
 
 
 
 
 

 
 
 

 

   
 
 
 

 AN11621 
LPC82x Touch Solution Library User Guide 
Rev. 1.0 — 22 December 2014 User Guide 

     

Document information 
Info    Content     
Keywords LPC82x Touch Solution, User Guide, Library, Capacitive Touch, 

Touchpad, Sensor, Electrode, Drive/Sensing lines, Dielectric, Overlay 
panel, Sensitivity, Touch, False Touch. 

Abstract This document describes how to use NXP’s LPC82x Touch Solution 
firmware library. It contains a functional description of the library software, 
its application programming interface and a description of all user 
adjustable configuration parameters. 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621  All information provided in this document is subject to legal disclaimers. © NXP B.V.2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 2 of 19 

Contact information 
For more information, please visit: http://www.nxp.com 
For sales office addresses, please send an email to: salesaddresses@nxp.com 

Revision history 
 Rev  Date  Description  

 1.0  20141222  Initial version 

 
 
 
 
 
 
 
 
 
 

http://www.nxp.com/
mailto:salesaddresses@nxp.com


 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 3 of 19 

1. Introduction 
The LPC82x Touch Solution is based on a royalty free software library for capacitive 
touch sensing developed specifically for NXP’s LPC82x family of Microcontrollers. It uses 
the microcontroller’s GPIO functionality and an analog comparator input to implement a 
touch sensing circuit. See Fig 1. The GPIOs are controlled to emulate a switched-
capacitor integrator circuit that senses relative change in the capacitance of a touch 
sensor (touch sensing element) in case of touch by a human finger. The external circuitry 
consists of only one charge storage capacitor (Cs) and a sensor layout interfaced with 
MCU. The sensor layout can be a standard capacitive touch input element composed of 
inter-digitated electrodes of copper, ITO or any other conductive material housed in a 
dielectric (glass, plastic, etc.) that meets the design specifications of an intended 
application. The touch solution library can be used to implement any user interface that 
involves simple conventional touch sensors (buttons/slider/wheel) or complex sensors 
(two dimensional touch) inputs. 

Cs

LPC8xx
3 x GPIO

3 x GPIO

3 x GPIO

GPIO

ACMP_I

GPIO

3 x 3 sensor array
 

Fig 1. External Touch Circuitry 

The LPC82x touch solution library also conditions the touch data (one or two 
dimensional) by an integrated processing algorithm and then provides to the application. 

User input elements (sensor configurations) and touch configuration parameters may be 
altered using data structures. To notify the touch events to other interfaced components 
or a host, the default communication interfaces (GPIO/I2C/SPI/UART/USB) of the 
microcontroller can be used. For example, to indicate the user touch input, the user 
application software could output the touch position data to a (LCD) display unit or to a 
host PC running a GUI utility. 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 4 of 19 

2. Functional description  

2.1 Overview 
Fig 2 shows the complete system architecture of NXP’s Touch Solution. The functional 
block representation is on the left and to the right is the circuit schematic representation. 
The touch sensors act as inputs to a sensing circuit (SW based Touch Solution IP) 
realized within the NXP’s LPC82x microcontroller. 

 

Fig 2. LPC82x Touch Solution Functional Block Diagram 

As seen from the figure, the Touch Solution IP (Touch Library) drives the individual 
sensor elements, scans the complete sensing circuit layout, processes the touch signal 
data for robust/noise-free touch detection, and finally provides this data to the user 
application. Users can define their own application layer on top of the touch solution 
library to achieve his end objectives. The touch library gives complete flexibility to the 
user application to select between one or two dimensional sensing mode as well as 
configuring the touch sensing parameters, even during run time. 

The touch solution library handles the microcontroller’s GPIO pins and analog 
comparator configuration, the sensor calibration, automatic gain control and scanning of 
the individual sensor elements for touch event detection. 

In addition, the Touch Library is also responsible for noise filtering and signal 
conditioning. It also defines single sensor touch / no touch status and it calculates the 
touch position coordinates in two-dimensional mode. 

Touch Sensor Layout 

Touch  Library 

Touch  API 

User Application 

NXP 
ARM Cortex M0 

LPC8xx 

HOST  - GUI 

Feedback 
Console 

Physical Interface Functional Interface 

HW 

S W 

Touch 
Solution 

IP 

Keypad / Gesture Recognition 

GPIOs 

I2C, SPI, USB, UART 

I2C, SPI, PWM 

Touch data Touch  cfg 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 5 of 19 

The touch position calculation algorithm adapts automatically to a sensor layout of 3x3 
matrix and the associated user settings. The position calculation is robust against ghost 
touches or sensor element non-uniformities. 

The Application Interface layer handles all data and command exchange between the 
user application and the touch solution library. It takes care of tasks like initialization, 
service calls, and configuration and parameter settings. 

