

© 2018 NXP B.V.

Implement Low-Power Audio on i.MX8M

1. Introduction

This document discusses about low power audio

application design on i.MX8M. In Low power

audio, the audio file is decoded on A53 core and

played on M4 core, which is intend to an low

power application on i.MX8M platform.

2. Chip overview

This section provides main features of i.MX 8M

chips.

2.1. i.MX8M chip overview

The i.MX 8M family is a set of NXP products

focused on delivering the latest and greatest video

and audio experience combining state-of-the-art

media-specific features with high-performance

processing while optimized for lowest power

consumption.

 Built in TSMC 28HPC to achieve both high-

performance and low-power consumption.

 Relies on a powerful fully coherent core based

on a quad Cortex-A53 cluster. Graphics

processing handled by the GC7000Lite GPU

from Vivante supporting the latest graphic

APIs.

 Advanced security modules for secure boot,

cipher acceleration and DRM support.

NXP Semiconductors
Document Number: AN12195

Application Note Rev. 0 , 06/2018

Contents

1. Introduction ..1
2. Chip overview ..1

2.1. i.MX8M chip overview ... 1
3. Low Power Audio Application Overview2

3.1. Components ... 2
4. Software design ..4

4.1. RPMSG character device driver 4
4.2. Remote core share memory driver 4
4.3. AMP Optimization .. 5
4.4. Linux low power audio application design 6
4.5. Audio Server on Cortex-M4 core 10

5. Run low-power audio example ... 11
5.1. Apply low-power patch for ATF 11
5.2. Rebuild kernel with new drivers 14
5.3. Build low-power audio applications 14
5.4. Build Cortex-M4 core application 15
5.5. Setup windows environment 16
5.6. Boot u-boot .. 16
5.7. Run M4 core audio server first 17
5.8. Run low-power audio applications 18

6. Time consumption .. 19
7. Power Consumption Test .. 20
8. Conclusion .. 21
9. References .. 21
10. Revision history .. 21

Low Power Audio Application Overview

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

2 NXP Semiconductors

 General purpose Cortex-M4 processor for low- power processing.

 A wide range of audio interfaces including I2S, AC97, TDM and S/PDIF.

 Large set of commonly used peripherals in consumer/industrial markets including USB 3.0, PCIe

and Ethernet.

3. Low Power Audio Application Overview

In this application, A53 core will send request to CM4 core and then sleep. CM4 core play or record

audio independently, and wakeup A53 core when the operation is done.

3.1. Components

Five software components are created to implement this feature:

 Linux play & record application

 Linux RPMSG character device driver

 Linux Remote core share memory driver

 FreeRTOS Audio Server

Low Power Audio Application Overview

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

NXP Semiconductors 3

Figure 1 shows how a low power application works:

Figure 1. Low Power Audio Procedure

Software design

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

4 NXP Semiconductors

4. Software design

4.1. RPMSG character device driver

On i.MX8, cores use RPMSG mechanism to communicate messages. RPMSG is implemented based on

MU module.For more details about RPMSG, please refer to below URL:

https://github.com/OpenAMP/open-amp/wiki/OpenAMP-RPMsg-Virtio-Implementation

We implement a RPMSG character device driver based on below considerations:

1. Currently, Linux kernel in i.MX specifically supports I2S RPMSG, TTY RPMSG, PMC RPMSG

drivers. There’s no common driver to transfer messages between cores.

2. To handle various user cases on M4 core and reduce effort to develop specific RPMSG driver.

3. Normally, there is a message protocol between kernel and M4 core application. With this common

driver, we can implement the protocol in user space, instead of kernel driver.

Driver descriptions:

 When probed, create a /dev/rpmsg_ctrl0 device.

 User can open /dev/rpmsg_ctrl0 and use ioctl command RPMSG_CREATE_EPT_IOCTL to create

an RPMSG End Point device, e.g. /dev/rpmsg0.

 The end-point device can accept open, read, write, poll and close operations.

 User can use ioctl command RPMSG_DESTROY_EPT_IOCTL to destroy an end-point device.

4.2. Remote core share memory driver

There’re two considerations for a shared memory space between cores:

1. Contiguous memory space.

2. Memory physical address.

In Linux,

 Malloced memory are remapped to process’s address space. So, we can only get a virtual address.

But M4 core can’t recognize a virtual address.

