

 AN11285
Writing a flash programming algorithm for unsupported
devices
Rev. 1 — 6 November 2012 Application note

Document information
Info Content
Keywords LPC43xx, LPC18xx, MCB4300, MCB1800, MCB1857, MCB4357, FLM,

external flash, LPCXpresso flash programming

Abstract The Application Note describes the steps involved in writing a flash
programming algorithm for unsupported Cortex -M devices. The algorithm
will be used in conjunction with the LPCXpresso IDE to flash the binary
files onto the Flash memory on the board. The accompanied project
implements a Flash Programming algorithm for the MCB1800/4300.

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 2 of 18

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20121106 Initial version.

http://www.nxp.com/�
mailto:salesaddresses@nxp.com�

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 3 of 18

1. Introduction
The LPCXpresso IDE uses either built-in, or user loadable flash drivers. The existing
built-in support is typically for parts with internal flash, and no external bus. If the need to
support an unsupported device arises, it is possible to write your own driver file or adapt
an existing Code Red example. This application note explains the procedure to adapt an
existing flash programming algorithm project for the Cortex-M processors (.CFX file). The
flash programming algorithm is written using LPCXpresso IDE. The LPCLink debugger is
used to program the external flash.

The MCB4300/1800 development board is used as the target board. The LED blinky
code is programmed using the .CFX file. The MCB4300/1800 development board
contains the NXP LPC4357/1857 ARM Cortex-M3 processor.

The features of this board are:
• 180 MHz ARM Cortex-M3 processor-based MCU in LBGA256
• On-chip SRAM: 136 kB (LPC1857), 200 kB (LPC1850)
• On-chip flash: 1 MB dual bank (LPC1857), no on-chip flash (LPC1850)
• On-board memory: 16 MB NOR flash, 4 MB Quad-SPI flash, 16 MB SDRAM, and

16 kB EEPROM (I2C)
• Color QVGA TFT LCD with touch screen.
• 10/100 Ethernet port
• High-speed USB 2.0 host/device/OTG interface (USB host + micro USB device/OTG

connectors)
• Full-speed USB 2.0 host/device interface (USB host + micro USB device connectors)
• CAN interfaces
• Serial/UART port
• MicroSD card Interface
• Four user push-buttons and one reset button
• Digital temperature sensor (I2C)
• Analog voltage control for ACD input
• Audio CODEC with line-in/out and microphone/headphone connector + speaker
• Debug interface connectors

− 20-pin JTAG (0.1 inch)
− 10-pin Cortex debug (0.05 inch)
− 20-pin Cortex debug + ETM Trace (0.05 inch)

This application note describes the following:
• Finding the required hardware lines.
• Creating the CFX project.
• Writing the plash programming algorithm.
• Flashing a binary file using the CFX file and verifying it.

http://www.keil.com/coresight/connectors.asp�

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 4 of 18

2. Finding the required hardware lines
The external flash memory has 32-bit wide data lines (two 16-bit memory modules
cascaded to form a 32-bit wide memory) and 24-bit wide address lines. The memory chip
has 22 physical address lines, but address lines, A[23:2], of the MCU are connected to
address lines A[21:0] of the memory. The address lines A[1:0] of the MCU also need to
be multiplexed because the MCU accesses the memory at word boundaries, although
they are never used. The LPC1857 supports up to 32-bit address and data lines which
need to be configured.

Fig 1. Schematic showing the connections required for the flash memory used

The control lines CS#, OE# and WE# are also to be configured. Each of the two
cascaded memory chip data lines are 16-bit wide. The lower two bytes of the data word
are connected to one of the chips and the upper two bytes are connected to the other.
This allows the MCU to see the data bus width as 32 bits.

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 5 of 18

3. Creating the flash programming algorithm
The LPCXpresso IDE allows creation of flash programming algorithms for unsupported
devices. The algorithm source code is implemented as a project with special compiler
and linker settings. The LPCXpresso IDE comes with the projects for programming the
external flash on the Hitex board. This project can be used as a template to create
projects for different boards.

