

© 2019 NXP B.V.

NXP Semiconductors. Document Number: AN12270

Application Notes Rev. 0 , 01/2019

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

2 NXP Semiconductors

Bringing up Layerscape devices using

CCS script and DRAM boot

1. Introduction

After the power is turned on, the Layerscape (LS) device

starts the booting process. It fetches RCW (Reset

Configuration Word) from the boot source specified with the

configuration pins cfg_rcw_src. If the flash memory that

stores the boot image is blank, RCW is invalid. The LS

devices’ boot logic first checks the format of RCW; when it

does not see a valid header, the booting process is stalled.

If the boot source is removable, such as an SD card, then the

SD card can be programmed with either a PC, or with other

boards.

For the boot flash, such as SPI flash/NOR flash/NAND

flash/eMMC, which is typically soldered on the board,

following are two common ways to program the boot image:

1. If possible, modify the cfg_rcw_src pin strapping

to select a valid hard coded RCW option, as specified

in the Reference Manual. This will put the device in a

good state. Then, use the flash programming tools of

the users’ choice to program the flash.

2. Use NXP CodeWarrior flash programming tool.

CodeWarrior tool implements a method to override

RCW, even when flash is blank. CW forces a hard

coded RCW into the device without relying on

switches and proceeds to program the flash device.

There is a 3rd less common way to program the flash:

3. Using a JTAG/BSDL flash programming tool, such

as Asset.

This application note describes a new method to bring up a

Layerscape board.

Contents

1. Introduction .. 2
2. Description of the method .. 3
3. Description of CCS scripts ... 6
4. Validation summary ... 8
5. Useful information ... 10
Appendix A. Scripts .. 12

A.1. lsbp.tcl ... 12
A.2. ddr-init-ls1021twr.tcl .. 16
A.3. ddr-init-ls1043rdb.tcl .. 18
A.4. ddr-init-ls1046rdb.tcl .. 20

Appendix B. Revision History .. 23

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 3

2. Description of the method

Note: Users must ensure that the RESET_REQ signal does not generate HRESET_B or PORESET_B

signals in order for this method to work.

CodeWarrior comes with a low-level scripting tool CCS (CodeWarrior Communication Server). CCS

uses commands, as well as a series of commands in TCL script to control and communicate with the

boards.

A TCL script named lsbp.tcl is developed to simplify and automate the bring-up process. The full

script is provided in Appendix A for the purpose of information and reference. The script only needs a

few customizations to start the bring up process for a new board.

This method requires that U-Boot image be loaded into DDR via JTAG, and thus depends on a working

DDR.

The lsbp.tcl script calls the DDR init script that is used to configure and initialize the DDR

controller registers.

Note: The user should utilize the QCVS DDR tool to obtain the correct DDR controller register

values for the board. For a specific hard code RCW used in lsbp.tcl, there is a fixed DDR clock

ratio, which cannot be overridden/changed. Be sure to use the correct DDR speed in the QCVS tool

to generate working DDR register settings.

If the DDR is working and boot image can be reliably loaded to DDR, we can typically expect to view

some output on the console port. Users should proceed to debug the U-Boot until it boots successfully to

the command prompt.

Followings are the steps to bring up a new board:

1) Customize lsbp.tcl.

More information is in the Section 3, "Description of the CCS scripts".

2) Customize DDR init file.

An example DDR init file is provided as template for each supported device in Appendix A.

Users need to modify the DDR register setting based on DDR design of their boards.

3) Install CodeWarrior.

Download CodeWarrior for QorIQ LS series Armv8 ISA from NXP website.

CCS executable can be found, in

{installation directory\Common\CCS\bin}.

For example,

C:\Freescale\CW4NET_v2018.01\Common\CCS\bin

4) Copy all the TCL scripts and u-boot.bin to the CCS directory.

5) Launch CCS.

Double click ccs.exe.

https://www.nxp.com/

Description of the method

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

4 NXP Semiconductors

Figure 1: CCS icon in the System Tray

6) In CCS windows, run the lspb.tcl script.