 DDR memory are organized by pages, which is buffer-able, cache-able and not contiguous. But M4

core don’t have such mechanism to handle this memory space.

Thus, in low-power audio, Linux need to create a non-buffer-able, non-cache-able and contiguous

memory to store decoded audio data. Only such memory space can be handled by M4 core.

Also, Linux need to get the physical address of the memory and pass it to M4 core.

https://github.com/OpenAMP/open-amp/wiki/OpenAMP-RPMsg-Virtio-Implementation

Software design

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

NXP Semiconductors 5

Normally, in Linux, we have two ways to create such memory space.

1. Use DMA coherent memory space, which is using CMA (Contiguous Memory Allocator).

2. Predefined a reserved memory space in DTS file.

Here we recommend using DMA memory space. It is more flexible. We don’t need to allocate a

reserved memory space and we can free the allocated space. Also, we can get the physical address.

Function dma_alloc_coherent() is an ideal function for such case.

Based on above, we create a remote core share memory driver, which can help user to allocate, read and

write a DMA coherent memory space.

Driver descriptions:

 Create a /dev/rmtcore_shm character device.

 Accept open, read, write, seek, ioctl and close operations.

 By default, the driver will create a 1MB contiguous memory space. Use can use ioctl command

RMTCORE_SHM_CHG_BUF_SIZE to get a new buffer with new size.

 User can use ioctl command RMTCORE_SHM_GET_BUF_ADDR_PHY to get buffer physical

address.

 Two additional ioctl commands are RMTCORE_SHM_GET_BUF_ADDR_VIRT and

RMTCORE_SHM_GET_BUF_SIZE, which can be used to get virtual buffer address and buffer

size.

4.3. AMP Optimization

By default, when M4 is detected, kernel enables all modules’ clock gates. So SOC current will be very

HIGH. On i.mx8M, the current is around 500 mA.

So in kernel, we need to enable clocks required byM4 program and gate all other modules’ clocks.

Software design

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

6 NXP Semiconductors

4.4. Linux low power audio application design

The main diagram shows relationship between low power audio modules.

Figure 2. Data Exchange Diagram

4.4.1. Low-Power Play

The low-power play program will decode an mp3 file and play the file on M4 core.

In the program, we will:

1. Decode a mp3 audio file.

2. Copy decoded data to shared memory space.

3. Send physical address of allocated buffer to M4 core.

4. Get to sleep and wait for wakeup signal.

5. When playing is finished, wakeup from MU signal.

Software design

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

NXP Semiconductors 7

4.4.2. Low-Power Record

The low-power record program will receive the voice on M4 core and save to PCM raw data on ‘A’

core.

The program will:

1. Allocate enough shared memory space.

2. Send physical address of allocated buffer to M4 core.

3. Get to sleep and wait for wakeup signal.

4. When record is finished, wakeup from MU signal.

5. Get audio data from shared memory space and save to file.

4.4.3. Decode a mp3 audio file

In this program, we use gstreamer to decode a mp3 file to PCM raw data.

The gstreamer command to decode an mp3 file is:

gst-launch-1.0 filesrc location=xxxx.mp3 ! mpegaudioparse ! beepdec ! filesink location=xxxx.pcm

User can then write code based on the gstreamer command.

NOTE

This is just an example of decoding audio file to raw data, for other file

types, user can choose any ways to get the PCM raw data.

In the example code, we suppose that the sample rate, channel information and sample format are

known. In a real application, user may need to use other ways, e.g. libmad to decode the mp3 header to

get these parameters.

4.4.4. Copy decoded data to shared memory space

Here we’ll use remote core shared memory driver to copy PCM raw data to a contiguous memory space.

For code example, please refer to function pcm_write_to_cma_buffer() in lp_play.c.

NOTE

As on i.MX8, kernel CMA area is very large, about 1G size. In this

example, we allocate memory space for whole PCM raw data. In user

programs, if memory is limited, user can use other mechanism, like circle

buffer, ping-pong, etc.

Software design

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

8 NXP Semiconductors

4.4.5. Send physical address of allocated buffer to M4 core.

Use RPMSG character device to send physical address of buffer to M4 core.

Here we emphasize that normally, there should be a protocol between A core and M4 core. With

RPMSG character device, we can implement the protocol in user space.

For example, in low-power play program, to access an audio device on remote M4 core, we create an

audio request and response protocol.