2.1.1 Touch sensor 
In capacitive touch sensing, the ultimate goal is to detect a human touch using relative 
change in the capacitance of capacitive touch sensor. 

NXP’s touch solution is based on mutual capacitance touch sensor whose fringing fields 
are influenced by a nearby conductor or human touch. Inter-digitated electrodes are well 
known examples for mutual capacitance sensors. A small section of such inter-digitated 
electrodes is shown in Fig-3 (A). It consists of two electrodes (X & Y) placed under an 
insulating or dielectric overlay (for example, glass, plexi-glass, or polycarbonate) that are 
held at different potentials. The electric field due to applied potential difference causes 
storage of electric charges between the electrodes and hence resulting in mutual 
capacitance between X & Y. The electrode geometry ensures that the direct electric field 
lines between the electrodes are much lesser than the fringing field lines. These fringing 
field lines arc through the dielectric overlay material and reach the other electrode. A 
human touch or any electrically conducting object nearby distracts some of these fringing 
filed lines as shown in Fig 3 (B). Therefore, some amount of the stored charge is lost as 
this conducting object provides parallel path to ground. 

Dielectric 
overlay
Receive 
electrode

Drive electrode

Fringing field

X Y

Cx

No Touch

X Y

Cx - ∆Cx

ΔCx

Touch
Human 
body 
capacitance

 
(A)                                                                                             (B) 

Fig 3. Section of Touch Sensor Layout 

The electric flux coupled into Y electrode is much lesser in case of touch which results in 
reduced mutual capacitance. This change in mutual capacitance is sensed by the touch 
circuit to detect a touch event. 

 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 6 of 19 

2.1.2 Touch Sensing Mechanism 
NXP’s touch sensing works on the principle of Switched Capacitor Integration circuit as 
shown in Fig-4. It consists of two capacitors (Cx-transfer and Cs-integration capacitor) 
controlled by two switches (S1 and S2) switched in non-overlapping fashion. When S1 is 
closed Cx charges to Vcc. Then S1 is opened and S2 is closed. This results in transfer of 
charge stored in Cx to Cs until both are at same potential. It is termed as one charge 
cycle where charge that is first stored in Cx is shared with Cs by alternate switching of S1 
and S2. The value of Cs is chosen to be very large compared to Cx. Therefore, multiple 
charge cycles results in integration of charge stored on Cs (consequently increasing the 
voltage of Cs) and so, the name switched capacitor integrator circuit. After Cs is 
sufficiently charged to a measurable voltage, it is discharged using S3. One complete 
charge cycle of Cs forms an integration cycle (it is composed of multiple Cx charge 
cycles). 

 

 

 

 

 

 

 

 

 

Fig 4. Switched Capacitor Integrator 

A touch sensor circuit can be realized using switched capacitor integrator circuit by 
replacing the transfer capacitor Cx by a touch sensor that changes its mutual 
capacitance on touch event. When the sensor is touched with finger, some amount of 
charge stored on it is lost. This results in less amount of charge being transferred to Cs in 
every charge cycle. Therefore, in case of a touch event, it would require more charge 
cycles to reach the required measurement voltage level on Cs. In other words, the touch 
circuit requires more charge cycles in case of touch, to reach the same voltage level as 
the no-touch case. By calculating the difference in charge cycles with and without touch 
event, it is possible to detect touch event. 

2.1.3 Touch Sensing Circuit 
NXP’s Touch Solution algorithm has fast detection speed and can support high sample 
rate that allows the implementation of additional filters on top to deal with harsh 
conditions arising due to the presence of moisture/water, dust, grease/fat, temperature 

variations, or stray electric field. 

The equivalent touch sensing circuit is shown in Fig-5. The Cx is represented by a touch 
sensor layout and Cs as discrete passive integration capacitor. The switching is realized 
using GPIO pins of the microcontroller. 

 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 7 of 19 

NXP
LPC8xx

ACMP_Ix
ACMP

 

Fig 5. Touch Sensing Circuit 

The sensor capacitor Cx forms a part of switched capacitor integrator. The CMOS        
tri-state drivers connected to the nodes X, Y-H and Y-L are controlled by trains of pulses, 
resulting in the emulation of integrator switches. The applied pulse sequence causes a 
repeated charge transport through the sensor capacitor Cx into sample capacitor Cs. 
With advancing number of integration cycles an integration voltage Vcs develops across 
the sample capacitor Cs.  

In summary, the voltage at X-line drives the charge and charges the external sampling 
capacitor Cs through the touch sensor capacitor Cx. The touch sensor capacitor 
(Cx=~6pF) is much smaller than that of the external sampling capacitor (Cs=22nF). 

