desc()
 if(!get_device_info(&dev_inf))
 {
 print("\n\rDevice Descriptor\n\r");
 for(i=0; i<18; i++)
 {
 emg_printbytehex(dbuffer[i]);
 print(" ");
 }
 print("\n\r");

 str1 = dbuffer[14];
 str2 = dbuffer[15];
 str3 = dbuffer[16];

 if(str1)
 {
 print("\r\nManufacture: ");
 emg_print_str_desc(str1);
 }

 if(str2)
 {
 print("\r\nProduct: ");
 emg_print_str_desc(str2);
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor22

USB Host Enumeration Sniffer (Host Driver Example)
 }

 if(str3)
 {
 print("\r\nSerial Number: ");
 emg_print_str_desc(str3);
 }

 print("\r\n\r\nDecoded Device Descriptor");
 print("\n\ridVendor = ");
 emg_printwordhex(dev_inf.vid);
 print("\n\ridProduct = ");
 emg_printwordhex(dev_inf.pid);
 print("\n\rbcdDevice = ");
 emg_printwordhex(dev_inf.rev);
 print("\n\rbDeviceClass = ");
 emg_printbytehex(dev_inf.clas);
 print("\n\rbDeviceSubClass = ");
 emg_printbytehex(dev_inf.sclas);
 print("\n\rbDeviceProtocol = ");
 emg_printbytehex(dev_inf.protocol);
 print("\n\rbNumConfigurations = ");
 emg_printbytehex(dev_inf.ncfg);
 print("\n\r");
 }
 else
 print("\r\nFailure Reading Device Descriptor");

 // Read all configuration descriptors
 for(cfg=0; cfg < dev_inf.ncfg; cfg++)
 {
 // get the configuration descriptor
 if (get_cfg_desc(cfg))
 continue; // Descriptor cfg not found
 else
 {
 print("\n\rConfiguration Descriptor - ");
 emg_printbytehex(cfg);
 length=RD_LE16(dbuffer+2);
 for(i=0; i<length; i++)
 {
 if((i%16) == 0)
 print("\n\r");
 emg_printbytehex(dbuffer[i]);
 print(" ");
 }

 str1 = dbuffer[6];

 print("\n\r\n\rDecoded Configuration Descriptor");

 // Call get_cfg_info() to parse configuration descriptor
 get_cfg_info(&cfg_inf);

 print("\n\rbNumInterfaces = ");
 emg_printbytehex(cfg_inf.nifc);
 print("\n\rbConfigurationValue = ");
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 23

USB Host Enumeration Sniffer (Host Driver Example)
 emg_printbytehex(cfg_inf.ndx);
 print("\n\riConfiguration = ");
 emg_printbytehex(cfg_inf.str);
 print("\n\rbmAttributes = ");
 emg_printbytehex(cfg_inf.attrib);
 print("\n\rbMaxPower * 2ma = ");
 emg_printbytehex(cfg_inf.max_power);

 if(str1)
 {
 print("\r\nManufacture: ");
 emg_print_str_desc(str1);
 }
 }
 print("\n\r\n\r");
 } // end of config descriptor read

 //
 } // while(1)
}

4.1.2 Displaying a String Descriptor – emg_print_str_desc()
void emg_print_str_desc(unsigned char desc)
{

unsigned chari;

if(!emg_get_str_descriptor(desc))
{

// Unicoded string is in dbuffer starting at 2
// strlen = (dbuffer[0] - 2)*2
for(i=2; i<=(dbuffer[0]-2); i+=2)

uart_putch(dbuffer[i]);
}

}

4.1.3 emg_get_str_descriptor()
int emg_get_str_descriptor(unsigned char desc)
{

hcc_u8 setup[8];
 hcc_u16 length=3;
 hcc_u8 retry=3;

 std_error=stderr_none;
 do
 {
 // Build SETUP data packet
 fill_setup_packet(setup, STP_DIR_IN, STP_TYPE_STD, STP_RECIPIENT_DEVICE,
 STDRQ_GET_DESCRIPTOR, (hcc_u16)((STDDTYPE_STRING<<8)|desc), 0, length);
 if (length == host_receive_control(setup, dbuffer, 0))
 {
 /* Check returned descriptor type and length (ignore extra bytes) */
 if ((USBDSC_TYPE(dbuffer) == STDDTYPE_STRING))
 {
 length=dbuffer[0];
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor24

