AN11674

A Ku band quad LNB reference design based on TFF1044HN Rev. 1 — 17 July 2015 Application note

Application note

Document information

Info	Content
	TFF1044, BFU910F, Quad LNB, DVB-S, Ku band to L-band Down Converter, FIMOD IC, Ku Band
	This application note describes a reference design based on TFF1044HN and BFU910, including the design details and the test results.

Revision history

Rev	Date	Description
1	20150717	First publication

1. Introduction

NXP Semiconductors developed two new products for the Satellite LNB market, a fully integrated Quad Down-Converter IC (TFF1044HN) and an Ultra-Low Noise Bipolar transistor in SiGe technology (BFU910F). With these products the currently discrete Quad LNB market can be addressed with following benefits:

- design time reduction
- PCB size reduction
- decreased costs of ownership, alignment free concept

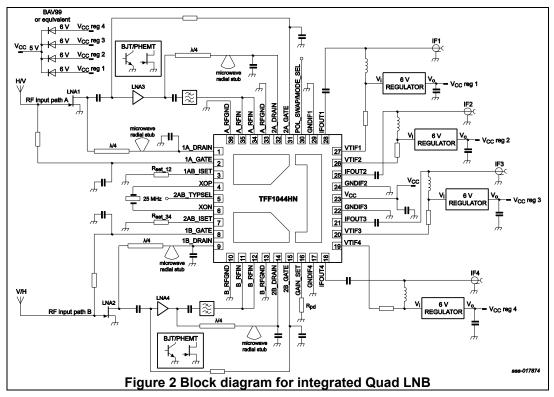
To support the Quad LNB market a reference design was implemented in NXP, which is called the NXP Quad in this document. The performance targets and followed approach can be found in this Application Note. Also actual performance, bill of materials, mechanical drawings and artwork files are given in this document to enable a head start for new integrated Quad designs!

2. The NXP Quad

2.1 Product definition

Before starting the integrated reference LNB design a feasibility study was done. The market to address was investigated and electrical as well as mechanical targets were set, as listed in the sections below.

3 of 46


2.2 Approach

As some electrical performance parameters can be defined differently, and uncertainty on the reference planes may arise, a "benchmark" discrete Quad LNB (called benchmark LNB in this document) was bought from the market. This was done in order to make a performance comparison with NXP Quad Ref. LNB on the main performance parameters. Also the benchmark LNB as well as the NXP Quad were put on a dish antenna and the received live signal quality were measured to compare the final performance.

2.3 Functional requirements

The Quad LNB has two orthogonal mode inputs, implemented in Ku band circular waveguide. The two RF input signals are amplified by two cascaded LNA stages and are mixed down from Ku to L-band by 9.75 GHz and 10.6 GHz LO's.

On the four available IF outputs, implemented in F-type connectors, each RF polarization as well as band can be accessed. The Quad Ref. LNB has internal regulators and can be fed from either one or multiple IF's over the coaxial cable, by applying bias Tees inside the Quad Ref. LNB.

Apart from the TFF1044 four LNA stages, four linear regulators, four diodes, one 25 MHz crystal and some passives are required.

2.4 Electrical requirements

The electrical requirements are mostly operator dictated, for NXP Quad Ref. LNB the Astra specifications were taken as reference. These are listed in the table below.

ation			
	Value	Unit	Comments
Low Band	10.70 to 11.70	GHz	
High Band	11.70 to 12.75	GHz	
Low Band	950 to 1950	MHz	
High Band	1100 to 2150	MHz	
Low Band	9750	MHz	Offset less than +1MHz
High Band	10600	MHz	
	2.5 (max.)	o	Integrated from 10kHz to 13MHz
	60 (typ.)	dB	
	5 (max.)	dB	over complete low or high band
Low Band	1.1 (typ.)	dB	Comparable with
High Band	1.3 (typ.)	dB	benchmark LNB
	10 (min.)	dBm	
	8 (min.)	dB	
	20 (min.)	dB	
	-60 (max.)	dBm	Comparable with benchmark LNB
One IF-port on	180	mA	
All IF-ports on	250	mA	
	Low Band High Band Low Band High Band Low Band High Band Low Band High Band One IF-port on	Value Low Band 10.70 to 11.70 High Band 11.70 to 12.75 Low Band 950 to 1950 High Band 1100 to 2150 Low Band 9750 High Band 10600 High Band 10600 Low Band 9750 High Band 10600 Low Band 10600 Low Band 10600 Low Band 1.01 (typ.) High Band 1.3 (typ.) High Band 1.3 (typ.) High Band 20 (min.) S (min.) 20 (min.) One IF-port on 180	ValueUnitLow Band10.70 to 11.70GHzHigh Band11.70 to 12.75GHzLow Band950 to 1950MHzHigh Band1100 to 2150MHzLow Band9750MHzHigh Band10600MHzHigh Band10600MHzGO (typ.)GB3Low Band1.1 (typ.)dBLow Band1.3 (typ.)dBHigh Band1.3 (typ.)dBLow Band20 (min.)dBGo (typ.)10MBHigh Band1.3 (typ.)MBHigh Band1.3 (typ.)MBMather10 (min.)MBMather10 (min.)MBMather10 (min.)MBMather10 (min.)MBMather180mA

2.5 Mechanical requirements

Discrete quad LNB usually employs two PCBs and the PCB size is much bigger. For example, the benchmark LNB has two PCB with the total size of 4500mm² (65*45mm and 35*45mm respectively).

The Quad Ref. LNB should be built with a single (Rogers) PCB. The size should be as small as possible, however mechanical dimensions are linked to the minimum space between the IF (F-type) connectors. Minimum spacing of those, in order to enable access to the four IF cables, is 16 mm. The final PCB size is decided as 2000mm² (50mm long and 40mm wide) and is nearly 45% of the total PCB size of the benchmark LNB.

The Quad Ref LNB will be equipped with a flange (circular waveguide diameter 17.6 mm), a feed-horn with flange will be supplied but customers can use their own feed-horn design by un-screwing this.

2.6 The NXP Quad, design considerations

Given the required overall conversion gain the choice for two cascaded LNA stages (per polarization) is dictated. First LNA stage chosen is a common used Pseudomrphic High Electron Mobility Transistor (pHEMT) for excellent NF. Second stage is NXP Bipolar Junction Transistor (BJT) BFU910F, this transistor has approximately 1.5 dB more gain compared to typical pHEMT devices, which compensates nicely for the NFmin. (See also section 5.1.1)

TFF1044 provides bias for both the first stage and the second stage. The first stage is for pHEMT with adjustable bias current. The second stage is selectable between pHEMT and BJT also with adjustable bias current. NXP BJT's like BFU910F have a supply current advantage over pHEMT devices of approximately 3mA per LNA.

Band-pass filters were applied to increase the overall image rejection (3 section hairpin filters). With this filters an average image rejection at PCB level of 46 dB is realized.

The supply topology chosen is to use four linear regulators (6 Volt), one per IF path, and combining their outputs by simple diodes.

The PCB design target to minimize the PCB size with the premise of good RF performance and safe IF connector clearance. (See also <u>section 5.4</u>).

3. The NXP Quad, measurement results

3.1 Parametric results, main parameters

This is an overview of the typical values measured for the main parameters by comparison with that of the benchmark LNB. For more detailed results please see section 7.

LO accuracy High Band 0.1 0.3 ±1.0 (max.) RMS Phase Jitter 1.4 0.2 2.5 (max.) Conversion Gain 60 60 60 (typ.) Gain Ripple 3 3 5 (max.) Noise Figure Low Band 1.0[1] 1.0 1.1 (typ.) OIP3 12 10 10 (min.)	Unit
High Band 0.1 0.3 RMS Phase Jitter 1.4 0.2 2.5 (max.) Conversion Gain 60 60 60 (typ.) Gain Ripple 3 3 5 (max.) Noise Figure Low Band 1.0[1] 1.0 1.1 (typ.) OIP3 12 10 10 (min.)	MHz
Conversion Gain 60 60 60 (typ.) Gain Ripple 3 3 5 (max.) Noise Figure Low Band 1.0[1] 1.0 1.1 (typ.) OIP3 12 10 10 (min.)	MHz
Gain Ripple 3 3 5 (max.) Noise Figure Low Band 1.0[1] 1.0 1.1 (typ.) High Band 1.0[1] 1.1 1.3 (typ.) OIP3 12 10 10 (min.)	۰
Noise Figure Low Band 1.0[1] 1.0 1.1 (typ.) OIP3 12 10 10 (min.)	dB
Noise Figure High Band 1.0[1] 1.1 1.3 (typ.) OIP3 12 10 10 (min.)	dB
High Band 1.0[1] 1.1 1.3 (typ.) OIP3 12 10 10 (min.)	dB
	dB
Cross Polar Rejection 25 28 20 (min)	dBm
	dB
In-band Spurious -65 -60 (max.)	dBm
	mA
Current ConsumptionAll IF-ports on214213250 (max.)	mA

Table 2 Measured performance of the NXP Quad vs the benchmark LNB

[1] : Noise Figure measured in one polarization, shows the potential of the concept.