In more detail, the sensor capacitor Cx is charged in every integration cycle to a voltage 
equivalent to the difference between supply voltage (Vdd) and the voltage across the 
sampling capacitor (Vcs). The same charge is also transferred into the series connected 
sampling capacitor (Cs), resulting in an increase of the voltage across sampling capacitor 
(Vcs). This integration process is repeated until the voltage Vcs reaches a fixed threshold 
voltage, see Fig-4. The number of integration cycles required to reach that threshold 
voltage is a measure for the capacitance of sensor capacitor Cx. The integration cycle 
count performed with no-touch is the reference and forms the basis for touch detection. 

With a finger touch, the effective sensor capacitance (Cx-ΔCx) is reduced as the finger 
distracts some charge. Hence, it takes more integration cycles until the voltage across 
Cs reaches the threshold voltage. And that’s the indication of a touch. Once the touch 
has been detected, further filtering and processing techniques are deployed to ensure 
the validity of touch. The sensitivity of the touch sensor is determined by the threshold 
voltage (Vth) as well as the capacitance of the sample capacitor Cs. 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 8 of 19 

2.2 Touch Scanning Modes 
The Touch Solution Library scans each sensor element for a touch event. At start-up all 
sensor elements are auto-calibrated for optimum gain, and the reference charge cycle 
count for each of them is calculated. After that each sensor element is scanned in a 
continuous loop for touch event detection. 

CX1

CS

YH

X1

YL

X2 CX2

LPC8xx
GPIO_1

GPIO_2

ACMP_I

CX3X3

X4 CX4

GPIO_3

GPIO_4

GPIO_5

GPIO_6

Cs

LPC8xx
3 x GPIO

3 x GPIO

3 x GPIO

GPIO
ACMP_I

GPIO

X2

X1

X3

X5

X4

X6

X8

X7

X9

YL

YH

 

Fig 6. Touch Scanning Modes 

Fig-6 represents two types of scanning modes. The one on the left is simple, one 
dimensional mode, while the right one is a more complex and consists of 9 sensor 
elements placed in 3 x 3 matrix format to enable recognition of 2D gestures. All sensor 
elements are connected to a common sampling capacitor Cs and scanned with a special 
technique for a touch event/position. 

For a 2D layout with 3x3 matrix, sensor scanning can be done either in horizontal or 
vertical fashion. The choice of scan direction can also influence the noise and sensitivity 
of a touch board. The field patterns from the touch sensors may be affected by the 
external or stray field differently. Thus the scan direction could offer higher sensitivity and 
noise immunity if correctly chosen (configurable in current Touch Solution Library). Note 

that this choice of scan direction is not applicable for a smaller matrix than 3x3 or in one 

dimensional mode. 

2.2.1 One Dimensional mode 
In this mode each sensor is simply handled individually, hence no relation to physical 

arrangement of the sensors. It’s an ideal mode for Keys/Buttons implementation. 

Dual sensor touches are supported in this mode. The touch solution library deals with 
detection and evaluation of touch events. It simply calculates the difference in charge 
cycles for touch and no touch case and compares it with the detection threshold1 before 
signaling an event to the application layer. In one dimensional mode, the sensor status 
change events are simple calls to an application defined “call back function”. Data 
passed when calling this (user application) function is: 

 Event: 1 byte indicating either a START – DATA – END event 
 Data: 4 bytes of sensor status (touch / no touch) info 

 

1. Minimum difference in charge cycles that is required to detect a valid touch event. Larger the 
difference between touch and no touch charge cycle count, better the design. 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 9 of 19 

2.2.2 Two Dimensional mode 
This mode can be used by an application to implement complex sensors or gestures, 
because the touch solution library handles interpolation of touch / no touch count 
differences into a touch position of a touch pad. In this mode, only single-touch (one 
finger) is supported. It transforms the sensor layout into a touch area as per user 
configuration. 

The touch position evaluation is shown in Fig 7. It uses the difference in count between 
touch and no-touch charge cycle count of each sensor element which are weighted to 
transform touch values into touch position with predefined range. The touch position is 
reported in 8-bit resolution (0-255 positions). 

 

 

Fig 7. Touch Position Calculation 

In two dimensional mode touch position events are again simple calls to a “call back 
function” (same as in one dimensional mode). Data passed when calling this (user 
application) function is: 
 Event type:   1 byte indicating either a START – POS – END event 
 Position Index:  1 word (16 bits) giving an index number (increments between a 

   START and END event. 
 X - coordinate:  1 byte giving the touch position X coordinate (0 - 255) 
 Y - coordinate:  1 byte giving the touch position Y coordinate (0 - 255) 

 
 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 10 of 19 

2.3 Touch Application Interface 
This layer handles all data and command exchange between the user application and the 
touch solution library. It takes care of tasks like initialization, service calls, and 
configuration and parameter settings. 

