

 AN11782
LPC82x UART secondary bootloader
Rev. 1.0 — 07 December 2015 Application note

Document information

Info Content

Keywords LPC82x, secondary bootloader, IAP, LPC11U68, UART

Abstract This application note illustrates how update the LPC82x firmware
without interrupting the normal flow of the execution using UART
secondary bootloader (SBL). The LPC11U68 is used as a
transmitter module to send the firmware data to the LPC82x via
UART.

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015

2 of 17

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

1 20151207 Initial version.

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 3 of 17

1. Overview
NXP’s LPC82x is an ARM Cortex-M0+ based, low-cost 32-bit MCU family and it can
operate at up to 30 MHz CPU frequency. The LPC82x supports up to 32 KB of flash
memory and 8 KB of SRAM. It also Features:

 Bootloader.
 On-chip ROM APIs for ADC, SPI, I2C, USART, power configuration (power

profiles) and integer divide.
 Flash In-Application Programming (IAP) and In-System Programming (ISP).

The LPC82x provides users a convenient way to update the flash content in real-time for
bug fixes or product updates, it can be achieved through the following two methods:

 ISP: In-System programming is programming or re-programming of the on-chip
flash memory using the bootloader software and UART0 serial port. This can be
done when the part resides on an end-user board.

 IAP: In-Application programming performs erase and write operations on on-chip
flash memory, as directed by the end-user application code.

Smart connectivity plays a major role in everyday user experience. The convenience of
remotely updating firmware on a connected device has become a necessity. The solution
should address these basic requirements:

 Good experience - the user should be able to use the device normally while the
firmware is updating.

 Availability - the device should be available during firmware updates or even after
a firmware update fails.

An overview of the application is as follows:

The transmitter device sends the new firmware to the host device via UART and host
device programs its flash memory with the new firmware. See Fig 1.

Fig 1. Application scenario

This application note explains how an MCU receives data and updates the firmware into
the flash memory while still executing its original task. The system architecture is also
detailed in this application note.

 LPC82x is a target device that receives the firmware via UART and programs it on
the flash memory.

 Communication module is represented by the LPC11U68 development board
which sends the firmware to the target via UART. See Fig 1.

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 4 of 17

Fig 2. System architecture

2. Environment

2.1 Hardware
Board:

 LPCXpresso82x-MAX board (OM13071).
 Development board for LPC11U68 (OM13065).

Debugger:
 Keil U-Link2 for LPC11U68 projects in Keil and LPCXpresso IDEs.
 J-LINK for LPC11U68 projects in IAR IDE.
 Integrated JTAG debugger on LPCXpresso82x-MAX board for LPC82x projects in

all IDEs.

Miscellaneous:
Cables to connect an LPCXpresso82x-MAX board to a development board for LPC11U68.

Board setup:
 Jumper setting: Default settings.
 Board connection: Both the boards are connected via UART interface.

Pins connections for UART:

Borad Rx Tx

Development board for LPC11U68 pin94 pin95

LPCXpresso82x-MAX board P0_0 P0_4

For UART communication between both the boards, pin94 on port CN4 on the LPC11U68
should be connected to pin P0_4 on the LPC82x and pin95 on port CN4 should be
connected to pin P0_0. Also the GND pins of both the boards should be connected.

NOTE: Connect UART and grounds after programming the boards.

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 5 of 17

2.2 Software
Development IDE:

 Keil uVision5 (V5.13.0.0).
 IAR Embedded Workbench for ARM V7.40.2.
 LPCXpresso V7.7.2_379.

Tool:
Use Bin2C.exe from emWin BSP to convert the binary file to a C array file.
See Fig 3.

NOTE:
 emWin BSP is located in Board Support Packages (BSPs) section at

https://www.lpcware.com/content/project/emwin-graphics-library.
 Bin2C.exe is located at

C:\nxp\emWin\NXP_LPC1788_emWin522_BSP\NXP_emWin522_BSP\Start
\Tools

Fig 3. Bin2C tool along with emWin BSP

http://www.nxp.com/emwin-graphics-library

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 6 of 17

3. Flashing the LPC82x

3.1 Flash sectors
For the LPC82x, most IAP and ISP commands are executed on sectors and specific sector
numbers. Additionally, a page erase command is also supported. The size of a sector is 1
KB and the size of a page is 64 byte, therefore one sector contains 16 pages. See Fig 4
for LPC82x flash configurations.