Code snippet:

Software design

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

NXP Semiconductors 9

/* Open audio device */

 memset(&audio_msg_req, 0, sizeof(audio_rpmsg_request_t));

 audio_msg_req.header.category = SRTM_AUDIO_CATEGORY;

 audio_msg_req.header.majorVersion = (__u8)((SRTM_AUDIO_VERSION & 0xFF00U) >> 8U);;

 audio_msg_req.header.minorVersion = (__u8)(SRTM_AUDIO_VERSION & 0xFFU);;

 audio_msg_req.header.type = SRTM_MESSAGE_TYPE_REQUEST;

 audio_msg_req.header.command = SRTM_AUDIO_SERV_REQUEST_CMD_TX_OPEN;

 audio_msg_req.header.priority = 0;

 rtn_bytes = write(rpmsg_ep_fd, &audio_msg_req, sizeof(audio_rpmsg_request_t));

 if (rtn_bytes != sizeof(audio_rpmsg_request_t)) {

 fprintf(stderr, "Not all request msg data transmitted or send failed: %ld\n",

rtn_bytes);

 return -1;

}

 /* Read response */

 memset(&audio_msg_resp, 0, sizeof(audio_rpmsg_response_t));

 rtn_bytes = read(rpmsg_ep_fd, &audio_msg_resp, sizeof(audio_rpmsg_response_t));

 if (rtn_bytes != sizeof(audio_rpmsg_response_t)) {

 fprintf(stderr, "Not all resp msg data received or read failed: %ld\n", rtn_bytes);

 return -1;

 }

 if (SRTM_AUDIO_SERV_REQUEST_CMD_TX_OPEN == audio_msg_resp.header.command) {

 if (audio_msg_resp.param.result[1])

 fprintf(stderr, "Got TX_OPEN response msg! Failed!\n");

 else

 fprintf(stderr, "Got TX_OPEN response msg! PASS!!\n");

 }

For details, refer to pcm_send_to_remote() function in lp_play.c or lp_record.c.

4.4.6. Linux kernel get to sleep

The command to enter suspend mode in Linux is:

echo mem > /sys/power/state

We still need to use the command in code.

There’re two ways in user space to bring kernel to suspend mode (or standby mode).

Software design

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

10 NXP Semiconductors

1. Use system() function. E.g.

system("echo mem > /sys/power/state");

2. Use popen() function.

Please refer to pcm_sleep_and_wakeup() function in lp_play.c or lp_record.c.

4.4.7. Linux kernel wakeup

As in the Arm Trusted Firmware (ATF) patch, we have added MU interrupt as wakeup source. When

kernel get MU interrupt from M4 core, it will wake up.

4.5. Audio Server on Cortex-M4 core

An audio server example is created on the Cortex-M4 core. The audio server follows the protocols

defined between A core low-power applications to do playing or recording.

Run low-power audio example

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

NXP Semiconductors 11

NOTE

Notes for M4 core applications:

• M4 core application also uses virtual queue mechanism. The

virtual queue used in M4 core application is created by kernel

virtual queue driver, So M4 core application need to be launched

before kernel. Only by this, can a RPMSG device be created.

• Modules used in M4 core should be disabled in kernel DTS file.

Refer to fsl-imx8mq-evk-lpaud.dts for reference.

• To work with the ATF patch, M4 core application need to enable

clock of SIM, SIM_MAIN, SIM_S, SIM_WAKEUP, DEBUG,

DRAM and SEC_DEBUG.

• Modules using these clocks are shared between M4 and A53. So

M4 application need to enable it in its domain. Or, these clocks

will be gated when A53 enters suspend mode.

• See BOARD_BootClockRUN() in clock_config.c of audio_server

example for details.

5. Run low-power audio example

This chapter describe the procedure to run the low power audio example.

We suppose that the user has already followed YOCTO user guide to build an SD image and

created an SD card for booting.

5.1. Apply low-power patch for ATF

The ATF has implemented Power State Coordination Interface (PSCI) and the low-power feature is

in it.

In Linux kernel of default BSP release, it will bring both Cortex-A53 core and Cortex-M4 core to

suspend mode. So a low-power patch is needed in ATF.

The ATF patch will prevent DDR from entering retention and don’t disable PLLs.

Follow below instructions to rebuild a flash.bin and program it to SD card (if you’re using SD boot).

