AN12124

LPC5411x dual core debugging guide
Rev.1.0 — 8 March 2018 Application note

Document information

Info Content
Keywords LPC5411x, LPC54102, LPC54114, dual core, debug
Abstract This application note introduces the basic dual core development process

using three integrated IDEs. They are MCUXpresso IDE, IAR and Keil.

The focus will be on the debugging process and techniques within these
IDEs.

-
P |

NXP Semiconductors

AN12124

Revision history

LPC5411x dual core debugging guide

Rev

Date

Description

1.0

20180308

Initial version

Contact information
For more information, please visit: http://www.nxp.com

AN12124

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

2 of 39

http://www.nxp.com/

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

1. Introduction

AN12124

1.1

The LPC541xx is a power efficient and high performance MCU series. The system
frequency can be up to 100 MHz. Both LPC54102 and LPC54114 integrate two cores,
Cortex-M4 and Cortex-M0+. The asymmetric architecture provides flexible options for the
user in complex design applications with high performance. This application note will help
the user to tackle the challenges during dual core development process and debugging.
It focuses on dual core debugging techniques and the support from three commonly used
IDEs - MCUXpress IDE, IAR and Keil. LPCXpresso54114 board and the related SDK is
used as an example target platform to discuss the topic. For basic dual core introduction
and its development process, see AN12123 - LPC541xx dual core starting guide.

Since the topic is based on advanced debugging, user should have a basic dual core
knowledge and debugging skills. Relative user guide of IDE can be used as a starting
reference. The application note introduces the debugging interface SWD and later will
analyze the booting process of the two cores. At the end, support on dual core
debugging of IDE is discussed.

MCUXpresso IDE is the NXP in-house development tool dedicated for supporting MCU
series. It is a free edition with no code size limit, and can be downloaded from NXP
website: MCUXpresso IDE.

IAR is also a professional MCU development tool provided by IAR systems. License is
required for the usage and it can be downloaded from the IAR website. A 30 days free
trail with 32 kB code size limit is available for the user at IAR .

ARM provides Keil MDK for Cortex and ARM devices development. Evaluation edition is
available for code size below 32 kB and can be downloaded from Keil website: Keil MDK.

Folder structure

LPC54114 SDK projects are used as examples to elaborate the dual core debugging
topic. This application note is available with a zip-folder containing three project files that
include two “hello world” example projects. One is for Cortex-M4 master project and the
other is for Cortex-M0O+ slave project. See Fig 1 for the package contents.

hello_world_cmd hello_world_cmd hello_world_cmd

_hello_world_cm _hello_world_cm _hello_world_cm

Oplus_IAR.zip Oplus_Keil.zip Oplus_mcuxpress
o.zip

Fig 1. AN package contents

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 3 0f 39

http://www.nxp.com/products/developer-resources/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide-v10.0.2:MCUXpresso-IDE?&tid=vanMCUXPRESSO/IDE
https://www.iar.com/iar-embedded-workbench/#!?currentTab=free-trials
https://www.keil.com/download/product/

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

File name Description
hello_world_cm4_hello_world IAR dual core example file containing Cortex-M4 and
_cmOplus_IAR Cortex-MO0O+ “hello world” projects. Unzip it and open the

projects with IAR
hello_world_cm4_hello_world = Keil dual core example file containing Cortex-M4 and
_cmOplus_Keill Cortex-MO0O+ “hello world” projects. Unzip it and open the
projects with Keil
hello_world_cm4_hello_world = MCUXpresso IDE dual core example file containing
_cmOplus_mcuxpresso Cortex-M4 and Cortex-M0+ “hello world” projects.
Import the archive file with MCUXPresso IDE

2. SWD interface

Serial Wire Debug (SWD) is a simple two-wire interface used for ARM core debugging.
The physical layer of SWD consists of two lines:

e SWNDIO: a bidirectional data line
e SWCLK: a clock driven by the host

LPC541xx uses multiple access port to implement dual core debugging capabilities. If the
IDE and debugger supports this feature, both master and slave projects can be
debugged simultaneously. See_Fig 2 for the debug access port architecture of the
LPC541xx MCU. It has two AHB-AP connections, Cortex-M4 AP and Cortex-M0O+ AP.
For simplicity, the JTAG-DP is not included, which cannot be used for debugging for
LPC541xx family.

AHB-AP

Cortex-M4

Serial
Wire
Debug
Port
(SW-DP)

SWD

Debug pins

— Interface
—_— Hardware

Fig 2. LPC541xx debug access port architecture

3. Dual core booting analysis

AN12124

LPC541xx family has an asymmetric dual core architecture integrating both Cortex-M4
and Cortex-MO+. It is necessary to understand and setup the booting behavior of the two
cores. Both will boot from default reset interrupt vector when powered ON. The
application should configure and setup the booting sequence, which is usually written in
assembly language in the startup file. Because the reset interrupt service routine should
be executed by both the cores, it should be coded with set of instructions common for
both the cores.

According to the dual core implementation of LPC541xx, there are master and slave
roles for the asymmetric architecture. Upon power ON, Cortex-M4 is the default master
and Cortex-MO+ is the slave. Master has the ability to enable or reset the slave core.

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 4 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

Slave core goes to sleep directly upon powering up and waits for the master to set up a
proper booting environment for it and boot again.

Details of the LPC541xx dual core implementation is available in Chapterxx of AN12123
<LPC541xx dual core starting guide>.

The analysis of LPC541xx series MCU startup file for MCUXpress IDE, IAR and Keil is
discussed in following sections.

3.1 MCUXpresso IDE startup file

Following Fig 3 shows the code snippet for ResetISR () function from the MCUXpresso
IDE startup file:

void ResetISR(void) {

Fig 3. Startup file for MCUXpresso IDE

Fig 4 shows the flow chart for the ResetISR () function.

AN12124 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018 5 of 39

NXP Semiconductors

AN12124

LPC5411x dual core debugging guide

(" Jump to slave
_ boot address /

Fig 4.

Start

|

Get CPU ID

!

Y Current N

CPUis M4?

Slave boot Slave boot N
address is 07 address is 07

Continue normal
Y Y
\ﬁ } boot

Load slave stack

Is M4 the Y Is MO the pointer
master? master?
N ‘ | N Jumptoslave

. boot address /"

Safely enter
WEFI

ResetISR () function flow chart

e Cortex-M4 booting up analysis

If the Cortex-M4 is the default master and the slave boot address is O upon reset, it
follows normal booting process to execute its application code. Details of slave boot
address is available in LPC5410x/LPC5411x user manual: Co-processor boot register.

The initialization code of the application must set up the Cortex-M0+ slave core
booting up environment. It includes copying the slave image into its destination

execution address, configuring the slave boot address and stack pointer, and then
reset the slave.

AN12124

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 6 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

Start

|

Get CPU ID

|

Y Current N

CPU is M4?

N Slave boot N
address is 0?

Y 7 Continue normal %
\—¢ . boot J
Is M4 the JAI
master?

N N

Fig 5. Cortex-M4 booting flow chart

e Cortex-MO+ first booting up analysis

Because Cortex-MO+ is the default slave and the initial slave boot address is 0, it
executes WFI to enter the sleep mode.

Start

|

Get CPU ID

l

Y Current N
CPU is M4?