Fig 4. Flash sectors

3.2 IAP
IAP allows the user applications to erase and write the on-chip flash memory.
Detailed description of the IAP commands can be found in the LPC82x user manual. IAP
APIs can be found in the iap.c file in the project.

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 7 of 17

4. Software design
This section gives an overview of the design of an in-Application programming demo and
the software implementation for the LPC82x and LPC11U68.

The LPC82x software package contains:

1. Firmware that contains two tasks:
a. Task1 blinks an LED periodically. LED can be either green or blue depending on

the firmware being executed. Each LED color indicates different firmware,
Firmware1 and Firmware 2.

b. Task2 receives the program (Firmware1 or 2) via UART, writes and executes the
firmware code. Secondary bootloader (SBL) uses the IAP commands to write an
updated firmware on the flash memory.

2. Secondary bootloader that has two primary functions:
a. Checks if the firmware is updated and valid.
b. Run the valid firmware.

The LPC11U68 software’s function is to send the firmware code to the LPC82x via UART.

4.1 Flash assignment on LPC82x
The secondary bootloader is placed at the starting address 0x0. Starting at the address of
0x00001F40, there are two pages of flash spaces that are allocated to the parameter data
which is used for firmware check and execution (Note: Alternatively, parameter data can
be stored in the EEPROM). Firmware1 and Firmware2 are placed after the parameter data.
See Fig 5.

The code execution process follows this sequence:

1. The secondary bootloader is executed first after a reset. It selects the firmware to
execute next based on the parameters stored in the flash.

2. Before the bootloader jumps to execute the firmware (Firmware 1 or 2), an interrupt
vector table of the firmware is copied to the address 0x10000000 of SRAM.

3. While the firmware is being executed, if a new firmware data is received via UART,
the executing firmware will finish programing on the other flash space, updating the
parameters and copying the interrupt vector of the new firmware while the LED light
blinks periodically. Finally, execution process will jump to execute the new firmware.

4. After new firmware starts executing, step 3 is repeated if further firmware update
requests arrive, SBL overwrites the old firmware with the new one received.

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 8 of 17

4.2 Parameter data
Data address is assigned as shown in Fig 6.

Fig 6. Data address assignment

Parameter is defined by two structures shown in Fig 7.

The firmware selection process by bootloader is as follows:
1. During the SBL execution, if the parameter “new_addr” is blank (i.e 0xFFFFFFFF) in

the structure “FW_BOOT_INFO_T, then the SBL fetches the address from “curr_addr”
variable and executes the current firmware. Blank value of the “new_addr” indicates
the new firmware is not available.

2. If the parameter “new_addr” is not blank, the SBL calculates the signature value of the
parameters “new_addr”, “start_sect” and “end_sect” of the structure
“FW_CHECK_INFO_T” and compares the result with the value of “signatrue_val”. In
case of equal values of the structure parameters and the signature, SBL gets the
address from the “new_addr” variable and executes the new firmware.

Fig 5. Flash assignment

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 9 of 17

Fig 7. Parameter structure

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 10 of 17

5. Generate C array from image file
The firmware image (binary format) on the LPC82x needs to be converted to C array which
can be included and built along with the C file on the LPC11U68. Fig 8 shows how to
include the C array in a .c file on the LPC11U68 for IAR and Keil IDE. The LPC11U68 will
send the data in the form of a C array to the LPC82x via UART.

The steps to generate the C array from the image file in different IDEs are listed here.