Figure 2: Output after running the lsbp.tcl script

Once U-Boot from DRAM boot is successful, the flash image can be burned to the flash with U-Boot

command. Then the board can boot from the flash, without JTAG’s involvement. In the beginning of the

board bring-up, it is possible that network interface is not working yet. So TFTP cannot be used to

Double click the CCS icon in the

bottom right System Tray.

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 5

download the U-boot flash image to the board under U-boot. In this case, the image can be downloaded

through the console port using the following command:

 loadb 80000000

 TeraTerm File -> Transfer -> Kermit -> Send

Then, browse to select the image file.

Once the image is downloaded, use the following standard U-Boot command to program the U-boot to

the flash:

NOR:

 prot off all

 erase 60100000 +100000

 cp.b 80000000 60100000 100000

The loadb command prints out the real size of the image file. Use the real file size or 100000.

100000 is a little larger than the image size and safe value to use.

This only burns the U-Boot image. Users also needs to create rcw.bin with QCVS tool and burn to

0x60000000 with the following command:

 cp.b 80000000 60000000 100

100 is the size of RCW. Unless there are a lot of pre-boot initialization (PBI) commands, 0x100 is a

good size for RCW.

 NAND:

 nand erase 0 100000

 nand write 80000000 0 100000

 NAND image comes with RCW.

SD/eMMC:

 mmc write 80000000 8 800

QSPI:

 sf probe

 sf erase 100000 +100000

 sf write 80000000 100000 100000

The first 100000 is the offset in the flash for U-Boot. The send 100000 is the size. Similar to NOR flash,

QSPI flash also needs to create rcw.bin with QCVS tool and burn to offset 0 using the following

command:

 sf erase 0 +100

 sf write 80000000 0 100

After the U-Boot booting from flash is successful, it is possible that bringing up through CCS script is

still advantageous. It is probably faster and more convenient to test the software change through JTAG

than erase/program the image to flash each time after changes to software.

Description of CCS scripts

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

6 NXP Semiconductors

3. Description of CCS scripts

lsbp.tcl is the main script that automates the following steps:

• RCW override

• JTAG parsing to find out Boot Core/SAP2/DAP chain position

• PBI to initialize some minimal required registers

• Configure DDR

• Load boot loader(U-boot) image to DDR

• Release the ARM core to boot.

The lsbp.tcl script makes use of the following two files:

• ddr-init-lsxxxxxxx.tcl to initialize DDR controller

• u-boot.bin is the U-boot DRAM image

Users can use a different name as long as the file name in the script matches the real file name.

Following is the main part of the script:

lsbp.tcl

#1: Customize the ddr init script file name

source ddr-init-ls10xxxxx.tcl

#2: Set device, currently supports ls1021a/ls1043a/ls1046a

set device ls1043a

switch -exact $device {

 "ls1021a" { set dut ls1020a }

 "ls1043a" { set dut ls1043a }

 "ls1046a" { set dut ls1043a }

 default {echo This device is not supported; return 0}

}

#3: Set hardcode_rcw

For LS1043A and LS1046A

0x9E: DDRCLK is the reference clock for DDR

0x9F: DIFF_SYSCLK is the reference clock for DDR

For LS1021A

0x9B: First try value. See RM for more options

set hardcode_rcw 0x9E

#4: Customize the CWTAP setting, see the lsbp.tcl script in Appendix for

more info

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 7

delete all

config cc cwtap:fsl023b3a

ccs::config_chain "$dut dap sap2"

Call rcw-override procedure

lsbp::rcw-override $dut $hardcode_rcw

Parse the JTAG to find out the chain position of DAP, SAP2, Boot Core

set tap [lsbp::tap-parse]

set dap [lindex $tap 0]

set sap2 [lindex $tap 1]

set boot_core [lindex $tap 2]

Call the pbi procedure to write minimal registers

lsbp::pbi $dut $dap

Call init-ddrc procedure to initialize DDR controller

lsbp::init-ddrc $dap

Call loadb procedure to load u-boot.bin to DDR address 0x82000000

lsbp::loadb $sap2

Release the boot core, ARM core 0

ccs::run_core $boot_core

}

The portion of lsbp.tcl that needs customization is highlighted above. A few additional comments for

item 3 and 4:

• #3 Set hardcode_rcw

o For LS1043A and LS1046A, the choice is determined by the DDR reference clock, whether it is

DDRCLK or DIFF_SYSCLK.

o For LS1021A, there are many options available. Please reference RM.