N Slave boot N
address is 07

Y ¢_YI

Y Is MO the
master?
N N
Safely enter
WFI

Fig 6. Cortex-MO+ first booting flow chart

e Cortex-M0O+ second booting up after master reset

AN12124 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018 7 of 39

NXP Semiconductors

AN12124

AN12124

LPC5411x dual core debugging guide

After master core sets up the slave booting up environment and resets the slave,
Cortex-MO+ will boot again. This time, the slave boot address will not be 0. Cortex-
MO+ will jump to this address and execute its application code.

Fig 7.

Start
Get CPU ID
Current N

CPU is M4?

Slave boot N

address is 07

Y
Load slave stack
Y pointer
N /" Jumptoslave

Cortex-M0+ second booting flow chart

__ boot address /

3.2 IAR and Keil startup file

The startup file of IAR and Keil is slightly different from the MCUXpresso IDE, but the
overall process is the same. See Fig 8 for the reset handler flow chart in the startup file of

Keil and IAR.

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 8 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

Start

l

Get CPU ID

|

N Current v

J/i CPU is
?
master? Continue normal
Load slave boot

boot address

Slave boot N

address is Load slave stack

pointer

0?
Y ‘l’ Jump to slave
Safely boot address
| enter WFI

Fig 8. Reset interrupt handler flow chart

Fig 9 shows the Cortex-M4 booting flow chart, which is the default master upon power
ON.

AN12124 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018 9 of 39

NXP Semiconductors

AN12124

LPC5411x dual core debugging guide

GetC

Start

PUID

Cur

Fig 9. Cortex-M4 booting flow chart

CPU is
master?

rent

Continue normal
boot

Fig 10 shows the Cortex-MO+ first booting flow chart when the initial startup environment

is not configured by the master core.

AN12124

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

10 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

Start

l

Get CPU ID

|

Current
\l, CPU s

master?

Load slave
boot address

l

Slave boot
address is

0?
Y
Safely

| enter WFI

Fig 10. Cortex-MO+ first booting flow chart

Fig 11 shows the Cortex-MO+ second booting flow chart, after master setting up the
startup environment and resetting it.

AN12124 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018 11 of 39

NXP Semiconductors

AN12124

LPC5411x dual core debugging guide

Start
Get CPU ID
N Current
CPU is
*l/ master?
Load slave
boot address
Slave boot
address is N_) Load slgve stack
07 pointer

: (

Jump to slave
boot address

Fig 11. Cortex-M0+ second booting flow chart

4. Debugging with MCUXpresso IDE

AN12124

4.1

MCUXpresso IDE has a good support on dual core configuration and debugging. The
slave core project can be linked with the master project by the application configuration,
and their image integrated together by the automatic linker script, which can then be
downloaded into internal flash memory. The two projects can be debugged together
within the same workspace, which is convenient and a useful feature for the developers.

Project configuration

Open MCUXpresso IDE and import the
“hello_world_cm4_hello_world_cmOplus_mcuxpresso.zip” in the AN package. There are
two projects in the workspace,

“Ipcxpresso54114_multicore_examples _hello_world_cmOplus” is the slave Cortex-M0O+
project and “Ipcxpresso54114 multicore_examples_hello_world_cm4” is the master
Cortex-M4 project.

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 12 of 39

NXP Semiconductors AN12124

AN12124

LPC5411x dual core debugging guide

=

5 Project ... 23 8
...“- e

& IpcxpressoSJ114_muI(tcore_cxamples_hello_world_tmOpIAusA

(5 Ipcxpresso54114_mutticore_examples_hello_world_cmd

Fig 12. MCUXpresso IDE dual core projects

Because the slave project is already linked together with the master project, compiling
the master project will automatically invoke the slave compilation first. The generated
image file includes binary of both the projects. So, it is not required to specifically compile
the slave project.

Fig 13 shows the memory setting of the Cortex-M4 master project. Flash (or MFlash256)
is assigned for master code storage and execution. Slave code is integrated together
with the master code, so it will also be downloaded into flash memory space. But the
code will later be copied into RAM2 (or Ram1_90) which is the designated code space in
slave project and is executed. RAM (or Ram0_64) is the master data space.

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 13 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

. Properties for Ipopresso54114_multicore_examples_helio_word_omd (Cn s
type fiter test MCU settings P)
FResource
Budders Available parts
@ CCos Bunld
Buald Variables loe
Emarcoment - SDK MCUs
Loggng MCUs from instalied SOKs
MCU settings
NP LPCSEL12%6
Teol Chan Editer & LPCS4A1L
C/Ces General LPCSHLIL0%%
Project References LPCS46ux
Fun/Debug Settings

» Preinstalled MCUs
Target archtectute: cortex-md

Memory detals (LPC54114)256)*
Defacit flath drrver:
Derver
LPCSa L 256K cfx
| (ke
| Refresh MCU Cache |

e ———

R ——

Fig 13. Master project memory map

Fig 14 shows the memory setting of slave Cortex-M0+ project, RAM (or Ram1_90) is
assigned as the code and data space.

AN12124 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018 14 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

[Properties for Ipcxpresso54114_multicore_examples_hello_world_cmOplus [= ﬂE—J
MCU settings N T
. Resource
Builders Available parts
4 C/C++ Build
Build Variables D8
Environment - SDK MCUs
Logging MCUs from installed SDKs
MCU settings
Settings MNXP LPC54114)256
Tocl Chain Editor & LPCS5411x
. C/C++ General LPC54114)256
Project References - LPC546:0c

Run/Debug Settings

» Preinstalled MCUs
Target architecture: cortex-mOplus
Memory details (LPC54114J256)™

Default flash driver:

Type Name Alias Location Size Driver
RAM Raml_90 RAM 0x20010000 016800)

RAM rpmsg_sh_mem RAMZ 0x20026800 G800

RAM Ramx_32 RAMZ 0x4000000 08000

Refresh MCU Cache

[Restore Defaults| [Apply]

@ [oK | [cancea |

Fig 14. Slave project memory map

The slave project linkage with the master is configured in the Multicore option of the
master project. The slave project and its execution memory space are specified here.
The memory space designated should be in accordance with the memory setting in slave
project, which is Ram1_90 in this case. Then the master linker script will treat this area
as the slave code and data space, and it will be initialized upon master startup.

AN12124 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018 15 of 39

NXP Semiconductors

AN12124

AN12124

LPC5411x dual core debugging guide

r
. Properties for Ipcpresso54114_multicore_examples_hello_weorld_cmd

type filter text

> Resource
Builders
4 C/C++ Build
Build Variables
Environment
Legging
MCU settings
Settings
Tool Chain Editor
» C/C++ General
Project References
Run/Debug Settings

MCU settings

. Available parts
_tDE

~ SDK MCUs
MCUs from installed SDKs
NXP LPC54114)256

a4 LPC5411x
LPC54114)256
> LPCS4Gux

} Preinstalled MCUs
Target architecture: cortex-md
Memory details (LPC54114J256)*
Default flash driver:

Al

L £

Driver

T Bl
@ MFlash256
RAM Raml_64

RAM Raml_ 90

RAM rpmsg_sh_mem

NBAM RamX 32

Flash

RAMZ
RAM3
RAM4

00
020000000
020010000
020026800
04000000

040000
010000
Ox16E00
01800
0x8000

LPC5411x_256K. cfx

Refresh MCU Cache

[Restore Defau\ts] [Apply

]

[OK] [Cancel

Fig 15. Master project multicore option for slave linkage

Fig 16 shows the master project linker file on slave code and data relocation, which is
automatically generated by the linker script.

