

AN10775
NicheLite for LPC implementation notes

Rev. 02 — 13 July 2009 Application note

Document information

Info Content

Keywords Network, Ethernet, TCP/IP Stack, LPC2400, LPC3250

Abstract This application note discusses implementation details when using the
NicheLite for LPC TCP/IP stack in a project. Aspects discussed include
memory management, stack operation and customization.

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 2 of 17

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

02 20090713 Added URL for NicheLite download.

01 20081219 First version.

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

1. Introduction
Several members of the NXP LPC2000 series flash microcontrollers provide an on-chip
Ethernet controller, allowing easy connection to a network. The “NicheLite for LPC”
source code, which is a variant of the full stack available from InterNiche, is available for
free download from NXP’s website:
http://www.standardics.nxp.com/support/software/nichelite/

The advantage of using the NicheLite for LPC stack is that it is royalty free and it is
already ported to the LPC2000 family. However embedded engineers still have to
integrate the stack with their application. Integration considerations include performance
and memory usage.

This application note assumes basic knowledge of TCP/IP protocols, such as IP, TCP
and UDP. It is intended to complement the documentation from InterNiche, and not
replace any such documentation.

2. Packets
This section describes aspects related to packets. Data is transferred across the network
in packets, which can be up to the Maximum Transfer Unit (MTU) in size.

2.1 Packet Allocation and Deallocation
All data in and out of the TCP/IP stack is transferred using packets. Packets contain the
Ethernet header, the IP header and additional data depending on the protocols used.
The packets are allocated from the heap when the stack starts executing and remain
allocated for the runtime of the firmware. All packets are placed into a pool of free
packets after allocation. They are moved out of the free pool when they are used by the
stack and back into the free pool when they are no longer needed by the stack.

2.1.1 Packet Types and Configuration
There are two types of packet in the NicheLite implementation, big and little (“lil” in the
stack source code). The number and maximum size of each type is defined in ipport.h.

Table 1. Packet Configuration Identifiers
Identifier Description

NUMBIGBUFS Total number of big packets

BIGBUFSIZE Size of big packets in octets

NUMLILBUFS Total number of little packets

LILBUFSIZE Size of little packets in octets

When a packet is needed by a protocol pk_alloc is called. This function uses a little
packet if the data size for the packet is small enough, otherwise it uses a big packet. If all
the little packets are in use then a big packet will be used.

The identifiers can be adjusted to optimize packet usage for the specific embedded
system. If a lot of small packets will be sent then it may be beneficial to increase the
number of little packets and reduce the number of big packets, for example.

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 3 of 17

http://www.standardics.nxp.com/support/software/nichelite/

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

2.2 Increasing the Total Number of Packets
The maximum packet size (MTU) is set to a typical value, such as 1514 bytes. This
allows data up to the MTU in size be transmitted across most networks without
fragmentation.

It can be desirable to increase the number of packets available in an embedded system
to allow for increased concurrent communications to take place. Care must be taken to
ensure that at no point in time all packets are in use and another is needed.

For example an embedded system may have a TCP based control channel, an IGMP
management system and a TELNET based interface. In the worst case all three
communication interfaces will be transmitting and receiving packets at the same time.
The problem becomes more critical if the embedded system needs to stream
unconfirmed packets of data.

The solution is to increase the number of packets available to the stack. This is possible
by decreasing the maximum packet size that the embedded system can handle.

By changing the MTU the system will not be able to transmit or receive packets above
that size, but more packets can fit into the available memory. Configuring the maximum
packet size in the NicheLite stack configures the Ethernet Maximum Frame Register
(MAXF), which will cause the Ethernet controller to reject packets above this size without
interrupting the CPU.

How can the maximum packet size be determined? This is achieved by examining the
existing protocols that will be needed, such as DHCP, along with careful design of
custom protocols. The following table indicates the typical data sizes for commonly used
protocols.

Table 2. Typical Protocol Data Sizes
Protocol Data Size (octets)

DHCP (must have a minimum of 312 octets of
options)

548

ARP 28

To these values the UDP header, IP header and Ethernet header lengths must be added
to get the largest packet size. Some examples are in the following table.

Table 3. Typical Header Sizes
Protocol Header Size (octets)

UDP 8

IP 24 (depending on options used)

Ethernet 22

For example DHCP packets might be 548 + 8 + 24 + 22 = 602 octets in size. Note that
not all protocols are built upon UDP.