• #4 Customize the CWTAP setting:

• If USB connection is used, use:

 config cc cwtap

• If ethernet connection is used, use:

 config cc cwtap:ipaddr

 or

 config cc cwtap:fslxxxxxx

 where digits xxxxxx are the last six digits of the MAC address. It can be found on the label of the

CWTAP.

Validation summary

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

8 NXP Semiconductors

Figure 3: Last six digits of the MAC address as found on CWTAP label

4. Validation summary

All the validation has been performed with the U-Boot using LSDK 18.06. Currently this script supports

LS1021A, LS1043A, and LS1046A. More devices may be supported in the future.

NOTE: In general, U-boot compilation target for DRAM boot is different from target for booting

from flash.

For booting from NOR/QSPI flash, NOR/QSPI is memory mapped and supports in-place execution. The

boot flow is that the core starts execution from the flash, the boot code configures DDR controller, it

then copies the U-Boot image from the flash to the DRAM and finally jumps to the code in the DRAM

to complete the U-Boot.

For booting from SD/eMMC/NAND, those interfaces are not memory mapped and do not support

in-place execution. A feature called PBI (Pre-Boot Loader Initializer) is utilized to copy a small program

SPL (Secondary Program Loader) to OCRAM. The boot starts with SPL residing in OCRAM. SPL

configures DDR controller and then jumps to code in DRAM to completes the U-Boot. For

SD/eMMC/NAND, the compiler generates two binary images, one is u-boot.bin, which is the

DRAM version of U-Boot that does not try to initialize DDR. The other is u-boot-with-spl-

pbl.bin, this image combines u-boot, PBL, and SPL to a single image.

For DRAM booting, u-boot.bin from compilation target SD/eMMC or NAND is always used even

for NOR/QSPI booting.

For example, for LS1043A NOR, the target for DRAM boot is ls1043ardb_sdcard_defconfig,

while target for NOR flash boot is ls1043ardb_defconfig.

The image name for DRAM boot is always u-boot.bin. For flash booting, the name might be

different, either u-boot.bin or u-boot-with-spl-pbl.bin.

fsl023b3a

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 9

Table 1: NXP Boards and their test summary

Device Board Boot

Source

U-Boot compilation

target image for

DRAM boot

U-Boot compilation

target image for

flash boot

Note

LS1021A LS1021A

Tower

Board

NOR ls1021atwr_sdcard_ifc_

defconfig

u-boot.bin

ls1021atwr_nor_defconfig

u-boot.bin

DRAM boot tested

Flash boot tested

NAND NAND not supported

on Tower board. Even

cfg_rcw_src cannot be

set to NAND.

NAND not supported on

Tower board

Not supported on Tower

Board.

ls1021aqds_nand_defconfig

can be used as reference

target for both DRAM boot

and flash boot. The files,

u-boot.bin and
u-boot-with-spl-

pbl.bin are the images for

RAM boot and NAND boot

QSPI ls1021atwr_sdcard_qspi

_defconfig

u-boot.bin

ls1021atwr_qspi_defconfig

u-boot.bin

DRAM boot tested

Flash boot tested

SD ls1021atwr_sdcard_ifc_

defconfig

u-boot.bin

ls1021atwr_sdcard_ifc_defconfig

u-boot-with-spl-pbl.bin

DRAM boot tested

Flash boot tested

LS1043A

LS1043

AR DB

NOR ls1043ardb_sdcard_defc

onfig
u-boot.bin

ls1043ardb_defconfig

u-boot.bin

DRAM boot tested

Flash boot tested

 NAN

D

ls1043ardb_nand_defc

onfig
u-boot.bin

ls1043ardb_nand_defconfig
u-boot-with-spl-pbl.bin

DRAM boot tested

Flash boot tested

 SD ls1043ardb_sdcard_defc

onfig
u-boot.bin

ls1043ardb_sdcard_defconfig
u-boot-with-spl-pbl.bin

DRAM boot tested

Flash boot tested

 QSPI ls1043ardb_sdcard_defc

onfig

u-boot.bin

LS1043ARDB and LSDK

18.06

does not support QSPI flash.

