NXP Semiconductors Application Note

FRDM-KW41Z RF System Evaluation Report for BLE Applications

1. Introduction

This document provides the RF evaluation test results of the FRDM-KW41Z for BLE applications (2FSK modulation). It includes the test setup description and tools used to perform the tests on your own. To see the KW41Z radio parameters, see the *MKW41Z/31Z/21Z Data Sheet* (document MKW41Z512).

For more information about the FRDM-KW41Z Freedom Development Board, see the *FRDM-KW41Z Freedom Development Board User's Guide* (document FRDMKW41ZUG). Find the schematic and design files at this <u>link</u> (NXP web page).

Contents

1.	Introc	luction	1
	1.1.	List of tests	3
	1.2.	Software	3
	1.3.	List of equipment	4
2.	Tests	summary	5
3.	Cond	ucted tests	7
	3.1.	TX tests	7
	3.2.	RX tests	24
	3.3.	Return loss	
4.	Radia	ited tests	40
	4.1.	RX test setup	40
	4.2.	RX spurious	41
5.	Anter	nna measurements	42
	5.1.	Return loss	42
6.	Concl	lusion	43
7.	Refer	ences	44
8.	Revis	ion history	44

Figure 1. FRDM-KW41Z block diagram

Figure 2. Freedom development kit for Kinetis/FRDM-KW41Z

1.1. List of tests

- Conducted tests
 - Tx tests
 - Bench setup
 - Frequency accuracy
 - Phase noise
 - Tx power
 - Tx power In Band
 - Tx spurious (H2 to H5, ETSI, and FCC)
 - Modulation characteristics
 - Carrier frequency offset and drift
 - Rx tests
 - Bench setup
 - Sensitivity
 - Receiver maximum input level
 - Rx spurious (from 30 MHz to 12.5 GHz)
 - Receiver interference rejection performances
 - C/I and receiver selectivity performances
 - Receiver blocking
 - o Blocking interferers
 - Intermodulation
 - Return loss (S11)
 - Rx
 - Tx

1.2. Software

Before the measurements, a binary code (connectivity software) must be loaded into the board's flash memory.

The <u>FRDM-KW41Z: NXP® Freedom Development Kit for Kinetis® KW41Z/31Z/21Z MCUs</u> web page describes how to use the FRDM-KW41Z to load the code. The binary code that is used for the following tests is the Connectivity Software package GenFSK protocol (2FSK modulation) and the HCI_blackbox. The TERATERM terminal emulator is used to communicate with the KW41Z MCU.

1.3. List of equipment

This equipment is used to perform the RX and TX measurements:

- Spectrum Analyzer
- R&S SFU
- R&S CMW270
- MXG (Agilent N5182A)
- Agilent SML03
- Agilent 33250A
- R&S ZND Vector Network Analyzer
- RF Shielded box and RF horn
- Power supply
- PC equipped with a GPIB card

2. Tests summary

RF PHY Bluetooth® Test Spectification: RF-PHY.TS.4.2.0 (2014-12-09)

The list of measurements is provided in Table 1 (for Europe) and Table 2 (for the US).

Table 1. List of tests (EU)

		EUROPE				
		reference	limit	status		
	TX maximum power	BLE 4.2, BV-01-C	-20 dBm ≤ PAVG ≤ +10 dBm EIRP	PASS		
	Tx power In Band	BLE 4.2. BV-03-C	PTX <= -20 dBm for (fTX +/- 2 MHz)	PASS		
		,	PTX <= -30 dBm for (fTX +/- [3 + n] MHz]);			
	Modulation characteristics	BLE 4.2, BV-05-C	225 kHz <= delta f1avg <= 275 kHz	PASS		
uo			fTX – 150 kHz <= fn <= fTX + 150 kHz			
missi	Carrier frequency offset	BLE 4.2, BV-06-C	where fTX is the nominal transmit frequency and $n = 0.123$ k	PASS		
ans	and drift		f0 – fn <= 50 kHz			
F			where n = 2,3,4…k			
	Spurious 30 MHz – 1 GHz ETSI EN 300 328		-36 dBm or -54 dBm (depends on frequency) (100 kHz BW)	PASS		
	Spurious 1 GHz – 12.5 GHz	ETSI EN 300 328	-30 dBm (1 MHz BW)	PASS		
	Eirp Tx spectral density	ETSI EN 300 328	10 dBm/MHz	PASS		
	Phase noise (unspread)	N/A	N/A	For information		

