
AN10413
µC/OS-II time management in LPC2000
Rev. 02 — 18 July 2007 Application note

Document information

Info Content

Keywords uC/OS-II, MCU, ARM, LPC2000, Timer, IRQ, VIC

Abstract This application note demonstrates how to implement µC/OS-II time
management in the LPC2000 microcontroller family from NXP
Semiconductors. This application note also serves as a quick-start guide
and includes a simple time management code example.

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
Revision history

Rev Date Description

02 20070718 • The format of this application note has been redesigned to comply with the new identity
guidelines of NXP Semiconductors.

• Legal texts have been adapted to the new company name where appropriate.

01 20051215 First release
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 2 of 16

Contact information
For additional information, please visit: http://www .nxp.com

For sales office addresses, please send an email to: salesad dresses@nxp.com

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
1. Introduction

The µC/OS-II, pronounced ‘Micro C O S 2’, and stands for MicroController Operating
System version 2, is a type of real-time operating system. Its real-time kernel, easy port
connection, and reliability enable it to be used in a wide variety of applications, such as
cameras, medical instruments, engine controls, and ATMs. The µC/OS-II can run on most
8/16/32-bit microprocessors or microcontrollers.

An important function of the µC/OS-II is time management. It provides periodic interrupts
for the purpose of keeping track of time delays and time-outs. An interrupt period is called
a Clock Tick which represents the system’s heartbeat. Usually, a Clock Tick (tick) should
occur between 10 and 100 times per second (Hz). The faster the tick rate, the higher the
overhead imposed on the system. The actual frequency of the tick depends on the tick
resolution required by the user application. Usually the tick source is provided by a
hardware timer.

The LPC2000 family is based on the 16/32-bit ARM7TDMI-S microcontroller. The
µC/OS-II is supported by all the devices in the LPC2000 family including two 32-bit
timer/counter devices which can be used as a Clock Tick source. In this application note
we use Timer0 as an example, and Timer0 will be configured to periodically trigger an IRQ
interrupt. The code is developed in ARM Development Suite (ADS) v1.2 and written
mostly in ANSI C. The code was tested on an evaluation board with an LPC2129, which
uses a 12 MHz crystal.

2. Initialization

2.1 Exception vector table
The ARM CPU contains an exception vector table supporting seven types of exception.
When an exception occurs, an execution is forced from fixed memory whose address
corresponds to the exception type. The exception vector table for the ARM is shown in
Table 1.

On reset, the CPU begins executing from the reset vector entry, then jumps to an
initialization sub-routine, which starts system setting. The startup code is written in
assembly code as shown below.

Table 1. Exception vector table

Exception Mode Vector address

Reset SVC 0x0000 0000

Undefined Instruction UND 0x0000 0004

Software Interrupt (SWI) SVC 0x0000 0008

Prefetch abort Abort 0x0000 000c

Data abort Abort 0x0000 0010

- - 0x0000 0014

IRQ (normal interrupt) IRQ 0x0000 0018

FIQ (fast interrupt) FIQ 0x0000 001c
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 3 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
Startup code

; Imported external symbols declarat ion
IMPORT Reset
IMPORT FIQHandler_C

; /*************************************
; Exception Vectors
; **************************************/

CODE32
AREA StartUp, CODE, READONLY

ENTRY
Vectors

LDR PC, ResetAddr
LDR PC, UndefinedAddr
LDR PC, SWI_Addr
LDR PC, PrefetchAddr
LDR PC, DataAbortAddr
DCD 0xb9205f80
LDR PC, [PC, #-0xff0] ; for vectored and non-vectored IRQ
LDR PC, FIQ_Addr

ResetAddr DCD Reset
UndefinedAddr DCD Undefined
SWI_Addr DCD Swi
PrefetchAddr DCD PrefetchAbort
DataAbortAddr DCD DataAbort

FIQ_Addr DCD FIQ_Handler

;/***
;Undefined instruct ion exception handler
;***/
Undefined

b Undefined
;/***
;Swi exception handler
;***/
Swi

b Swi
;/***
;Prefetch abort exception handler
;***/
PrefetchAbort

b PrefetchAbort
; /***
;Data abort exception handler
;***/
DataAbort

b DataAbort
; /**
;FIQ exception handler
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 4 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
;**/
FIQ_Handler

STMFD SP!, {R0-R3, LR}
BL FIQHandler_C ;cal l the FIQ ISR sub-routine
LDMFD SP!, {R0-R3, LR}
SUBS PC, LR, #4

END

Note that the handlers shown in the startup code do not do anything useful. They are only
shown here for completeness. You can implement them according to your application.