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
if(length >= DBUFFER_SIZE)
length = DBUFFER_SIZE-1;

 // Rebuild SETUP data packet with new length
 fill_setup_packet(setup, STP_DIR_IN, STP_TYPE_STD,
STP_RECIPIENT_DEVICE,
 STDRQ_GET_DESCRIPTOR,
(hcc_u16)((STDDTYPE_STRING<<8)|desc),
0, length);

 if (length == host_receive_control(setup, dbuffer, 0))
 return(0);
 }
 }
 }while(retry--);

 std_error=stderr_host;
 return(1);
}

5 USB Flash Stick-based Analog Data Logger
(Mass-Storage Class)

The CMX USB host stack supports the ability to read and write to a flash memory stick. Data written to
the flash stick by the CMX USB stack can be read from a PC without any additional software being
installed on the PC. Data written to a flash stick by the PC, can be read by the CMX USB stack.

This firmware logs analog data to the flash stick in a standard ascii format that can be imported by
Microsoft Excel. The firmware reads 4 analog channels (easily expandable to all 8) and includes a time
stamp for each set of data.
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 25

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
5.1 Mass-Storage Class
The USB Mass-Storage class is specified in the “Universal Serial Bus Mass Storage Class Specification
Overview” revision 1.2. The specification can be found at www.usb.org. The Mass-Storage class puts a
USB wrapper around the ATAPI (Advanced Technology Attachment Packet Interface) and SCSI (Small
Computer System Interface) command sets.

ColdFire
Running

CMX
USB
Host
Stack
and

THIN
FFS

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

AN0

AN2

AN1

AN3

AN4

AN5

AN6

AN7

USB Flash Stick

Windows PC

With Excel
USB Flash Stick
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor26

http://www.usb.org

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
5.2 Command Sets

5.3 USB Transport Mechanism (BULK)
The Mass-Storage class uses Bulk transfers to transport data to and from the Mass-Storage device. Bulk
transfers are handshaked transfers with 64 byte max payload sizes. There can be more then 1 transfer per
frame, with a maximum of 19 transfer per frame for a total max transfer speed of 1216 bytes / millisecond
or 1216000 bytes / second.

Bulk Transfer Features:
1. “Bandwidth available” access to the USB
2. Retry of transfer (handshaking)
3. Guaranteed delivery of data with no guarantee of latency

Bulk transfers are the least priority transfer for bandwidth allocation.

Table 2. SubClass Codes/Command Sets

SubClass Code Command Block Specification Typical Use

1 Reduced Block Commands (RBC) Flash devices

2 SFF-8020i, MMC-2(ATAPI) CD/DVD

3 QIC-157 Tape Drive

4 UFI Floppy Drive

5 SFF-8070i Floppy Drive

6 SCSI
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 27

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
Figure 10. Bulk Transfer Transaction

5.4 CMX THIN Flash File System
The CMX THIN flash file system is designed for embedded systems with “limited resources.” The THIN
file system provides FAT12, FAT16, and FAT32 file system support. The THIN file system is a layer of
software that sits on top of the Mass-Storage Class, and provides a standard API to the users application.
The CMX THIN flash file system is described in detail, including API, in the
CMX_FFS_THIN_5222x.pdf file located in the docs directory of the USB stack.

PID = OUT

PID = DATX
From Host

Data
Transaction

PID = ACK
From Device

PID =NACK
From Device

PID= STALL
From Device

PID = IN

PID = DATX
From Device PID = ACK

From Host

PID =NACK
From Device

PID= STALL
From Device

Data Packet Handshake
Packet Token Packet

Sent by Host
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor28

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
Figure 11. Mass-Storage USB Stack

5.5 Using the A/D Converter
The A/D converter is used to sample the analog channels for the data logger. The A/D converter is setup
in a continuous mode. The data logger simply reads the A/D data via the simple driver after each sample
period. No attempt here has been made to synchronize the A/D channels. In fact, this firmware reads each
A/D channel one at a time, doing the binary to decimal conversions and flash writing between reads. This
most likely will not be acceptable for a real-world data logger, but this sample project could easily be
modified to support the required synchronization. The A/D converter is covered in section 2.1.