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

16 of 39

NXP Semiconductors AN12124

AN12124

LPC5411x dual core debugging guide

[B) Ipcxpresso54114_multicore_examples_hello_world_crmd_Debug.ld 5%

=0
_etext = .;

7* DATA section for Raml 98 */

data_RAM2_core_mBslave_text : SUBALTGN(2)
1

FILL(0XTT)
PROVIDE(__start_data_RAM2 = .} ;
__core_maslave START__ = .; /* start of slave image */
KEEP(*(.core_mbslave))

} >_Raml 90 AT>HFlash256

/% MSLAVE extab and exidx sections */
data_RAMZ_core_moslave_ARM_extab . : SUBALTGN(4)
1
FILL(axff) 3
KEEP(*(.core_m@slave . ARM. extab)) 3
} > Raml_80 AT>MFlash256

data_RAM2_core_mBslave_ARM_exidx . : SUBALTGN(4)

FILL(oxfT)
KEEP(*(.core_m@slave.ARM. exidx))
} > Ram1_se AT>nFlashass

J* MSLAVE data section */
data_RAM2_core_moslave_data . : SUBALIGH(4)

FILL(axff)

KEEP(*(.core_m@slave.data_*)) KEEP(*(.core_m@slave.data))
__core_m@slave_END__ /* end of slave image */

/% perform some simple sanity checks */

ASSERT(!(__core_mBslave_START__ == _core_m@slave END_), "No slave code for _core_m@slave"

ASSERT((ABSOLUTE(_ core_m@slave_START_) == _ vectors_start__core_m@slave), "MBSLAVE exec
} > Raml_08 AT>MFlash25s

data_RAMZ : ALTGN(4)

ute address differs from address provided in source image”);

FILL(axff)

[Ipcxpresso54114_multicore_examples_hello_world_cmd Debugld 7

= 0O
94 _etext = .
95

96 (/* DATA section for Raml 90 *

.data_RAM2_core_m@slave_text : SUBALIGN(4)
{

FILL(@xFf)
PROVIDE(__start_data RAM2 = .)
__core_m@slave START__ = .; /* start of slave image */
KEEP(*(.core_mslave))
} >_Raml 98 AT>MFlash256

/% MBSLAVE extab and exidx sections *
data_RAMZ_core_m@slave_ARM extab . : SUBALTGN(4)

FILL(exfF)
KEEP(*(.core_nbslave.ARM. extab))
} > Raml_9@ AT>MFlash256

]

.data_RAM2_core_m@slave ARM_exidx . : SUBALIGN(4)
{

FILL(@xfF)
KEEP(*(.core_mdslave.ARM, exidx))
} > Raml_9@ AT>MFlash2s6

/* MRSLAVE data section */

120 .data_RAMZ_core mslave data . : SUBALIGN(4)
121
122 FILL(exff)
123 KEEP(*(.core_mpslave.data_*)) KEEP(*(.core_m@slave.data))
124 __core_mdslave END_ = .; /* end of slave image */
s

/* perform some simple sanity checks */
ASSERT(! (__core_mdslave_START__ == _core_mdslave_END_), "llo slave code for _core_mdslave");

1] ASSERT((ABSOLUTE(__core maslave START) == _vectors start__core m@slave), "MOSLAVE execute address differs from address provided in source image”);
9} > Raml_98 AT>MFlash256

.data_RAM2 : ALTGN(4)

s
132 FILL(@xFf)

Fig 16. Master project linker file for slave code and data relocation

After building the dual core projects, the slave project has 6864 Byte code and data size.
They are all allocated to Ram1_90.

Finished building: ../board/pin mux.c

Finished building: ../CMSIS/system LPC54114_cm@plus.c

Building target: lpcxpresso54114 multicore examples hello world cm@plus.axf

Invoking: MCU Linker

arm-none-eabi-gee -nostdlib -L"D:\App LPCS411x\AN\dualcore\sdk_projihello_world_mcuxpresso\lpexpresso54114_multicore_e

Memory region Used Size Region Size %age Used
®anl_98: 15370 8 92 KB 16.62%
rpmsg_sh_men: o Gb 6 KB 0.00%
RamX_32: CXE] 32 KB 0.00%

copy from “lpcxpresso54114 multicore_examples_hello world cm@plus.axf’ [elf32-littlearm] to ~lpcxpressoS4114 multicore
Finished building target: lpcxpressosalla multicore examples_hello world cmeplus.axf

make --no-print-directory post-build
Performing post-build steps

arm-none-eabi-size "lpexpressos4lls multicore examples hello world cmplus.axf”; # arm-none-eabi-objcopy -v -0 binary
text data bss dec hex filename

6864 @ 8456 15320 3bds lpcxpressoS54114_multicore_examples_hello_world_cmeplus.axf

Fig 17. Slave project code and data size

All information provided in this document is subject to legal disclaimers.

Application note

© NXP Semiconductors B.V. 2018. All rights reserved.

Rev.1.0 — 8 March 2018 17 of 39

NXP Semiconductors

AN12124

4.2

AN12124

LPC5411x dual core debugging guide

After building the master project, it is observed that 6864 Bytes of Ram1_90 is used,
which is in accordance with slave code and data size.

Building target: lpcxpressoS54114 multicore examples hello world cmd.axf

Invoking: MCU Linker

arm-none-eabi-gce -nostdlib -L"D:\App LPCS411x\AN\dualcore\sdk proj\hello_werld_mcuxpresso\lpcxpresso54114 multice
Memory region Used Size Region Size %age Used

MFlash256: 28496 B 256 KB 7.82%
Ram@ 64: 8472 B 64 KB 12.93%

98 KB 7.45%
rpmsg_sh_mem: B GB 6 KB 8.80%

RamX_32: @ GB 32 KB 0.00%
Finished building target: lpcxpresse54114 multicore_examples_hello world_cmé.axf

make --no-print-directory post-build

Performing post-build steps

arm-none-eabi-size "lpcxpresso54114_multicore_examples_hello_world_cmd.axf"; # arm-none-eabi-cbjcopy -v -0 binary
text data bss dec hex filename
20492 4 8468 28964 7124 lpcxpresso54114 multicore_examples_hello world_cmd.axf

Fig 18. Master project Ram1 90 memory used size

Project debugging

After compiling the projects, connect the LPCXpresso54114 board to the PC USB
interface and start debugging. To start with, choose master Cortex-M4 project and enter
the debugging state. The debugger will stop at the entry of the main () function. At this
point, the reset handler in the startup file is executed and the slave code and data are
copied to the designated Ram1_90 area.

md LinkServer Debug [C/C+~ (NXP Semiconductorz) MCU Application]
19_cmd af [LPC541141255 (cortex:mid)]

_PORT, BOARD_S1_GPIO_PIN, &sw_config);
_PORT, BOARD_SW2_GPIO_PIN, 8sw_config);

core1_ir age_size();
To sddres

ss: @xkx, size: ¥d\n", COREL_BOOT_ADDRESS, corel_image size);

Fig 19. Launch master project debugging

Then choose slave project and start debugging it. The two projects will be in debugging
state at the same time. Since the slave booting address is not setup, slave cannot
execute its code.