Conducted tests

reference	limit	status

	RX sensitivity BLE 4.2, BV-01-C		PER 30.8 % with a minimum of 1500 packets		
	Co-channel	BLE 4.2, BV-03-C	> 21 dB	PASS	
	Adjacent channel interference rejection (N +/- 1,2,3 + MHz)	BLE 4.2, BV-03-C	> 15 dB, -17 dB, -27 dB	PASS	
~	Blocking interferers	BLE 4.2, BV-04-C	-30 dBm/-35 dBm	PASS	
otior					
Secep	Intermodulation performance	BLE 4.2, BV-05-C	PER 30.8 % with a minimum of 1500 packets	PASS	
-		-			
	Rx maximum input level	BLE 4.2, BV-06-C	PER 30.8 % with a minimum of 1500 packets	PASS	
	RX emissions 30 MHz – 1 GHz	ETSI EN 300 328	-57 dBm (100 kHz)		
	RX emissions 1 GHz – 12.5 GHz	ETSI EN 300 328	-47 dBm (1 MHz)	PASS	

Mico	Return loss (S11)	Return loss in Tx mode	For information
WISC.		Return loss in Rx mode	For information

Table 2. List of tests (US)

			US		
		reference	limit	status	
ission	Sourious 1 GHz –		-41.12 dBm		
Transmis	12.5 GHz	FCC part15	(1 MHz BW)	PASS	

3. Conducted tests

- 3.1. TX tests
- 3.1.1. Test setup

Figure 3. Conducted Tx test setup

Figure 4. Specific conducted Tx test setup

3.1.2. Frequency accuracy

Test method:

- Set the radio to:
 - TX mode, CW, continuous mode, frequency: channel 19
- Set the analyzer to:
 - Center frequency = 2.44 GHz, span = 1 MHz, Ref amp = 20 dBm, RBW = 10 kHz, VBW = 100 kHz
- Measure the CW frequency with the marker of the spectrum analyzer

Result:

Figure 5. Frequency accuracy

- Measured frequency: 2.439998 GHz
- ppm value = (2439998 2440000) / 2.440 = -0.8 ppm

		•	
Result	Target	802.15.4 limit	
-1.6 ppm	+/-25 ppm	+/-40 ppm	

NOTE

The frequency accuracy depends on the XTAL model. The model used on the FRDM-KW41Z is Q22FA12800092 (Epson).

Conclusion:

• The frequency accuracy complies to the 802.15.4 specifications

3.1.3. Phase noise

Test method:

- Set the radio to:
 - TX mode, CW, continuous mode, frequency: channel 19
- Set the analyzer to:
 - Center frequency = 2.44 GHz, span = 1 MHz, Ref amp = 20 dBm, RBW = 10 kHz, VBW = 100 kHz
- Measure the phase noise at the 100-kHz offset frequency
 - RBW (spectrum analyzer) = $10 \text{ kHz} (20 \log (10 \text{ kHz}) = 40 \text{ dBc})$

Result:

Figure 6. Conducted phase noise

• Marker value (delta) = -51.6 dBm / 100 kHz = -95.1 dBc/Hz

NOTE

The phase noise is just for informational purposes. No specific issue on this parameter.

3.1.4. TX power (fundamental)

Test method:

Result:

- Set the radio to:
 - TX mode, modulated, continuous mode
- Set the analyzer to:
 - Start freq = 2.4 GHz, Stop freq = 2.5 GHz, Ref amp = 10 dBm, sweep time = 100 ms, RBW = 3 MHz, VBW = 3 MHz
 - Max Hold mode
 - Detector = RMS
- Sweep all the channels from channel 0 to channel 39

- Figure 7. TX power
- Maximum power is on channel 39: 3.5 dBm
- Minimum power is on channel 0: 3.4 dBm
- Tilt over frequencies is 0.1 dB

Conclusion:

• These results are compliant with BLE 4.2

3.1.5. Tx power In Band

Test method:

- Set the radio to:
 - TX mode, modulated, continuous mode
- Set the analyzer to:
 - Start freq = 2.35 GHz, Stop freq = 2.5 GHz, Ref amp = 10 dBm, sweep time = 100 ms,
 - RBW = 100 kHz, Video BW = 300 kHz
 - Max Hold mode
 - Detector = RMS
 - Number of Sweeps = 10
- Sweep on channel 2, channel 19, and channel 37