2.4 Microcontroller Resources 
The LPC82x Touch Solution library acquisition method requires only one GPIO pin (X) 
per sensor plus two additional GPIO pins (YH and YL) and it uses the analog comparator 
(one of its inputs) in the process. These GPIO pins must be able to switch between High 
Impedance, Input and Output (High/Low), preferably with low pad/stray capacitance.  
They should not have any additional filters enabled / implemented. Furthermore, the 
Touch Solution library uses the MRT (Multi-Rate Timer) channels CH0 and CH1. These 
resources are dedicated for touch and cannot be used by the user application. For current library, 
memory footprint of flash is just over 3 kb and SRAM usage is around 80 bytes. 

Compiled with Keil V5.10: 

----------------------------------------------------------------- 

Code    RW Data   ZI Data   Library Name 

3150    76      208     LPC8xx_Touch_lib_v0100.lib 

 

Compiled with LPCXpresso V7.2: 

----------------------------------------------------------------- 

text    data     bss     Library Name 

3343       32          67      LPC8xx_Touch_lib_v0100.a 

 

2.5 Performance indicators and Constraints 
Number of sensors 

The LPC8xx Touch Solution library supports a maximum number of row sensors of 3 
(MAX_ROW_CNT) and also a maximum number of Touch sensors in a column of 3 
(MAX_COL_CNT). This means that the maximum number of cap sensors that can be 
handled by the Touch Solution library is 9. 

Timing 

A complete cycle of scanning 9 sensor elements for Touch detection, eventual signal 
condition and position calculation takes about 3.6 milliseconds2 (approximately 400us per 
sensor). This results in around 278 sample points per second with a spatial resolution of 
over 80 dpi. 

Interrupts 

The Touch Solution library itself is not using any interrupts. However, during the most 
time critical part of the charge cycle time measurement (inside Touch core loop) 
interrupts are shortly disabled (generally some tenths of system clock cycles). This can 
influence the real time behavior of the users end application. 

 

 

2. Measured at LPC824 Microcontroller running at 24 MHz clock. 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 11 of 19 

3. Touch Solution API 
This section describes the LPC8xx Touch Solution library Application Programming 
Interface (API). Using the API, configuration of the Touch hardware (sensors and the 
associated GPIO port pins and analog comparator input channel) as well as the Touch 
parameters (like Touch mode, scan mode, filter depths, etc) can be defined. Once touch 
sensing has been initialized by the user, the host application gets triggered on changing 
touch events. 

3.1 Public header file 
The LPC8xx_Touch_Solution.h header file is the only public header file which needs to 
be included in a user’s application project. It contains all type and data definitions and all 
function prototypes required by the host application to make use of the LPC8xx Touch 
Solution library. 

3.2 Enumeration types 
This section lists the enumerations used in the LPC8xx Touch Solution library. 

3.2.1 TOUCH_MODES_T 
This enumeration is used to define the Touch Solution operating modes.  

Table 1. TOUCH_MODES_T 
Item Description 
ONE_DIMENSIONAL The Touch Processor handles each sensor individually. 

TWO_DIMENSIONAL The Touch Processing layer now handles interpolation of touch / 
no touch count differences into a touch position X / Y coordinate. 

Note: In TWO_DIMENSIONAL mode, currently the sensor matrix is fixed as 3 x 3. 

3.2.2 SCAN_MODES_T 
This enumeration is used to select the Touch Solution scan mode. 

Table 2. SCAN_MODES_T 
Item Description 
HORIZONTAL Selects the scanning mode of sensor elements to be in horizontal 

direction. 

VERTICAL Selects the scanning mode of sensor elements to be in vertical 
direction. 

DIRECT All sensors are scanned individually. 
 
Note: The Horizontal and Vertical scan modes are not applicable for a smaller matrix 

than 3 x 3 or in one dimensional mode. 

 

3.2.3 EVENTS_T 
This enumeration defines the event types generated by the touch library and passed with 
the application call back function. 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 12 of 19 

Table 3. EVENTS_T 
Item Description 
EV_START Touch detected. This indicates a touch START event (could be 

the beginning of a gesture). 

EV_DATA Touch data event. In one dimensional mode status of all sensors 
is provided. In two dimensional mode touch position index and 
X/Y coordinates are provided. 

EV_END Touch END event, no more touch detected (like key release, a 
finger lift off or end of a gesture). 

3.3 Data structures 
This section describes and explains the used data structures that hold touch system, 
touch configuration and touch parameter data. 

3.3.1 TOUCH_CFG_T 
The Touch configuration const data structure is declared once at startup and used by 
the application to output the (hardware) sensor circuit configuration to the Touch Solution 
library. 

Table 4. TOUCH_CFG_T 
Field Type Description 
ROW_CNT uint8_t Number of rows in sensor matrix. Minimum 1, maximum is 3. 