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 18 of 39

NXP Semiconductors

AN12124

AN12124

LPC5411x dual core debugging guide

int main(void)
{

) gpio_pin_configt sw_config = (KGPIO_Digitalinput, 0}

it(BOARD_SH1_GPIO, BOARD_SWl_GPIO_PORT, BOARD_SW1_GPIO_PIN, &
it (BOARD_SW2_GPTO, BOARD_SW2_GPIO_PORT, BOARD_SW2_GPIO_PIN, &

#ifdef CORE1_IMAGE_COPY_TO_RAM

3 _image_size();
inage to sddress: Oxkx, size: %d\n", CORE1_BOOT_ADDRESS, corel_inage_size);

Fig 20. Both projects are in debugging state

The MCMGR_StartCore () function configures the slave core booting address and
initializes the stack pointer, then resets it. Per previous booting analysis, the slave core
starts up normally this time and begin to execute the application code. The debugger will
automatically jump and stop at the entry of main () function in the slave project.

45 Debug 13

v =0
4 (B IporpressoS4114_multicore_exemples_hello_world_cmd LinkServer Debug [C/Cs+ (NXP Semicon ductors) MCU Application]
4 @ IpexpreszoSA1L4_multicore_examples._hello_world_cmd.axf [LPCS41141256 (cortex-md)]
12 Thread #11 (Stopped) (Running)
J am-none-eabi-gab (7.12.0.20161204)
+ [l poy 114 kServer Debug [C/C++ (NXP Semiconductors) MCU Application]
ey 054114_m plus.axf [LPC541141256 (corte-mOplus)]
4 d #11 (St end
main{) at hello_world_corel 71 0X20010646
i arm-none-eabi-gab (7120.20161209)

Bt Bmame 0 memmmelerarh B menrmem e e =B
62 -
==
64 * @rief Main function
65/

657 int main(void)

o

68 uint3z_t startupbata, i3

&

7 /* Define the init structure for the output LED pin*/
71 | gpio_pin_config_t led_config = {

2 kGPI0_Digitaloutput, o,

7

75 /* Initialize MCMGR before calling its APT */

76 PCMGR_Tnit();

5 /* Get the startup data */

7 HCHGR_ pData(KHCHGR_Corel, pData); =
o ticable delay after the reset */

82 up parameter from the master core..

a3 For (i = 0; 4 < startupData; i++)

84 delay();

a5

85 /* Init board hardware.”/

&7 /* enable clo o

88 CLock_ Clock(kCLOCK_Gpion) ;

a9 CLOCK EnableClock(kCLOCK Gpiol);

90 BOARD InitPins Corel(): 2

Fig 21. Debugger stops at slave project main () function entry

Then the dual core projects can be debugged as normal single project.

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 19 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

5. Debugging with IAR

5.1

AN12124

IAR also supports dual core architecture feature, which is convenient for the users to
debug their application project. The slave project can be linked with the master project
via linker option, where the slave binary image and loading section are designated. Then,
the linker will integrate both the image files together during compilation. So, the slave
project should be built first, otherwise the master project will report compilation error
because the slave image data cannot be found. This process in IAR is similar to the
MCUXpresso IDE, except that the slave image load address in the flash should be
specified in the master linker file and the image should be copied to its execution
memory space by the master application.

Project configuration

Unzip the “hello_world_cm4_hello_world_cmOplus_lAR.zip” file in the AN package.
There are two folders containing Cortex-M4 master project and Cortex-MO+ slave project
respectively.

.. -

hello_world_cm0 hello_world_cmd
plus

Fig 22. IAR dual core projects folders

Open both the two projects and compile “hello_world_cmOplus” slave project. Then the
master “hello_world_cm4” project can be built successfully.

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 20 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

Workspace w 3 x Workspace v ax
[Debug 'l Debug h
Files fn B || Files o B
= @ hello_world_cm4 - Debug * v =K hello_world_cm0plus - Debug v
B hoard . B board
B CMSIS - B CMSIS .
B doc B doc
M drivers . B drivers .
B momgr . B momgr .
B source . B source :
M startup . B startup .
B utilities . B utilities :
— Diar_lib_powera — [liar_lib_power_mi.a
— B readme it — Bl readme .t
B Output B Output

Fig 23. Master and slave projects

Most of the project configurations for the dual core is set on the master project side
including both the images and debugging linkage. See Fig 24 for the linker script file
“LPC54114J256 cm4.icf’” which controls the memory layout for the master project. It also
defines the slave core image load region from 0X30000 to OX3FFFF in the flash space.

AN12124 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018 21 of 39

NXP Semiconductors

AN12124

LPC5411x dual core debugging guide

define symbol _ ram vector_table_size_ =
define symbol _ ram vector_table_offset_

define symbol m_interrupts_start
define symbol m interrupts_end

define symbol m text_start
define symbol m text_end

define symbol m_interrupts_ram start
define symbol m_interrupts_ram end

define symbol m _data start
define symbol m data end

define exported symbol rpmsg_sh_mem start
define exported symbol rpmsg_sh_mem end

define symbol m_Sramx_start
define symbol m_sramx_end

isdefinedsymbol {__ram vector_table_)} ? 0x000000E0 : O;
= isdefinedsymbol (_ ram wector_table_) ? Ox0O000ODE : 0:

= 0x00000000;
= 0x000000DF;

= 0x000000ED;
= Ox0002FFFF;

= 0x20000000;
0x20000000 + _ ram vector_table_offset_ ;

= m_interrupts_ram start + _ ram vector_table size_ :
0x2000FFFE;

= 0x20026800;
= 0x20027FFF;

0x04000000;
0x04007FFE;

exported symbol corel_image start
exported symbol corel image end

0x000300007
0x0003FFFE

define symbol _ crp start
define symbol _ crp end

define symbol _ ram iap start__
define symbol _ ram iap end

f* Sizes */

if (isdefinedsymbel{_ stack size_)) |
define symbol _ size catack =
1 else |
define symbol _ size catack =
}
if (isdefinedsymbol(__heap_size_)) {
define symbol _ size heap =
} else |
define symbol _ size heap =
}

define exported symbol _ VECTOR_TABLE =
define exported symbol _ VECTOR_RAM =

define exported symbol 7RA}{7'¢'EEIC-R7IBBLE

define memory mem with size = 4G;
define region TEXT_region

define region DATA region

region CSTACK region
region CRP_region =
define region m interrupts_ram region =

define block ZI {zi};

define region rpmsg_sh mem region = mem: [from rpmsg_sh mem start to rpmsg_sh _mem end];
define block CSTACK with alignment = &, size = _ size_cstack__ {1}:

defi block HERFP with alignment = &, size = _ size_heap I1:

de: block BW { readwrite };

0x000002FC;
0x000002FF;

0x2000FFEQ;
0x2000FFFE;

_ stack_size_ :

0x0400;

__heap size ;
0x0800;
m_interrupts_start;

isdefinedsymbol {_ ram vector_table)} ? m interrupts_ram start
. 3IZE = _ ram vector_table size_ ;

: m_interrupts_staft;

m_interrupts_start to m_interrupts_end]
m_text_start to m text end]

_ crp_start__ to _ crp end |7

m data_start to m datz end]

_ ram iap start__ to _ ram iap end]:
m_sramK_start to m_sramx_end];

__crp_start__ to __crp_end_];
m_interrupts_ram start to m_interrupts_ram end];

define block SEC_CORE_IMAGE WELOCK

ff-;e region corel region = mem:[from corel_ image_start to ccrel_lmage_e@

{ section _ sec_core };

initialize by copy [readwrite };

if (isdefinedsymbol{_USE_DLIE_PERTHREZD))
{

// Required in a multi-threaded application
initialize by copy with packing = none { section _ DLIB_PERTHREZD };
}

do not initialize
do not initialize

[sectiocn .noinit };
{ section rpmsg sh mem section };

Fig 24. Master project linker script file

See Fig 25 for the slave project linker script file. The code execution region starts from
SRAML1 address 0X20010000. The master application relocates the slave image from the

flash load region to the SRAM1 execution space.