User can use

ls1043aqds_qspi_defco nfig as

reference target. u-boot.bin

should be programmed

to QSPI flash.

DRAM boot tested

LS1046A

LS1046

AR DB

SD ls1046ardb_sdcard_defc

onfig
u-boot.bin

ls1046ardb_sdcard_defconfig
u-boot-with-spl-pbl.bin

DRAM boot tested

Flash boot tested

QSPI ls1046ardb_sdcard_defc

onfig
u-boot.bin

ls1046ardb_qspi_defconfig
u-boot.bin

DRAM boot tested

Flash boot tested

 NOR ls1046ardb_sdcard_defc

onfig

u-boot.bin

LS1046ARDB and LSDK

18.06

does not support NOR flash.

User can use

DRAM boot tested

Useful information

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

10 NXP Semiconductors

Device Board Boot

Source

U-Boot compilation

target image for

DRAM boot

U-Boot compilation

target image for

flash boot

Note

ls1046aqds_defconf

ig as reference target.

u-boot.bin should be

programmed to NOR

flash.

5. Useful information

1. Currently in rcw-override procedure, only rcw11 is overridden with the following

CCS command:

 ccs::write_reg 0 rcw11 0x00030000

If desirable, other RCW words can be overridden as well by adding new override

commands in this procedure. Note that rcw index from 0 to 15 in the TCL script.

Note: Users must take care that the PLL ratio is not overridden/changed. It

always uses the ratio documented in the RM. If PLL override is added

here, override will not take effect in PLL circuit, although RCWSR1-16

from DCFG is changed.

2. For all possible hardcode RCW options:

• LS1043A DDR always runs at 13:1 ratio.

• LS1046A DDR always runs at 16:1 ratio.

• LS1021A has more clocking options.

DDR controller register values obtained using QCVS should take into account that

the DDR clock speed is as shown above, and it cannot be changed with RCW

override.

3. In order to test if the JTAG interface is working or not, in the CCS windows, use the

following command:

source IDcode.tcl

If JTAG interface works, it should display the Layerscape device ID.

4. In the end of rcw_override, it displays the JTAG chain information. If it only shows

 Chain Position 0: LSxxxxA

 Chain Position 1: DAP

 Chain Position 2: SAP2

This means the override fails. If it succeeds, it should show a lot more chain positions, including all

the ARM cores. Following are the last chain if override succeeds.

 LS1021A: Chain Position 18: SAP2

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 11

 LS1043A: Chain Position 33: SAP2

 LS1046A: Chain Position 33: SAP2

5. In order to test if DDR is working, you can comment out the following two lines from
lsbp.tcl:

#lsbp::loadb $sap2

#ccs::run_core $boot_core

Then lsbp.tcl initializes the DDR controller without loading u-boot image to DDR and releases

the ARM core.

Use following command to read write to memory. 18 is SAP2 for LS1021A. For

LS1043A/LS1046A, replace 18 with 33.

(bin) 80 % ccs::write_mem 18 0 0x82000000 4 0 {0x1 0x2 0x3 0x4}

(bin) 81 % disp ccs::read_mem 18 0 0x82000000 4 0 8

 +0 +4 +8 +C

[0x0000000082000000] 00000001 00000002 00000003 00000004

[0x0000000082000010] E59FF014 E59FF014 E59FF014 E59FF014

(bin) 82 % disp ccs::read_mem 18(or 33) 0 0x1080000 4 0 0x400 #display all

DDR registers.