Run low-power audio example

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

12 NXP Semiconductors

5.1.1. Clone relevant repositories

Relevant repositories and files are:

Name Clone address Branch

arm-

trusted-

firmware

https://source.codeaurora.org/external/imx/imx-atf imx_4.9.51_imx8m_ga

imx-

mkimag

e

https://source.codeaurora.org/external/imx/imx-mkimage imx_4.9.51_imx8m_ga

linux-

firmware

-imx

https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firm

ware-imx-7.2.bin

uboot-

imx

https://source.codeaurora.org/external/imx/uboot-imx imx_v2017.03_4.9.51_imx8m

_ga

Linux-

imx

https://bitbucket.sw.nxp.com/scm/imx/linux-imx.git imx_4.9.51_imx8m_ga

5.1.2. Setup aarch64 toolchain

Follow the yocto user guide in BSP release package to build a aarch64 toolchain.

URL: https://www.nxp.com/webapp/Download?colCode=L4.9.51_8MQ_BETA_LINUX_DOCS

5.1.3. Build uboot-imx and copy binaries

Command:

make ARCH=arm imx8mq_evk_defconfig

make ARCH=arm -j8

After building finished, copy mkimage, u-boot-spl.bin, u-boot-nodtb.bin, fsl-imx8mq-evk.dtb to imx-

mkimage/iMX8M/ and rename to mkimage_uboot.

Command:

cp ${SRC_UBOOT_DIR}/tools/mkimage ${TARGET_MKIMG_DIR}/mkimage_uboot

cp ${SRC_UBOOT_DIR}/spl/u-boot-spl.bin ${TARGET_MKIMG_DIR}/

https://source.codeaurora.org/external/imx/imx-atf
https://source.codeaurora.org/external/imx/imx-mkimage
https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-7.2.bin
https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-7.2.bin
https://source.codeaurora.org/external/imx/uboot-imx
https://www.nxp.com/webapp/Download?colCode=L4.9.51_8MQ_BETA_LINUX_DOCS

Run low-power audio example

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

NXP Semiconductors 13

cp ${SRC_UBOOT_DIR}/u-boot-nodtb.bin ${TARGET_MKIMG_DIR}/

cp ${SRC_UBOOT_DIR}/arch/arm/dts/fsl-imx8mq-evk.dtb ${TARGET_MKIMG_DIR}/

5.1.4. Apply low-power patch and build bl31.bin

Command:

git apply ./0001-Patch-for-low-power-application.patch

make PLAT=imx8mq bl31

After build, copy bl32.bin to imx-mkimage.

Command:

cp ${SRC_ATF_DIR}/build/imx8mq/release/bl31.bin ${TARGET_MKIMG_DIR}/

5.1.5. Unpack firmware binary

Command:

1. wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-7.2.bin

2. chmod +x firmware-imx-7.2.bin

3. ./firmware-imx-7.2.bin

4. cd firmware-imx-7.2/firmware/ddr/synopsys

5. cp ${SRC_FIRMWARE_DIR}/firmware/hdmi/cadence/signed_hdmi_imx8m.bin

${TARGET_MKIMG_DIR}/

6. cp ${SRC_FIRMWARE_DIR}/ddr/lpddr4_pmu_train_1d_dmem.bin ${TARGET_MKIMG_DIR}/

7. cp ${SRC_FIRMWARE_DIR}/ddr/lpddr4_pmu_train_1d_imem.bin ${TARGET_MKIMG_DIR}/

8. cp ${SRC_FIRMWARE_DIR}/ddr/lpddr4_pmu_train_2d_dmem.bin ${TARGET_MKIMG_DIR}/

9. cp ${SRC_FIRMWARE_DIR}/ddr/lpddr4_pmu_train_2d_imem.bin ${TARGET_MKIMG_DIR}/

5.1.6. Build final flash.bin

After all above operations, enter imx-mkimage and build flash.bin.

Command:

make SOC=iMX8M flash_hdmi_spl_uboot

https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-7.2.bin

Run low-power audio example

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

14 NXP Semiconductors

5.1.7. Program flash.bin to SD card

Program flash.bin to SD card (if SD card is the boot device).

Command:

dd if=iMX8QM/flash.bin of=/dev/<your device> bs=1k seek=33

5.2. Rebuild kernel with new drivers

In kernel, apply RPMSG character device driver and remote core shared memory driver patches.