AN12124 All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018

22 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

define symbol _ ram wector_table_size_ = isdefinedsymbol(__ram vector_table_)} 2 0x000000C0 : 07
define symbol _ ram vector table offset = isdefinedsywbol({_ ram wector_table_) ? Ox000000BF : 07

0x200100007
0x200100BF;

syrbol m_interrupts_start
syrbol m_interrupts_end

0x200100C0;
0x2001FFFF;

syrbol m_text_start
syrbol m text_end

0x20020000;
0x20020000 + _ ram wvector_table offset_ ;

define symbol m_interrupts_ram Start
define symbol m_interrupts ram end

define symbol m data start
define symbol m_data_end

m_interrupts_ram start + _ ram vector_table size ;
0x200267FF;

0x20026800;
0x20027FFF;

define exported symbol rpmsg_sh_mem start
define exported symbol rpmsg_sh mem end

define symbol m_srami STaArt = 0x04000000;
define symbol m sramx end = 0x04007FFF;
J* Sizes */
if (isdefinedsymbol (_ stack_size_ }) [
define symbol _ size cstack__ = __stack_size_ ;
} else {
define symbol _ size cstack__ = 0x0400;
}
if (isdefinedsymbol(_ heap size)} {
define symbol __size_heap_ = __heap size ;
1 else |
define symbol __size_heap_ = 0x0800;

}

define exported symbol _ VECIOR_TABLE = m interrupts_start;
e exported aymbol _ VEC RAM = iadefinedsymbol {_ ram wvector table) ? m interrupts_ram start : m_interrupts_starts
define ewported symbol _ RAM VECTOR_TABLE_STZE = _ ram vector_ table size_ ;

Fig 25. Slave project linker script file

The input tab in the linker option links the slave image file with the load region defined in
linker script file. The slave binary image file path and its load section is designated. In
current case, “SPROJ_DIR$/../hello_world_cmOplus/debug/hello_world_cmOplus.bin” is
the raw binary image file for slave core. __sec_core is its load section, which is defined in
the linker script file. IAR will search this image file during master project compilation and
will link it together with the master image.

AN12124 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018 23 of 39

NXP Semiconductors

AN12124

LPC5411x dual core debugging guide

Options for node "hello_world_cm4"

=

Categony:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Debugger
Simulatar
CADL
CMSIS DAP
GDB Server
I4et/ITAGEt
J-Link/1-Trace
TI Stellaris
PE micro
ST-LINK
Third-Party Criver
TI MSP-FET
TI DS

’ Factony Settings l

Hdefine | Diagnostics

Checlksum I Encodings | Extra Options

Config | Libmry | Input

Optimizations I Advanced I Qutput | List

Keep symbols: (one per line)

hello_word_cmiplus_image

e

Section: Align:
SPROJ_DIRS/../hello_word_cm D hello_wor | _Sec_co| 4

Symbol:

Cancel

Lo

[

Fig 26.

Slave core image file linkage and load section

The dual core debugging in IAR for the master and slave projects can also be connected
via Multicore tag in debugger option. After checking the Enable multicore master mode
and choosing the slave project path, the slave project can be automatically opened and
placed into debugging mode when the master project is debugged.

AN12124

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

24 of 39

NXP Semiconductors

AN12124

AN12124

LPC5411x dual core debugging guide

ra

Options for node "hello_world_cm4"

=

Categony:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Simulatar
CADL
CMSIS DAP
GDB Server
I4et/ITAGEt
J-Link/1-Trace
TI Stellaris
PE micro
ST-LINK
Third-Party Criver
TI MSP-FET
TI DS

l Factory Settings l

| Setup | Download I Images I Extra Options | Multicore | Pluginsl

Symmetric mutticore

Number of cores: 1

Asymmetric mutticore

Enable multicore master mode
Part: 53461

Slave workspace:
ave project:

hello_word_cmiplus

SPROJ_DIRS/ . /hello_word_cmlplus/hell | ... :

Slave configuration: Debug

Attach slave to running target

[

ok ||

Cancel

Fig 27. Multicore option for slave project debugging connection

For both the projects, the reset setting of the debugger should be configured properly.
Usually, the master project should be configured to hardware reset and the slave project

should not use hardware or software reset. This method ensures that the master

debugging session is not affected.

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

25 of 39

NXP Semiconductors

AN12124

AN12124

LPC5411x dual core debugging guide

Options for node "hello_world_cmOplus"

It

Categorny:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
GDE Server
IHet/ITAGjet
JLink/1-Trace
TI Stellaris
PE micro
ST-LIMNK
Third-Party Driver
TI MSP-FET

Setup | Interface I Breakpoints

Factony Settings l

[7] Log communication

SPROJ_DIRS\cspycomm log

Delay after: 200 | ms
Emulator
| Always prompt for probe
selection
Senal no:

TI XDS

Ok

J [

Cancel

Fig 28. Reset setting for master project

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

26 of 39

NXP Semiconductors

AN12124

AN12124

LPC5411x dual core debugging guide

=

Options for node "hello_world_cmOplus®

=

Categony:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulatar
CADL
GDB Server
I4et/ITAGEt
J-Link/1-Trace
TI Stellaris
PE micro
ST-LINK
Third-Party Criver
TI MSP-FET
TI DS

Factony Settings l

Setup | Interface | Breakpoints
Beset
isabled ino reset) v]

Diration: 300 | mz Delay after: 200 | m=
Emulatar
0 Always prompt for probe

selection

Serial no:

[Log communication

S$PROJ_DIRS \cspycomm log

(0]] l Cancel

Fig 29. Reset setting for slave project

5.2 Project debugging

After successfully building the master project, click the Download and Debug button to
enter the debugging mode. IAR opens the corresponding slave project and starts
debugging. The master core will be stopped at the entry point of main () function and
slave will be in a sleep state.