2.2 System configuration
System configuration such as PLL, VPBDIV and MAM is performed in C code. The code
is tested on an evaluation board which uses a 12 MHz crystal. To make the CPU run at the
full speed of 60 MHz, PLL is set to 5. And the VPB is set to a quarter of the CPU speed.
Using the Memory Map Register, you can remap interrupt vectors from 0x0000 0000 to
0x000 0001c (on-chip flash), 0x4000 0000 to 0x4000 001c (on-chip RAM) or 0x8000 0000
to 0x8000 001c (external memory, only for LPC22xx). The system initialization code is
shown below:

#define PLL_PLLE 1 //PLL enable (1)or disable(0)
#define PLL_PLLC 1 //PLL connect(1) or disconnect(0)
#define PLL_M 5 //PLL Mult ipl ier value
#define PLL_P 1 //PLL divider value: p
#define VPB_DIVIDER 0 //the divider of VPB

/* System Init ial izat ion */
void InitLPC2000(void) {

WDMOD=0; //disable WDT

VICIntEnClr=0xfff f f f f f ; / /disable al l interrupts
VICVectAddr=0;
VICIntSelect=0;

/* PLL configuration */
i f(PLL_PLLE){

PLLCFG=(PLL_M- 1) | (PLL_P << 5);
PLLCON=PLL_PLLE;
PLLFEED = 0xaa;
PLLFEED = 0x55;
while((PLLSTAT & (1 << 10)) == 0); / / Wait for PLL lock

PLLCON=PLL_PLLE|PLL_PLLC<<1; //connect PLL
PLLFEED = 0xaa;
PLLFEED = 0x55;

}

VPBDIV=VPB_DIVIDER; //peripheral clock config

/* MemRemap Config */
#ifdef __Ram_Mode
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 5 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
MEMMAP = 0x2; //remap to 0x40000000
#endif

#ifdef __Flash_Mode
MEMMAP = 0x1; //remap tp 0x0

#endif

#ifdef __ExtMem_mode
MEMMAP = 0x3; //remap to 0x80000000, only for LPC22xx

#endif
}

2.3 Timer initialization
Timer0 is configured to generate the Clock Tick. The tick frequency is defined as
OS_TICKS_PER_SEC in file os_cfg.h. Timer0 counter is set according to the frequencies
of the Clock Tick and the peripheral clock.

The LPC2000 family contains a VIC that supplies a vector (address) for each interrupt
source. The VIC can take up to 32 interrupt request inputs and programmably assign
them into three categories: FIQ, vectored IRQ, and non-vectored IRQ. FIQ requests have
the highest priority. Vectored IRQs have intermediate priority, but only 16 of the 32
requests can be assigned to this category. Non-vectored IRQs have the lowest priority.

Each peripheral device has one interrupt line connected to the VIC, but may have several
internal interrupt flags. Table 2 lists the interrupt sources for each peripheral function.

Register VICIntEnable controls which of the 32 interrupt requests contributes to FIQ or
IRQ, and enables it. Registers VICVectCnt and VICVectAddr together control one of 16
vectored IRQ slots: register VICVectCnt selects the interrupt source, and register
VICVectAddr holds the address of the ISR of the corresponding vectored IRQ.

As shown in the exception vector table (see Table 1), when an IRQ occurs, the ARM CPU
will redirect code execution to the address specified at location 0x0000 0018. For vectored
and non-vectored IRQs the following instruction could be placed at 0x18:

LDR pc, [pc,#-0xFF0]

This instruction loads the Program Counter (PC) with the address that is present in
register VICVectAddr , then gets the IRQ service routine from register VICVectCnt , and
jumps to the value read.

Table 2. Connection of interrupt sources to VIC

Block Flag VIC channel

WDT Watchdog Interrupt (WDINT) 0

- reserved for software interrupts only 1

ARM core embedded ICE, DbgCommRx 2

embedded ICE, DbgCommTx 3

TIMER0 Match 0 to 3 (MR0, MR1, MR2, MR3) 4

Capture 0 to 3 (CR0, CR1, CR3)

TIMER1 Match 0 to 3 (MR0, MR1, MR2, MR3) 5

Capture 0 to 3 (CR0, CR1, CR3)
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 6 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
Here Timer0 interrupt is configured as a vectored IRQ interrupt and the priority is set to
15. The initialization code can be as follows:

