
1 Abstract
A simple Secondary Bootloader (SBL) software is designed in this application
note. It can optionally load the new image from user UART terminal. The
YModem file transfer protocol is used in this design to transfer the image file
from PC to the board. In-Application Programming (IAP) feature is used to
download the firmware's image to on-chip FLASH memory. The demo project
is developed based on LPCXpresso54608 board and MCUXpresso SDK
Software Library.

2 Overview
SBL is a small piece of code immediately running after the hardware boot process. It works as the normal software, but only
dealing with some customized tasks before the user software, for example to do some previous configuration for the user system.
It exists like the normal bootloader which is kept in ROM and used to boot the system, but can execute the additional customized
booting task following the normal (first) bootloader. The Secondary Bootloader is still a part of software. So, it is more flexible than
the ROM bootloader which is stable and can not modified by customer.

In this application note, a simple SBL software is designed to optionally load the new image file from user UART terminal and
keep it in the on-chip flash memory for next run. Therefore, the design is also called UART Flashloader with IAP. The YModel
file transfer protocol is used in this design to send the binary image file from PC to the board. The demo project is developed
based on LPCXpresso54608 board and MCUXpresso SDK Software Library.

3 Hardware platform based on LPC54608 MCU

3.1 LPC54608 MCU

The LPC54808 MCU includes one 180 MHz Arm
®
 Cortex

®
-M4 core with multiple high-speed connectivity options, advanced

timers, and analog features. It integrates 512 KB FLASH and and totally 200 KB SRAM on-chip and the external memory interfaces.
In this application note, the FLASH memory is the primary target to be operated. Table 1. Flash memory summarization on page
1 summerizes the FLASH memory as the basic knowledge for the following design.

The Arm Cortex-M4 processor has a single 4 GB address space. The 0x0000_0000 to 0x3FFF_FFFF is for the on-chip FLASH
and SRAM

Table 1. Flash memory summarization

Adress range General use Address range details and description

0x0000 0000 to 0x1FFF FFFF On-chip non-volatile memory 0x0000 0000-0x0007 FFFF Flash memory (512 KB)

Boot ROM 0x0300 0000-0x0300 FFFF Boot ROM with flash services
in a 64 KB space

Table continues on the next page...

Contents

1 Abstract.. 1

2 Overview...1

3 Hardware platform based on
LPC54608 MCU..................................1

4 Software design................................... 3

5 Demonstration....................................15

AN12384
LPC5460x UART Secondary Bootloader using YModem
Rev. 0 — April 2019 Application Note

Table 1. Flash memory summarization (continued)

SRAMX 0x0400 0000-0x0400 7FFF I&D SRAM bank (32 KB)

SPI Flash Interface (SPIFI) 0x1000 0000-0x17FF FFFF SPIFI memory mapped
access space (128 MB)

0x2000 0000 to 0x3FFF FFFF SRAM bank 0x2000 0000-0x2002 7FFF SRAM bank (160 KB)

SRAM bit band alias
addressing

0x2200 0000-0x23FF FFFF SRAM bit band alias
addressing (32 MB)

The 512-KB programmable FLASH is mapped to the address from start to 0x0007_FFFF, and the SRAM are mapped to three
parts:

• the 32 KB SRAMX from 0x0400_0000 to 0x0400_7FFF,

• the 160 KB normal SRAM from 0x2000_0000 to 0x2002_7FFF,

• the 8 KB USB SRAM from 0x4010_0000 to 0x4010_1FFC (not listed in Table 1. Flash memory summarization on page 1).

For the on-chip FLASH memory, it can be performed erase and write operations directly by the end-user application through the
IAP. Some IAP commands operate on sectors and specify sector numbers.The size of a sector is 32 KB (a normal size for an
erase operation) and the size of a page is 256 Byte (the minimal size for a write operation). One sector contains 128 pages. Sector
0 and page 0 are located at address 0x0000_0000. Table 2. Mapping between sector and address on page 2 descirbes the
mapping between sector number and address.

Table 2. Mapping between sector and address

Sector number Sector size Page numbers Address range Total flash (including this
sector)

0 32 KB 0 - 127 0x0000 0000 - 0x0000
7FFF

32 KB

1 32 KB 128 - 255 0x0000 8000 - 0x0000
FFFF

64 KB

2 32 KB 256 - 383 0x0001 0000 - 0x0001
7FFF

96 KB

3 32 KB 384 - 511 0x0001 8000 - 0x0001
FFFF

128 KB

4 32 KB 512 - 639 0x0002 0000 - 0x0001
7FFF

160 KB

5 32 KB 640 - 767 0x0002 8000 - 0x0002
FFFF

192 KB

6 32 KB 768 - 895 0x0003 0000 - 0x0003
7FFF

224 KB

7 32 KB 896 - 1023 0x0003 8000 - 0x0003
FFFF

256 KB

8 32 KB 1024 - 1151 0x0004 0000 - 0x0004
7FFF

288 KB

9 32 KB 1152 -1279 0x0004 8000 - 0x0004
FFFF

320 KB

Table continues on the next page...