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

27 of 39

NXP Semiconductors

AN12124

AN12124

LPC5411x dual core debugging guide

DOMG .8 L80 0c 25025 R0 00 RO e 60l ol 03t dd] B, e
- vax
o S 3 Cyces
S 0Coneelle Swpng - -
W i:ConexMd Stopped 0x000015EQ an
f
E
5 = LnagessCOREL_REDTOR¥OLesgras
o anes
Bacib ponsea | _secwion_sna("_sec_core") - (sinH_e)seorel_image_starss
Bresdnase —soosion sdy_ims. IR asese peigs
& oupur
vax
=
Fi Sep 03.2017 120404 Recoqreznd CPUD-0eA1024) Corehd p! arch AFAT-M
FrSap e 04 Dot resairces b mchon compareors, 4 deiawatchpoints
FSop 88 (1411474 tes daioaded o FLASH and verie (713 Knpers05)
FiSepts 4 Downloed completed snd verfcatcn succes il
4 Lo otwere,doley 200)
\ 04 Tor
eady. g2 Carts Sytem A0 MM =
G Ve Poe Oohup Diwicssy CUSSOAP Tou Wndow Hep
DOMG @ AKD DG EREER T XN RNOTON X NN - RN WA - I RA RN o R LR T
G cex
Core S PC Cyces
O Cortexb. Sieepng - -
BV Comend Gopoed OR000DISER an
o
oo o i ¥ie
octug tag -
Lon
i 560 00 2017 12405 Prose: Coms ciSpec-LPD-UINKE CSIS DA VS 1 MATIIIOND2 1341 EEB25-0.00100.
Fi Sen 08 2017 120M D5 Conectegio TAP#) GAF AHE-AP-Cl po | (DR-B2477001 1]
o 02,2017 1211405 Facageizod CEUI01ed10cchl Conrbale) srch AR
o0 5, 017120415
o 08,2017 121405 CPU s - SLEEFANG I
g 08,2017 1211405 Lo dobragoe: ©:\bpn LPESA1 AN duelcorack_prahalka_werld._ishele_werid_ st datugiballo_warkd.en(ghe out
0 05, 2017 121415, A%ach 1 i ng WD Comietsd s
Ready 4B, CaB. system Cap wum 0ve B

Fig 31. Slave project in debugging state

There is a cores window in view menu available for checking current states of both the

cores, such as their execution status.

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

28 of 39

NXP Semiconductors

AN12124

AN12124

LPC5411x dual core debugging guide

Messages 3
IE Workspace

Source Browser 3

C-STAT 3

C-RUN 3

Breakpoints
[E Call Stack

‘Watch 3
Live Watch

H B

Quick Watch
Auto

Locals

5H

Statics

Memary 3
Registers 3
Disassembly

Stack 3
Cores

bm: | Symbolic Memory
Care Status FC
[[Enminallz) % 0 Corex-hi+ Sleeping
Macros » [[H 1:Cortex-M4 Stopped

Symbols

0x000D15E8

Code Coverage

Images

Fig 32. Cores window

Cycles

331

Although the slave code has been loaded into the designated flash address, it should
also be copied to its execution memory space. This task and the slave booting
environment setup are all conducted by the master application code. The copy
destination address should be in accordance with the slave project memory layout setting.

Workspace v 2 X [[LPCS541141256_cma.ict | hello_world_cored.c x | startup_LPC54114_cmd.s | pin_mux.c

Debug | |mainf)

BOARD BootClockFROHF4EM() ;

Files & B BOARD_InitDebuglonsole ()

2 @hello_world_cm4-De... ¥

H board #/

i OMSIS D_SWL_GPIO, BOARD_SWL_(ORT, BORRD_SW1_GPIO_PIN, saw_config);
i doc GPIO_PinInit (BOARD_SW2 GPIO, BOARD SW2_| ORT, BORRD_SW2_GFIO_FIN, ssw_config):

W drivers

uint32_t corel image size;

H Output /# Copy Secondary cove appli

sffectivity.
0OT_ADDRESS, (void *)COREL IMAGE START, corel image size);

Temcpy (COREL |

- not required on LECExpresso. LECExpresso copiss image to RAM during startup

|-=
- E“"m;gbs corel_image_size = get_corel image_size():
'arfd‘ ,p;wera ERINTF ("Copy Secondary core image to address: 0x3x, size: 3d\n", CORE1_BOOT ADDRESS, corel _image size):
readme

ticn from FLASE to RAM. Primary core code is exscuted from FLASH, Secondary from RAM

* e MCMGR before calling its AFT #/

| hello_world_cm4 a

Memory 1

(oo Jfem o 6L

.

0x00030000 20026800 20010c45 200104dbk 200109f3
0x00030010 (00000000 00000000 00000000 7ffafoed
0x00030020 (00000000 00000000 00000000 20010bef
0x00030030 (00000000 00000000 20010bfk 20010489
0x00030040 2001091 2001099 20010=al 20010wa%
0x00030050 20010ehl 20010ek9 20010ecl 20010ce9
0x00030060 20010edl 20010ed9 20010cel 20010ce9

0x00030070 20010efl 20010ef9 20010401 20010409

Fig 33. Slave code copy

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

29 of 39

NXP Semiconductors

AN12124

LPC5411x dual core debugging guide

Following is the memory copy destination address, which is the same as the slave code
execution region starting address.

#define CORE1_BOOT_ADDRESS (void *)0x20010000

As illustrated in the chapter dual core booting analysis, the master core needs to setup

the slave booting up environment and reset it again. Then, the slave will jump to and
execute its application code. MCMGR_StartCore () function will do this task after the
slave code copy. When this function is called, the slave core status will change from
sleeping to running.

E #ifdef CORE1_IMAGE_COFY_TC_RAM

= /* Calculate size of the image - not required on LPCExpresso. LPCExpresso coples image to RAM during startup
- * gutomatically */

uint32_t corel_image size;

corel image size = get_corel image size();

PRINTF("Copy Secondary core image to address: Ox%x, size: %d\n", CORE1l_BOOT_ADDRESS, corel_image_size):

- # for maximal seffectivity.
memcpy (CORE1_BOOT_ADDRESS, (void *)CORE1_IMAGE STRRT, corel_image size):
- #endif

/% Initialize MCMSGR before calling its AFI #/
MCMGR_Init():

licat

/* Boot Secondary core application #/

DRINTEL"Starting ndar ' nle
@{MH{SR_CCI'EL CORE1_BOOT_RDDRESS, 1, kl{mSR_Start_Synf.hrcn@

/* Print the initial banner from Primary core */
= PRINTF (™\r‘nHello World from the Primary Core!‘\r\n\n"}|;

PRINTF ("Press the SW1 button to Stop Secondary core.\r\n");
PRINTF ("Press the 5SW2 button to Start Secondary core.\r\n");

Cores

Core Staty FC Cycles
[#] 0: Cortex-M0+ Running) - -
o 1 Cortex-h4 stopped 0xz00001650 13381637

Fig 34. Slave core status change after calling MCMGR_StartCore () function

Then the two projects can be debugged like other usual projects.

= /* Copy Secondary core application from FLASH to RAM. Primary core code is exscuted from FLASH, Secondary from RAM

6. Debugging with Keil

Keil MDK cannot link the two dual core projects together and debug them at the same
time as MCUXPresso IDE or IAR. They are treated as two independent projects. The
master project should include the slave binary image into its own executable file and
download them into flash memory together. The application is also responsible for slave
code relocation and booting environment setup.

6.1 Project configuration

Unzip the hello_world_cm4_hello_world_cmOplus_Keil.zip. There are two folders
containing both the Cortex-M4 master and Cortex-MO0+ slave projects.

AN12124

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 30 of 39

NXP Semiconductors

AN12124

LPC5411x dual core debugging guide

!

hello_world_cm(
plus

Fig 35. Keil dual core projects folders

hello_world_cmd4

Because the master project needs to search and include the slave image binary during
compilation, open the two projects and build the slave project hello_world_cmOplus. Fig
36 shows picture of the two Keil projects.