6. Some additional CCS commands for debugging:

a) The following two lines reads PC. Use 9 in place of chain_position_for_first_core for

LS1021A. 16 is for LS1043A and LS1046A. A core has to be stopped before read.

ccs::stop_core chain_position_for_first_core

disp ccs::read_reg chain_position_for_first_core pc 1

b) The following line steps one instructions. You can use greater number in place of 1 to run #

multiple instructions.

ccs::step_core chain_position_for_first_core 1

Useful information

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

12 NXP Semiconductors

Appendix A. Scripts

A.1. lsbp.tcl

namespace eval lsbp {

proc lsbp {} {

#1: Customize the ddr init script file name

source ddr-init-ls10xxxxx.tcl

#2: Set device, currently supports ls1021a/ls1043a/ls1046a

set device ls1021a

switch -exact $device {

 "ls1021a" { set dut ls1020a }

 "ls1043a" { set dut ls1043a }

 "ls1046a" { set dut ls1043a }

 default {echo This device is not supported; return 0}

}

#3: Set hardcode_rcw

For LS1043A and LS1046A

0x9E: DDRCLK is the reference clock for DDR

0x9F: DIFF_SYSCLK is the reference clock for DDR

For LS1021A

0x9B: First try value. See RM for more options

set hardcode_rcw 0x9B

#4: Please customize the CWTAP setting, see Apps note for more info

delete all

config cc cwtap:fsl023b3a

ccs::config_chain "$dut dap sap2"

Call rcw-override procedure

lsbp::rcw-override $dut $hardcode_rcw

Parse the JTAG to find out the chain position of DAP, SAP2, Boot Core

set tap [lsbp::tap-parse]

set dap [lindex $tap 0]

set sap2 [lindex $tap 1]

set boot_core [lindex $tap 2]

Call the pbi procedure to write minimal registers

lsbp::pbi $dut $dap

Call init-ddrc procedure to initialize DDR controller

lsbp::init-ddrc $dap

Call loadb procedure to load u-boot.bin to DDR address 0x82000000

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 13

lsbp::loadb $sap2

Release the boot core, ARM core 0

ccs::run_core $boot_core

}

proc rcw-override {dut hardcode_rcw} {

ccs::config_template 0 0x1001 5000

ccs::config_template 0 0x1000 1

ccs::write_reg 0 rcw_src $hardcode_rcw

ccs::write_reg 0 rcw11 0x00030000

ccs::reset_to_debug

ccs::config_chain "$dut dap sap2"

display ccs::get_config_chain

}

proc pbi {dut chain_pos} {

if {$dut == "ls1020a"} {

 ccs::write_mem $chain_pos 0 0x1ee0200 4 0 0x82000000

 } elseif {$dut == "ls1043a"} {

 # For both LS1043/LS1046

 ccs::write_mem $chain_pos 0 0x1570418 4 0 0x0000009e

 ccs::write_mem $chain_pos 0 0x157041c 4 0 0x0000009e

 ccs::write_mem $chain_pos 0 0x1570420 4 0 0x0000009e

 ccs::write_mem $chain_pos 0 0x1570600 4 0 0x00000000

 ccs::write_mem $chain_pos 0 0x1570604 4 0 0x82000000

 } else {

 echo This device is not supported;

 return 0

 }

}

proc loadb { chain_pos } {

ccs::set_max_tck $chain_pos 16000

set fd [open ./u-boot.bin r]

fconfigure $fd -translation binary

set i 0

while 1 {

 set data0 [read $fd 8]

 set data0h [bin2hex $data0]

 set data1 [read $fd 8]

Useful information

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

14 NXP Semiconductors

 set data1h [bin2hex $data1]

 set data2 [read $fd 8]

 set data2h [bin2hex $data2]

 set data3 [read $fd 8]

 set data3h [bin2hex $data3]

ccs::write_mem $chain_pos 0 [format 0x%x [expr 0x82000000+$i]] 8 0 "$data0h

$data1h $data2h $data3h"

if { [eof $fd] } break

incr i 32

}

close $fd

}

proc bin2hex {binstr {delim ""}} {

set s ""

set 0x " 0x"

for {set i 0} {$i < [string length $binstr]} {incr i} {

binary scan [string index $binstr $i] H2 cc

set s ${cc}${s}

if { $i == 3 || $i == 7} {

 set s ${0x}${s}

 }

 }

switch [string length $binstr] {

 0 { return "0x00000000 0x00000000" }

 1 { return "0x00000000 0x000000${s}" }

 2 { return "0x00000000 0x0000${s}" }

 3 { return "0x00000000 0x00${s}" }

 4 { return "0x00000000${s}" }

 5 { return "0x000000${s}" }

 6 { return "0x0000${s}" }

 7 { return "0x00${s}" }

 default {

 return $s

 }

 }

}

proc tap-parse {} {

 set sap2 0

 set dap 0

 set sp 0

 set dpaa 0

 set gpp_cores {}

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 15

 set chain_pos 0

 set children [ccs::get_config_chain]