2.2.1 Stack Configuration
To change the maximum size of packets supported by the Ethernet controller and the
stack:
• In ipport.h change BIGBUFSIZE to the maximum packet size, including all headers

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 4 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

• In ether.h change MTU and ET_MAXLEN to BIGBUFSIZE minus 22 (the size of the
Ethernet header

2.2.2 Testing
It is recommended to stress test the embedded system in order to produce the worst
case scenario in terms of packets in use at any moment in time.

2.3 Runtime Monitoring
The usage of packets can be monitored during runtime when using a suitable debug
interface, such as JTAG or an In-Circuit Emulator.

Access to some internal data is also available via the default serial interface system,
however because the interface may affect performance and may not be needed or
desired for production firmware, it may be disabled. Using a system such as JTAG
provides more flexibility during debugging, and is recommended.

2.3.1 Detailed Packet Usage
In ipport.h ensure NDEBUG is defined. This allows access to the pktlog array, defined in
pktalloc.c. Create a watchpoint on pktlog to access the contents when execution is
stopped.

Fig 1. Watching pktlog

The first NUMBIGBUFS (see ipport.h) entries in the array are the big packets. The
remaining entries are the little packets. For example if NUMBIGBUFS is set to 10, then
packets zero to nine will be big, followed by the little packets.

The packet data is located at nb_buff. This includes Ethernet and IP headers. Higher
layer protocol data is stored at m_data, and has a length of m_len. If a packet is currently
in use by the stack then the inuse member will be non-zero. The fhost member contains
the IP address of the remote host.

By looking at fhost, inuse, m_data and m_len it is possible to understand the purpose of
all the packets in the system when execution is paused.

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 5 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

All members of the netbuf structure are briefly described in netbuf.h.

2.3.2 Total Packet Count
By adding a few lines of code to pktalloc.c it is possible to make debugging packet usage
a little easier. The method involves creating two variables to hold the current number of
packets of each type in use.

In pktalloc.c create two variables to keep count.

1 int bigbuffree = NUMBIGBUFS;
2 int lilbuffree = NUMLILBUFS;

In the pkt_alloc function add two lines to decrement the counters.

3 if ((len > lilbufsiz) || (lilfreeq.q_len == 0)) /* must use a big buffer */
4 {
5 p = (PACKET)getq(&bigfreeq);
6 if (p) bigbuffree--;
7 }
8 else
9 {
10 p = (PACKET)getq(&lilfreeq);
11 if (p) lilbuffree--;
12 }

In the pkt_free function add two lines to increment the counters.

13 if (pkt->nb_blen == bigbufsiz)
14 {
15 q_add(&bigfreeq, (qp)pkt);
16 bigbuffree++;
17 }
18 else
19 {
20 q_add(&lilfreeq, (qp)pkt);
21 lilbuffree++;
22 }

The counters can be watched during runtime to monitor the usage of both packet types
under various conditions.

2.3.3 Packet Statistics
The NicheLite stack provides a structure containing statistics on the packets. This
includes such aspects as the number of packets transmitted and received and the
number of packets discarded. This is very useful for determining if there might be unseen
data processing problems.

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 6 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

Fig 2. Watching ip_mib

The ip_mib structure is defined in m_ip.c.

3. TCP
This section describes various aspects of the TCP implementation in the NicheLite stack
and how to accomplish specific tasks.

3.1 Retransmits
If the embedded system periodically sends segments of data to a remote host, and the
segments are not acknowledged, then they are automatically retransmitted up to 12
times. The time between retransmits increases each time. During this time the memory
remains allocated for the Ethernet packet containing the segment.

TCP has the ability to transmit additional segments while handling retransmits for other
segments. If the connection is broken or the remote host crashes, there could be an
increasing backlog of segments going through the retransmit process. In the worst case
all Ethernet packet buffers will be exhausted. This problem could be exacerbated if the
embedded system periodically transmits TCP segments.

It is possible to change the number of retransmits using the TCP_MAXRXTSHIFT
identifier defined in mtcp.h. Whether this is a suitable change depends on the application
being developed.

It is recommended that a TCP based protocol implement a command/response
sequence for controlling the flow of data. This would allow failure of the network or
remote host to be detected before additional TCP segments are transmitted.

Note that closing a connection causes the stack to free all pending packets for the
connection.

An alternative method is to use TCP keepalives to detect a broken connection.