5.6 Using the RTC
The real-time clock (RTC) is used to provide a “timestamp” to each sample. The following code is for the
RTC in the MCF5222X (M52223EVB and M52221DEMO). The RTC is clocked from the CPU’s primary
clock through a divider. The RTC provides the hours, minutes, and seconds in binary format.

CMX THIN Flash File System

f_open(), f_close(), f_write(), f_read(), f_seek(), f_tell(), f_eof(), f_putc(), f_getc()
Along with many other functions

User’s Application

Mass-Storage Class

USB host driver

USB Module (Hardware)
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 29

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
Figure 12. RTC Block Diagram

5.6.1 Configuring the RTC

The RTC requires a 1 Hz clock input. This clock is derived by dividing the system clock. The divider is
configured with the RTCDR register.

Table 3. MCF_CLOCK_RTCDR Register

The “system clock” specified as the input into the divider is actually the INPUT into the PLL. The input
into this divider is the crystal frequency.
 /* Set real time clock freq – Oscillator clock (crystal frequency) = 48Mhz */

 MCF_CLOCK_RTCDR = 48000000-1;

5.6.2 Reading the RTC

Reading the RTC simply requires reading the hours, minutes, and seconds registers.
//
// Author: Eric Gregori (847) 651 - 1971
//
// Read time from ColdFIre RTC
//
unsigned char get_time(unsigned char type)
{

switch(type)
{

case 'H':
return((unsigned char)((MCF_RTC_HOURMIN & 0x00001F00)>>8));
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor30

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
case 'M':
return((unsigned char)(MCF_RTC_HOURMIN & 0x0000003F));

case 'S':
return((unsigned char)(MCF_RTC_SECONDS & 0x0000003F));

}

return(0);
}

5.7 Data Logger Firmware

5.7.1 unsigned char write_log(F_FILE*file, unsigned char c)
//
// Author: Eric Gregori (847) 651 - 1971
//
// Write raw byte to file, and output to screen
//
unsigned char write_log(F_FILE*file, unsigned char c)
{

uart_putch(c);
return((unsigned char)(c != (unsigned char)f_putc((int)c, file)));

}

5.7.2 unsigned char write_log_dec(F_FILE*file, unsigned short d)
//
// Author: Eric Gregori (847) 651 - 1971
//
// Write decimal value to file, and to screen
//
unsigned char write_log_dec(F_FILE*file, unsigned short d)
{

unsigned charth, h, t, o, ret;
unsigned short c;

c = d;

for(th=0; th<9;)
{

if(c >= 1000)
{

c -= 1000;
th++;

}
else

break;
}

for(h=0; h<9;)
{

if(c >= 100)
{

c -= 100;
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 31

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
h++;
}
else

break;
}

for(t=0; t<9;)
{

if(c >= 10)
{

c -= 10;
t++;

}
else

break;
}

o = (unsigned char)c;

ret = 0;
if(th)

ret = write_log(file, (unsigned char)(th+0x30));

if(!ret && (th || h))
ret = write_log(file, (unsigned char)(h+0x30));

if(!ret && (th || h || t))
ret = write_log(file, (unsigned char)(t+0x30));

if(!ret)
ret = write_log(file, (unsigned char)(o+0x30));

return(ret);
}

5.7.3 unsigned char write_log_string(F_FILE *file, unsigned char *data)
//
// Author: Eric Gregori (847) 651 - 1971
//
unsigned char write_log_string(F_FILE *file, unsigned char *data)
{

unsigned char i, ret;

ret = 0;
for(i=0; (!ret && data[i]); i++)

ret = write_log(file, data[i]);

return(ret);
}

5.7.4 void cmd_emglog(char *param)
//
// Author: Eric Gregori (847) 651 - 1971
//
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor32

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
// Log analog data to file in comma delimited format
//
void cmd_emglog(char *param)
{
 F_FILE *file;
 hcc_u8 c, osec;
 hcc_u16 ad;

print("\n\nHit enter to quit\n\n");

 file=f_open(param, "w");
 if (file == 0)
 {
 print("Failed to open ");
 print(param);
 print(".\r\n");
 return;
 }

 print(".\r\n");