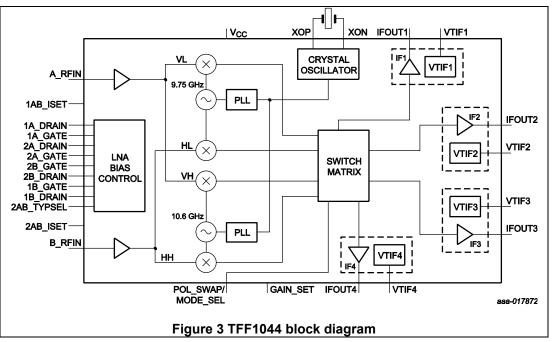
3.2 Measurement results live signal Quality

Measured parameters on modulated signals were the signal strength, Carrier to Noise Ratio (C/N), Modulation Error Rate (MER) and for the 8-PSK signals the Link Margin (LKM).

In the results one cannot differentiate the NXP Quad from the benchmark LNB's. For detailed results see $\underline{section 6.8}$.

3.3 Conclusions

The Quad LNB reference design has shown to be competitive compared to benchmark LNB's. The benefits for OEM's / ODM's are clearly in the PCB size reduction, design time reduction and costs of ownership. This reference design can also serve as a starting point for derivatives for alternative Quad / Quattro / IP LNB markets.


4. Key-components, product description

4.1 TFF1044HN

TFF1044HN is an integrated down-converter for use in universal quad and quattro

Low Noise Block (LNB) convertors in 10.70 GHz to 12.75 GHz K_u band satellite receiver systems.

The device incorporates required mixers, Local Oscillators (LO), Intermediate Frequency (IF) amplifier stages, IF switch matrix, Voltage and Tone detection for polarity and band switching and pHEMT bias control for a pair of two-stage-LNA (as shown in Figure 3). It can be used to create an alignment free product with two RF inputs and four IF outputs and enables PCB size reduction.

Apart from the TFF1044, only a few external components, including the LNA stages, a 25 MHz crystal, voltage regulator(s), two diode-pairs and some passive circuitry is required to complete a guad LNB. The number of components is significantly reduced compared to discretely build quad/quattro LNB's.

The TFF1044HN offers some degree of flexibility for ease of application, through the use of its control pins. The settings of these pins are introduced in this section so that readers can be easier to understand the design consideration which is described in Section 5.1.

• POL_SWAP / MODE_SEL: This pin serves as polarization swap selection pin to enable PCB routing with optimum (none crossing) Ku band RF tracks.

The vertical and horizontal polarizations are assigned to the RF path A and RF path B inputs according to Table 1. The setting for guattro mode operation is also given in the same table.

Connection of POL_SWAP/MODE_SEL	Mode	Polarity		
(Pin 30)	Woue	RF A (pin 35)	RF B (pin 11)	
GND	quad	horizontal	vertical	
Float	quad	vertical	horizontal	
GND via 100 k Ω pull-down resistor	quattro	N/A	N/A	

Table 1 Polarity swap / mode selection settings

• GAIN SET: This pin provides a three levels adjustable gain.

TFF1044 has selectable gain states in order to have freedom to vary the overall LNB gain. The conversion gain can be set to 30dB, 33dB or 36dB by the external connection of GAIN SET pin, which is shown in Table 2.

Table 2 Conversion gain settings

Connection of GAIN_SET (Pin 16)	Gain Mode	Typical Conversion Gain
GND	low	30 dB
Float	medium	33 dB
GND via 100 k Ω pull-down resistor	high	36 dB

The gain of the TFF1044HN quad LNB with two-stage LNA is typically 55 to 61dB by different gain setting. For even higher conversion gain, the 3rd stage of LNA has to be employed.

• 2AB_TYPSEL: This pin enables different biasing schemes for the second stage LNA depending on the preferred technology, BJT or pHEMT.

TFF1044 leaves the flexibility of different transistor type of the 2nd stage LNA to the user, and Table 3 presents how to set it by 2AB_TYPSEL pin.

AN11674

8 of 46

0 11	0	
Connection of 2AB_TYPSEL (Pin 5)	Type of the	2 nd stage of LNA
	RF path A	RF path B
GND	pHEMT	pHEMT
Float	BJT	BJT

Table 3 Second stage LNA type selection settings

• **1AB_ISET** / **2AB_ISET**: These pins set the current of the 1st and the 2nd stage of LNA respectively.

The parameters spread of the LNA transistors, whether pHEMT or BJT, depends on the current of the Drain (of pHEMT) or Collector (of BJT). So it is more stable to use a current source instead of voltage source to supply the transistor. TFF1044HN is capable of providing such current sources for the transistors as the 1st and 2nd stages of the LNAs for both polarities.

TFF1044HN allows the user to set the current of the 1st and 2nd stage separately. The typical drain current of pHEMT is 10mA, and correspondingly, a $22k\Omega$ pull-down resistor should be connected to 1AB_ISET /2AB_ISET. While the typical current of BFU910F is 6-7mA, and the corresponding resistor at 2AB_ISET is $33k\Omega$.

4.2 BFU910F

BFU910F is an NPN silicon germanium Radio Frequency (RF) BJT for high speed, low noise applications in a plastic, four-pin dual-emitter SOT343F package.

BFU910F has the characterization of low NF and high gain. At 12GHz, The minimum noise figure (NFmin) is 0.65 dB and the maximum stable gain (MSG) is 14.2 dB.

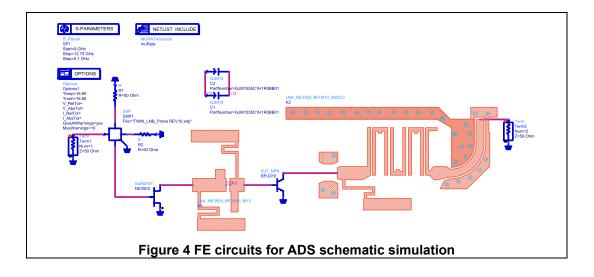
In Ku band application, BFU910F is usually biased at 2V/7 mA. Compared with pHEMT, BFU910 has the merits of lower current, no negative voltage needed, higher gain, easier for wide-band matching.

In the quad LNB reference design, BFU910F is used as the second stage LNA. Although its individual NFmin is slightly higher than some pHMET, the higher gain of BFU910F makes the overall NF even better.

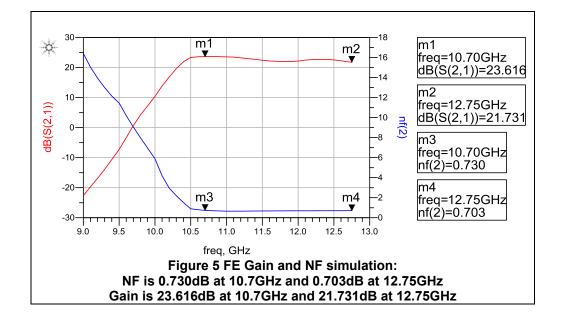
5. Design

5.1 General Consideration

5.1.1 Gain and NF simulation


The ADS schematic of the Front End (FE) of the NXP Quad is given in Figure 4. The FE includes two stages of LNA, a Circular Waveguide (CWG) with input matching, intermediate stage matching and output circuits (output matching, Band Pass Filter (BPF) and 50Ω transmission-line).

NE3503M04 and BFU910F are employed as the 1st and 2nd stage LNA respectively.


The Circular Waveguide (CWG) is used as the input interface, and the parameters of the CWG with input matching circuits is extracted and stored in the S4P model in the schematic in Figure 4.

The models of the intermediate matching and the output circuits of the FE are simulated by Momentum.

Based on the simulation of the FE, which is shown in Figure 5, the overall gain and NF of the LNB (FE+TFF1044HN) is calculated and shown in Figure 6.