Your flash driver project as a minimum should include six source/header files. These are:
1. crt_flash_if.c – MemoryDevice_t data definition (do not edit)
2. crt_flash_if.h – struct FlashDevice, MemoryDevice_t, and Flash API declarations (do

not edit)
3. FlashPrg.c – Flash API implementation
4. FlashDev.c – struct FlashDevice data definition(s).
5. main.c – RAM resident test harness used to exercise the Flash API. A test harness

can typically use the linker scripts created by the Code Red IDE Wizard.
6. cr_startup_xx.c – Part-specific startup code included for use with the test harness

(e.g. cr_startup_lpc18xx.c, cr_startup_lpc178x.c, etc.). In the standalone flash driver
build, the Init Flash API may need to duplicate part of the standard startup sequence.

The flash driver project may include multiple configurations. As a minimum, you’ll need a
debug configuration for the test harness, and separate configurations for each flash
device. If multiple flash configurations are supported, you can use conditional compilation
directives where appropriate in FlashDev.c and FlashPrg.c for each project configuration.

The following steps show how to create a new flash programming algorithm:
• Navigate to the directory

C:\nxp\LPCXpresso_version\lpcxpresso\Examples\FlashDrivers\NXP\LPC18xx_43xx
• Unzip the folder LPC1850A_4350A_Hitex_SST39VF3201B. The project folder

created is the external flash programming algorithm for the Hitex board. (This step is
optional)

• Rename this if desired. (This step is optional)
• Open the project in the LPCXpresso IDE. (Either import the unzipped folder or import

the zip file)
• Rename the project if desired
• Go to project properties->C/C++ Build->Settings and select the Build artifact tab

(Shown in Fig 2).
• In the Settings, select the “FlashDriver_XXMB” configuration
• Change the artifact name
• Change the artifact extension to “cfx”. Once these steps are complete press the OK

button in the dialog box and close the properties window.

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 6 of 18

Fig 2. Build artifact settings window

• Adapt the programming algorithms in the file FlashPrg.c.
• Adapt the device parameters in the file FlashDev.c.
• Build the project. To do this select the project and select the Project menu and select

the Build project option. This builds the corresponding cfx file in the project folder.

4. Writing the flash programming algorithm
The flash programming algorithm consists of the flash driver API (FlashPrg.c) and
FlashDevice data (FlashDev.c) declared in the FlashDevice Structure (crt_flash_if.h).
The flash API is a standard interface known to select Code Red IDE debug utilities. If a
driver file is provided to the debug session then the utility will attempt to use it for in-
application flash programming.

The FlashPrg.c has various functions.

The mandatory functions are:
• Init()
• UnInit()
• EraseSector()
• ProgramPage()

The optional functions are:
• EraseChip()
• BlankCheck()
• Verify()

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 7 of 18

The init() function is responsible for the main initializations required. The first three calls
(for every operation) from the host-side are made to this function. It's called three times
successively, one each for erase/program/verify. The separate calls support unique
setup for each operation, but it's unlikely a driver needs to be written this way unless
under rare circumstances. These calls add significant overhead (slower operation), so
they are not called before each erase/program/verify call. Initialization may include
setting up an external memory controller, configuring address/data lines and/or chip
selects, and configuring the core clock/PLL frequency for flash operations. The Code
Red IDE host-side is not guaranteed to provide a valid clock frequency to an Init call, so
it’s safer to complete all clock/PLL setup in this code.

The ProgramPage function is used to program the flash with the user provided binary file.
The function is as shown in Fig 3. The ProgramPage function uses a sequence of
instructions before the actual data is written to the flash memory. This sequence is
determined from the user manual of the flash memory used. After every word is written to
the data lines the memory is polled to determine if the write has been successfully
completed. If it was successful then the next word is written into the memory, otherwise
an error is returned.

Fig 3. Program function

The EraseSector function is used to erase a sector and the EraseChip function is used to
erase the whole chip.

The sequence of instructions that initiate the two erase functions differ by only a single
instruction. The set of instructions that are to be used in order to initiate an erase is
provided in the product user manual. Fig 4 and Fig 5 show the EraseChip and
EraseSector functions, respectively.