COL_CNT uint8_t Number of columns in sensor matrix. Minimum 1, maximum is 3. 
The total number of attached sensors are: ROW_CNT x 
COL_CNT  

X [ ROW ] [ COL ] 
 
MAX_ROW_CNT  = 3 

MAX_COL_CNT  = 3 

MAX_SEN_CNT = 9 

[ uint8_t ] [ uint8_t ] Two dimensional array that gives a definition of the used sensor 
configuration. Row and column array members indicate which 
GPIO pin numbers are used to connect to which sensor. 
Note that if just a few individual sensors are used (like in one-
dimensional mode) a row or column count of 1 can be defined. 
Note that the max number of rows and columns is 3, means that 
the total maximum number of possible sensors are 9. 

YL uint8_t GPIO pin used as Y-low line. Able to switch between High 

Impedance, Input & Output (High/Low), preferably with low 

pad/stray capacitance. 
For example, this field is filled with 23, if port PIO0_23 is used. 

ACMP_Ix uint8_t Analog comparator input number used.  
For example, this field is filled with 2, if ACMP_I2 input is used. 

YH uint8_t GPIO pin used as Y-high line. Able to switch between High 
Impedance, Input & Output (High/Low), preferably with low 

pad/stray capacitance. 
For example, this field is filled with 14, if port PIO0_14 is used. 

This data structure needs to be declared and defined by the host application. After that a 
pointer to it is passed when calling the Touch Solution library main initialization function. 

extern void  Touch_Init(const TOUCH_CFG_T *cfg); 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 13 of 19 

3.3.2 TOUCH_SYS_T 
The Touch system data structure is defined by the library and exported to application, so 
that it can define the fixed touch system settings and provide the touch event “call back” 
function pointer to the library. 

The library in its turn is using the “service_timer” field to indicate after how many 
milliseconds the Touch Task needs to be serviced again. 

Table 5. TOUCH_SYS_T 
Field Type Description 
service_timer uint8_t This is the time in milliseconds returned by the Touch Task, after 

which it needs to be serviced again. The host application needs 
to keep track of this time elapsing before it calls the touch task 
again. See Public Functions section. 

version uint16_t Touch library version number. 

system_grounded uint8_t Indicates if target is a grounded or contactless system. 

scan_mode uint8_t Defines the scanning mode used by the Touch Solution library 
(either direct, vertical or horizontal). 

use_square uint8_t If ON (1) use non-linear amplification. 

use_equalization uint8_t If ON (1) use reference based equalization. 

ghost_touch_suppression uint8_t If ON (1) enables ghost touch suppression. 

use_nearest_neighbor uint8_t If ON (1) enables noise suppression of sensors far away. 

* cb_func ( E, B[4] ) void *(uint8_t , uint8_t) Pointer to touch event call back function. Parameters passed by 
the touch lib when calling are: 
E  Event type (START – DATA – END) 
B[4] 4 bytes of either sensor status or position data 

The LPC8xx Touch Solution library exports a variable of this data type so that the host 
application can modify the required system settings before starting the Touch Task. 

extern TOUCH_SYS_T sys; 

3.3.3 TOUCH_PAR_T 
The Touch parameters data structure is used by the host application to read and write 
the global touch parameters which determines the overall operation of Touch Solution 
library algorithm. The possibility of dynamically changing these parameters gives a great 
advantage and flexibility to the end user. 

Table 6. TOUCH_PAR_T 
Field Type Description 
touch_mode uint8_t Touch operating mode (one - or two dimensional). 

One dimensional Mode: Keys/Buttons (touch or no touch) 
Two dimensional Mode: Touchpad/Gesture (X-Y position) 

agc_mode uint8_t Automatic Gain Control feature for adjusting the sensitivity as desired.  
It enables auto-setting independent gain for each sensor such that they 
all have uniform sensitivity level as a group. The Touch Solution library 
internally varies gain of individual sensors to get a uniform behavior for 
the complete matrix.  
The gain values are set such that there is a considerable difference 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 14 of 19 

Field Type Description 
between touch and no-touch state of sensors. 
ON (1): AGC feature enabled. It’s recommended for one dimensional 
(Keys/Buttons) mode, when reasonable sensitivity couldn’t be achieved 
only by fixing the overall system_gain value. 
OFF (0): AGC feature disabled, the common system_gain value loaded 
automatically for all the sensors. It’s recommended to disable it for two 
dimensional mode. 

agc_min uint16_t Only when Automatic Gain Control feature is enabled, the AGC minimum 
value is applicable. AGC MIN is the minimum gain value setting for any 
sensor to get reasonable sensitivity between touched and not-touched 
state. It’s range is limited from 500 to 7000 based on manual calibration 
experiments. 