Application note

VoiseCalc	<u>S</u> et N	umber of S	Stages	= 2	Calcul	ate [F4]			Clear	Main Menu [
					Stage 1	Stag	je 2			
		Stage	Data	Units				_		
		Stage Na	ime:		FE(LNA+BPF	TFF	1044			
	Ī	Noise Fig	gure	dB	0.7	1		8		
		Gain		dB	22.	4	3	6		
		Output IP:	3	dBm	1	5	1	5		
		dNF/dTe		dB/*C		0		0		
		dG/dTen	np	dB/*C		0		0		
		Stage A	nalysis:			0		0		
		NF (Tem	· · ·	dB	0.7		8.0			
		Gain (Ter		dB	22.4		36.0			
		Input Power		dBm	0.0		22.4			
			ower	dBm	22.4	_	58.4			
		d NF/d N		dB/dB	0.9		0.0			
		d NF/d G		dB/dB	-0.0	_	0.0			
		d IP3/d IP	-3	dBm/dBm	0.0	U	1.0	U		
Enter System Parameters			Sys	stem Analysis	s:					
Input Power	0	dBm		Gain =	58.40	dB	1 Г	Input IP3 =	-43.40	dBm
Analysis Temperature	25	°C	N	oise Figure =	0.82	dB		Output IP3 =	15.00	dBm
Noise BW	1	MHz	N	oise Temp =	60.37	*К		Input IM level =	86.80	dBm
Ref Temperature	25	°C		SNR =	113.15	dB		Input IM level =		dBC
S/N (for sensitivity)	0	dB		MDS =	-113.15	dBm		Output IM level =		dBm
Noise Source (Ref)	290	۴K		Sensitivity =	-113.15	dBm		Output IM level =		dBC
			1	loise Floor =	-173.15	dBm/Hz		SFDR =	46.50	dB
Figu	re 6	Simu	lated	d Gain	& NF (of th	e v	vhole LNB	:	
-								58.4dB	•	

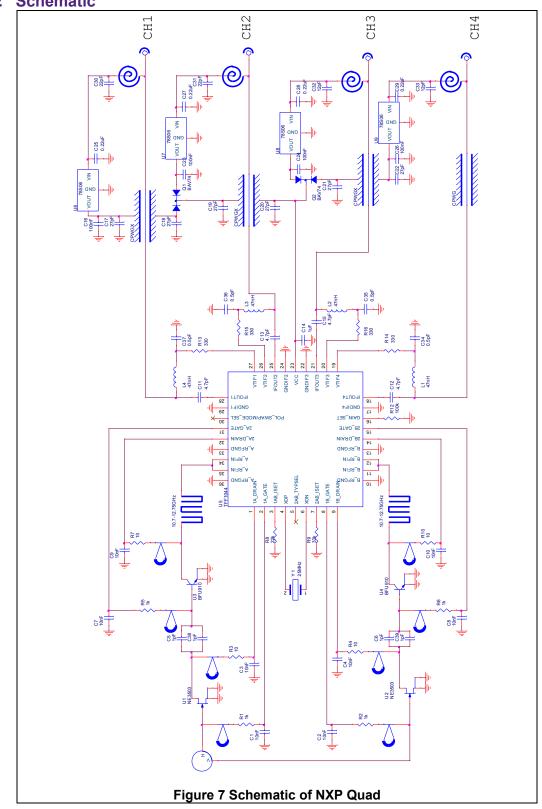
5.1.2 TFF1044 configuration

Regarding to the configuration of the NXP Quad:

- 1) High gain mode: Gain_SET (pin 16) is pull-down by a 100k Ω resistor
- 2) BJT (BFU910) as the 2nd stage of LNA: 2AB_TYPSEL (pin 5) is left floating
- RFA as vertical polarity and RFB as horizontal polarity: POL_SWAP/MODE_SEL (Pin 30) is left floating
- 4) The bias of the 1st stage is 2V/10mA: 1AB_ISET (pin 3) is pulled-down by a 22k Ω resistor
- 5) The bias of the 2nd stage is 2V/7mA: 2AB_ISET (pin 7) is pulled-down by a 33k Ω resistor f

The detailed schematic and BOM are given in Section 5.2 and Section 5.3 respectively.

5.1.3 PCB and mechanical parts


In traditional discrete quad LNB, two PCBs are usually employed because the RF crossing traces are inevitable with single PCB layout. But it is not a problem anymore in TFF1044HN based quad LNB. In the NXP Quad, single PCB solution is employed and the PCB size has been designed as small as possible:

- The length of the PCB is determined by the safe distance between the F-type connectors. Any neighboring F-type connectors must be placed at least 16mm far from each other to avoid conflicts. The minimum PCB length is 50mm: three times of the minimum safe distance plus the pads dimensions.
- The width of the PCB is determined by the geometric dimension of the distribution circuits (FEs and IF transmission lines) and safe distance between the IF transmission lines. The minimum PCB width is 40mm.

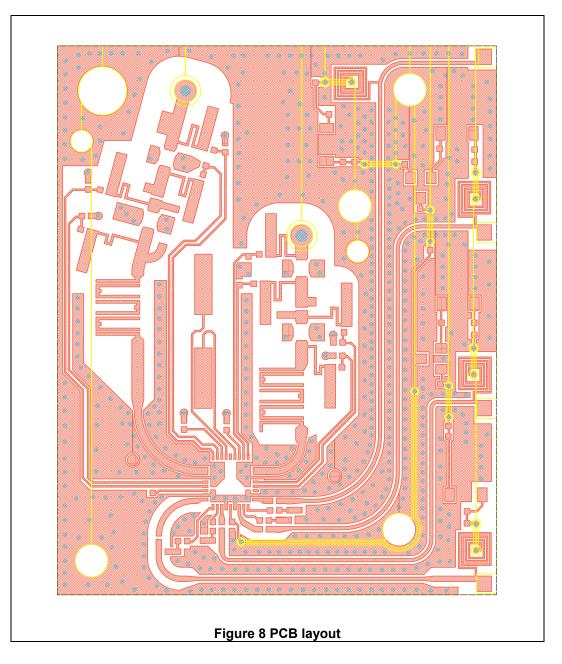
The PCB layout is presented in Section 5.4, and related assembly drawing is in Section 5.5.

The LNB has a Circular Waveguide (CWG) input interface so that the LNB can be tested both in lab and on dish. The precision of the waveguide significantly impacts the RF performance of the LNB, and its dimension is described in Section 5.6.

5.2 Schematic

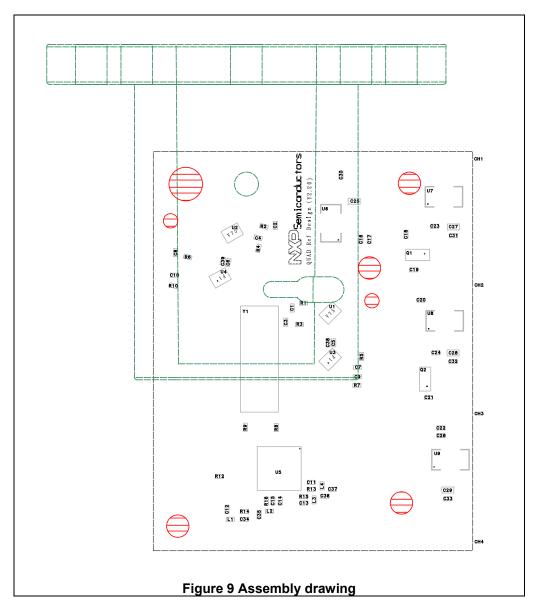
AN11674

All information provided in this document is subject to legal disclaimers.

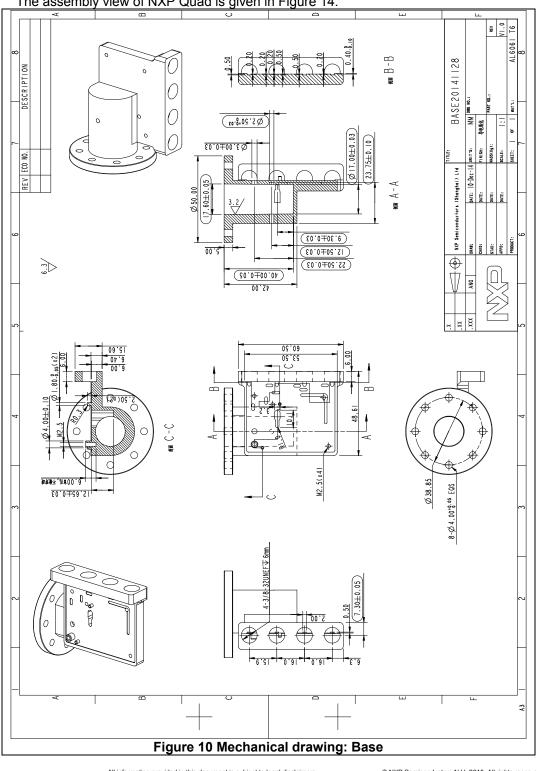

© NXP Semiconductors N.V. 2015. All rights reserved.