(void)write_log_string(file,
(unsigned char *)("TIME,POT,ACCEL_X, ACCEL_Y, ACCEL_Z\r\n"));

 while(1)
 {
 if(osec == get_time('S'))
 continue;

 osec = get_time('S');

c=get_time('H');
if(write_log_dec(file, (unsigned short)c)) break;
if(write_log(file, ':')) break;

c=get_time('M');
if(write_log_dec(file, (unsigned short)c)) break;
if(write_log(file, ':')) break;

c=get_time('S');
if(write_log_dec(file, (unsigned short)c)) break;

if(write_log(file, ',')) break;

ad = (unsigned short)read_AD(0);
if(write_log_dec(file, ad)) break;

if(write_log(file, ',')) break;

ad = (unsigned short)read_AD(4);
if(write_log_dec(file, ad)) break;

if(write_log(file, ',')) break;

ad = (unsigned short)read_AD(5);
if(write_log_dec(file, ad)) break;

if(write_log(file, ',')) break;
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 33

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
ad = (unsigned short)read_AD(6);
if(write_log_dec(file, ad)) break;

if(write_log(file, '\r')) break;
if(write_log(file, '\n')) break;

 if (uart_input_ready())
 {
 break;
 }
}

 f_close(file);
 print("\nFile Closed");
 return;
}

5.8 The Speed At Which Data Can Be Written
To test the maximum write transfer speeds to the flash stick, a simple piece of firmware was written. The
firmware simply writes items of data to the memory stick as fast as it can for 1 second. The result is sent
out through the serial port.

Many different size items were used to measure the performance. As expected, the larger the item, the
better the performance. The USB 2.0 specification for BULK transfers indicates that the maximum
theoretical data transfer is 1187.5 Kbytes/second assuming a packet size of 64 bytes. Each packet is only
64 bytes of data, the critical variable is the number of transactions that can be done in a frame. Each
transaction carries 64 bytes of data.
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor34

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
5.8.1 The emgtest <filename> Command

Writes to the file <filename> as fast as possible using different size items.
Uses f_write(buff, size, 1, file) to write to file.

where; buff is a un-initialized region of memory (data written to flash stick),
size is the number of bytes written / call to f_write() – “item size”.

Flash Stick Write Times

0

20

40

60

80

100

120

1 96 19
2

28
8

38
4

48
0

57
6

67
2

76
8

86
4

96
0

Buffer (item) size

K
B

yt
es

/S
ec

on
d

run 1 KBps
run 2 KBps
run 3 KBps
Avg KBps
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 35

USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
5.9 Real-Time Usage
The Mass-Storage firmware, including the file system is single threaded. The firmware does not use
interrupts, but does use a single timer PIT0 to keep track of hardware timeouts. The only time the firmware
“spins” is when it is waiting for the USB OTG module to become available. The heart of the USB host
driver is the function usb_host_start_transaction() in the file usb_host.c.
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor36

USB Flash Stick-based WAV Player / Simple Text to Speech Engine
I instrumented the USB host to output a high on a test pin whenever it was spinning waiting for the
hardware to complete a transaction. The following scope image was taken using this code:
 LED3_OFF;
 f_write(buff, 64, 1, file);
 LED3_ON;

The LED3 signal is marked as “Start” on the image below. The more active signal is the instrumentation
in the usb_host_start_transaction() function. Everytime the function spins waiting for a transaction to
complete, the signal goes high. The function usb_host_start_transaction() is spinning 76% of the time.

NOTE
Writing to USB flash only uses 24% of real-time, the rest of the time it is
spinning.

Figure 13. Real-Time analysis data

6 USB Flash Stick-based WAV Player / Simple Text to
Speech Engine

Using the PWM module as simple digital-to-analog converter, audio can be played from the flash stick.
Use a PC to either convert a audio file to a WAV format, or create a new WAV file on the PC using the
sound recorder tool. Save the file to the flash stick. Plug the flash stick into the DEMO or EVB board,
and playback the file using the emgplay <filename> command.

Currently the firmware is setup to work with 8 bit mono PCM files sampled at 8 Khz. The sample rate
was an arbitrary decision based on supporting some old audio samples I had done for an 8 bit project (audio
over 802.15.4). The USB stack can easily support higher playback rates, stereo, and compression with
additional firmware.