Result:

Figure 8. TX power In Band—channel 2

Table 4.	TX power In Band—channel 2
----------	----------------------------

Max peak level <=-2 MHz	-43.66	dBm	@	2.404	GHz
Max peak level >=+2 MHz	-45.82	dBm	@	2.408	GHz
Max peak level <=-3 MHz	-46.56	dBm	@	2.402	GHz
Max peak level >=+3 MHz	-46.36	dBm	@	2.411	GHz

Conducted tests

Figure 9. TX power In Band—channel 19

Table 5. TX power in Band—channel 19	nannel 19
--------------------------------------	-----------

Max peak level <=-2 MHz	-44.35	dBm	@	2.438	GHz
Max peak level >=+2 MHz	-46.11	dBm	@	2.443	GHz
Max peak level <=-3 MHz	-46.47	dBm	@	2.435	GHz
Max peak level >=+3 MHz	-45.16	dBm	@	2.445	GHz

Table 6. TX power In Band—channel 37

Max peak level <=-2 MHz	-42.97	dBm	@	2.474	GHz
Max peak level >=+2 MHz	-44.84	dBm	@	2.478	GHz
Max peak level <=-3 MHz	-46.51	dBm	@	2.470	GHz
Max peak level >=+3 MHz	-46.00	dBm	@	2.479	GHz

Conclusion:

• These results are compliant with BLE 4.2

3.1.6. TX spurious

3.1.6.1.30 MHz to 12.5 GHz

Spurious overview of the full band from 30 MHz to 12.5 GHz when the device is in the transmission mode.

Figure 11. Conducted Tx spurious (30 MHz to 1 GHz)

Conclusion:

• There is more than 5-dB margin to the EN 300 328 limit

3.1.6.2. H2

Test method:

- Set the radio to:
 - Tx mode, modulated, continuous mode
- Set the analyzer to:
 - Start freq = 4.7 GHz, Stop freq = 5 GHz, Ref amp = -20 dBm, sweep time = 100 ms,
 - RBW = 1 MHz, VBW = 3 MHz
 - Max Hold mode
 - Detector: Peak
- Sweep all the channels from channel 0 to channel 39

Result:

• Maximum power is at channel 0: -48.2 dBm

Conclusion:

• Margin > 18 dB

3.1.6.3. H3

The same method as for H2, except that the spectrum analyzer frequency start/stop is set to 7.0 and 7.5 GHz.

Result:

Figure 13. Conducted H3 spurious

• Maximum power is at channel 38: -54 dBm

Conclusion:

• Margin $\geq 24 \text{ dB}$

3.1.6.4. H4

Same method as for H2, except that the spectrum analyzer frequency span is set from 9.4 to 10.0 GHz. Result:

Figure 14. Conducted H4 spurious

• Maximum power is at channel 0: -63.4 dBm

Conclusion:

• Margin > 33 dB

3.1.6.5.H5

Same method as the H2, except that the spectrum analyzer frequency span is set from 11.7 GHz to 12.5 GHz.

Result:

• Maximum power is at channel 39: -40.7 dBm

Conclusion:

• Margin > 10 dB

3.1.6.6. H2 FCC

Test method:

- Set the radio to:
 - Tx mode, modulated, continuous mode
- Set the analyzer to:
 - Start freq = 4.7 GHz, Stop freq = 5 GHz, Ref amp = -20 dBm, sweep time = 100 ms, RBW = 1 MHz, VBW = 3 MHz
 - Trace: Max Hold mode
 - Detector: RMS
- Sweep all the channels from channel 0 to channel 39

Result:

Figure 16. Conducted H2 FCC spurious

• Maximum power is at channel 22: -61.8 dBm

Conclusion:

• Margin > 33 dB

3.1.6.7. H3 FCC

Same method as the H2, except that the spectrum analyzer frequency span is set from 7.0 GHz to 7.5 GHz.

Figure 17. Conducted H3 FCC spurious

• Maximum power is at channel 8: -66.4 dBm

Conclusion:

• Margin > 25 dB

3.1.6.8. H4 FCC

Same method as the H2, except that the spectrum analyzer frequency span is set from 9.4 GHz to 10 GHz.