#define OS_TICKS_PER_SEC 50 //Set the number of t icks in one second

void TIMER0_InitTimer(void) {
TIMER0_IR = 0xff; / /clear interrupts

TIMER0_TC = 0;
TIMER0_MCR = 0x03; //reset and interrupt on match
TIMER0_MR0 = (FPCLK/ OS_TICKS_PER_SEC); //set the match value

//Init ial ize t imer0 interrupt
VICIntEnClr = (1 << 4); / /disable t imer0 interrupt
//config t imer0 interrupt as the lowest v-IRQ
VICVectAddr15 = (LPC_INT32U)IRQASMTimer0; //set t imer0 ISR address
VICVectCntl15 = (0x20 | 0x04);
VICIntEnable = (1 << 4); / /enable t imer0 interrupt

TIMER0_TCR = 0x01; //enable t imer0 counter

UART0 Rx Line Status (RLS) 6

Transmit Holding Register Empty (THRE)

Rx Data Available (RDA)

Character Time-out Indicator (CTI)

UART1 Rx Line Status (RLS) 7

Transmit Holding Register Empty (THRE)

Rx Data Available (RDA)

Character Time-out Indicator (CTI)

Modem Status Interrupt (MSI)

PWM0 Match 0 to 6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6) 8

I2C SI (state change) 9

SPI0 SPI Interrupt Flag (SPIF) Mode Fault (MODF) 10

SPI1 SPI Interrupt Flag (SPIF) Mode Fault (MODF) 11

PLL PLL Lock (PLOCK) 12

RTC Counter Increment (RTCCIF) Alarm (RTCALF) 13

System control External Interrupt 0 (EINT0) 14

External Interrupt 1 (EINT1) 15

External Interrupt 2 (EINT2) 16

External Interrupt 2 (EINT2) 17

A/D A/D Converter 18

CAN CAN and Acceptance Filter:

1 ORed CAN, LUTerr int 19

CAN1 and CAN2: 2 × (Tx int, Rx int) LPC2119/2129/2292/2294 20 to 23

CAN3 and CAN4: 2 × (Tx int, Rx int) LPC2194/2292/2294 only 24 to 27

Table 2. Connection of interrupt sources to VIC …continued

Block Flag VIC channel
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 7 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
}

Note that in µC/OS-II, you must enable Clock Tick interrupts after multi-tasking has
started, i.e. after calling OSStart(). In other words, you should initialize and enable tick
interrupts in the first task that executes following a call to OSStart(). A common mistake is
to enable tick interrupts after calling OSInit() and before OSStart() as shown in the
following code, because at that point the µC/OS-II is in an unknown state and your
application will crash.

void main(void) {
. . .
OSInit(); / / ini t ial ize uC/OS-II
. . .
/* user appl ication init ial izat ion code */
/* create application task by cal l ing OSTaskCreate() */
. . .
Enable Tick Interrupts; / /DO NOT DO THIS HERE!!!
. . .
OSStart(); / / start mult i tasking

}

3. Clock tick ISR

In µC/OS-II, ISRs have several parts: save CPU registers, call function OSIntEnter(),
execute user code, call function OSIntExit(), restore CPU registers and return.

Function OSIntEnter() is used to notify the µC/OS-II that you are about to service an
interrupt (ISR), and function OSIntExit() is used to notify the µC/OS-II that you have
completed serving an ISR. With OSIntEnter() and OSIntExit(), the µC/OS-II can keep
track of interrupt nesting and thus only perform rescheduling at the last nested ISR.

It is possible that after the last nested ISR has completed, an interrupted task is not
required to run because a new higher priority task has occurred. This is handled by an
interrupt level context switch, implemented by function _IntCtxSw(), so that after return,
the new higher priority task runs while the old lower priority task is kept pending.

Write ISR codes in assembly language because CPU registers cannot be accessed
directly with C code; however, user code can be written in C. In the following example,
macro code is used to implement an ISR in file irq_handler.s. The code can be as shown
and should be copied for each ISR you have in your system.

MACRO
$IRQ_AsmEntery HANDLER $IRQ_CEntry

$IRQ_AsmEntery
stmfd sp!,{r0-r3,r12,lr} ; push r0-r12 register f i le and lr

bl OSIntEnter ; Interrupt Nest++
bl $IRQ_CEntry ; User ISR Sub-routine
bl OSIntExit

ldr r0,=OSIntCtxSwFlag
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 8 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
ldr r1,[r0]
cmp r1,#1
beq _IntCtxSw ; interrupt level context switch

ldmfd sp!,{r0-r3,r12,lr}
subs pc,lr ,#4 ; return

MEND

3.1 Timer0 ISR
The µC/OS-II Clock Tick is serviced by calling OSTimeTick() from a timer ISR. In the
following example it is Timer0 ISR. Copying the macro code as shown gives Timer0 ISR.