5.3 BOM

Table 4 Bill of material							
Designator	Description	Footprint	Qty	Value	Supplier Name/type		
U1,U2	HJFET	SOT343	2		Renesas-NE3503M04		
U3,U4	SiGe BJT	SOT343	2		NXP-BFU910F		
U5	FIMOD	SOT1359-1	1		NXP -TFF1044HN		
U6,U7,U8,U9	Regulator	SOT-89	4		Silicore-78S06M		
Q1,Q2	CC-Diodes	SOT-23	2		NXP-BAV74		
C1, C2, C3, C4, C7, C8, C9, C10	Capacitor	0402	8	10nF	Murata-GRM155R71H103K		
C5, C6, C38, C39	Capacitor	0402	4	1pF	Murata-GJM1555C1H1R0C		
C11, C12, C13, C15	Capacitor	0402	4	4.7pF	Murata-GRM1555C1H4R7C		
C14	Capacitor	0402	1	1uF	Murata-GRM155R61A105K		
C34, C35, C36, C37	Capacitor	0402	4	0.5pF	Murata-GRM1555C1HR50B		
C16, C23, C24, C26	Capacitor	0402	4	0.1uF	Murata-GRM155R71C104K		
C17, C18, C19, C20, C21, C22	Capacitor	0402	6	27pF	Murata-GRM1555C1H270J		
C25, C27, C28, C29	Capacitor	0603	4	0.22uF	Murata-GRM188R71E224K		
C30, C31, C32, C33	Capacitor	0402	4	22pF	Murata-GRM1555C1H220J		
R1,R2,R5,R6	Resistor	0402	4	1kΩ	PSA-WR04X1001FTL		
R3, R4, R7, R10	Resistor	0402	4	10Ω	PSA-WR04X10R0FTL		
R8	Resistor	0402	1	22k Ω	PSA-WR04X2202FTL		
R9	Resistor	0402	1	$33k\Omega$	PSA-WR04X3302FTL		
R12	Resistor	0402	1	$100 k\Omega$	PSA-WR04X1003FTL		
R13, R14, R15, R16	Resistor	0402	4	330	PSA-WR04X3300FTL		
L1,L2,L3,L4	Inductor	0402	4	47nH	LQW15AN47NG		
Y1	Crystal	HC-49XA	1	25MHz	JFVNY-HC-49XA-C16TTA-25.000MHz DYNAMIC-DMS2500016		

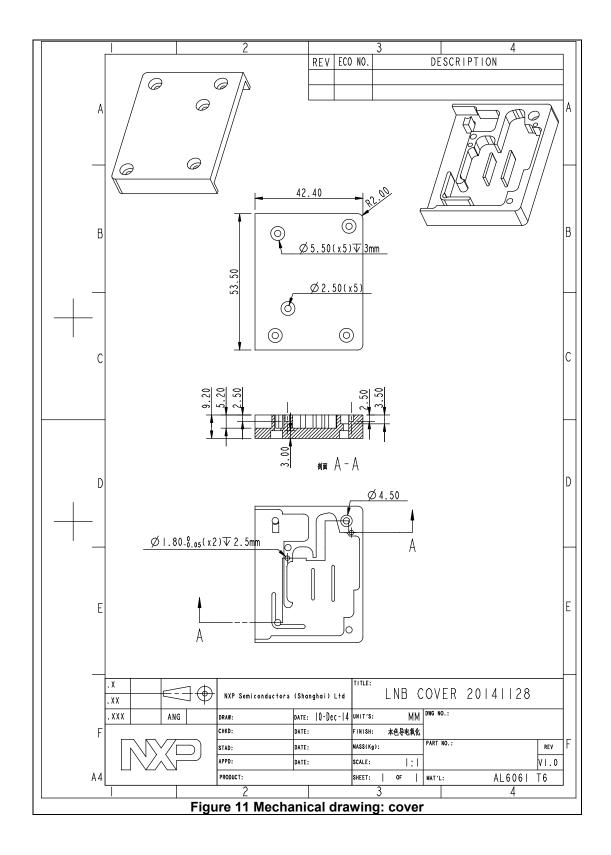


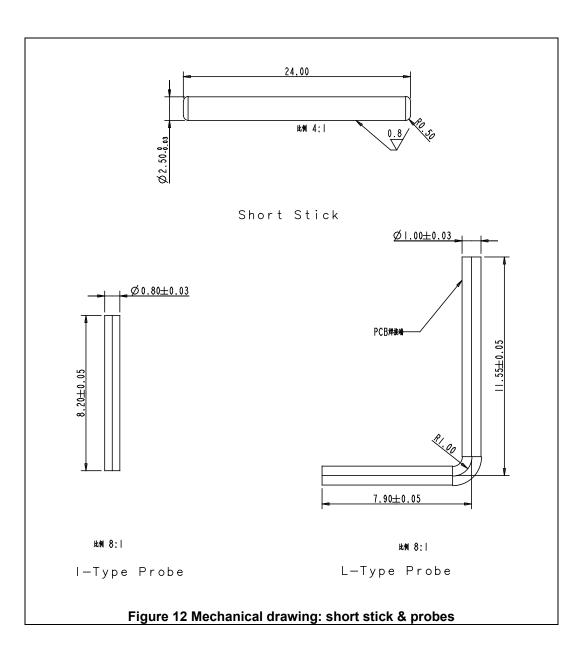
5.4 PCB layout


5.5 Assembly

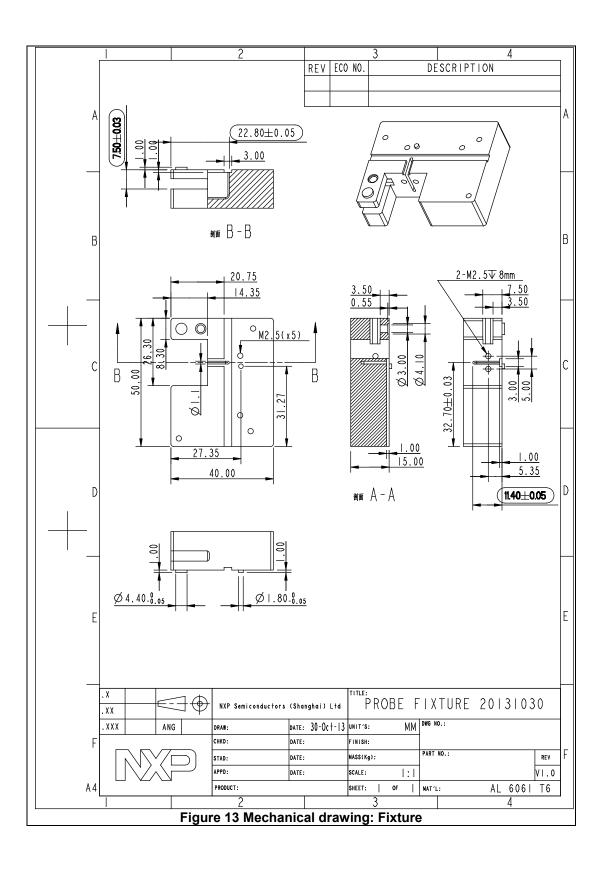
© NXP Semiconductors N.V. 2015. All rights reserved.

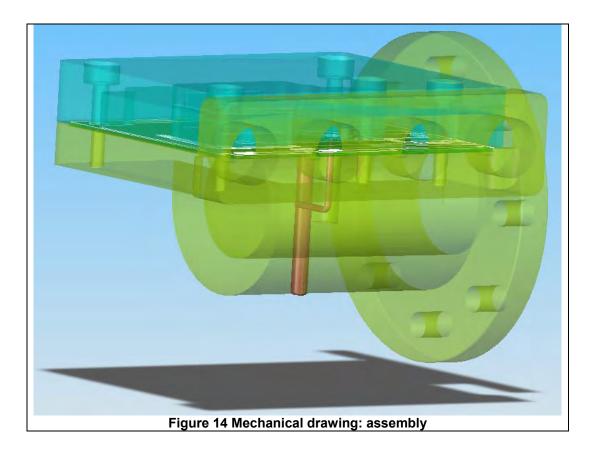
5.6 Mechanical drawing


The mechanical drawings of the base, cove short stick and probes are presented in Figure 10 to Figure 12. The alignment of the probes is very important to the NF of the LNB. A fixture is made to assemble the probes precisely, which is shown in Figure 13. The assembly view of NXP Quad is given in Figure 14.



AN11674


All information provided in this document is subject to legal disclaimers. **Rev. 1 — 17 July 2015** © NXP Semiconductors N.V. 2015. All rights reserved.



Application note

Application note

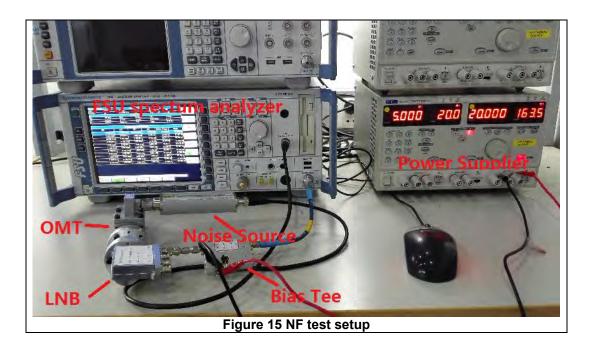
© NXP Semiconductors N.V. 2015. All rights reserved. 20 of 46

6. Test Results

The NXP Quad is tested in lab for RF performance and on dish for signal quality. The electric test results are given in Section 6.1 to Section 6.7, while the signal quality test results are given in Section 6.8.