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 8 of 18

Fig 4. EraseChip function

Fig 5. EraseSector function

A host-side flash program sequence is typically BlankCheck -> EraseSector (erase by
sector) -> ProgramPage -> Verify. There may be one or more pages within a sector. For
those pages not on a sector boundary, the sequence is ProgramPage -> Verify. If the
Verify API call is not implemented, the debug utility will verify flash contents against its
image buffer. This is recommended, since it typically results in faster driver operation.
Otherwise, the debug utility uses a subsequent Verify call to the target-resident driver
after each ProgramPage.

At the end of the erase/program sequences, the last three calls are made to the flash
driver UnInit code. It's called three times successively to handle erase/program/verify
setup restore, if required. It’s rarely necessary to implement this call. These calls can add
significant overhead (slow operation), so are not called after each erase/program/verify
call. Finally, the flash driver block is unloaded by restoring the RAM contents overwritten
by the flash driver block, and the processor is typically reset.

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 9 of 18

The main parameter definition is the mandatory FlashDevice structure. This structure
defines various parameters of the flash device. The structure used for the MCB1800 is
shown in Fig 6.

The main definitions in the structure are as follows:
• Name of the device. This name appears in the “add flash programming algorithm”

window.
• The data bus width. This can be internal, EXT16BIT, EXT32BIT, etc.
• The start address of the flash memory. This is required since the flash memory is

mapped and the start location of this mapped memory is to be indicated to the user.
This can be found by locating which bank the external flash is connected to. For this
example, the external flash is controlled by the CS0 line.

• The size of the flash memory.
• Page size is used by the host-side as the maximum size image buffer the host can

safely send per call to the target-resident ProgramPage API. This is set to 0xFF.

It is important to note that the device page size and the page size specified in the
FlashDevice structure are different. The page specified in the structure is used by the
host-side as the maximum size image buffer the host can safely send per call to the
target-resident ProgramPage function (defined in FlashPrg.c) call. The
ProgramPage implementation must accommodate any restrictions imposed by a
fixed size device page, and be prepared to handle partial buffers. The exported page
size is directly related to flash program time.

• Content of erased memory (typically 0xFF).
• Timeout (in milliseconds) of ProgramPage function.
• Timeout (in milliseconds) of the EraseSector function.
• Sector size and the relative start address of the first sector (offset from start of flash).

Fig 6. The flash device structure

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 10 of 18

For the external flash memory used on the MCB1800, the following values are used:
• Name of device – S29GL064N dual flash (16 MB) Keil_MCB1850_4350.
• Device Type – EXT32BIT. This indicates an external memory of 32-bit wide is used.
• Start Address – 0x1C000000. This can be found out by determining the bank to

which the external flash is connected. For the MCB1800, the bank is CS0. The
memory map diagram is shown in Fig 7).

• Device size – 0x1000000. The external memory is 16 MB in size.
• Page size – 1024. Each page is 1 kB.
• Initial flash content – 0xFF. This sets the initial state of the flash, erased state, to

0xFF.
• Program page timeout and erase sector timeout are 100 mSec and 1000 mSec

respectively.
• Sector size and relative start address of the sector – 0x2000, 0x0. The start address

is 0x00 and the sector size is 0x2000.

Fig 7. Static external memory mapping

Note: For the SPIFI memory the existing flash programming algorithm (written for the
Hitex board) can be used (LPC1850A_4350A_SPIFI).

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 11 of 18

5. Hardware connections
Jumpers P2_9, P2_8, P1_2 and P1_1 are to be changed. P2_8 should be in the HIGH
position and the other three are to be in the LOW position; this configuration is for
booting from external 32-bit memory. Connect the JTAG debugger to the any of the
JTAG headers and power up the board using a USB cable or a power source.

6. Flashing a binary file using the cfx file and verifying it
An example test harness (main.c) is supplied in the SPIFI example project, and should
be modified for your use. The purpose of this file is to validate the operation of each
method exported by the flash API.

The Init function as described earlier configures your hardware to erase/program your
flash device. Be certain the setup configures your hardware as intended (memory
controller, address/data lines, clock/PLL, etc.).

The ProgramPage function is usually tested by writing a repeating pattern to flash and
verifying the flash memory against the pattern.