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 7 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

3.2 Keepalives
Keepalives are small messages periodically sent between two hosts to inform each end
that the connection is operational.

Suppose a remote host opens a TCP connection to the embedded system. While the
connection is open there is no indication that the connection is functional unless data is
sent. If the remote host crashes or the network connection is broken the embedded
system will not know about it. This can cause two potential problems.
• Any packets in the process of being assembled for transmission to the remote host

can get stuck in limbo, causing a memory leak
• The socket for the connection to the remote host is never closed, causing a memory

leak

Although the memory leak may be slow, if the embedded system is required to have
100% uptime, the system could run out of RAM after months of operation.

There are three aspects to using TCP keepalives in the NicheLite stack.
• How to enable the feature for specific sockets
• The default timing follows RFC1122, which is probably too long for most embedded

systems
• There is a minor issue in the implementation in some versions of the stack

The following subsections deal with each of these aspects in turn.

3.2.1 Enabling Keepalives
Typically socket options are enabled and disabled using the m_ioctl function, however
the NicheLite implementation of this function does not support enabling keepalives.
Therefore the feature must be enabled directly. Alternatively the m_ioctl function is easily
modified to add this option.

Calling m_listen or m_connect returns a pointer to a socket. The option is enabled by
using the so_options member.

23 WP_SOCKTYPE sock;
24 sock = m_listen(&sin, upcall, &e);
25 // enable keep alives
26 sock->so_options |= SO_KEEPALIVE;

3.2.2 Adjusting Timing
As previously mentioned, the default timing for keepalives follows the Internet standard
RFC1122. The timing values are defined in mtcp.h and are listed in the following table.

Table 4. TCP Keepalive Timing Identifiers
Identifier Description

TCPTV_KEEP_INIT The time during which the connection must
be established

TCPTV_KEEP_IDLE Default time before probing

TCPTV_KEEPINTVL Default probe interval

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 8 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 9 of 17

Identifier Description

TCPTV_KEEPCNT Max probes before drop

When modifying these values be aware that TCPTV_KEEP_INIT may be defined twice,
depending on the version of the NicheLite stack.

As an example, the default value of TCPTV_KEEP_IDLE is two hours. This means that if
no data is received for two hours then keepalives will be transmitted. In a typical
embedded system a more appropriate value might be one minute.

The number of keepalive probes that go unacknowledged before the stack drops the
connection is also configurable. The best strategy is probably to work out the maximum
time that the system can commit RAM to a dead connection, and then work out
appropriate keepalive values to achieve that requirement.

Note that these timing settings apply to all connections that have keepalives enabled.

3.2.3 Fixing Sequence Number Issue
This section might not apply to your version of the NicheLite stack.

RFC1122 states that the keepalive message must have a sequence number of one less
than the next expected sequence number. The NicheLite stack may send the next
sequence number instead. Those keepalives will not be acknowledged by some TCP/IP
stacks, including the implementation in Windows XP.

In function tcp_output in tcpout.c, change the following lines

27 /* set seq for a BSD-ish keepalive */
28 ptcp->th_seq = ((tp->snd_nxt >> 24) & 0x00ff) |
29 ((tp->snd_nxt >> 8) & 0xff00) |
30 ((tp->snd_nxt & 0xff00) << 8) |
31 ((tp->snd_nxt & 0x00ff) << 24);

to the following

32 /* set seq for a BSD-ish keepalive */
33 ptcp->th_seq = (((tp->snd_nxt - 1) >> 24) & 0x00ff) |
34 (((tp->snd_nxt - 1) >> 8) & 0xff00) |
35 (((tp->snd_nxt - 1) & 0xff00) << 8) |
36 (((tp->snd_nxt - 1) & 0x00ff) << 24);

3.2.4 Detecting Dropped Connections
When a connection is dropped because keepalives were not being acknowledged the
TCP callback function will be called with an event code of M_CLOSED. The socket error
will be set to ETIMEDOUT.

37 case M_CLOSED:
38 if (so->error == ETIMEDOUT)
39 {

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

40 // connection dropped by stack
41 }
42 break;

Note that there is no need to call m_close as the socket will automatically be closed by
the stack.

4. UDP
This section contains brief notes on using the UDP layer.

4.1 Return Values When Sending UDP Datagrams
The first time udp_send is called for a specific host the stack may have to go through the
ARP process to find out information about the host. If this is the case then the udp_send
function will return ENP_SEND_PENDING. This is defined with the value of one, and
isn’t an error condition. Therefore to check for errors returned by the function only
negative numbers should be considered.