6.1 Noise Figure

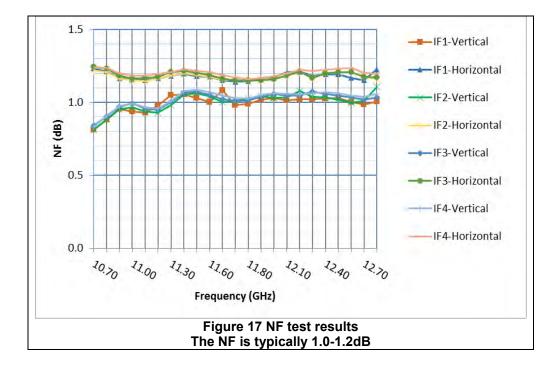
The NF test setup is shown in Figure 15. The NF is tested by Rhode & Schwarz FSU spectrum analyzer with an Agilent 346A noise source.

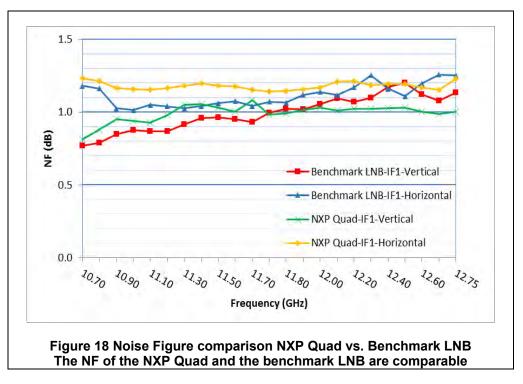

An Orthogonal Mode Transducer (OMT) is used as the adaptor between the coaxial connector and the waveguide. The loss of the OMT, which is used in the NF test calibration is given in Figure 16.

Since the conversion gain of the DUT is about 60dB, the noise contribution of the spectrum analyzer receiver is negligible. So the Second Stage Corrected function is switched off in this test. When one IF port is under test, all the other ports are switched off to avoid the impacts due to cross talk and cross polar.

For LNB based on any Fully Integrated Mixer Oscillator Down-converter (FIMOD) IC, the harmonic of the crystal can be looked as extra noise. Different from the thermal noise, this interference is not white noise but a single spectrum. So how it impacts the system Signal Noise Ratio (SNR) is different. To evaluate the physical SNR degradation in DVB-S signal receiving system with the NXP Quad, the Resolution Band Width (RBW) is set 10MHz, which is as close to typical symbol rate of a real system as possible.

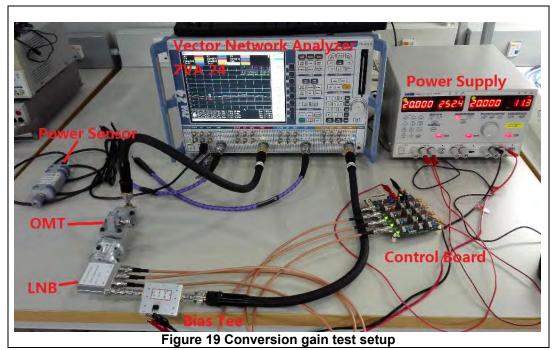
The NF of NXP Quad is typically 1.1dB, and independent on which IF port is under test as shown in Figure 17.


Figure 18 compares the NF of the NXP Quad and the benchmark LNB. Both LNBs are measured under the same test condition, and their NF are comparable.



Loss Input Settings Selection	Table
	The state of the s
Loss Input Constant Loss Input Table	0 dB
RF	Loss Input
10.7 GHz	0.15 dB
10.8 GHz	0.14 dB
10.9 GHz	0.14 dB
11 GHz	0.12 dB
11,1 GHz	0.11 dB
11.2 GHz	0.1 dB
11.3 GHz	0.09 dB
11.4 GHz	0.08 dB
11.5 GHz	0.09 dB
11.6 GHz	0.09 dB
11.7 GHz	0.1 dB
11.8 GHz	0.11 dB
11.9 GHz	0.11 dB
12 GHz	0.1 dB
12.1 GHz	0.09 dB
12.2 GHz	0.08 dB
12.3 GHz	0.09 dB
12.4 GHz	0.11 dB
12.5 GHz	0.13 dB
12.6 GHz	0.15 dB
12.7 GHz	0.18 dB
12.75 GHz	0.19 dB

All information provided in this document is subject to legal disclaimers.



6.2 Conversion gain

The conversion gain test setup is shown in Figure 19. A Rhode & Schwarz Vector Network Analyzer (VNA) ZVA 24 with frequency conversion option is used in the test. The Power sensor is used for source and receiver power calibration. In conversion gain test, all the ports which are not under test are switched off.

Figure 20 to Figure 23 depict the conversion gain plots of the NXP Quad at both polarities and both bands. In all plots, M1 marks the maximum gain while M2 marks the minimum gain. The conversion gain is in the range of 60 ± 3 dB. In all conditions, the gain flatness is typically 2-3dB.

IF1

IF4

Trc10

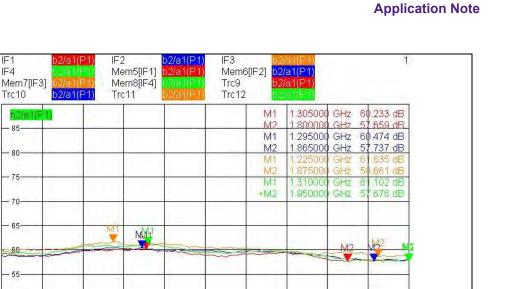
85

80

- 75-

- 70 65-

-60 55 50 - 45-- 40-


7/1/2015, 4:06 PM

Ch1 Mix Freq IF Rec All Rec Freq Start 950 MHz 0 dBm

Ch2 Mix Freq IF Rec All Rec Freq Start 950 MHz 0 dBm

Ch3 Mix Freq IF Rec All Rec Freq Start 950 MHz 0 dBm

Ch4 Mix Freq IF Rec All Rec Freq Start 950 MHz 0 dBm

AN11674

Stop 1.95 GHz

Stop 1.95 GHz

Stop 1.95 GHz

Stop 1.95 GHz

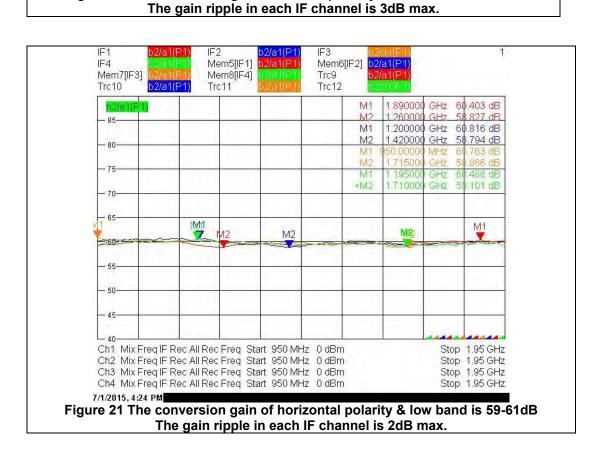
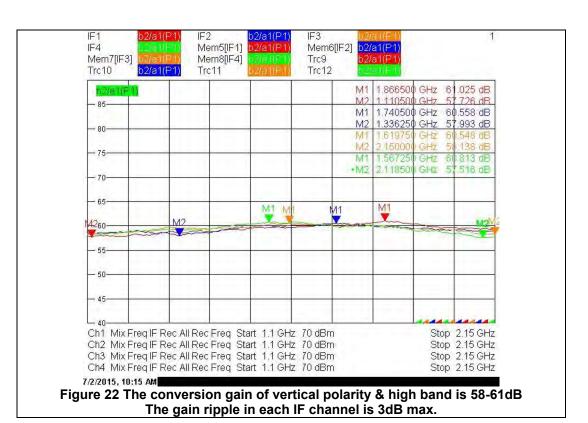
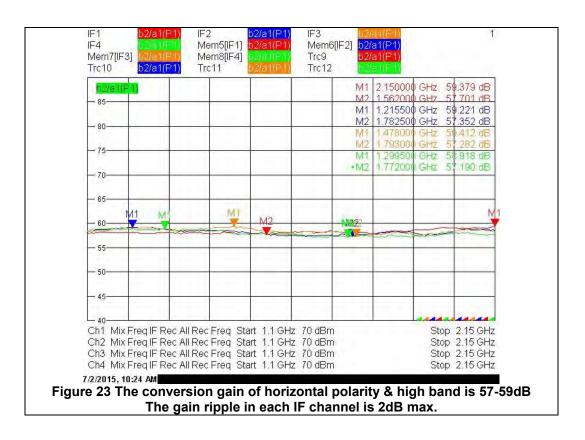




Figure 20 The conversion gain of vertical polarity & low band is 58-62dB

AN11674

Application Note

6.3 The third order Output Intercept Point (OIP3)

The OIP3 test setup is shown in Figure 24. Rhode & Schwarz Vector Network Analyzer (VNA) ZVA 24 with frequency conversion and intermodulation test option is used in the test. In addition, a power combiner are used to combine the two tones generated by Port 1 and Port 3 of the VNA, and two isolators are inserted between the power combiner arms and the ports of the VNA to avoid the unwanted IM3 components generated by the instrument itself.