Result:

Figure 18. Conducted H4 FCC spurious

• Maximum power is at channel 39: -65.6 dBm

Conclusion:

• Margin > 24 dB

3.1.6.9. H5 FCC

Same method as the H2, except that the spectrum analyzer frequency span is set from 11.7 GHz to 12.5 GHz.

Result:

Figure 19. Conducted H5 FCC spurious

• Maximum power is at channel 39: -46.1 dBm

Conclusion:

• Margin > 5 dB

3.1.7. Modulation characteristics

A CMW equipment is used to measure the frequency deviations df1 and df2.

A specific binary file is flashed: *hci_blackbox.bin*.

Test method:

- Generator for the desired signal: CMW R&S
- Criterion: PER < 30.8 % with 1500 packets
- Channels under test: 0, 19, and 39

Result:

TP/TRM-LE/CA/BV-05-C [Modulation Characteristics]	Lower Limit	Upper Limit	Measured	Unit	Status
Payload length: 37, Statistic Count: 10					
Channel 0					
Frequency Deviation df1 Average	225	275	250.41	kHz	Passed
Frequency Deviation df2 99.9%	185		221.33	kHz	Passed
Frequency Deviation df2 Average / df1 Average	0.80		0.92		Passed
Channel 19					
Frequency Deviation df1 Average	225	275	250.45	kHz	Passed
Frequency Deviation df2 99.9%	185		219.43	kHz	Passed
Frequency Deviation df2 Average / df1 Average	0.80		0.92		Passed
Channel 39					
Frequency Deviation df1 Average	225	275	249.41	kHz	Passed
Frequency Deviation df2 99.9%	185		221.13	kHz	Passed
Frequency Deviation df2 Average / df1 Average	0.80		0.93		Passed

Conclusion:

• Good margins, in line with the expected results

3.1.8. Carrier frequency offset and drift

A CMW equipment is used to measure the frequency deviations df1 and df2.

A specific binary file is flashed: *hci_blackbox.bin*

Test method:

- Generator for the desired signal: CMW270 R&S
- Criterion: PER < 30.8 % with 1500 packets
- Channels under test: 0, 19, and 39

Result:

Table 8.	Carrier	frequency	offset	and	drift
----------	---------	-----------	--------	-----	-------

TP/TRM-LE/CA/BV-06-C [Carrier frequency	Lower Limit	Upper Limit	Measured	Unit	Status
offset and drift]					
Payload length: 37, Statistic Count: 10					
Channel 0					
Frequency Accuracy	-150.00	150.00	17.54	kHz	Passed
Frequency Offset	-150.00	150.00	17.54	kHz	Passed
Frequency Drift	-50.00	50.00	1.16	kHz	Passed
Max Drift Rate	-20.00	20.00	-1.60	kHz	Passed
Initial Frequency Drift	-23.00	23.00	-1.63	kHz	Passed
Channel 19					
Frequency Accuracy	-150.00	150.00	17.74	kHz	Passed
Frequency Offset	-150.00	150.00	17.74	kHz	Passed
Frequency Drift	-50.00	50.00	1.32	kHz	Passed
Max Drift Rate	-20.00	20.00	-2.05	kHz	Passed
Initial Frequency Drift	-23.00	23.00	-1.24	kHz	Passed
Channel 39					
Frequency Accuracy	-150.00	150.00	18.39	kHz	Passed
Frequency Offset	-150.00	150.00	18.39	kHz	Passed
Frequency Drift	-50.00	50.00	1.58	kHz	Passed
Max Drift Rate	-20.00	20.00	-1.78	kHz	Passed
Initial Frequency Drift	-23.00	23.00	-1.52	kHz	Passed

Conclusion:

• Good margins, in line with the expected results

Conducted tests

3.2. RX tests

3.2.1. Test setup

Figure 20. Conducted Rx test setup for sensitivity with RF generator and faraday box

Figure 21. Conducted Rx test setup for interference rejection

Figure 22. Conducted Rx test setup for spurious

Figure 23. Conducted Rx test setup for intermodulation performances

3.2.2. Sensitivity

3.2.2.1. With the ARB generator

Test method:

• To be immune to the external parasitic signals, the FRDM-KW41Z is put into an RF shielded box

Figure 24. Sensitivity test

The generator (Agilent NX5181 MXG) is used in the ARB mode to generate a pattern of 1500 packets. The TERATERM window is used to control the module.