Project
=% Project: hello_world_cmd

a @ Project
= "73 Project: hello_werld_cmDplus
=155 hello_world_cm0plus Debug

E-gd hello_werld_cmd Debug

&--E--E- - B -

{3 board

CMSIS

doc

drivers
mecmgr/doc
mecmgr/doc/search
memgr

roat

source

startup

(IR W W W

utilities

E=l Project | €9 Boaks | £ Functions | (1, Templates

Fig 36. Keil dual core projects

e e 3 R e R e R R

L1 board

CMSIS

doc

drivers
memgr/doc
mecmgrfdoc/search
mecmgr

root

source

startup

(AENE NN NN NN NN

utilities

Eproject Books | 1} Functio...| (), Templat...
3

AN12124

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

31 of 39

NXP Semiconductors

AN12124

AN12124

LPC5411x dual core debugging guide

There is an assembly file incbin.s in the master project which includes the slave binary
file and allocates it into the slave code load region defined by the master linker script file.
The search path of the binary file is configured in the Asm tab of the master project

options.
] inchin.s
1 T
2 ; * Cop ght (c) 2016, Freescale Semiconductor,
3 o+ hts reserved.
S
5 ; * Redistribution and use 1
& ; * are permitted provided that the follow
| "
8 ;P * o ns of source code must ret ht notice,
9 H 3 and the following disclaim
10 N
11 ; * o Redistributions in bi: form must reproduce the above cop ht notice, this
1z B list of conditions llowing disclaimer in the documentation and/or
1z ; * 1 the distribution.
i
15 : * o name of Freescale Semiconductor, Inc.
1a : ok cont tors may be used to endorse or
17 H software without specific pri
18 PE
19 PE
20 P INCLUDING, BUTI NOT LIMITED TO,
21 P) FITHESS FOR A FARTICULAR PURPOSE
2z P CONTRIBUTORS
e - * INDIRECT, IN ENTAL, OR CONSEQUEN
24 ; * (INCLUDING, BUT NOT LIMI) TC, PROCUR S ITUTE GOOCDS CR SERVICES:
25 ; * LOSS OF USE, DATA, CR PROFITS: CR BUSL INTERRUPTICH) HOCH R CAUSED AND CN
26 ; * ANY THECRY OF LIABILITY, WHETHER IN CONTRACT, S‘TRICT LIABILITY, OR TORT
27 : * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 : * SOFTWARE, EVEWN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 N
30
31 RERDONLY, PREINIT_ARRAY, ALIGN=3
32 EXPORT m0_image_start
33 EXPCRT m0_image_end
34 w0 image start
2
36 m0 image end
3T END
38

Fig 37.

Slave image including file

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

32 of 39

NXP Semiconductors AN12124

AN12124

LPC5411x dual core debugging guide

r ™y
Options for Target 'hello_world_cm4 Debug’ ﬂ

Devicel Targetl OLrtertI Ustingl User I C/Ce= Asm |Lir1ker| Debugl Util'rtiesl

— Condtional Assembly Control Symbols

Define: ICPU_LPC54114J255_M4. DEBUG, _CC_ARM. KEIL

IIndefine: I

— Language # Code Generation

I~ Read-Only Position Independent [~ Split Load and Store Muttiple
| I™ Read-Write Posttion Independent
[~ Thumb Mode [Execute-only Code
I~ Mo Wamings [~ No Auto Includes
.l N
|| Include Istartup;CMSIS;doc;sourc:e;mcmgr;utilities;dri\rers;boa sy._/hello world cmOplus/debu D
Paths
Misc I
Controls
|| ||

Assembler |-cpu Cortex-M4 fp -g —apcs=interwork —pd "__MICROLIB SETA 1" -l startup | CMSIS -l doc -l source =
cortral |-l memgr -l utilities -| drivers -l board -l . /hello_wordd_cmOplus./debug
string

-

[ok || Cancet || Defauts | Help

b

Fig 38. Slave binary file search path

The Keil project should set the project configuration, to generate the binary file required.
See Fig 39 for the slave project setting on the binary image output. The After-Build
command used is “$K\ARM\ARMCC\bin\fromelf.exe --bincombined --
bincombined_base=0x20010000 --output=$Lcorel_image.bin IL".

The binary file name(corel_image.bin) should be in accordance with the file included in
the master project incbin.s.

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 33 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

=
Cptions for Target "hello_world_cmOplus Debug’ ﬁ

Device I Target I Output I Listing Wser IC!CHI Aasm I Linker I Debug I Ltilities I

Command kemns User Command « | Stop on Exi.. | S..
[=l--Before Compile CfC++ File
[” Run#l (3] Mot Specified [
[~ Run#2 (23] Mot Specified |
[=-Before Build/Rebuild
[~ Runzl (23] Mot Specified |
[~ Run#2 (3] Mot Specified [
[=--After Build/Rebuild
v R B ARMVARMC C\bin'\fromelf.exe --bincombined - [-5] Not Specified [
[~ Run#2 (3] Mot Specified [

[Run 'Mter-Buid’ Conditionally
V¥ Beep When Complete [Start Debugging

0K I Cancel Defaults Help

b

Fig 39. Slave binary file generation configuration

See Fig 40 for the slave code load region definition in the master project linker script file.

AN12124 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018 34 of 39

NXP Semiconductors

AN12124

LPC5411x dual core debugging guide

[Lpcsa1141256_cma.sch

66 #define
a7

68 #define
69 #define
T0

71 #define
72 #define
73

7¢ #define
75 #define

m interrupts ram size

m_rpmsg_sh mem start
m_rpmsg_sh mem size

m data_ start
m data_size

m_Sramx_STart
m sramx_size

ram vector table size

0x20026800
0x00001800

(m_interrupts_ram start +

44 == ntTp:
3 mail:

46 =

4T K T IRI I T R I T T I A I I TN IR TR AN AT T AT AT AT AR TR T AI R IR RIS
48 =/

49

50 #if (defined(_ ram wector table))

51 #define _ ram vector_table_size_ 0x000000EQ
52 felse

53 #define _ ram wvector_table_size 0x00000000
54 #endif

55

56 #define m_interrupts_ start 0x00000000
57 #define m_interrupts_size 0x000000ED
58

59 #define m_TEeXC_STart Ox000000EQD
60 #define m_text_size 0x0002FF20
6l

& #define m corel image_start 0x0003000
[$define m corel image size 0x00010000
64

65 #define m_interrupts_ram start 0x20000000

m interrupts ram size)

(0x00010000 - m interrupts_ram size - m rpmsg sh mem size)

0x04000000
0x00008000

121
122

120 LR _COREl_ IMAGE m corel image start {

CORE1l_REGICN m corel image start m corel image size {
* (MOCCDE)

123 }
124 }
125

126

Fig 40. Slave image load region definition

Slave code execution region is defined in the slave project linker script file. So, the
master application should relocate it from flash to SRAML1.

AN12124

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

35 of 39

NXP Semiconduc

tors AN12124

LPC5411x dual core debugging guide

[] 1PC541141256_cmoplus.sck

48 */

49

50 #if (defined(__ram vector_table_))

51 #define _ ram vector_table size 0x000000C0
52 #else

3 #define ram vector table size 0x00000000
54 #endif

3

56 sfdefine m interrupts_start

57 [#define m _interrupts size

58

59 | #define m_telxt_start

&0 define m text_size

61

a2 $define m_interrupts ram STAart

63 $define m_interrupts ram size

64

685 $define m_rpmsg sh _mem STart

&6 #define m_rpmsg sh_mem size

a7

68 #define m_data_start (m_interrupts_ram start + m_interrupts_ram size)
(3] #define m data_size (Ox00008000 - m interrupts_ram size - m rpmsg_sh mem size)

Fig 41. Slave code execution region definition

6.2

Project debugging

Keil dual core projects debugging is the same as in general projects. There is no linkage
relationship between the two projects. The master core still needs to copy the slave code
from flash to the execution RAM region in explicit code and setup the booting
environment.