The interval between of two tones is 10MHz, Measurement bandwidth is 200 kHz, and the calibrated input power of each tone is -70dBm. When any port is under test, all the other ports are switched off.

The OIP3 plots for low band and high band are given in Figure 25 and Figure 26 respectively.

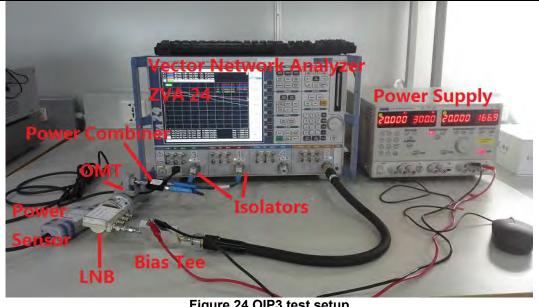
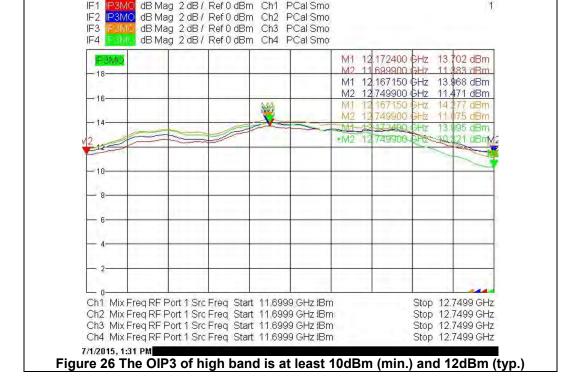
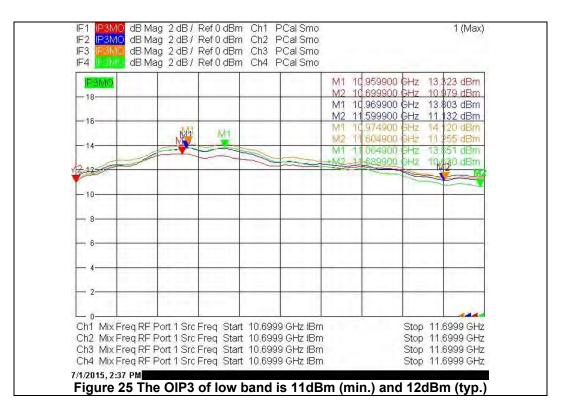




Figure 24 OIP3 test setup

6.4 RMS phase jitter

The RMS phase jitter test setup is shown in Figure 27. A CW signal with very good phase noise is generated by Rhode & Schwarz SMF100A signal generator and injected into the LNB input. The phase jitter is measured at the IF ports by Rhode & Schwarz spectrum analyzer FSU.

The input CW signal is 11.6875GHz for low band and 12.7375GHz for high band. And the output level is -35dBm. The detailed phase jitter test setup for FIMOD IC is described in NXP's application note AN11139.

Since all IF ports of the NXP Quad LNB use the same LO for low band or high band, only one IF port is selected for the LO RMS phase jitter test. All the other IF ports which are not under test are switched off.

The test results are given in Figure 28 and Figure 29 for 9.75GHz and 10.6GHz LO. The RMS phase jitter of these two LO are 1.3° and 1.4° respectively.

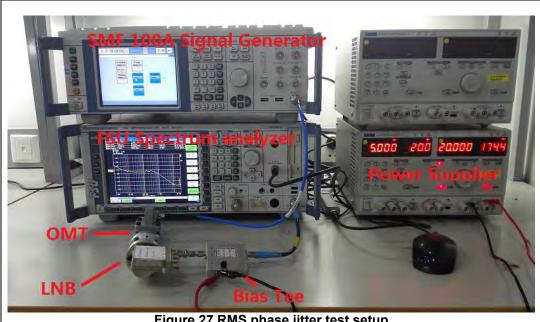


Figure 27 RMS phase jitter test setup

30 of 46

AN11674 **Application note**

Residual Noise

Spot Noise [T1]

Application Note

6.5 Cross polar

The test setup for conversion gain, which is shown in Figure 19, can be used for cross polar test as well.

The signal from different polarity comes in by two ways:

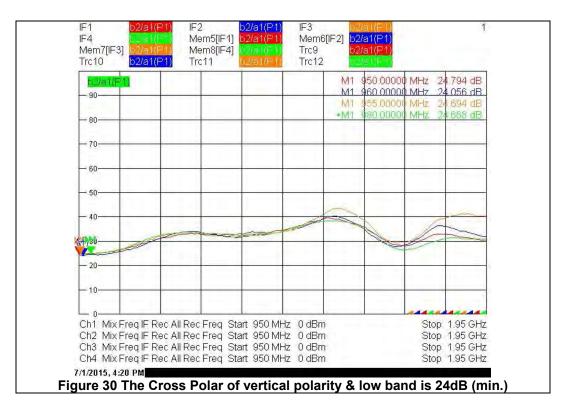
- 1) The RF coupling in the waveguide, RF chains and RF internal coupling;
- 2) The IF coupling in the switch matrix, IF transmission lines, and IF internal coupling.

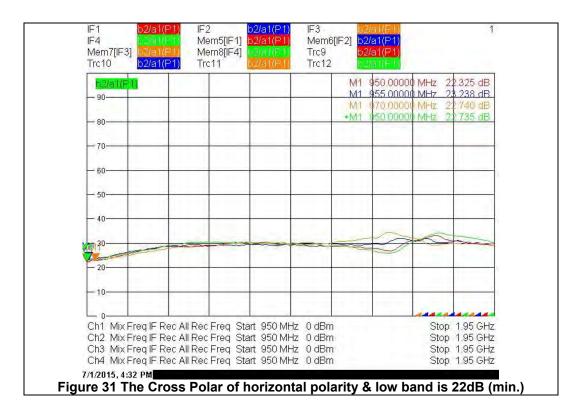
As a smart function of TFF1044HN, when all the IF ports are set as the same polarity, the bias of the LNA of the other polarity is switched off to save power consumption. So in order to obtain the cross polar in the worst case, when one IF port is under test, all the other ports are switched on and set to the other polarity but kept the identical band setting, as shown in Table 5.

Test Port	Polarity	Band	The other IF ports				
restront	Foldfity	Danu	Power	Polarity	Band		
	Vertical	Low		Horizontal	Low		
1,2,3,4	Ventical	High	ON	nonzontai	High		
	Horizontal	Low	ON	Vertical	Low		
		High		vertical	High		

The process of cross polar test is:

Step 1: Run conversion gain test, including power calibration.

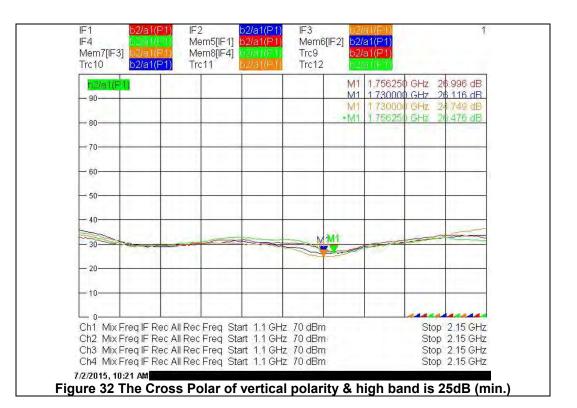

Step 2: Store the conversion gain to memory, generate Curve A.

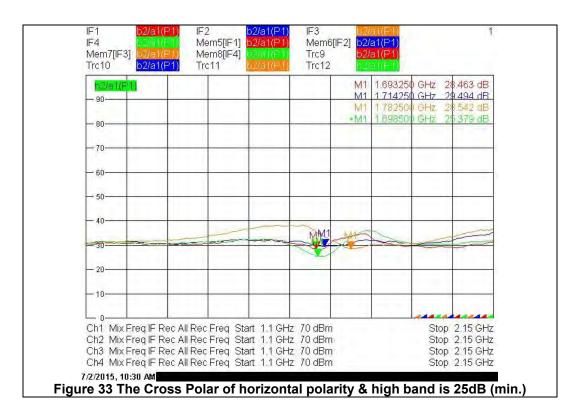

Step 3: Connect the input cable to the other polarity of the OMT.