5.1 Keil uVision
Keil supports generation of the C array from the .axf file after building the project, steps are
as follows:

1. Open Keil project “all_example_lib” located
at: ..\fw_IAP__keil_iar_v1\lpc824_fw_IAP\applications\keil_uvision.

2. Compile the Chip and the Board library projects.
3. Compile the ‘Bootloader_example’ project.
4. Set the ‘user_app_example’ as an active project.
5. Select the user_app_example1 in the dropdown box to create the C array for the

firmware 1, see Fig 9.
6. Open “options for target”.
7. Click on the “User” tab.
8. Configure as shown in Fig 10 to generate the C array file

“user_app_example1_KEIL.c”.
9. Also generate the C array file “user_app_example2_KEIL.c” for firmware 2

following steps 1 to 8. The only change is to select the ‘user_app_example2’ in
the dropdown box and use “example2” in place of “example1”.

10. Copy the two C array files, ‘user_app_example1_KEIL.c’ and
‘user_app_example2_KEIL.c’, to the directory of the LPC11U68 software
package: lpc11u68_fw_IAP_Host\applications\examples.

Note: Change the name of an array in “user_app_example2_KEIL.c” to “LR1”.

Fig 8. C arrays included in .c file on the LPC11U68

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 11 of 17

Fig 9. Select user_app_example1 in Keil

5.2 IAR Embedded Workbench for ARM
IAR does not provides the functionality to generate the C array but includes functionality to
generate the binary file. The process to convert the binary file to the C array file using a
tool follows these steps:

1. Open “all_example_lib” workspace in IAR located
at: ..\fw_IAP__keil_iar_v1\lpc824_fw_IAP\applications\iar_ewarm_projects.

2. Rebuild the Chip and the Board library projects.
3. Rebuild the ‘Bootloader_example’ project
4. Set ‘user_app_example – Green Blinky’ as an active project, see the Fig 11.
5. Open “options…”.
6. Click on “Output Converter” under “Category”
7. Configure as shown in the Fig 12 to generate the binary file
8. Rebuild the ‘user_app_example – Green_Blinky’ project
9. Convert the binary file to C array file “user_app_example1_IAR.c” using the tool.

Use the Bin2C tool along with emWin BSP as shown in Fig 3.
10. Also generate the C array file “user_app_example2_IAR.c” for the firmware 2

following steps 1 to 9, only changing selection to ‘user_app_example –
Blue_blinky’ in the dropdown box, see Fig 11.

11. Copy the two C array files to the directory of the LPC11U68 software package:
lpc11u68_fw_IAP_Host\applications\examples.

Note: Change the name of an array in “user_app_example1_IAR.c” to “LR0” and an array
in “user_app_example2_IAR.c” to “LR1”.

Fig 10. Generate C array file in Keil IDE

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 12 of 17

Fig 11. Select user_app_example – Green_blinky in IAR

5.3 LPCXpresso
LPCXpresso does not provide functionality to generate the C array but it provides the
functionality to generate the binary file. Follow the steps below to convert the binary file
to the C array file using the tool.
1. Open the LPCXpresso IDE.
2. Import the “lpc824_fw_iap_xpresso_v1” project, located in software package, to

LPCXpresso workspace using ‘Import Project’ option in the Quickstart Panel window.
3. Compile the Chip and the Board libraries.
4. Compile the Bootloader project.
5. Open the properties for the project ‘user_app_example’.
6. Click on the “Settings” in “C/C++ Build”
7. Select the tab “Build steps” and click the button “Edit…” for “Post-build steps”
8. Configure as shown in Fig 13 to generate the binary file.
9. Compile the ‘user_app_example’ project. (This will compile and create the .bin file

for Example1)

Fig 12. Generate binary file in IAR IDE

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 13 of 17

10. To compile and create the .bin file for an Example2, go to project properties by right
clicking on the project in the Project Explorer window.

11. In C\C++ Build, go to settings and click on the “Manage Configurations…” button.
12. Select the ‘user_app_example2’ from the table and click on the “Set Active” button

to activate example2 in the project ‘user_app_example’, save the settings by clicking
on OK button.

13. Compile the ‘user_app_example’ to create .bin file for example2.
14. Convert the binary files to C array files “user_app_example1.c” and

‘user_app_example2.c’ using the Bin2C along with emWin BSP tools as shown in
Fig 3.

15. Copy the two C array files in ‘example/src/’ folder in project workspace for
“lpc11u68_fw_IAP_Host_xpresso_v1”.
For example: ..\LPCXpresso_7.9.2_493\workspace1\fw_TX_example\example\src\
user_app_example1.