agc_max uint16_t Only when Automatic Gain Control feature is enabled, the AGC maximum 
value is applicable. AGC Max is the maximum gain value setting for any 
sensor to get reasonable sensitivity between touched and not-touched 
state. Please note that by increasing the gain, the sensitivity can be 
increased, but at the cost of speed. So developers have to strike a 
balance between speed and sensitivity based on the application 
requirement. It’s range is limited from 1000 to 7500 based on manual 
calibration experiments. 

system_gain 
(only used if AGC is off) 

uint8_t The System gain is the common overall gain value for all sensors. It’s 
applicable only when the AGC mode is disabled. It’s range is limited from 
0 to 31 based on manual calibration experiments. 

dt_mode uint8_t Dynamic Detection Threshold feature for changing the threshold 
value dynamically as needed sometimes while dealing with the 
harsh conditions arising due to the presence of moisture/water, 
dust, grease/fat, temperature variations, stray electric field, etc.  
ON (1): Dynamic Detection Threshold feature enabled. 
The detection threshold value will be dynamically changed from DT_MIN 
to DT_MAX to achieve the reasonable sensitivity at all times in harsh or 
varying conditions. The Touch Solution library will automatically vary the 

detection threshold based on the sensitivity level at that point in time. 
OFF (0): Dynamic Detection Threshold feature disabled. 
The DT_MIN value will act as the Detection Threshold setting. 

dt_min uint16_t DT MIN is the minimum value of Detection Threshold range. The 
detection threshold cannot have a large range of values, otherwise the 
performance will have an adverse effect. Hence it’s range is limited from 
0 to 1000. 

dt_max uint16_t Maximum value of Detection Threshold range. Please note that setting 
the DT min or max to lower values increases the sensitivity of the system. 
It’s range is limited from 1 to 1400. 

fd_raw uint8_t fd_raw: is the IIR filter tap size for instantaneous signal (number of cycles 
necessary to charge the storage cap to sys gain level). Filtering reduces 
the jitter in the calculated postion and hence these cycles are averaged 
before position calculation to get stable values. 
Based on comparison with reference, they can be classified as touch 
cycles in case of touch event or update to reference cycles in case of no-
touch event. In order to avoid transient noises, these cycles are also 
averaged. An IIR filter is realized in SW and filter depth refers to the 
number of taps. 
Typical value of 2 denotes the tap size of 2 to the power 2. 

fd_ref uint8_t fd_ref: is the IIR filter tap size for reference signal, number of cycles 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 15 of 19 

Field Type Description 
necessary to charge the storage cap to system gain level under 
untouched conditions. In order to avoid transient noises, these cycles are 
as well averaged using IIR filter realized in SW and filter depth refers to 
the number of taps. 
Typical value of 5 denotes the tap size of 2 to the power 5. 

fd_pos uint8_t fd_pos: is the Moving Average filter tap size for touch position data. 
Touch position value calculated is not always stable due to non-uniform 
sensitivities of individual sensors or because of noise or even 
interference. This results in a small jitter in the calculated position value. 
To reduce this jitter, a Moving average filter is realized in the SW. The 
filter depth refers to the number of taps in the moving average filter. 
Maximum value of 3 denotes the tap size of 2 to the power 3. 

The LPC82x Touch Solution library exports a variable of this data type so that the host 
application can modify and refine the operation and configuration parameters for the 
library: 

extern TOUCH_PAR_T par; 

3.4 Public Functions 
This section describes the public functions available in the LPC8xx Touch Solution library 
and their usage. Only 3 functions are available which makes the application interface 
very clear and uncomplicated. 

3.4.1 Touch_Init 
This function is used to initialize the touch sensing for all connected sensors and 
performs calibration (measure the reference touch charge cycles). All hardware 
configuration, touch system settings and touch parameter configuration should be done 
before calling this function. 

extern void  Touch_Init(const TOUCH_CFG_T *cfg); 

Argument Type Description 
cfg const TOUCH_CFG_T * Pointer to the hardware configuration of the sensor 

matrix (defines which port pins are used for which 
sensor and YH / YL lines) 

 
3.4.2 Touch_Task 

This function executes a scan of all capacitive sensors. The measured charge cycles for 
all sensors are then processed to check for user touches, to calculate touch positions 
and for touch releases. If any of these events did occur an application function (call back 
function) is called. On return this function has programmed a new task service time value 
in “timer_service” variable (see Table 55) of the TOUCH_SYS_T structure. This time 
value indicates after how many milliseconds the Touch_Task function needs to be 
serviced (called by the host application) again. 

extern void Touch_Task(void); 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 16 of 19 

Note: The host application should not call the Touch_Task before “timer_service” value 
elapses. 