 set tap_num 0

 foreach child $children {

 set type $child

 #echo $type

 if {$type == $ccs::core(sap2)} { set sap2 $tap_num

 } elseif {$type == $ccs::core(dap)} { set dap $tap_num

 } elseif {$type == $ccs::core(CortexA5)} { set sp $tap_num

 } elseif {$type == $ccs::core(lsdpaa2)} { set dpaa $tap_num

 } elseif {$type == $ccs::core(CortexA53)} { lappend gpp_cores

$tap_num

 } elseif {$type == $ccs::core(CortexA72)} { lappend gpp_cores

$tap_num

 } elseif {$type == $ccs::core(CortexA7)} { lappend gpp_cores

$tap_num }

 incr tap_num

 }

 set boot_core [lindex $gpp_cores 0]

 return [list $dap $sap2 $boot_core]

}

}

Useful information

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

16 NXP Semiconductors

A.2. ddr-init-ls1021twr.tcl

namespace eval lsbp {

DDR Initialization

proc init-ddrc { chain_pos } {

 #CCI-400

 #ccs::write_mem $chain_pos 0 0x1185000 4 0 0x00000003

 # 1600 MHz

 # sdram_cfg

 ccs::write_mem $chain_pos 0 0x01080110 4 0 0x470c0008

 # cs0_bnds

 ccs::write_mem $chain_pos 0 0x01080000 4 0 0x008000bf

 # cs1_bnds

 ccs::write_mem $chain_pos 0 0x01080008 4 0 0x00000000

 # cs0_config

 ccs::write_mem $chain_pos 0 0x01080080 4 0 0x80014302

 # cs1_config

 ccs::write_mem $chain_pos 0 0x01080084 4 0 0x00000000

 # timing_cfg_3

 ccs::write_mem $chain_pos 0 0x01080100 4 0 0x010e1000

 # timing_cfg_0

 ccs::write_mem $chain_pos 0 0x01080104 4 0 0x50550004

 # timing_cfg_1

 ccs::write_mem $chain_pos 0 0x01080108 4 0 0xbcb38c56

 # timing_cfg_2

 ccs::write_mem $chain_pos 0 0x0108010C 4 0 0x0040d120

 # timing_cfg_4

 ccs::write_mem $chain_pos 0 0x01080160 4 0 0x00000001

 # timing_cfg_5

 ccs::write_mem $chain_pos 0 0x01080164 4 0 0x03401400

 # sdram_cfg_2

 ccs::write_mem $chain_pos 0 0x01080114 4 0 0x00401010

 # sdram_mode

 ccs::write_mem $chain_pos 0 0x01080118 4 0 0x00061c60

 # sdram_mode_2

 ccs::write_mem $chain_pos 0 0x0108011C 4 0 0x00180000

 # sdram_interval

 ccs::write_mem $chain_pos 0 0x01080124 4 0 0x18600618

 # ddr_wrlvl_cntl

 ccs::write_mem $chain_pos 0 0x01080174 4 0 0xc655f605

 # ddr_wrlvl_cntl_2

 ccs::write_mem $chain_pos 0 0x01080190 4 0 0x05060607

 # ddr_wrlvl_cntl_3

 ccs::write_mem $chain_pos 0 0x01080194 4 0 0x05050505

 # ddr_cdr1

 ccs::write_mem $chain_pos 0 0x01080B28 4 0 0x80040000

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 17

 # ddr_cdr2

 ccs::write_mem $chain_pos 0 0x01080B2C 4 0 0x00000001

 # sdram_clk_cntl

 ccs::write_mem $chain_pos 0 0x01080130 4 0 0x02000000

 # ddr_zq_cntl

 ccs::write_mem $chain_pos 0 0x01080170 4 0 0x89080600

 # cs0_config_2

 ccs::write_mem $chain_pos 0 0x010800C0 4 0 0x00000000

 # data_init

 ccs::write_mem $chain_pos 0 0x01080128 4 0 0xDEADBEEF

 after 1000

 # sdram_cfg

 ccs::write_mem $chain_pos 0 0x01080110 4 0 0xc70c0008

 }

}

Useful information

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

18 NXP Semiconductors

A.3. ddr-init-ls1043rdb.tcl

namespace eval lsbp {

DDR Initialization

proc init-ddrc { chain_pos } {

 # SDRAM_CFG

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x110] 4 0 0x450C000C

 # CS0_BNDS

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x000] 4 0 0x0000007f

 # CS0_CONFIG

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x080] 4 0 0x80010322

 # TIMING_CFG_0

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x104] 4 0 0xD0550018

 # TIMING_CFG_1

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x108] 4 0 0xC2C68C42

 # TIMING_CFG_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x10C] 4 0 0x0048C114

 # TIMING_CFG_3

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x100] 4 0 0x020C1000

 # TIMING_CFG_4

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x160] 4 0 0x00000002

 # TIMING_CFG_5

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x164] 4 0 0x04401400

 # TIMING_CFG_7

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x16C] 4 0 0x13300000

 # TIMING_CFG_8

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x250] 4 0 0x03115600

 # SDRAM_CFG_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x114] 4 0 0x00401010

 # SDRAM_MODE

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x118] 4 0 0x01010214