Note: Need to change the name of an array in “user_app_example1.c” to “LR0” and an
array in “user_app_example2.c” to “LR1”.

Fig 13. Generate binary file in LPCXpresso IDE

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 14 of 17

6. Demonstration
This section briefly describes how to demonstrate the remote IAP solution.

Preconditions:

1. Setup hardware and software environments. See section “2. Environment.”

2. Build all the projects successfully.

NOTE: Make sure the C array is placed in the directory of the LPC11U68 software
package before building the LPC11U68 project. For more details on how to do that, see
section “5.Generate C array from image file”.

Steps:
1. Download the ‘bootloader_example’ project at the 0x0 address and the

‘user_app_example’ project starting at 0x00002000 address (referred to as
Example1) on the LPC82x board from the “all_example_lib” workspace.
In the KEIL and LPCXpresso, example project’s name is “user_app_example1”.
In the IAR, example project’s name is “user_app_example – Green blinky”.

2. Download the ‘fw_TX_example’ project from the “lib_examples” workspace on the
LPC11U68 board, located at:
 ..\fw_IAP__keil_iar_v1\lpc11u68_fw_IAP_Host\applications\keil_uvision_projects

3. The onboard LED D1 will blink with green color when LCP82x board is powered on.
4. Power on or reset the LPC11U68 board. The binary data of the other example

starting at the address of 0x00005000 (referred to as Example2) will be sent to the
LPC82x via UART.

5. Within a second or two, the LED D1 will change the color to blue from green on the
LPC82x board. Change in LED color indicates Example2 is updated and is running
on the LPC82x board.

6. After the firmware2 is written to the LPC82x board, every time the board restarts
firmware2 is executed. In other words, the secondary boot loader starts executing
the latest firmware.

7. Reset the LPC11U68 board for a reboot, now Example1 is sent to the LPC82x board
for firmware update.

8. LED D1 will change the color to green from blue on the LPC82x board within the time
period of a second.

NXP Semiconductors AN11782
 LPC82x UART secondary bootloader

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 15 of 17

7. Conclusion
This application note describes a convenient way to update the flash content of LPC82x
using the UART SBL. The flexibility allows users to perform a firmware update in real time
without a device restart. When device receives the new firmware, the SBL replaces the
older firmware with the newer firmware in the flash memory. Device receives the new
firmware via UART and jumps to execute it after the flash memory is programmed.

E
rror!

U
nknow

n docum
e

nt
property
nam

e.

Error! U
nknow

n docum
ent property nam

e.
E

rror! U
nknow

n docum
ent property

nam
e.

NXP Semiconductors AN11782
 LPC82x Remote IAP via UART

AN11782 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

Application note Rev. 1.0 — 07 December 2015 16 of 17

8. Legal information

8.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

8.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11782
 LPC82x Remote IAP via UART

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2015. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 December 2015
Document identifier: AN11782

9. Contents
1. Overview .. 3
2. Environment .. 4
2.1 Hardware.. 4
2.2 Software ... 5
3. Flashing the LPC82x ... 6
3.1 Flash sectors .. 6
3.2 IAP ... 6
4. Software design ... 7
4.1 Flash assignment on LPC82x 7
4.2 Parameter Data .. 8
5. Generate C array from image file 10
5.1 Keil uVision .. 10
5.2 IAR Embedded Workbench for ARM 11
5.3 LPCXpresso ... 12
6. Demonstration ... 14
7. Conclusion ... 15
8. Legal information .. 16
8.1 Definitions .. 16
8.2 Disclaimers... 16
8.3 Trademarks .. 16
9. Contents ... 17

	1. Overview
	2. Environment
	2.1 Hardware
	2.2 Software

	3. Flashing the LPC82x
	3.1 Flash sectors
	3.2 IAP

	4. Software design
	4.1 Flash assignment on LPC82x
	4.2 Parameter data

	5. Generate C array from image file
	5.1 Keil uVision
	5.2 IAR Embedded Workbench for ARM
	5.3 LPCXpresso

	6. Demonstration
	7. Conclusion
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Trademarks

	9. Contents