Flash Write Real-Time (64 byte write) - Spinning 76% of time

0

0.2

0.4

0.6

0.8

1

1.2

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325 343 361 379 397 415 433 451 469

2us / tick

1
=

sp
in

ni
ng

, 0
 =

 ru
nn

in
g

Start
Host Driver - High while Spinning
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 37

USB Flash Stick-based WAV Player / Simple Text to Speech Engine
6.1 Using a PWM Channel for Audio Applications
The ColdFire parts include an 8 channel 8 bit PWM module, that can be configured to be a 4 channel 16
bit module. The number of channels on a S08 (JM60) or V1 core based part will depend on the number
of timers available, and the number of channels per timer.

For the ColdFire part, we use the PWM module in it’s 8 channel, 8 bit mode. The PWM controller is
configured to produce a period of 25.5μs. The ColdFire PWM module allows for each of the 8 channels
to be configured with a different period. At 12.75μs, the PWM frequency is 78.431Khz. The Duty cycle
is modulated from 0 to 100% providing a voltage of 0 to 3.3 volts when passed through a low pass filter.
The higher PWM frequency was chosen to simplify the low pass filter design. At this high of a frequency,
most amplifier circuit have enough input impedance to eliminate the requirement for a separate low pass
filter all together.

6.1.1 Initializing the PWM Controller

The ColdFire Init tool available from freescale.com is a fantastic tool. It’s a Windows-based GUI, that
allows you to configure ColdFire peripherals in a graphical manner, and automatically creates the
initialization code for you.

Windows PC

With Excel
USB Flash Stick WAV files

ColdFire
Running

CMX
USB
Host
Stack
and

THIN
FFS

Low Pass
Filter

USB Flash Stick WAV
A
M
P

PWM
gpt0

pin 49
mcu_port
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor38

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

USB Flash Stick-based WAV Player / Simple Text to Speech Engine
Figure 14. Configuring the PWM Clock

Figure 15. Configuring PWM Channel 0
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 39

USB Flash Stick-based WAV Player / Simple Text to Speech Engine
Figure 16. Results from Clicking on the Preview Code Button

6.1.2 Modulating the PWM’s Duty Cycle

The PWM duty cycle must be updated every 125μs (for a 8 Khz sample rate). This is done on the ColdFire
using a PIT (programmable interval timer). The PIT is configured to interrupt every 125μs. During the
interrupt is copies a byte from a ring buffer (described in the next section) to the PWM duty cycle register.

6.1.2.1 Initializing the PIT

PIT1 is used because the CMX USB stack uses PIT0 for internal timeouts.

Figure 17. Using CFInit to Configure PIT
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor40

USB Flash Stick-based WAV Player / Simple Text to Speech Engine
Clicking on preview code results in init code ready to be cut and past into source.

6.1.2.2 The PIT Interrupt Handler

The PIT timer rolls over every 125μs. When it rolls over an interrupt is generated. The interrupt controller
must be configured to enable the PIT1 interrupt, and set it’s priority. The vector table must also be
initialized with a pointer to the new interrupt handler.
//
// Author: Eric Gregori (847) 651 - 1971
//
//
__declspec(interrupt:0)
void PIT1_it_handler(void)
{

if(!mute && (data_out != data_in))
{

MCF_PWM_PWMDTY1 = data_buffer[data_out++];
LED1_TGL;

}

 /* Clear interrupt at CSR */
 MCF_PIT_PCSR(1) |= MCF_PIT_PCSR_PIF;
}

/***
* init_interrupt_controller - Interrupt Controller *
**/
static void init_interrupt_controller (void)
{
#ifdef AUDIO
 /* Configured interrupt sources in order of priority...
 Level 7: External interrupt /IRQ7, (initially masked)
 Level 6: External interrupt /IRQ6, (initially masked)
 Level 5: External interrupt /IRQ5, (initially masked)
 Level 4: External interrupt /IRQ4, (initially masked)
 PIT 0 interrupt
 Level 3: External interrupt /IRQ3, (initially masked)
 Level 2: External interrupt /IRQ2, (initially masked)
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 41

USB Flash Stick-based WAV Player / Simple Text to Speech Engine
 Level 1: External interrupt /IRQ1, (initially masked)
 */
 MCF_INTC0_ICR56 = MCF_INTC_ICR_IL(0x4);
 MCF_INTC0_IMRH &= ~MCF_INTC_IMRH_MASK56;
#endif
}

The PIT1 interrupt is number 56 in the interrupt controller. This information is available in the reference
manual, or from CFInit.