43 If (udp_send(port1, port2, packet) < 0)
44 {
45 // UDP send error
46 }

4.2 UDP Callback Function
To avoid a memory leak, the udp_free function must be called in the UDP callback
function when the packet of data has been processed. This is demonstrated in the DHCP
client example supplied with the NicheLite stack.

5. Sockets
This section contains notes and issues relating to the use of sockets. When a connection
is opened or listened for, a socket is created. The socket is a data structure describing
the status of the connection and providing a means of transmitting to a remote host.

5.1 Freeing Allocated Memory
When a connection is closed the memory allocated to the description of the socket must
be freed. It is possible that there is a delay between the connection closing and the
memory being freed. If the embedded system is handling enough connection and
disconnection requests there could be a memory leak as the list of pending sockets to be
freed increases.

It is possible to force the stack to free the memory for the socket immediately. This is
handled in the TCP callback function when the event code is M_CLOSED. The following
code demonstrates how this is achieved.

47 case M_CLOSED:
48 if (so->error != ETIMEDOUT)

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 10 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

49 {
50 so->so_options |= SO_LINGER;
51 so->linger = 0;
52 }
53 break;

Note that the SO_LINGER option should not be used if the stack closed the connection
due to a timeout condition.

5.2 Runtime Monitoring
The usage of sockets can be monitored during runtime when using a suitable debug
interface, such as JTAG or an In-Circuit Emulator.

Access to some internal data is also available via the default serial interface system,
however because the interface may affect performance and may not be needed or
desired for production firmware, it may be disabled. Using a system such as JTAG
provides more flexibility during debugging, and is recommended.

5.2.1 Socket Usage
Details of how many sockets are in use and what for may be obtained by watching the
msoq linked list defined in tcputil.c.

Fig 3. Watching msoq

The member q_len is the size of the list, i.e. the number of sockets in use. The q_max
member is the highest number of sockets that have been in use since the stack started
executing.

6. Stack Configuration
It may be necessary to configure aspects of how the TCP/IP stack behaves for tight
integration into an application. This section describes some aspects of this process.

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 11 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

6.1 IP Address Configuration
A common requirement for embedded systems that use a TCP/IP stack is to allow for the
end user to configure the IP address, and whether the IP address is fixed (static) or
obtained from the network (dynamic) using a DHCP server.

For example the system may provide a HTTP or TELNET based interface allowing the IP
address to be configured. This is necessary due to the wide variation in networks that the
system may be installed into.

The configuration of the IP address is performed in the function pre_task_setup in
in_stubs.c. The following is a code snippet of the relevant section.

54 #ifdef DHCP_CLIENT
55 netstatic[i].n_flags |= NF_DHCPC;
56 netstatic[i].n_ipaddr = 0x00000000; /* 0.0.0.0 */
57 #else
58 netstatic[i].n_ipaddr = 0x6400000A; /* 10.0.0.100 */
59 #endif
60 netstatic[i].snmask = 0x000000FF; /* 255.0.0.0 */
61 netstatic[i].n_defgw = 0x0100000A; /* 10.0.0.1 */
62 i++;

This section of code configures the netstatic array for the Ethernet interface number i. If a
dynamic IP address is to be used then NF_DHCPC is ORed with n_flags and the
n_ipaddr value is ignored. If a static IP address is to be used then it is placed into
n_ipaddr.

The snmask contains the IP network mask and n_defgw contains the default gateway for
the network.

To allow these values to be configurable these lines need to be replaced with code that
can obtain the current configuration, perhaps from non-volatile memory. The following is
an example for illustrative purposes.

63 // configure static/dynamic ip address based on nvol settings
64 if (NVol_UseStaticIP())
65 {
66 NVol_GetStaticIP(staticip);
67 netstatic[i].n_ipaddr = ((unsigned long)staticip[3] << 24) |
68 ((unsigned long)staticip[2] << 16) |
69 ((unsigned long)staticip[1] << 8) |
70 (unsigned long)staticip[0];
71 }
72 else
73 {
74 netstatic[i].n_flags |= NF_DHCPC;
75 netstatic[i].n_ipaddr = 0x00000000;
76 }
77 i++;

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 12 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

6.2 MAC Address Configuration
Every Ethernet controller must have a unique MAC address, which is assigned by the
IEEE, and this value must be supplied to the TCP/IP stack.