93 E:ifc%f CORE1_IMAGE_COPY_TO_RAM

100 /* calculate size of the image - not regquired on LPCExpresso. LPCExpresso copies image to RAM during startup
101 - * autematically */

102 uint32_t corel_image_size;

103 corel_image_size = get_corel_image_size()s

104 PRINTF ("Copy Secondary core image to address: 0Ox%x, size: %d\n", CORE1l_BOOT RDDRESS, corel image size):

105

106 H /* Copy Secondary core application from FLASH to RAM. Primary core code is executed from FLASH, Secondary from RAM
107 + * for maximal effectivity.*/

108 Cliemcpy (CORE1_BOOT_ADDRESS, (void *) CORE1_IMAGE_START, corel_image_size]id

109 | #endif

110 -

111 /* Initialize MCMGR before calling its RPI */

112 MCMGR_Init():

113

114 /* Boot Secondary core application */

115 PRINTF ("Starting Secondary core.\n");

116 CFICMGR_StartCore (KMCMGR Corel, CORE1 BOOT ADDRESS, 1, KMCMGR Start Synchronous]

Fig 42. Slave code copy and booting address setup

7. Conclusion

AN12124

The dual core booting up and project debugging on three IDEs are introduced in this
application note. MCUXpresso IDE and IAR have better support on the dual core
development and debugging, compared to Keil MDK. This application note analyzes the
project configuration and debugging procedure with all three IDEs. The user can choose
one of the IDEs for application development.

All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note

Rev.1.0 — 8 March 2018 36 of 39

NXP Semiconductors

8. Legal information

AN12124

LPC5411x dual core debugging guide

8.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers

Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

AN12124

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fithess for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

8.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

All information provided in this document is subject to legal disclaimers.

8.4 Patents

Notice is herewith given that the subject device uses one or more of the
following patents and that each of these patents may have corresponding
patents in other jurisdictions.

<Patent ID> — owned by <Company name>

8.5 Trademarks

Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

<Name> — is a trademark of NXP Semiconductors N.V.

© NXP Semiconductors B.V. 20184. All rights reserved.

Application note

Rev.1.0 — 8 March 2018

37 of 39

NXP Semiconductors AN12124

LPC5411x dual core debugging guide

9. List of figures

Fig 1. AN package contents..........cccceeeeviivieneeeeeeiinnns 3 Fig 42. Slave code copy and booting address setup...36
Fig 2. LPC541xx debug access port architecture 4
Fig 3. Startup file for MCUXpresso IDE 5
Fig 4. ResetISR () function flow chartc....... 6
Fig 5. Cortex-M4 booting flow chart............ccccceeennnnee. 7
Fig 6. Cortex-MO+ first booting flow chart 7
Fig 7. Cortex-M0+ second booting flow chart.............. 8
Fig 8. Reset interrupt handler flow chart.................... 9
Fig 9. Cortex-M4 booting flow chart.............ccceeeneee. 10
Fig 10. Cortex-MO+ first booting flow chart 11
Fig 11. Cortex-M0+ second booting flow chart............ 12
Fig 12. MCUXpresso IDE dual core projects 13
Fig 13. Master project memory mapcccceeceeeeernnen. 14
Fig 14. Slave project memory mapcccceeeevveeennnen. 15
Fig 15. Master project multicore option for slave linkage
.. 16
Fig 16. Master project linker file for slave code and data
=] [Tox= L1 1o] s [PPSR 17
Fig 17. Slave project code and data size 17
Fig 18. Master project Ram1_90 memory used size...18
Fig 19. Launch master project debugging................... 18
Fig 20. Both projects are in debugging state............... 19
Fig 21. Debugger stops at slave project main () function
BN e 19
Fig 22. IAR dual core projects folders..........cccccevnnene 20
Fig 23. Master and slave projectscccccoveveveeeeennnn. 21
Fig 24. Master project linker script file...........cccceevnee. 22
Fig 25. Slave project linker script file..........cccocovvennee. 23
Fig 26. Slave core image file linkage and load section24
Fig 27. Multicore option for slave project debugging
CONNECHION.ceiieeiiiiiiiieie e

Fig 28. Reset setting for master project
Fig 29. Reset setting for slave project...........cccccceeen.
Fig 30. Master project in debugging state
Fig 31. Slave project in debugging state
Fig 32. COres WINAOWc.veeveiiiiiieiieie e
Fig 33. Slave COUe COPY.....uuvveiiiiiierieie e

Fig 34. Slave core status change after calling
MCMGR_StartCore () function.............cccec.... 30
Fig 35. Keil dual core projects folders..........ccccceeeen. 31
Fig 36. Keil dual core projects........cceeeeeeeeiiiiiiiiennennnn. 31
Fig 37. Slave image including file............cccccoiien. 32
Fig 38. Slave binary file search path..............ccccvvee. 33
Fig 39. Slave binary file generation configuration 34
Fig 40. Slave image load region definition 35
Fig 41. Slave code execution region definition............ 36
AN12124 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors B.V. 2018. All rights reserved.

Application note Rev.1.0 — 8 March 2018 38 of 39

NXP Semiconductors

10. Contents

AN12124

LPC5411x dual core debugging guide

1.
11

3.1
3.2

4.1
4.2

51
5.2

6.1
6.2

8.1
8.2
8.3
8.4
8.5

10.

INTrOdUCTION ..o 3
Folder StrUCtUrecevveeiieeieiieie e 3

SWD interface.......ccccovveviiiiiieniiciicsec e 4

Dual core booting analysiS.......ccccccveverinirennnnn. 4
MCUXpresso IDE startup file

IAR and Keil startup file.......................
Debugging with MCUXpresso IDE
Project configurationccccccevviieeeiiiieenee.
Project debuggingccocvevviveiiiieeeiiiee e,
Debugging with ARccoooiiiiiieeee e
Project configurationcccccevviieeeiiiieennen.
Project debuggingccocvevviveiiiieeeiiiee e,
Debugging with Keil..........ccccooviiiiiiiiieiiieees
Project configurationccccevvieeeiiiie e,
Project debuggingccocvevviveiiiieeeiiiee e,
CONCIUSION c..eiiiiiciec e
Legal informationcccccceevviiiiniiieee e
DefiNItIONSvviiieeiiieiec e
DISCIAIMEIS....uuiiiiieeiiiiiiec e
LICENSES ...
Patents.........cccceeenennnn.
Trademarks..................
List of figures
CONtENTS ..cciiiiiiiiiieeee

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section ‘Legal information'.

© NXP Semiconductors B.V. 2018. All rights reserved.
For more information, visit: http://www.nxp.com

Date of release: 8 March 2018
Document identifier: AN12124

	1. Introduction
	1.1 Folder structure

	2. SWD interface
	3. Dual core booting analysis
	3.1 MCUXpresso IDE startup file
	3.2 IAR and Keil startup file

	4. Debugging with MCUXpresso IDE
	4.1 Project configuration
	4.2 Project debugging

	5. Debugging with IAR
	5.1 Project configuration
	5.2 Project debugging

	6. Debugging with Keil
	6.1 Project configuration
	6.2 Project debugging

	7. Conclusion
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Licenses
	8.4 Patents
	8.5 Trademarks

	9. List of figures
	10. Contents