 # SDRAM_MODE_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x11C] 4 0 0x0

 # SDRAM_INTERVAL

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x124] 4 0 0x18600618

 # DDR_WRLVL_CNTL

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x174] 4 0 0x8655F606

 # DDR_WRLVL_CNTL_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x190] 4 0 0x05070600

 # DDR_WRLVL_CNTL_3

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x194] 4 0 0x0

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 19

 # DDR_CDR1

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0xB28] 4 0 0x80040000

 # DDR_CDR2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0xB2C] 4 0 0x0000A181

 # SDRAM_CLK_CNTL

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x130] 4 0 0x02000000

 # DDR_ZQ_CNTL

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x170] 4 0 0x8A090705

 # SDRAM_MODE_9

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x220] 4 0 0x00000400

 # SDRAM_MODE_10

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x224] 4 0 0x04000000

 # CS0_CONFIG_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x0C0] 4 0 0

 # SDRAM_CFG

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x110] 4 0 0xC50C000C

 after 1000

}

}

Useful information

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

20 NXP Semiconductors

A.4. ddr-init-ls1046rdb.tcl

namespace eval lsbp {

DDR Initialization

proc init-ddrc {chain_pos} {

 # CS0_BNDS

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x000] 4 0 0x000001ff

 # CS0_CONFIG

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x080] 4 0 0x80040322

 # CS0_CONFIG_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x0c0] 4 0 0x0

 # CS_1_BNDS

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x008] 4 0 0x000001ff

 # CS1_CONFIG

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x084] 4 0 0x80000322

 # CS1_CONFIG_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x0c4] 4 0 0x0

 # CS_2_BNDS

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x010] 4 0 0x00000000

 # CS1_CONFIG

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x088] 4 0 0x00000000

 # CS1_CONFIG_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x0c8] 4 0 0x0

 # CS_2_BNDS

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x018] 4 0 0x00000000

 # CS1_CONFIG

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x08c] 4 0 0x00000000

 # CS1_CONFIG_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x0cc] 4 0 0x0

 # 1600MT/s

 # TIMING_CFG_0

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x104] 4 0 0x91550018

 # TIMING_CFG_3

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x100] 4 0 0x010c1000

 # TIMING_CFG_1

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x108] 4 0 0xbab48c42

 # TIMING_CFG_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x10C] 4 0 0x0048c111

 # DDR_CDR1

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0xB28] 4 0 0x80040000

 # DDR_CDR2

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 21

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0xB2C] 4 0 0x000000C1

 # SDRAM_CFG

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x110] 4 0 0x65044000

 # DDR_DATA_INIT

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x128] 4 0 0xDEADBEEF

 # SDRAM_CFG_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x114] 4 0 0x00401111

 # SDRAM_MODE

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x118] 4 0 0x03010210

 # SDRAM_MODE_3

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x200] 4 0 0x00010210

 # SDRAM_MODE_5

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x208] 4 0 0x00010210

 # SDRAM_MODE_7

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x210] 4 0 0x00010210

 # SDRAM_MODE_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x11C] 4 0 0x00000000

 # SDRAM_MODE_4

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x204] 4 0 0x00000000

 # SDRAM_MODE_6

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x20C] 4 0 0x00000000

 # SDRAM_MODE_8

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x214] 4 0 0x00000000

 # SDRAM_MODE_9

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x220] 4 0 0x00000500