The default hard-coded MAC address for the NicheLite stack is defined in the eth_info
array, which is initialized in emac.c. Because it typically isn’t practical to compile different
source code for each copy of a product, this method will likely need to be adjusted. For
example the eth_info array could be located at a specific location in flash memory,
allowing patching of the hex file on the production line.

An alternative approach is to store the MAC address in non-volatile memory and supply it
to the stack during initialization. This would allow for more flexibility in configuration of the
MAC address.

The MAC address should be assigned to the mac_addr member of the eth_info array
inside the eth_init function in emac.c. The following code snippet is an example for
illustrative purposes.

78 // get MAC address from NVol module
79 if (!NVol_GetMACAddress((unsigned char *)&(eth_info[dev].mac_addr)))
80 {
81 dprintf("*** failed to get mac address, cannot init ethernet\n");
82 return (-1);
83 }

Note that this should be performed before the mac_addr member is used for the first time
in the eth_init function.

7. Implementing Raw Send Functionality
Embedded systems often need access to lower level functionality, especially in situations
were optimization is required or out-of-the-ordinary operations need to take place.

The NicheLite stack does not provide a single interface for the application to construct IP
datagrams from scratch, but it is possible. Note that this approach relies on the internal
data structures used by the stack, which could change in future versions.

7.1 Example For A Custom Protocol
The following code listing demonstrates how to send an IP datagram containing a custom
protocol by directly constructing an IP datagram. The protocol is called MYPROT and
contains some data along with an IP-style checksum.

1 PACKET p;
2 struct arptabent tp;
3 struct ip *ip_header;
4 char *pprot;
5 struct myprot *myprot_data;
6
7 // allocate memory for packet
8 LOCK_NET_RESOURCE(FREEQ_RESID);
9 p = pk_alloc(ETHHDR_SIZE + sizeof(struct ip) + IP_OPTIONS_LEN + sizeof(struct myprot));

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 13 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

10 UNLOCK_NET_RESOURCE(FREEQ_RESID);
11 if (!p)
12 {
13 dprintf("Failed to allocate memory for MYPROT packet\n");
14 return;
15 }
16
17 // get start of IP/protocol data buffer
18 p->nb_prot = p->nb_buff + ETHHDR_SIZE;
19 // set length of IP/MYPROT data
20 p->nb_plen = sizeof(struct ip) + IP_OPTIONS_LEN + sizeof(struct myprot);
21 // set destination host
22 p->fhost = MYPROT_HOST;
23 // use first ethernet interface
24 p->net = nets[0];
25
26 // store IP header
27 ip_header = (struct ip *)p->nb_prot;
28 ip_header->ip_ver_ihl = 4 << 4; // IP version 4
29 ip_header->ip_ver_ihl |= (sizeof(struct ip) + IP_OPTIONS_LEN) / 4; // length of IP header in 32-bit

words
30 ip_header->ip_tos = 0x00; // default
31 ip_header->ip_len = HTONS(24 + sizeof(struct myprot)); // total message length
32 ip_header->ip_id = (unshort)((uid >> 8) | (uid << 8)); // IP datagram ID
33 ip_header->ip_flgs_foff = 0x0000; // no flags
34 ip_header->ip_time = 64; // TTL
35 ip_header->ip_prot = MYPROT_PROT; // MYPROT message
36 ip_header->ip_chksum = IPXSUM; // checksum - zero for calculation
37 ip_header->ip_src = m_netp->n_ipaddr; // our IP address
38 ip_header->ip_dest = MYPROT_HOST; // destination
39 // add IP options (IP_OPTIONS_LEN bytes in size)
40 pprot = p->nb_prot + sizeof(struct ip);
41 pprot[0] = 0x94; // router alert option
42 pprot[1] = 0x04;
43 pprot[2] = 0x00;
44 pprot[3] = 0x00;
45 pprot += IP_OPTIONS_LEN;
46
47 // calculate and store IP header checksum
48 ip_header->ip_chksum = ~cksum(ip_header, sizeof(struct ip) + IP_OPTIONS_LEN);
49
50 // increment id for next datagram
51 uid++;
52
53 // store MYPROT data
54 myprot_data = (struct myprot *)pprot;
55 myprot_data->type = 0x01;
56 myprot_data->resptime = 0x02;
57 myprot_data->checksum = IPXSUM;
58
59 // calculate and store MYPROT checksum