3.4.3 Touch_Update 
This function needs to be called any time the user makes a modification to the system 
settings or the touch parameter values. This function simply notifies the touch library that 
a re-configuration and re-calibration of all sensors is needed. 

extern void Touch_Update(void); 

3.5 Startup sequence  
The following sequence of actions is required to add the Touch Solution functionality to a 
user end application. 
1. Make sure the touch library is included in your project and also include the library 

header file inside your source code module. 
#include "LPC8xx_Touch_Solution.h" 

2.  Initialize and define the sensor configuration structure (TOUCH_CFG_T): 
const TOUCH_CFG_T cfg = {3, 3,                      // 3 rows and 3 columns 

                         {{PIN_X0, PIN_X3, PIN_X6}, 

                         {PIN_X1, PIN_X4, PIN_X7}, 

                         {PIN_X2, PIN_X5, PIN_X8}}, 

                         PIN_YL, ACMP_I3, PIN_YH }; 

3. Inside your application code define a function that will be used as a call back by the 
touch library and that handles the touch events. Example: 

void TouchEventHandler(uint8_t event, uint8_t buf[4]) 

{ 

    switch (event) 

    { 

        case EV_START : LCD_LED(1, 1);          // LCD LED1 on 

                        break; 

        case EV_DATA  : LCD_Send(buf, 4);       // send position data to LCD 

                        break; 

        case EV_END   : LCD_LED(1, 0);          // LCD LED1 off 

                        break; 

    } 

} 

4. Add a pointer to this call back function to the system structure (TOUCH_SYS_T): 
    sys.cb_func = TouchEventHandler; 

5. Make sure all configuration touch solution parameters are initialized in structure 
(TOUCH_PAR_T). Their default values can be found in the LPC8xx_Touch_Solution 
header file. Example: 
 par.touch_mode      = TWO_DIMENSIONAL; 

   par.agc_mode        = USE_AGC 

 par.agc_min         = AGC_MIN_CYCLES; 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 17 of 19 

   par.agc_max         = AGC_MAX_CYCLES; 

   par.system_gain     = SYSTEM_GAIN;  

   par.dt_mode         = USE_DDT; 

   par.dt_min          = DDT_MIN_LIMIT; 

   par.dt_max          = DDT_MAX_LIMIT; 

   par.system_grounded = SYSTEM_GROUNDED; 

   par.fd_pos          = POS_FILTER; 

  par.fd_ref          = REF_FILTER; 

   par.fd_raw          = RAW_FILTER; 

6. Call the touch library initialization function (passing the sensor configuration). 
 Touch_Init(&cfg); 

7. Now all initialization is done. Finally the user application only needs to initializes a     
1 millisecond system tick timer and use that to periodically call the Touch_Task 
function to read the status of capacitive touch sensors. 

Note: Please refer to “AN11620: LPC82x Touch Solution Application Note” for more 
details on example projects using Touch Solution library. 

 



 

 

 

E
rror! U

nknow
n docum

ent 
property nam

e. 

 
 

Error! U
nknow

n docum
ent property nam

e. 
E

rror! U
nknow

n docum
ent property 

nam
e. 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

AN11621 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved. 

User Guide Rev. 1.0 — 22 December 2014 18 of 19 

4. Legal information
4.1 Definitions 

Draft — The document is a draft version only. The content is still under 
internal review and subject to formal approval, which may result in 
modifications or additions. NXP Semiconductors does not give any 
representations or warranties as to the accuracy or completeness of 
information included herein and shall have no liability for the consequences 
of use of such information. 

4.2 Disclaimers 
Limited warranty and liability — Information in this document is believed to 
be accurate and reliable. However, NXP Semiconductors does not give any 
representations or warranties, expressed or implied, as to the accuracy or 
completeness of such information and shall have no liability for the 
consequences of use of such information. 

In no event shall NXP Semiconductors be liable for any indirect, incidental, 
punitive, special or consequential damages (including - without limitation - 
lost profits, lost savings, business interruption, costs related to the removal 
or replacement of any products or rework charges) whether or not such 
damages are based on tort (including negligence), warranty, breach of 
contract or any other legal theory. 

Notwithstanding any damages that customer might incur for any reason 
whatsoever, NXP Semiconductors’ aggregate and cumulative liability 
towards customer for the products described herein shall be limited in 
accordance with the Terms and conditions of commercial sale of NXP 
Semiconductors. 

Right to make changes — NXP Semiconductors reserves the right to make 
changes to information published in this document, including without 
limitation specifications and product descriptions, at any time and without 
notice. This document supersedes and replaces all information supplied prior 
to the publication hereof. 

Suitability for use — NXP Semiconductors products are not designed, 
authorized or warranted to be suitable for use in life support, life-critical or 
safety-critical systems or equipment, nor in applications where failure or 
malfunction of an NXP Semiconductors product can reasonably be expected 
to result in personal injury, death or severe property or environmental 
damage. NXP Semiconductors accepts no liability for inclusion and/or use of 
NXP Semiconductors products in such equipment or applications and 
therefore such inclusion and/or use is at the customer’s own risk.  