;Timer0 interrupt
IMPORT IRQC_Timer0

IRQASMTimer0 HANDLER IRQC_Timer0

IRQASMTimer0 is Timer0 ISR entry point. IRQC_Timer0 is the user code entry point and
can be written in C.

Function OSTimeTick() is called by IRQC_Timer0. Most of the work done by function
OSTimeTick() basically consists of decrementing field OSTCBDly for each non-zero
OS_TCB (Task Control Block). Because OSTCBDly contains the number of Clock Ticks
that the task is allowed to delay, OSTimeTick() follows the chain of OS_TCB starting at
OSTCBList (list of OS_TCB) until it reaches the idle task. The execution time of
OSTimeTick() is directly proportional to the number of tasks created in an application.
OSTimeTick() also accumulates the number of Clock Ticks since power-up in an unsigned
32-bit variable called OSTime.

void IRQC_Timer0(void) {
OSTimeTick(); / / serve the Clock Tick
TIMER0_IR = 0x01;
VICVectAddr = 0; // clear the interrupt

}

4. Time functions

The µC/OS-II provides five basic functions for implementing time management. They are:

OSTimeDly()

OSTimeDlyHMSM()

OSTimeDlyResume()

OSTimeGet()

OSTimeSet()

OSTimeDly() and OSTimeDlyHMSM() allow the calling task to delay itself for a
user-specified time. OSTimeDly() calculates the number of ticks to delay: a value between
1 and 65535. OSTimeDlyHMSM() allows you to specify time in hours, minutes, seconds
and milliseconds which is more ‘natural’.
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 9 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
OSTimeDlyResume() is used to resume a task that delayed itself. There will be another
task to cancel the delay and make the delayed task ready-to-run.

When a Clock Tick occurs, µC/OS-II increments a 32-bit counter. At a tick rate of 100 Hz,
this 32-bit counter rolls over every 497 days. OSTimeGet() can be used to get the value of
this counter. You can also change the value of the counter by OSTimeSet().

Before using these functions, you have to give a configuration in os_cfg.h as follows:

#define OS_TIME_DLY_HMSM_EN 1 //Include OSTimeDlyHMSM()
#define OS_TIME_DLY_RESUME_EN 1 //Include OSTimeDlyResume()
#define OS_TIME_GET_SET_EN 1 //Include OSTimeGet()and OSTimeSet()

Here is an example of how to implement time management. In the sample application, two
tasks are created: TaskMain is used to print out a string and TaskGTime gets OS time and
prints it out. By calling function OSTimeDly(), both tasks are delayed for 50 Clock Ticks
before continuing.

To implement string print-out, a serial communication interface UART port is used to
output some information with which time management of the µC/OS-II can be easily
understood.

#define STACKSIZE 128

unsigned int TaskMainStack[STACKSIZE];
unsigned int TaskGTimeStack[STACKSIZE];

/**
; Function: SystemInit()
; Parameters: void
; Return: void
; Descript ion: Init ial ize system according to your appl ication
**/
void SystemInit(void){

LPC_UART_config_t Uart0_Config;

/ /system clock init ial izat ion
TIMER0_InitTimer();

/ /Serial port 0 init ial izat ion
Uart0_Config.BaudRate = BD9600;
Uart0_Config.WordLenth = WordLength8;
Uart0_Config.Stopbit=OnebitStop;
Uart0_Config.ParityEnable = 0;
Uart0_Config.BreakEnable = 0;
Uart0_Config.FIFOEnable = 1;
Uart0_Config.FIFORxTriggerLevel = FIFORXLEV2;
Uart0_Config.InterruptEnable= IER_RBR | IER_THRE; // | IER_THRE ;// | IER_RLS;
Uart_Init(LPC_UART0, &Uart0_Config);

}
/**
; Function: TaskMain()
; Parameters: void *
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 10 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
; Return: void
; Descript ion: Task TaskMain main body
**/
void TaskMain(void *i){

SystemInit(); / / ini t ial ize t imer0 and uart0 port
while(1){

CommSendString(COMM1,"TaskMain running.\r\n");
OSTimeDly(50);