- Set it to channel 0
- The connection is automatically established and the PER (Packet Error Rate) is measured
- Decrease the level of the SFU at the RF input of the module until PER = 30.8 %
- Repeat it up to channel 39

Conducted tests

Results:

Figure 25. Sensitivity result

- The highest sensitivity is on channel 0: -95.6 dBm
- The lowest sensitivity is on channel 39: -94.9 dBm
- Delta over channels: 0.7 dB

Conclusion:

• The FRDM-KW41Z shows an average value of -95 dBm

3.2.3. Receiver maximum input level

Test method:

- The same test setup as with the sensitivity test is used
- The signal level is increased up to PER = 30.8 % with 1500 packets

Results:

Figure 26. Maximum input level

Conclusion:

• The results are in line with the expected values

3.2.4. RX spurious

Test method:

- Set the radio to:
 - Receiver mode, frequency: channel 18
- Set the analyzer to:
 - Ref amp = -20 dBm, Trace = max hold, detector = max peak
 - Start/stop frequency: 30 MHz/1 GHz
 - RBW = 100 kHz, VBW = 300 kHz
 - Then set the start/stop frequency: 1 GHz/30 GHz
 - RBW = 1 MHz, VBW = 3 MHz

Figure 27. Conducted Rx spurious 30 MHz – 12.5 GHz

Conclusion:

- There are no spurs above the spectrum analyzer noise floor, except for 2xLO
- More than 15-dB margin

3.2.5. Receiver interference rejection performances

3.2.5.1. Adjacent, alternate, and co-channel rejection

The interferers are located at the adjacent channels (+/-1 MHz, +/-2 MHz, +/-3 MHz) or a co-channel.

The test is performed with only one interfering signal at a time.

Test method:

- Generator for the desired signal: Agilent N5182A
- Generator for the interferers: R&S SFU
- Criterion: PER < 30.8 % with 1500 packets
- The wanted signal is set to -67 dBm; the interferer is increased until the PER threshold is reached
- Channels under test: 2, 19, and 37

Results:

		c	h2		ch19				ch37				
		24	106			24	40			2476			
	N-2MHz	N-1MHz	N+1MHz	N+2MHz	N-2MHz	N-1MHz	N+1MHz	N+2MHz	N-2MH	z N-1MHz	N+1MHz	N+2M	
	2402	2404	2408	2410	2436	2438	2442	2444	2472	2474	2478	2480	
terferer level (C/I dB)	-44.9	-4.4	-3.9	-44.4	-44.9	-3.9	-3.4	-44.4	-44.9	-3.9	-3.9	-44.4	
LE 4.2 limit (C/I dB)	-17	15	15	-17	-17	15	15	-17	-17	15	15	-17	
Aargin (dB)	27.9	19.4	18.9	27.4	27.9	18.9	18.4	27.4	27.9	18.9	18.9	27.4	
	C C	h2	1	Co-channe	ct	10	T (Co-channel		ch37	7	Co-chai	
	cl	h2]	Co-channe ch2	ch	19	Ī	Co-channel ch19		ch37]	Co-char ch37	
	c l 24	h 2 06		Co-channe ch2 2406	cr 2	19 40]	Co-channel ch19 2440		ch37 2476]	Co-char ch37 2476	
	cl 24 N-3MHz	h2 06 N+3MHz		Co-channe ch2 2406 N	Ch 24 N-3MHz	19 40 N+3MHz		Co-channel ch19 2440 N	N-3MH	ch37 2476 z N+3MHz		Co-char ch37 2476 N	
	Cl 24 N-3MHz 2400	h2 06 N+3MHz 2412		Co-channe ch2 2406 N 2406	ct 24 N-3MHz 2434	19 440 N+3MHz 2446		Co-channel ch19 2440 N 2440	N-3M H 2470	ch37 2476 z N+3MHz 2482		Co-char ch37 2476 N 2476	
terferer level (C/I dB)	N-3MHz 2400 -49.4	n2 06 N+3MHz 2412 -48.4		Co-channe ch2 2406 N 2406 5.1	ct 22 N-3MHz 2434 -49.4	19 40 N+3MHz 2446 -48.4		Co-channel ch19 2440 N 2440 5.6	N-3MH 2470 -49.4	ch37 2476 z N+3MHz 2482 -48.4		Co-chai ch37 2476 N 2476 5.1	
tterferer level (C/I dB) LE 4.2 limit (C/I dB)	N-3MHz 2400 -49.4 -27	h2 06 N+3MHz 2412 -48.4 -26		Co-channe ch2 2406 N 2406 5.1 21	ct 22 N-3MHz 2434 -49.4 -27	19 40 N+3MHz 2446 -48.4 -26		Co-channel ch19 2440 N 2440 5.6 21	N-3MH 2470 -49.4 -27	ch37 2476 z N+3MHz 2482 -48.4 -26	- - - - -	Co-char ch37 2476 N 2476 5.1 21	