Command:

git apply ./0001-Add-character-device-driver-for-rpmsg.patch

git apply ./0002-Add-remote-core-share-memory-driver.patch

Rebuild kernel

make ARCH=arm64 defconfig

make ARCH=arm64 -j8

When kernel image is built out, copy it to SD card.

5.3. Build low-power audio applications

In low-power audio directory, use below command to make it.

NOTE

The cross-compiler toolchain need to ready.

Use “make play” and “make rec” to build lp_play and lp_record applications.

Run low-power audio example

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

NXP Semiconductors 15

5.4. Build Cortex-M4 core application

The Cortex-M4 application is developed by IAR.

So, install IAR and open the audio server example. Built it.

After build, copy audio_server.bin to SD card.

Run low-power audio example

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

16 NXP Semiconductors

5.5. Setup windows environment

When the USB cable is inserted to iMX8MQ EVK board and PC, there should be two uart devices

discovered.

The Enhanced COM port is for A core and the standard COM port is for M4 core.

Open two consoles for these two COM port.

NOTE

Different computer will have a different COM port number.

5.6. Boot u-boot

Insert SD card to board Switch SW701 to ON. The u-boot log appears on standard COM port. Press any

key to stop the boot.

Run low-power audio example

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

NXP Semiconductors 17

NOTE

When u-boot starts, you can also check BuildInfo to confirm if the ATF

patch is really loaded.

5.7. Run M4 core audio server first

Here we need to run M4 core audio server first.

Create macros in u-boot to run applications:

u-boot=> setenv m4_image audio_server.bin

u-boot=> setenv m4_loadaddr 0x7e0000

u-boot=> setenv load_m4_image "fatload mmc '${mmcdev}':'${mmcpart}' '${m4_loadaddr}'

'${m4_image}'"

u-boot=> setenv run_m4_image "run load_m4_image; bootaux '${m4_loadaddr}'"

u-boot=> saveenv

Run m4 image:

You should be able to see a shell on Enhanced COM port.

Run low-power audio example

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

18 NXP Semiconductors

5.8. Run low-power audio applications

1. When audio server is running on M4 core, boot kernel in u-boot.

2. Use root to login

3. Install RPMSG character device and Remote core shared memory drivers

4. Run ./lp_play ./xxxx.mp3 to launch low power play.

Message log:

1) Decoding:

Time consumption

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

NXP Semiconductors 19

2) Playing & Sleeping

3) Wakeup

5. Run ./lp_record to launch low power record. The recorded data will be saveed as audio_rec.tmp.

6. Time consumption

As in low-power audio solution, the data will be decoded on A53 core and play on M4 core. There is

some loss of time in protocol communication between cores. We’ll try to calculate the loss of time in

this solution here.

In this example, we’ll play a 48 kbps, 22050 Hz, stero mp3 file in two ways, A53 core play directly and

M4 core play via RPMSG. The duration from open the file using gstreamer to playback will be

compared. Only playback is tested and user can get an evaluation on recording based on playback case.

Here’s the result:

Table 1. Time Consumption

 Play method Procedure Duration

A53 Play Directly GST Decode -> A53

Playback

116.410 ms

Power Consumption Test

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

20 NXP Semiconductors

M4 Play using RPMSG GST Decode to Shared

Buffer -> Send Msg to M4 ->

M4 Playback

467.560ms

As low-power audio playback will do additional operations, like decoding mp3 to file, allocating CMA

buffer, coping audio data from file to buffer and then from buffer to CMA buffer, some additional time

is needed, about 350 ms.

There can be some optimizations for low-power play additional operations, like using appsync in GST

decoding, which will decode the mp3 data to a buffer directly, in this way, the additional time can be

halved.

7. Power Consumption Test

This chapter compares the power consumption with using or without using low power audio. Only

playback is tested and user can get an evaluation on recording based on playback case.

Normal playback:

Table 2. Normal playback

i.MX8MQ GA EVK dtb, no display, eth down, SDCard boot, idle

 ARM SOC GPU VPU DRAM NVC DRAM

Voltage(V) 0.896 0.877 0 0 0.992 1.096

Playback

Current

(mA)

65 205 0 0 135-446.4 70

Power

(mW)

58.24 179.785 0 0 148.8

(Suppose

average

current is

150 mA)

71.24

Total Power

(mW)

458.065

Table 3. Low-power audio playback

i.MX8MQ GA EVK low power audio dtb, no display, eth down, SDCard boot, idle

 ARM SOC GPU VPU DRAM NVC

DRAM

Voltage(V) 0.896 0.877 0 0 0.992 1.096

Revision history

Implement Low-Power Audio on i.MX8M, Application Note, Rev. 0, 06/2018

NXP Semiconductors 21

Playback

Current

(mA)

5 230 0 0 150

(Support

DDR

running at a

low

frequency

point)

65

Power

(mW)

4.48 201.74 0 0 148.8 71.24

Total Power

(mW)

426.26

NOTE

1. As kernel enters suspend mode when playing, we can see a current

reduction from 65 mA to 5 mA on ARM power rail.