Step 4: Measure the conversion gain from the other polarity, generate Curve B.

Step 5: Generate the cross polar curve by <Curve A/Curve B>.

The test results of the NXP Quad at both polarities and both bands are given in Figure 30 to Figure 33. Even in the worst case, the cross polar is better than 20dB.




All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2015. All rights reserved.

AN11674

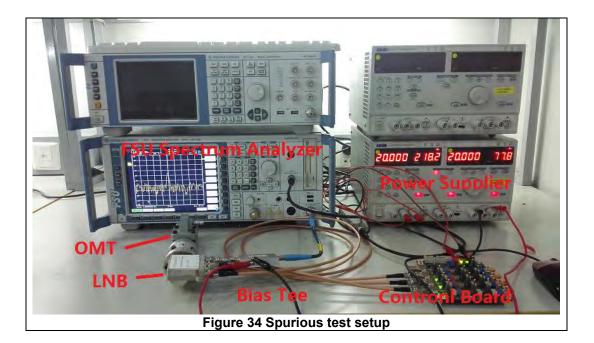
Application Note

All information provided in this document is subject to legal disclaimers.

AN11674

Application Note

6.6 Spurious

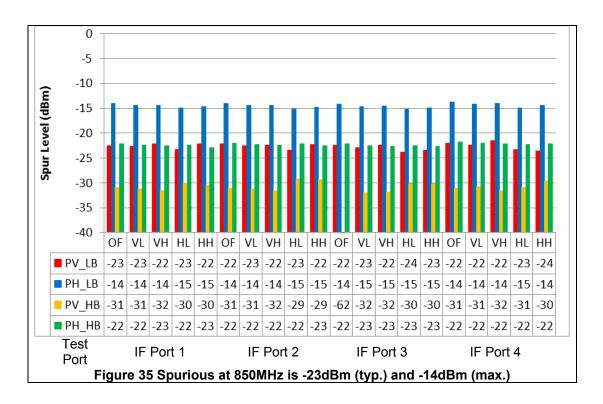

The major spurious of any quad LNB is at 850MHz (out of IF band) and 1700MHz (in band), which are the 2nd and 4rd intermodulation products of 9.75GHz and 10.6GHz LO.

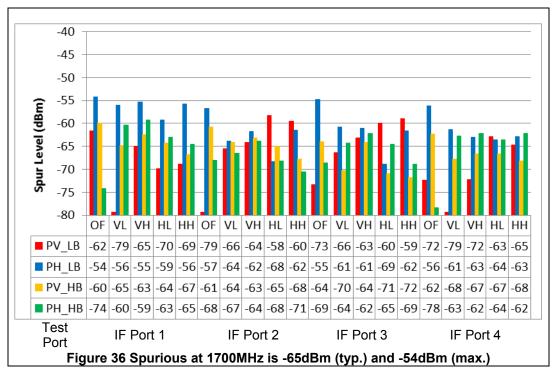
The spurious test setup is shown in Figure 34. The input of the LNB under test is terminated by the OMT and 50Ω loads to block the interference from the free space. A Rhode & Schwarz spectrum analyzer FSU is used to measure the level of 850MHz and 1700MHz spurious. The loss of the bias Tee and IF cable has been measured and subtracted in the final results.

The status of the other IF ports effect on the spurious level under test. The test settings are listed in Table 6.

The spurious at 850MHz and 1700MHz of the NXP Quad is given in Figure 35 and Figure 36 respectively. The abbreviation PV, PH, LB, HB in the legend stand for vertical polarity, horizontal polarity, low band and high band setting of the IF port under test respectively. While the abbreviation OF, VL, VH, HL, HH in the table under horizontal axis stand for switched off, vertical polarity and low band, vertical polarity and high band, horizontal polarity and low band, horizontal polarity and high band respectively.

According to the test results, when the port is horizontal polarized and low band, the 850MHz spurious is about -14dBm. For the other settings, the spurious is better than -22dBm. For most setting, the 1700MHz is lower than -60dBm. The worst case is -54dBm. The 1700MHz spurious level obviously depends on the status of the other IF ports.


AN11674


Application note

Test Port	Polarity	Band	The other IF ports			
			Power	Polarity	Band	
	Vertical	Low	OFF	N/A	N/A	
				Vertical	Low	
			ON	Ventical	High	
				Horizontal	Low	
				HUHZUHIAI	High	
		High	OFF	N/A	N/A	
			ON	Vertical	Low	
					High	
				Horizontal	Low	
					High	
1,2,3,4	Horizontal -	Low	OFF	N/A	N/A	
				Vertical	Low	
			ON	ventical	High	
			ON	Horizontal	Low	
					High	
		High	OFF	N/A	N/A	
				Vertical	Low	
			ON		High	
				Horizontal	Low	
					High	

Table 6 850MHz and 1700MHz measurement setting

All information provided in this document is subject to legal disclaimers.

AN11674

37 of 46

6.7 Summary on electrical specification

Table 7 Electrical test summary

Parameter		NXP Quad		Benchmark LNB			11	
Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Supply Current	1 IF ON ^[1]		159			153		mA
	2 IF ON ^[2]		199			174		
	3 IF ON ^[2]		216			193		
	4 IF ON ^[2]		234			213		
LO Frequency	Low Band		9749.9			9750.3		MHz
	High Band		10599.9			10599.7		IVITIZ
Conversion	Low Band	58	60	62	59	61	66	dB
Gain	High Band	57	59	61	59	61	63	
Gain Ripple			2.3	3.4		3.1	5.1	dB
Noise Figure	Low Band		1.1	1.2		1.0	1.2	dB
Noise Figure	High Band		1.1	1.2		1.1	1.3	
RMS Phase	Low Band		1.3			0.2		0
Jitter ^[3]	High Band		1.4			0.2		
OIP3	Low Band	11	12		8	10		dBm
UIF J	High Band	10	12		9	12		
Cross Polar Rejection		22	25		22	28		dB
Sourious	850MHz		-23	-14		-41	-23	dBm
Spurious	1700MHz		-65	-54		-60	-46	

[1] Only one polarity is selected;

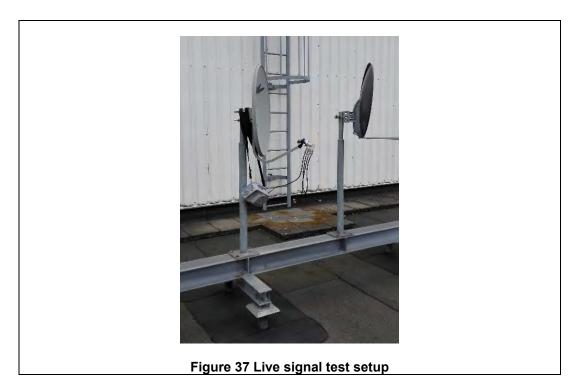
[2] Both polarities are selected.

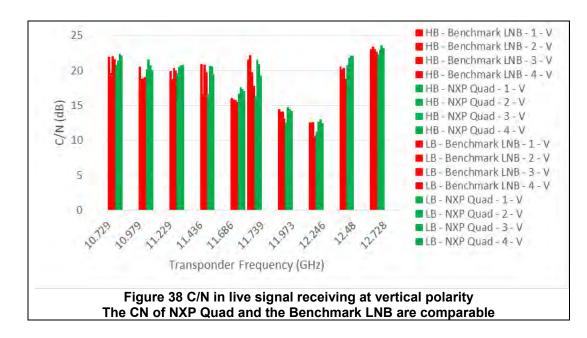
[3] Integrated from 10kHz to 13MHz.