Conducted tests

Figure 29. Adjacent, alternate, and co-channel rejection @channel19

Figure 30. Adjacent, alternate, and co-channel rejection @channel37

Conclusion:

• Good margin, in line with the expected results

3.2.5.2. Receiver blocking

The blocking interferers are located at the out-of-band channels, depending on the receiver category.

Receiver category 1. (See the 300.328 2.1.1 chapter 4.3.1.12.4.2)

The test is performed with only one interfering signal at a time.

Test method:

- Generator for the desired signal: Agilent N5182A
- Generator for the interferers: R&S SFU
- Criterion: PER < 10 %
- The wanted signal is set to Pmin + 6 dB (-88 dBm); the interferer is increased until the PER threshold is reached
- Channels under the test: 0 and 39

Result:

Table 10. Receiver blocking (out-of-band) rejection

	ch0	ch0		ch39	ch39	
	2402	2402		2480	2480	
	Low	High		Low	High	
	2380	2503.5		2380	2503.5	
Interferer level (dBm)	-19.1	-16.6		-17.6	-16.1	
802.15.4 limit (dBm)	-53	-53		-53	-53	
Margin (dB)	33.9	36.4		35.4	36.9	
						-
	ch0	ch0	ch0	ch39	ch39	ch39
	2402	2402	2402	2480	2480	2480
	Low	Low	Low	Low	Low	Low
	2300	2330	2360	2300	2330	2360
Interferer level (dBm)	-17.6	-17.6	-17.6	-16.1	-16.6	-17.6
802.15.4 limit (dBm)	-47	-47	-47	-47	-47	-47
Margin (dB)	29.4	29.4	29.4	30.9	30.4	29.4
	ch0	ch0	ch0	ch0	ch0	ch0
	2402	2402	2402	2402	2402	2402
	High	High	High	High	High	High
	2523.5	2553.5	2583.5	2613.5	2643.5	2673.5
Interferer level (dBm)	-16.1	-15.6	-14.6	-13.6	-12.6	-12.1
802.15.4 limit (dBm)	-47	-47	-47	-47	-47	-47
Margin (dB)	30.9	31.4	32.4	33.4	34.4	34.9

Conclusion:

• Good margin, in line with the expected results

Receiver category 2 (See the 300.328 2.1.1 chapter 4.3.1.12.4.3)

The test is performed with only one interfering signal at a time.

Test method:

- Generator for the desired signal: Agilent N5182A
- Generator for the interferers: R&S SFU
- Criterion: PER < 10 %
- The wanted signal is set to Pmin + 6 dB (-88 dBm); the interferer is increased until the PER threshold is reached
- Channels under the test: 0 and 39

Result:

	ch0	ch0	ch39	ch39
	2402	2402	2480	2480
	Low	Low	High	High
	2380	2503.5	2380	2503.5
Interferer level (dBm)	-19.6	-17.1	-18.1	-16.6
802.15.4 limit (dBm)	-57	-57	-57	-57
Margin (dB)	37.4	39.9	38.9	40.4

Table 11. Receiver blocking (out-of-band) rejection

	ch0	ch0	ch39	ch39
	2402	2402	2480	2480
	Low	Low	High	High
	2300	2583.5	2300	2583.5
Interferer level (dBm)	-18.1	-15.1	-16.6	-16.6
802.15.4 limit (dBm)	-47	-47	-47	-47
Margin (dB)	28.9	31.9	30.4	30.4

Conclusion:

• Good margin, in line with the expected results

3.2.5.3. Blocking interferers

A CW is used as the interferer source to verify that the receiver performs satisfactorily with a frequency outside the 2400 MHz - 2483.5 MHz band.