}
}

/**
; Function: TaskGTime()
; Parameters: void *
; Return: void
; Descript ion: Task TaskGTime main body. I t wi l l get OS t ime and display i t .
**/
void TaskGTime(void *i){
INT32U tvalue,x;

char tnumber,narray[15];

while(1){
CommSendString(COMM1,"TaskGTime running.\r\n");
CommSendString(COMM1,"OSTime is:");

tvalue=OSTimeGet();
x=0;
for(; ;){

tnumber=tvalue%10;
narray[x]=0x30+tnumber;
tvalue=tvalue/10;
i f(tvalue==0)

break;
x++;

}
for(; ;){

CommPutChar(COMM1, narray[x],0);
i f(x<=0)

break;
x--;

}
CommSendString(COMM1, "\r\n");
OSTimeDly(50);

}
}

/**
; Function: main()
; Parameters: void
; Return: void
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 11 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
; Descript ion: OS init ial izat ion, task creation and OS start.
**/
int main(void){

OSInit();

OSTaskCreate(TaskMain, (void *)0, (OS_STK *)&TaskMainStack[STACKSIZE - 1], 5);
OSTaskCreate(TaskGTime, (void *)0, (OS_STK *)&TaskGTimeStack[STACKSIZE - 1], 7);
OSStart();

}

In the above sample code, both tasks are delayed for 50 Clock Ticks by calling
OSTimeDly(). If you want to specify time in seconds, such as one second, you can use
function OSTimeDlyHMSM() to rewrite it. For example, TaskMain() can be written as
follows:

void TaskMain(void *i){
SystemInit(); / / ini t ial ize t imer0 and uart0 port
While(1){

CommSendString(COMM1,"TaskMain running.\r\n");
OSTimeDlyHMSM(0,0,1,0);

}
}

In order to print the message on a PC, a hardware connection is required as shown in
Figure 1.

HyperTerminal Software on the PC can now be started. Setting of the software is shown in
Figure 2.

Fig 1. Serial port connection

001aag681

DEVELOPMENT
BOARD

PC
serial link
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 12 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
Now the system has been configured, run the code on the LPC2xxx. Figure 3 shows the
printed messages.

Because TaskMain has a higher priority than TaskGTime, TaskMain runs first and prints
out ‘TaskMain running.’. Calling OSTimeDly() causes TaskMain to delay itself for 50 Clock
Ticks. A context switch occurs. TaskMain is pending and TaskGTime, the next highest
priority ready-to-run task, starts to run. It prints out ‘TaskGTime running.’ and the OS time.
OSTimeDly() also delays TaskGTime for 50 Clock Ticks. So from the printed messages,
we can see that both tasks run alternately. The printed OS time is increased by 50 Clock
Ticks which is equal to the programmed delay time.

Fig 2. Setting of HyperTerminal Software

001aag682
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 13 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
5. Abbreviations

Fig 3. Printed messages

001aag683

Table 3. Abbreviations

Acronym Description

ARM Advanced RISC Machine

ATM Automated Teller Machine

FIQ Fast Interrupt Request

ISR Interrupt Service Request

MAM Memory Accelerator Module

MCU MicroController Unit

SVC Supervisor

UART Universal Asynchronous Receiver Transmitter

UND Undefined

VIC Vectored Interrupt Controller

VPB VLSI Peripheral Bus

VPBDIV VLSI Peripheral Bus Divider
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 14 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
6. Legal information

6.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.

6.2 Disclaimers

General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such
information and shall have no liability for the consequences of use of such
information.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected to
result in personal injury, death or severe property or environmental damage.
NXP Semiconductors accepts no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore
such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

6.3 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
AN10413_2 © NXP B.V. 2007. All rights reserved.

Application note Rev. 02 — 18 July 2007 15 of 16

NXP Semiconductors AN10413
µC/OS-II time management in LPC2000
7. Contents

1 Introduction . 3
2 Initialization . 3
2.1 Exception vector table. 3
2.2 System configuration . 5
2.3 Timer initialization . 6
3 Clock tick ISR . 8
3.1 Timer0 ISR . 9
4 Time functions . 9
5 Abbreviations . 14
6 Legal information. 15
6.1 Definitions . 15
6.2 Disclaimers . 15
6.3 Trademarks . 15
7 Contents . 16
© NXP B.V. 2007. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 July 2007

Document identifier: AN10413_2

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.

	1. Introduction
	2. Initialization
	2.1 Exception vector table
	2.2 System configuration
	2.3 Timer initialization

	3. Clock tick ISR
	3.1 Timer0 ISR

	4. Time functions
	5. Abbreviations
	6. Legal information
	6.1 Definitions
	6.2 Disclaimers
	6.3 Trademarks

	7. Contents