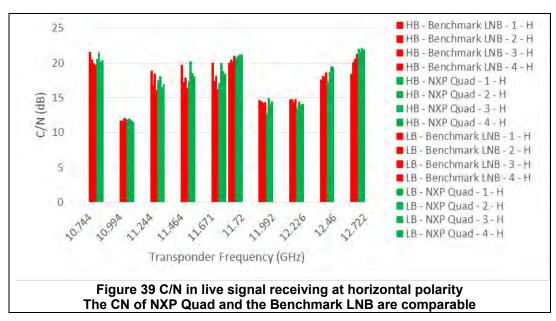
Application note

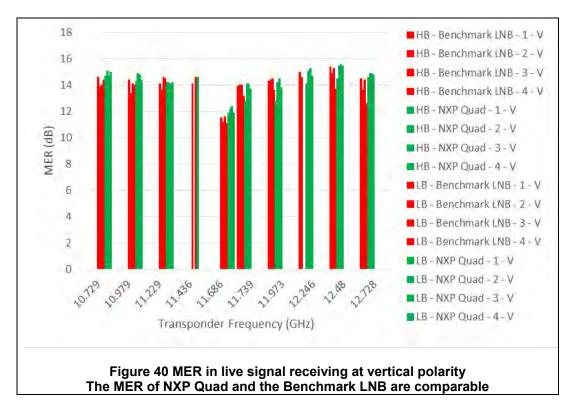
6.8 Signal quality in live signal receiving

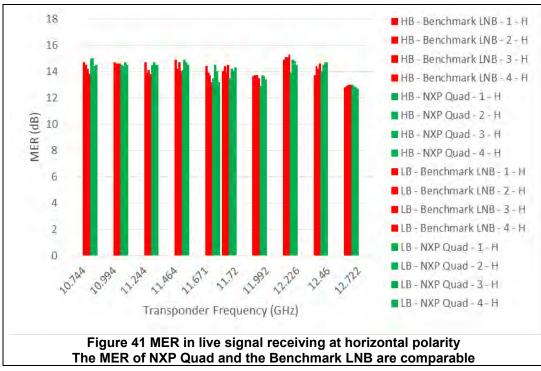
The NXP Quad is mounted on an Andrew 120cm dish antenna to receive the signal from satellite of Astra 19.2^E, and the Signal strength, Modulation Error Ratio (MER), Carrier Noise Ratio, Link Margin (LKM, only available in case of DVB-S2)) are measured by Rhode & Schwarz DVB-S / DVB-S2 tester. A 20 meters length coaxial cable (approximately 15dB attenuation) is used to connect the LNB and the tester. The test setup is pictured in Figure 37 (A short cable is employed only for demonstration).

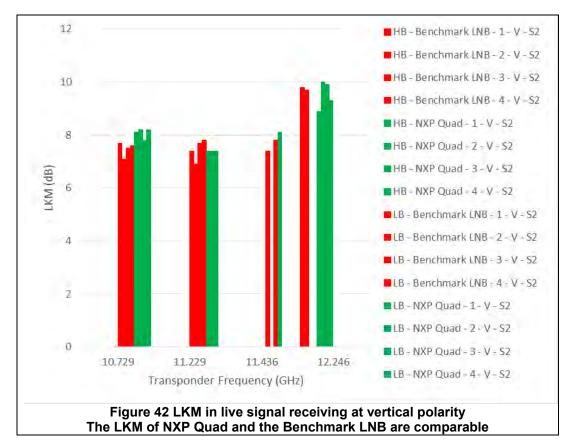

The signal quality of the benchmark LNB is measured as well as the NXP Quad, and the results are compared in Figure 38 to Figure 43. The abbreviation of LB/HB, 1 - 4, V/H, S2 in the legend of these plots stand for low/high band, IF port number, vertical/horizontal polarity, DVB-S2 respectively.

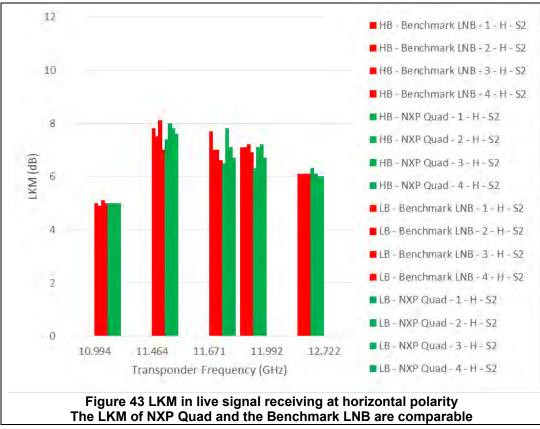

Figure 38 and Figure 39 depict the C/N of the received signal from vertical and horizontal polarity respectively. The C/N of the received signal by the benchmark LNB and the NXP Quad are on the same level.


Figure 40 and Figure 41 depict the MER of the demodulated signal from vertical and horizontal polarity respectively. The MER of the received signal by the benchmark LNB and NXP Quad are close to each other.


Figure 42 and Figure 43 depict the LKM of the DVB-S2 signal (8-PSK modulation) from the vertical and horizontal polarity respectively. The LKM results by the benchmark LNB and the NXP Quad are comparable as well.


In general, the NXP Quad LNB has the comparable signal quality with the benchmark LNB.





Application note

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2015. All rights reserved.

7. Conclusions

A Quad LNB reference design based on BFU910F and TFF1044HN has been described in this document. The detailed design including the schematic, BOM, PCB layout, assembly drawing and mechanical drawing are presented.

According to the electric test results summarized in Section 6, the performance of the reference is comparable with the benchmark LNB in commercial market.

8. Legal information

8.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

8.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the

customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

8.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

8.4 Patents

Notice is herewith given that the subject device uses one or more of the following patents and that each of these patents may have corresponding patents in other jurisdictions.

<Patent ID> - owned by <Company name>

8.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

<Name> — is a trademark of NXP Semiconductors N.V.

Application note

9. ist of figures

Figure 1 The NXP QUad	3
Figure 2 Block diagram for integrated Quad LNB	4
Figure 3 TFF1044 block diagram	7
Figure 4 FE circuits for ADS schematic simulation	.10
Figure 5 FE Gain and NF simulation:	.11
Figure 6 Simulated Gain & NF of the whole LNB:	.11
Figure 7 Schematic of NXP Quad	.13
Figure 8 PCB layout	. 15
Figure 9 Assembly drawing	.16
Figure 10 Mechanical drawing: Base	
Figure 11 Mechanical drawing: cover	. 18
Figure 12 Mechanical drawing: short stick & probes	. 19
Figure 13 Mechanical drawing: Fixture	.20
Figure 14 Mechanical drawing: assembly	.21
Figure 15 NF test setup	
Figure 16 The loss of the OMT	
Figure 17 NF test results	.24
Figure 18 Noise Figure comparison NXP Quad vs.	
Benchmark LNB	
Figure 19 Conversion gain test setup	.25
Figure 20 The conversion gain of vertical polarity & low band is 58-62dB	26
Figure 21 The conversion gain of horizontal polarity & low band is 59-61dB	w 26
Figure 22 The conversion gain of vertical polarity & high band is 58-61dB	
Figure 23 The conversion gain of horizontal polarity & high band is 57-59dB	•
Figure 24 OIP3 test setup	.28

Figure 25 The OIP3 of low band is 11dBm (min.) and 12dBm (typ.)29
Figure 26 The OIP3 of high band is at least 10dBm (min.) and 12dBm (typ.)29
Figure 27 RMS phase jitter test setup
Figure 28 The RMS phase jitter of 9.75GHz LO is 1.3°31
Figure 29 The RMS phase jitter of 10.6GHz LO is 1.4° 31
Figure 30 The Cross Polar of vertical polarity & low band is 24dB (min.)
Figure 31 The Cross Polar of horizontal polarity & low band is 22dB (min.)
Figure 32 The Cross Polar of vertical polarity & high band is 25dB (min.)
Figure 33 The Cross Polar of horizontal polarity & high band is 25dB (min.)34
Figure 34 Spurious test setup35
Figure 35 Spurious at 850MHz is -23dBm (typ.) and - 14dBm (max.)
Figure 36 Spurious at 1700MHz is -65dBm (typ.) and - 54dBm (max.)
Figure 37 Live signal test setup
Figure 38 C/N in live signal receiving at vertical polarity 40
Figure 39 C/N in live signal receiving at horizontal polarity
Figure 40 MER in live signal receiving at vertical polarity .41
Figure 41 MER in live signal receiving at horizontal polarity
Figure 42 LKM in live signal receiving at vertical polarity 42
Figure 43 LKM in live signal receiving at horizontal polarity

10. Contents

1.	Introduction	3
2.	The NXP Quad	3
2.1	Product definition	3
2.2	Approach	
2.3	Functional requirements	4
2.4	Electrical requirements	
2.5	Mechanical requirements	
2.6	The NXP Quad, design considerations	
3.	The NXP Quad, measurement results	6
3.1	Parametric results, main parameters	6
3.2	Measurement results live signal Quality	
3.3	Conclusions	7
4.	Key-components, product description	7
4.1	TFF1044HN	7
4.2	BFU910F	9
5.	Design	.10
5.1	General Consideration	.10
5.1.1	Gain and NF simulation	
5.1.2	TFF1044 configuration	
5.1.3	PCB and mechanical parts	
5.2	Schematic	
5.3	BOM	
5.4	PCB layout	
5.5	Assembly	
5.6	Mechanical drawing	
6.	Test Results	.22
6.1	Noise Figure	
6.2	Conversion gain	
6.3	The third order Output Intercept Point (OIP3) .	
6.4	RMS phase jitter	
6.5	Cross polar	
6.6	Spurious	
6.7	Summary on electrical specification	
6.8	Signal quality in live signal receiving	
7.	Conclusions	
8.	Legal information	
8.1	Definitions	
8.2	Disclaimers	
8.3	Licenses	
8.4	Patents	
8.5	Trademarks	
9.	ist of figures	
10.	Contents	.46

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP Semiconductors N.V. 2015.

All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 17 July 2015 Document identifier: AN11674