Test method:

- Generator for the desired signal: Agilent N5182A
- Generator for the blocker: R&S SFU
- Criterion: PER < 30.8 % with 1500 packets
- The wanted signal is set to -67 dBm; the interferer level is increased until the PER threshold is reached

Table 12. Blocking interferers

Wanted signal	ch12	ch12	ch12	ch12	
Interferer (MHz)	30 – 2000 (step 10 MHz)	2426 MHZ 2003 – 2399 (step 3 MHz)	2426 MHz 2484 – 2997 (step 3 MHz)	3 GHz-12.75 GHz (step 25 MHz)	
Unwanted level (dBm)	-30	-35	-35	-30	
Status (unwanted level)	PASS	PASS	PASS	PASS	
Number of blocking fail	0	0	0	0	Fail blockers mus not exceed 10
Status (UnW level -50 dBm)	PASS	PASS	PASS	PASS	
Number of blocking fail	0	0	0	0	Fail blockers mus not exceed 3

• Channel under the test: 12 (2426 MHz)

Conclusion: Good margin, in line with the expected results

3.2.6. Intermodulation

This test verifies that the receiver intermodulation performance is satisfactory.

Two interferers are used in combination with the wanted signal. One interferer is a sinusoid non-modulated signal and the second interferer is a modulated signal with the PRSB15 data.

Test method:

- Generator for the desired signal: Agilent N5182A
- Generator for the first interferer (CW): R&S SML03
- Generator for the second interferer (PRBS15): R&S SFU
- Criterion: PER < 30.8 % with 1500 packets
- The wanted signal is set to -67 dBm; the interferer levels are increased in the same time until the PER threshold is reached.
- Channels under the test: 0, 19, and 39

Results:

	ch0	ch0	ch0	ch0	ch0	ch0
	2402	2402	2402	2402	2402	2402
	Low	Low	Low	Low	Low	Low
Interferer1 (CW) (MHz)	-5	-4	-3	3	4	5
Interferer2 (Mod) (MHz)	-10	-8	-6	6	8	10
Interferer level (dBm)	-15.0	-18.0	-19.0	-18.7	-18.7	-18.2
BLE limit (dBm)	-50	-50	-50	-50	-50	-50
Margin (dB)	45.7	42.7	41.7	42.0	42.0	42.5
. r	ah 10	ah10	ah10	ah 10	ah10	ah 10
	2440	2440	2440	2440	2440	2440
-	Mid	Mid	Mid	Mid	Mid	Mid
Interferer1 (CW) (MHz)	-5	-4	-3	3	4	5
Interferer? (Mod) (MHz)	-10	-8	-6	6	т 8	10
Interferer lovel (dDm)	16.0	19.0	-0	10.0	10.7	10 2
	-16.0	-16.0	-19.0	-19.0	-10.7	-10.2
BLE limit (dBm)	-50	-50	-50	-50	-50	-50
Margin (dB)	44.7	42.7	41.7	41.7	42.0	42.5
Г	ch39	ch39	ch39	ch39	ch39	ch39
	2480	2480	2480	2480	2480	2480
	High	High	High	High	High	High
Interferer1 (CW) (MHz)	-5	-4	-3	3	4	5
Interferer2 (Mod) (MHz)	-10	-8	-6	6	8	10
Interferer level (dBm)	-17.5	-18.0	-18.7	-19.2	-18.7	-18.4
BLE limit (dBm)	-50	-50	-50	-50	-50	-50
Margin (dB)	43.2	42.7	42.0	41.5	42.0	42.3

Table 13. Intermodulation

Conclusion:

• Good margin, in line with the expected results

FRDM-KW41Z RF System Evaluation Report for BLE Applications, Application Note, Rev. 1, 11/2017

3.3. Return loss

3.3.1. RF path with matching components

The measurements are done using the SMA connector. Therefore, the C57 capacitor is mounted and the C55 capacitor is not mounted.

Figure 31. RF matching

The matching components are:

• L2 = 5.6 nH

Table 14. L2 component matching

Description	Mfr. name	Mfr. part number
IND 0.0056 μH @ 500 MHz 300 mA +/-0.1 nH 0402	MURATA	LQP15MN5N6B02

•
$$C50 = 0.7 \text{ pF}$$

Table 15. C50 component matching

Description	Mfr. name	Mfr. part number
CAP CER 0.7 pF 50 V 0.1 pF C0G 0402	MURATA	GRM1555C1HR70BA01D

3.3.2. RX

NOTE

In the Rx mode, the return loss measurement is performed by setting the LNA gain of the KW41Z to the maximum.