2. Compared with kernel play, M4 play will add about 25 mA to

SOC. Note that M4 is running at 25 MHz.

3. A DDR optimization is needed so that DDR can continuerunning

at a lower frequency when kernel enter suspend mode. Otherwise,

the DDR current will be 450mA. Here we suppose that DDR is

running at a low frequency when kernel enters Suspend mode.

8. Conclusion

This document mainly describes how to implement a low-power audio application on i.MX8M. This

solution takes advantage of multicore architecture on i.MX8MQ and aims to provide an audio solution

with less-power consumption. This solution can also be extended to other i.MX8 platforms.

9. References

• i.MX8MQ Reference Mannual

• RPMSG:

https://github.com/OpenAMP/open-amp/wiki/OpenAMP-RPMsg-Virtio-Implementation

10. Revision history

Revision number Date Substantive changes

0 6/2018 Initial release

https://www.nxp.com/docs/en/reference-manual/IMX8MDQLQRM.pdf
https://github.com/OpenAMP/open-amp/wiki/OpenAMP-RPMsg-Virtio-Implementation

Document Number: AN12195
Rev. 0

06/2018

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the information

in this document. NXP reserves the right to make changes without further notice to any

products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all liability,

including without limitation consequential or incidental damages. “Typical” parameters that

may be provided in NXP data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating parameters,

including “typicals,” must be validated for each customer application by customer’s

technical experts. NXP does not convey any license under its patent rights nor the rights

of others. NXP sells products pursuant to standard terms and conditions of sale, which

can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on customer’s

applications and products, and NXP accepts no liability for any vulnerability that is

discovered. Customers should implement appropriate design and operating safeguards to

minimize the risks associated with their applications and products

Registered trademarks: NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A

SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS,

MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG,

ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE,

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire,

ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS,

Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service

names are the property of their respective owners.ARM, the ARM Powered logo, and

Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. mbed is a trademark of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. All rights reserved.IEEE nnn, nnn, and nnn are registered trademarks of the

Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed

or approved by the IEEE. Java are registered trademarks of Oracle and/or its affiliates.

The Power Architecture and Power.org word marks and the Power and Power.org logos

and related marks are trademarks and service marks licensed by Power.org. (Add

contract language here, as necessary.)

© 2018 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Implement Low-Power Audio on i.MX8M
	1. Introduction
	2. Chip overview
	2.1. i.MX8M chip overview

	3. Low Power Audio Application Overview
	3.1. Components

	4. Software design
	4.1. RPMSG character device driver
	4.2. Remote core share memory driver
	4.3. AMP Optimization
	4.4. Linux low power audio application design
	4.4.1. Low-Power Play
	4.4.2. Low-Power Record
	4.4.3. Decode a mp3 audio file
	4.4.4. Copy decoded data to shared memory space
	4.4.5. Send physical address of allocated buffer to M4 core.
	4.4.6. Linux kernel get to sleep
	4.4.7. Linux kernel wakeup

	4.5. Audio Server on Cortex-M4 core

	5. Run low-power audio example
	5.1. Apply low-power patch for ATF
	5.1.1. Clone relevant repositories
	5.1.2. Setup aarch64 toolchain
	5.1.3. Build uboot-imx and copy binaries
	5.1.4. Apply low-power patch and build bl31.bin
	5.1.5. Unpack firmware binary
	5.1.6. Build final flash.bin
	5.1.7. Program flash.bin to SD card

	5.2. Rebuild kernel with new drivers
	5.3. Build low-power audio applications
	5.4. Build Cortex-M4 core application
	5.5. Setup windows environment
	5.6. Boot u-boot
	5.7. Run M4 core audio server first
	5.8. Run low-power audio applications

	6. Time consumption
	7. Power Consumption Test
	8. Conclusion
	9. References
	10. Revision history