Applications — Applications that are described herein for any of these 
products are for illustrative purposes only. NXP Semiconductors makes no 
representation or warranty that such applications will be suitable for the 
specified use without further testing or modification.  

Customers are responsible for the design and operation of their applications 
and products using NXP Semiconductors products, and NXP 
Semiconductors accepts no liability for any assistance with applications or 

customer product design. It is customer’s sole responsibility to determine 
whether the NXP Semiconductors product is suitable and fit for the 
customer’s applications and products planned, as well as for the planned 
application and use of customer’s third party customer(s). Customers should 
provide appropriate design and operating safeguards to minimize the risks 
associated with their applications and products.  

NXP Semiconductors does not accept any liability related to any default, 
damage, costs or problem which is based on any weakness or default in the 
customer’s applications or products, or the application or use by customer’s 
third party customer(s). Customer is responsible for doing all necessary 
testing for the customer’s applications and products using NXP 
Semiconductors products in order to avoid a default of the applications and 
the products or of the application or use by customer’s third party 
customer(s). NXP does not accept any liability in this respect. 

Export control — This document as well as the item(s) described herein 
may be subject to export control regulations. Export might require a prior 
authorization from competent authorities.  

Evaluation products — This product is provided on an “as is” and “with all 
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates 
and their suppliers expressly disclaim all warranties, whether express, 
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire 
risk as to the quality, or arising out of the use or performance, of this product 
remains with customer. 

In no event shall NXP Semiconductors, its affiliates or their suppliers be 
liable to customer for any special, indirect, consequential, punitive or 
incidental damages (including without limitation damages for loss of 
business, business interruption, loss of use, loss of data or information, and 
the like) arising out the use of or inability to use the product, whether or not 
based on tort (including negligence), strict liability, breach of contract, breach 
of warranty or any other theory, even if advised of the possibility of such 
damages.  

Notwithstanding any damages that customer might incur for any reason 
whatsoever (including without limitation, all damages referenced above and 
all direct or general damages), the entire liability of NXP Semiconductors, its 
affiliates and their suppliers and customer’s exclusive remedy for all of the 
foregoing shall be limited to actual damages incurred by customer based on 
reasonable reliance up to the greater of the amount actually paid by 
customer for the product or five dollars (US$5.00). The foregoing limitations, 
exclusions and disclaimers shall apply to the maximum extent permitted by 
applicable law, even if any remedy fails of its essential purpose. 

4.3 Trademarks 
Notice: All referenced brands, product names, service names and 
trademarks are property of their respective owners. 

 

 



 

 

NXP Semiconductors AN11621 
 LPC82x Touch Solution Library User Guide 

  Please be aware that important notices concerning this document and the product(s) 
described herein, have been included in the section 'Legal information'. 

   

  

© NXP B.V. 2014.  All rights reserved. 

For more information, please visit: http://www.nxp.com 
For sales office addresses, please send an email to: salesaddresses@nxp.com 

Date of release: 22 December 2014 
Document identifier: AN11621 

5. Contents

1. Introduction ............................................................ 3 
2. Functional description ......................................... 4 
2.1 Overview ............................................................ 4 
2.1.1 Touch sensor ..................................................... 5 
2.1.2 Touch Sensing Mechanism ................................ 6 
2.1.3 Touch Sensing Circuit ........................................ 6 
2.2 Touch Scanning Modes ..................................... 8 
2.2.1 One Dimensional mode ...................................... 8 
2.2.2 Two Dimensional mode ...................................... 9 
2.3 Touch Application Interface .............................. 10 
2.4 Microcontroller Resources................................ 10 
2.5 Performance indicators and Constraints .......... 10 
3. Touch Solution API ............................................. 11 
3.1 Public header file .............................................. 11 
3.2 Enumeration types ........................................... 11 
3.2.1 TOUCH_MODES_T ......................................... 11 
3.2.2 SCAN_MODES_T ............................................ 11 
3.2.3 EVENTS_T....................................................... 11 
3.3 Data structures ................................................. 12 
3.3.1 TOUCH_CFG_T ............................................... 12 
3.3.2 TOUCH_SYS_T ............................................... 13 
3.3.3 TOUCH_PAR_T ............................................... 13 
3.4 Public Functions ............................................... 15 
3.4.1 Touch_Init ........................................................ 15 
3.4.2 Touch_Task ..................................................... 15 
3.4.3 Touch_Update .................................................. 16 
3.5 Startup sequence ............................................. 16 
4. Legal information ................................................ 18 
4.1 Definitions ........................................................ 18 
4.2 Disclaimers....................................................... 18 
4.3 Trademarks ...................................................... 18 
5. Contents ............................................................... 19 
 