Hardware:

• FRDM-KW41z rev.C1

Figure 32. S11 diagram (Rx mode)

Results:

• Return loss: -14.7 (2.4 GHz) < S11 < -13.8 dB (2.48 GHz)

NOTE

There is no specification for the return loss.

Conclusion:

• The return loss (S11) is lower than -10 dB

3.3.3. TX

NOTE

In the Tx mode, the return loss measurement is performed by setting the KW41Z RF output power to the minimum.

Hardware:

• FRDM-KW41z rev.C1

Figure 33. S11 diagram (Tx mode)

Results:

• Return loss: -30 (2.48 GHz) < S11 < -10.4 dB (2.4 GHz)

NOTE

There is no specification for the return loss.

Conclusion:

• The return loss (S11) is lower than -10 dB

4. Radiated tests

4.1. RX test setup

Figure 34. Radiated Rx test setup

During the radiated measurements, only the printed antenna (IFA type) is considered.

A receive antenna with a known gain is placed 50 cm from the FRDM-KW41Z antenna. The receive antenna (horn) is connected to the spectrum analyzer.

The Rx signal is measured in the same way as in the conducted measurements.

4.2. RX spurious

Test method:

- Set the radio to:
 - Receiver mode, frequency: channel 19
- Set the analyzer to:
 - Ref amp = 20 dBm, Trace = max hold, detector = max peak
 - Start/stop frequency: 10 MHz/1 GHz
 - RBW = 100 kHz
 - Then set the start/stop frequency: 1 GHz/30 GHz

• RBW = 1 MHz

Figure 35. Conducted Rx spurious 30 MHz – 12.5 GHz

Conclusion:

- There are no spurs above the spectrum analyzer noise floor except for the 2xLO frequency which is under the ETSI limit with a 19-dB margin (conducted mode)
- In the radiated mode, the 2xLO is significant and the margin falls to 0 dBm
- It is strictly recommended to copy-paste the RF part of the FRDM-KW41Z rev.C1 layout
- The recommendation to decrease the 2xLO leakage is in the *Hardware Design Considerations* for MKW41Z/31Z/21Z BLE and IEEE 802.15.4 Devices (document AN5377)

5. Antenna measurements

5.1. Return loss

The measurement of the return loss antenna (S11) is performed by disconnecting the C55 and C57 capacitors and making a connection marked by the green line in Figure 36 (antenna links to the SMA only).

Figure 36. RF path connection (S11 antenna)

References

Figure 37. Antenna return loss (S11)

Results:

• Return loss: -10.5 (2.4 GHz) < S11 < -14.7 dB (2.48 GHz)

NOTE

There is no specification for the return loss.

Conclusion:

• The return loss (S11) is lower than -10 dB

6. Conclusion

Beyond the RED and BLE 4.2 compliances, these radio tests prove a good performance of the KW41Z wireless MCU.

7. References

- ETS EN 300 328: European Telecommunication Standard—Radio Equipment and Systems (RES) wideband data transmission systems, technical characteristics, and test conditions for data transmission equipment operating in the 2.4-GHz ISM band and using spread spectrum modulation techniques.
- **RF-PHY TS 4.2.0:** Bluetooth Test Specification. This document defines the test structures and procedures for the qualification testing of the Bluetooth implementations of the Bluetooth Low Energy RF PHY.
- FCC Part 15: Operation to FCC Part 15 is subject to two conditions. Firstly, the device may not cause harmful interference and, secondly, the device must accept any interference received, including interference that may cause undesired operation. Hence, there is no guaranteed quality of service when operating a Part 15 device.

8. Revision history

Table summarizes the changes done to this document since its initial release.

Revision numberDateSubstantial changes010/2017Initial release111/2017Added Section 1.3, "List of equipment".
Updated various figures and tables.

Table 16. Revision history

How to Reach Us:

Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

Arm, the Arm logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. Bluetooth is a registered trademark of Bluetooth SIG, Inc. All rights reserved.

© 2017 NXP B.V.

Document Number: AN12059 Rev. 1 11/2017