The interrupt controller vector number is not the same as the vector number in the vector table. The USB
stack’s vector table includes the interrupt controller vector numbers as comments next to the stubs for
unused vectors.
vector77: .long _irq_handler77 /* PIT0 PIF V55*/
vector78: .long _PIT1_it_handler /* PIT1 PIF V56*/
vector79: .long _irq_handler79 /* reserved */

The PIT interrupt handler simply reads a byte from the ring buffer and writes it to the PWM Duty cycle
register. Then it increments the out pointer for the ring buffer.

6.2 Reading WAV Files from the Flash Stick
Data from the flash stick is read in 200 byte chunks. The data is then copied into a ring buffer one byte at
a time. This is done to allow the PIT interrupt and the flash stick reading code to be completely
independent with respect to time (no synchronization required).

Data is read from the flash stick using the f_read() function.

WAV files are played using the emgplay <filename> command. You can also just call this function with
a pointer to a filename NULL terminated string.
volatile unsigned char data_in;
volatile unsigned char data_out;
volatile unsigned char data_buffer[256];
volatile unsigned char mute = 1;

//
// Author: Eric Gregori (847) 651 – 1971
//
void cmd_emgplay(char *param)
{
 F_FILE *file;
 unsigned char temp[204];
 unsigned char index;

 file=f_open(param, "r");
 if (file == 0)
 {
 print("Failed to open ");
 print(param);
 print(".\r\n");
 return;
 }

 print("\f\rPlaying ");
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor42

USB Flash Stick-based WAV Player / Simple Text to Speech Engine
 print(param);
 print(" - ");

 data_in = 0;
 data_out = 0;

 (void)f_read(temp, 1, 64, file);

 while(1)
 {
 int r = f_read(temp, 1, 200, file);
 if (r>0)
 {

// Write temp into data_buffer
for(index=0; index<r; index++)
{

while((unsigned char)(data_in + 1) == data_out);
data_buffer[data_in++] = temp[index];

}

mute = 0;

 }
 else
 {
 if (!f_eof(file))
 {
 print("Error while reading ");
 print(param);
 print(".\r\n");
 }
 f_close(file);
 break;
 }
 }

 mute = 1;
 print("Done");
 print(".\r\n");

 return;
}

6.3 Converting Data in Chunks to a Stream (Ring Buffer)
The ring buffer is the secret to audio synchronization. As the name implies, the ring buffer has no start or
end, the buffer wraps around on itself. This is done using 2 indexes; a OUT index and a IN index.

Data is put into the buffer using the IN index, and data is taken out of the buffer using the OUT index. The
indexes are unsigned bytes, so they naturally wrap at 256 bytes. This is the length of the ring buffer. The
OUT index is only read and incremented if it does not equal the IN index.

if(!mute && (data_out != data_in))
{

MCF_PWM_PWMDTY1 = data_buffer[data_out++];
LED1_TGL;

}

Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 43

USB Flash Stick-based WAV Player / Simple Text to Speech Engine
The IN index is kept one count behind the OUT index. The IN index is never allowed to increment to the
OUT index.

while((unsigned char)(data_in + 1) == data_out);
data_buffer[data_in++] = temp[index];

The code above spins until the OUT index (data_out) is more then one count away from the IN index
(data_in).

6.4 Simple Text to Speech Engine
With the ability to play WAV files, and access to a large amount of storage space (memory sticks up to 2G
can be used with the free version of the Mass-Storage stack) the next logical choice was a text to speech
processor. Individual words are recorded as WAV files onto the flash stick. The filename used is the word:
the word “eric” is stored as eric.wav. A simple function converts the words in a sentence (separated by
spaces) into filenames, then plays the filenames.