 # SDRAM_MODE_11

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x228] 4 0 0x00000400

 # SDRAM_MODE_13

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x230] 4 0 0x00000400

 # SDRAM_MODE_15

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x238] 4 0 0x00000400

 # SDRAM_MODE_10

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x224] 4 0 0x00400000

 # SDRAM_MODE_12

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x22C] 4 0 0x00400000

 # SDRAM_MODE_14

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x234] 4 0 0x00400000

 # SDRAM_MODE_16

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x23c] 4 0 0x00400000

 # SDRAM_INTERVAL

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x124] 4 0 0x18600000

 # DDR_SDRAM_CLK_CNTL

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x130] 4 0 0x02000000

Useful information

 Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

22 NXP Semiconductors

 # TIMING_CFG_4

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x160] 4 0 0x00000002

 # TIMING_CFG_5

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x164] 4 0 0x03401400

 # DDR_SDRAM_CFG_3

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x260] 4 0 0x00000000

 # TIMING_CFG_6

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x168] 4 0 0x00000000

 # TIMING_CFG_7

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x16C] 4 0 0x13300000

 # TIMING_CFG_8

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x250] 4 0 0x01004600

 #DDR_DQ_MAP0

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x400] 4 0 0x32C57554

 #DDR_DQ_MAP1

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x404] 4 0 0xD4BB0BD4

 #DDR_DQ_MAP2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x408] 4 0 0x2EC2F554

 #DDR_DQ_MAP3

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x40c] 4 0 0xd95d4001

 #DDR_ZQ_CNTL

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x170] 4 0 0x8a090705

 # DDR_WRLVL_CNTL

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x174] 4 0 0x8675F607

 # DDR_WRLVL_CNTL_2

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x190] 4 0 0x08090a0c

 # DDR_WRLVL_CNTL_3

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x194] 4 0 0x0d0f100b

 # DEBUG_38

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0xf94] 4 0 0x80000000

 # SDRAM_CFG

 ccs::write_mem $chain_pos 0 [expr 0x1080000 + 0x110] 4 0 0xe5044000

 after 1000

}

}

Bringing up Layerscape devices using CCS script and DRAM boot, Application Notes, Rev. 0, 01/2019

NXP Semiconductors 23

Appendix B. Revision History

Revision number Date Substantive changes

0 01/2019 Initial public release

© 2019 NXP B.V.

Document Number: AN12270
Rev. 0

01/2019

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document.
Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves
the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey
any license under its patent rights nor the rights of others. NXP sells
products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may
be subject to unidentified vulnerabilities. Customers are responsible for the
design and operation of their applications and products to reduce the effect
of these vulnerabilities on customer’s applications and products, and NXP
accepts no liability for any vulnerability that is discovered. Customers should
implement appropriate design and operating safeguards to minimize the
risks associated with their applications and products.

NXP, the NXP logo, Freescale, the Freescale logo, and QorIQ are
trademarks of NXP B.V. All other product or service names are the property
of their respective owners. ARM and Cortex are registered trademarks of
ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.

© 2019 NXP B.V.

© 2018 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.nxp.com/about/about-nxp/our-terms-and-conditions-of-commercial-sale:TERMSCONDITIONSSALE

	Bringing up Layerscape devices using CCS script and DRAM boot
	1. Introduction
	2. Description of the method
	3. Description of CCS scripts
	4. Validation summary
	5. Useful information
	Appendix A. Scripts
	A.1. lsbp.tcl
	A.2. ddr-init-ls1021twr.tcl
	A.3. ddr-init-ls1043rdb.tcl
	A.4. ddr-init-ls1046rdb.tcl

	Appendix B. Revision History