The EraseSector method receives an absolute address of a sector boundary. Be certain
it translates the sector address to the represented sector, and completely erases the
sector. The contents of the sector should show valEmpty content for each byte in the
sector.

Note the test harness example does not make use of the FlashDevice toProg and
toErase timeout values. Use the vendor documentation, and your test harness
observations to make adjustments to the exported timeout values.

The UnInit code is often unimplemented. The host-side will at least reset the core after
flash program, so it’s often not needed.

Once the project is built and the .cfx file has been generated it needs to be placed in a
specific folder of LPCXpresso installed directory. The folder
C:\nxp\LPCXpresso_version\lpcxpresso\bin\Flash contains all the .cfx files. The newly
generated .cfx file needs to placed here (the .cfx file provided along with this app note
can be used here). Once the .cfx file has been added, the project that is to be flashed
needs to be changed in order to incorporate these changes. First, the new memory
(external flash) needs to be added to the selected MCU. This can be done by selecting
the C/C++ Build->MCUsettings (in the Project Properties window) and clicking Edit and
adding the memory as shown in Fig 8. Note that the values of location (0x1C000000) and
Size(0x100000) are in sync with the value defined in the flash device structure.

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 12 of 18

Fig 8. Adding the new Flash memory map to the chip select

The same dialog box (Edit, shown in Fig 8) can be used to add the flash driver
(S29GL064N_Dual_Flash.cfx provided as part of the App note). The window appears as
shown above.

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 13 of 18

Fig 9. Adding the flash driver

The value 0x1C000000 is specified as the location because this is what is specified in
the FlashDevice structure. For flashing the SPIFI memory select the appropriate memory
address (0x14000000 is one of the SPIFI memory banks on the LPC1857/4357). Note
that the corresponding flash driver also needs to be selected.

Once these changes are done and the sample application is built, the binary file is
programmed into the flash memory by clicking on the program flash button (Fig 10), and
selecting the corresponding .axf file (Fig 11). This will program the flash memory using
the newly written flash programming algorithm. The board needs to be reset after this.

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 14 of 18

Fig 10. Program flash button

Fig 11. Program flash window (LPCXpresso version used is v4.2.4_beta [Build 299])

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 15 of 18

7. References
[1] MCB1800v1-1keil – Keil MCB1800/4300 schematic.

[2] UM10503 – LPC18xx user manual

property
nam

e.

Error! U
nknow

n docum
ent property nam

e.
E

rror! U
nknow

n docum
ent property

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 16 of 18

8. Legal information

8.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

8.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

AN11285 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 6 November 2012 17 of 18

9. List of figures

Fig 1. Schematic showing the connections required for
the flash memory used 4

Fig 2. Build artifact settings window 6
Fig 3. Program function ... 7
Fig 4. EraseChip function .. 8
Fig 5. EraseSector function ... 8
Fig 6. The flash device structure 9
Fig 7. Static external memory mapping 10
Fig 8. Adding the new Flash memory map to the chip

select .. 12
Fig 9. Adding the flash driver 13
Fig 10. Program flash button 14
Fig 11. Program flash window (LPCXpresso version

used is v4.2.4_beta [Build 299]) 14

NXP Semiconductors AN11285
 Writing a flash programming algorithm for unsupported devices

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2012. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 6 November 2012
Document identifier: AN11285

10. Contents

1. Introduction ... 3
2. Finding the required hardware lines 4
3. Creating the flash programming algorithm 5
4. Writing the flash programming algorithm 6
5. Hardware connections 11
6. Flashing a binary file using the cfx file and

verifying it .. 11
7. References ... 15
8. Legal information .. 16
8.1 Definitions .. 16
8.2 Disclaimers ... 16
8.3 Trademarks .. 16
9. List of figures ... 17
10. Contents ... 18

	1. Introduction
	2. Finding the required hardware lines
	3. Creating the flash programming algorithm
	4. Writing the flash programming algorithm
	5. Hardware connections
	6. Flashing a binary file using the cfx file and verifying it
	7. References
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Trademarks

	9. List of figures
	10. Contents