This has been implemented with the emgsay <sentence> command. Simply create a dictionary with the
words you would like to use, copy it to a flash stick, and plug it into the ColdFire or V1 Core. This
technology can be used for menus, instructions, alarms, games, …

6.4.1 emgsay Firmware
//
// Author: Eric Gregori (847) 651 - 1971
//
void cmd_emgsay(char *param)
{

unsigned char param_index;
unsigned char file_index;
unsigned char filename[32];

for(param_index=0, file_index=0; 1 ; param_index++)
{

if(param[param_index] < 0x41)
{

if(file_index)
{

if(file_index > 8)
{

filename[6] = '~';
filename[7] = '1';
file_index = 8;

}
// Add .wav to filename
filename[file_index++] = '.';
filename[file_index++] = 'w';
filename[file_index++] = 'a';
filename[file_index++] = 'v';
filename[file_index++] = 0;
file_index = 0;
cmd_emgplay((char *)filename);
if(param[param_index] == 0)

break;
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor44

USB Flash Stick-based WAV Player / Simple Text to Speech Engine
}
else

continue;
}
if(param[param_index] == '.')

cmd_emgplay("dot.wav");

if(param[param_index] >= 0x41)
{

filename[file_index++] = param[param_index];
}

}
}

Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 45

USB Flash Stick-based WAV Player / Simple Text to Speech Engine
Figure 18. Directory of Dictionary on Flash Stick, and Using emgsay Command
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor46

THIS PAGE IS INTENTIONALLY BLANK
Advanced Applications for the Freescale USB_Lite by CMX, Rev. 0

Freescale Semiconductor 47

Document Number: AN3523
Rev. 0
09/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org

© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Accelerometer-based USB Mouse
	2.1 Using the A/D Converter to Read the Accelerometer
	2.1.1 A/D Initialization Function
	2.1.2 Starting the A/D Converter
	2.1.2.1 start_AD() function

	2.1.3 Reading the A/D Converter

	2.2 HID Mouse Report Overview
	2.3 Example Mouse Report Descriptor
	2.3.1 Mouse Report Descriptor Breakdown

	2.4 Firmware
	2.5 Position of Data in Reports

	3 USB RC Servo (PWM) Controller and Analog Monitor
	3.1 Controlling an RC Servo using the PWM Controller
	3.1.1 Using the ColdFire PWM Controller in “One Shot” Mode
	3.1.2 PIT Interrupt Handler

	3.2 Reading the A/D Converter
	3.3 HID Report Overview
	3.3.1 Custom Report Descriptor Overview

	3.4 Firmware
	3.5 PC Host Application

	4 USB Host Enumeration Sniffer (Host Driver Example)
	4.1 Firmware
	4.1.1 emg_host_demo()
	4.1.2 Displaying a String Descriptor - emg_print_str_desc()
	4.1.3 emg_get_str_descriptor()

	5 USB Flash Stick-based Analog Data Logger (Mass-Storage Class)
	5.1 Mass-Storage Class
	5.2 Command Sets
	5.3 USB Transport Mechanism (BULK)
	5.4 CMX THIN Flash File System
	5.5 Using the A/D Converter
	5.6 Using the RTC
	5.6.1 Configuring the RTC
	5.6.2 Reading the RTC

	5.7 Data Logger Firmware
	5.7.1 unsigned char write_log(F_FILE*file, unsigned char c)
	5.7.2 unsigned char write_log_dec(F_FILE*file, unsigned short d)
	5.7.3 unsigned char write_log_string(F_FILE *file, unsigned char *data)
	5.7.4 void cmd_emglog(char *param)

	5.8 The Speed At Which Data Can Be Written
	5.8.1 The emgtest <filename> Command

	5.9 Real-Time Usage

	6 USB Flash Stick-based WAV Player / Simple Text to Speech Engine
	6.1 Using a PWM Channel for Audio Applications
	6.1.1 Initializing the PWM Controller
	6.1.2 Modulating the PWM’s Duty Cycle
	6.1.2.1 Initializing the PIT
	6.1.2.2 The PIT Interrupt Handler

	6.2 Reading WAV Files from the Flash Stick
	6.3 Converting Data in Chunks to a Stream (Ring Buffer)
	6.4 Simple Text to Speech Engine
	6.4.1 emgsay Firmware