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 14 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

60 myprot_data->checksum = ~cksum(myprot_data, sizeof(struct myprot));
61
62 // destination MAC address
63 tp.t_phy_addr[0] = 0x01;
64 tp.t_phy_addr[1] = 0x00;
65 tp.t_phy_addr[2] = 0x5E;
66 tp.t_phy_addr[3] = 0x7F;
67 tp.t_phy_addr[4] = 0xFF;
68 tp.t_phy_addr[5] = 0xFF;
69
70 // add ethernet header and send it
71 if (et_send(p, &tp) != 0)
72 {
73 dprintf("Failed to send MYPROT message\n");
74 return;
75 }

Line 9: allocates memory for the packet. The total size is made up of the Ethernet
header, IP header, IP options and MYPROT data.

Lines 18 - 24: some members of the packet need to be initialized. nb_prot is set to point
to the start of the IP header.

Lines 27 – 44: configure the IP header for the message. This includes a TTL value and
the protocol number for the custom protocol.

Lines 54 – 57: the data is filled in for the custom protocol.

Lines 63 – 68: the MAC address for the destination is filled in. Alternatively the stack can
be instructed to go through the ARP process and automatically determine the destination
MAC address.

8. Versions Used
This application note was developed with the following software versions:

• NicheLite for LPC revision 1.02
• Keil RealView MDK-ARM version 3.20

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 15 of 17

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

 AN10775_2 © NXP B.V. 2009. All rights reserved.

Application note Rev. 02 — 13 July 2009 16 of 17

9. Legal information

9.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

9.2 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations
or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of
such information.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is for the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

9.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10775
 NicheLite for LPC implementation notes

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

 © NXP B.V. 2009. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, email to: salesaddresses@nxp.com

Date of release: 13 July 2009
Document identifier: AN10775_2

10. Contents

1. Introduction ...3
2. Packets...3
2.1 Packet Allocation and Deallocation3
2.1.1 Packet Types and Configuration3
2.2 Increasing the Total Number of Packets4
2.2.1 Stack Configuration..4
2.2.2 Testing ...5
2.3 Runtime Monitoring ..5
2.3.1 Detailed Packet Usage.......................................5
2.3.2 Total Packet Count...6
2.3.3 Packet Statistics...6
3. TCP ...7
3.1 Retransmits ..7
3.2 Keepalives..8
3.2.1 Enabling Keepalives...8
3.2.2 Adjusting Timing...8
3.2.3 Fixing Sequence Number Issue9
3.2.4 Detecting Dropped Connections9
4. UDP...10
4.1 Return Values When Sending UDP Datagrams

...10
4.2 UDP Callback Function10
5. Sockets ..10
5.1 Freeing Allocated Memory10
5.2 Runtime Monitoring ..11
5.2.1 Socket Usage...11
6. Stack Configuration ..11
6.1 IP Address Configuration12
6.2 MAC Address Configuration.............................13
7. Implementing Raw Send Functionality............13
7.1 Example For A Custom Protocol13
8. Versions Used ...15
9. Legal information ..16
9.1 Definitions ..16
9.2 Disclaimers...16
9.3 Trademarks ..16
10. Contents...17

	1. Introduction
	2. Packets
	2.1 Packet Allocation and Deallocation
	2.1.1 Packet Types and Configuration

	2.2 Increasing the Total Number of Packets
	2.2.1 Stack Configuration
	2.2.2 Testing

	2.3 Runtime Monitoring
	2.3.1 Detailed Packet Usage
	2.3.2 Total Packet Count
	2.3.3 Packet Statistics

	3. TCP
	3.1 Retransmits
	3.2 Keepalives
	3.2.1 Enabling Keepalives
	3.2.2 Adjusting Timing
	3.2.3 Fixing Sequence Number Issue
	3.2.4 Detecting Dropped Connections

	4. UDP
	4.1 Return Values When Sending UDP Datagrams
	4.2 UDP Callback Function

	5. Sockets
	5.1 Freeing Allocated Memory
	5.2 Runtime Monitoring
	5.2.1 Socket Usage

	6. Stack Configuration
	6.1 IP Address Configuration
	6.2 MAC Address Configuration

	7. Implementing Raw Send Functionality
	7.1 Example For A Custom Protocol

	8. Versions Used
	9. Legal information
	9.1 Definitions
	9.2 Disclaimers
	9.3 Trademarks

	10. Contents