NXP Semiconductors

Hardware platform based on LPC54608 MCU

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 2 / 18

Table 2. Mapping between sector and address (continued)

10 32 KB 1280 - 1407 0x0005 0000 - 0x0005
7FFF

352 KB

11 32 KB 1408 - 1535 0x0005 8000 - 0x0005
FFFF

384 KB

12 32 KB 1536 - 1663 0x0006 0000 - 0x0006
7FFF

416 KB

13 32 KB 1664 - 1791 0x0006 8000 - 0x0006
FFFF

448 KB

14 32 KB 1792 - 1919 0x0007 0000 - 0x0007
7FFF

480 KB

15 32 KB 1920 - 2047 0x0007 8000 - 0x0007
FFFF

512 KB

To erase and write the on-chip FLASH in user application code, NXP MCUXpresso SDK Software Library already provides the
IAP driver. The IAP driver would be used to handle the on-chip FLASH in this application demo.

In this application demo, the LPCXpresso54608 Board with the LPC54608J512BD208 chip is used to run the executable image
and verify the software.

4 Software design

4.1 Boot to new firmaware in application

The most critical point in the development of SBL software is to implement the boot operation, which prepares the running
environment and jumps to a new application within another separated image.

Actually, there are two images for SBL software and user software individually. The SBL software's image is downloaded to the
chip previously, and the user software's image is sent to the MCU by the communication between PC and SBL software running
on the MCU. Then, the SBL writes the user software's image to the on-chip flash, jumps to it and runs.

Fortunately, the boot environment for Arm MCU is simple, just with a vector table. The vector table includes entries for various
routine, for example, the most important items are the stack pointer and the reset (boot) handler's entry. The first vector is to keep
the initial value for stack pointer. The stack pointer is used to access the stack automatically determined by compiler. The second
vector is for the reset handler. The reset handler points to the reset routine and leads to the user main() function. All the other
items in the vector table are the entries to various exception/interrupt events's routine. By default, the base address of the vector
table is 0x0000_0000, so the images is downloaded to 0x0000_0000 as the start address in most cases. However, it can be
remapped to other address in software, by setting the Arm core's SCB->VTOR register. If the vector table is remapped, the Arm
core travels to the new base address with the item's offset to get the vector once the responding event occurs. The vector table
is placed in the front of image file. In the chip's memory space, the first address of an image for the user software (or called
firmware) is the base address of vector table.

In the application demo, an API FwBoot_BootToFwImage() is created to jump to new firmware.

void FwBoot_BootToFwImage(uint32_t fwImageBaseAddr)
{
 void (*firmwareFunc)(void);
 uint32_t fwStackVal = *((uint32_t *)(fwImageBaseAddr)); /* the first word is for the stack
pointer. */
 uint32_t fwEntryVal = *((uint32_t *)(fwImageBaseAddr+4U)); /* the second works is for the boot
function. */
 firmwareFunc = (void (*)(void))fwEntryVal;

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 3 / 18

 SCB->VTOR = fwImageBaseAddr; /* The stack address is also the start address of vector. */
 __set_MSP(fwStackVal); /* setup the stack address for MSP. */
 __set_PSP(fwStackVal); /* setpu the stack address for PSP. */
 firmwareFunc();
}

4.2 Format of Arm executable image file

The *.bin file is the simplest executable image file format for Arm. It is for the direct RAW binary code without the address tag.
It can be written to flash memory without any additional translation. Other format, like Hex, Elf, or Axf, includes some complex
information. To load these formats, the flashloader needs to translate the data into RAW binary one. In this application demo, the
bin format is prefered.

Keil IDE does not output the bin file directly, but the user command in Keil can be processed within the post build action:

fromelf.exe --bin -o ./output/@p.bin ./debug/@p.axf

On the User tab of the Options for Target dialog box, fill the command into the After Build/Rebuild section and check the box
to enable it, as shown in Figure 1. on page 4.

Figure 1. Keil command for bin file 1

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 4 / 18

Do not forget to change the original generated image file's name with axf as post-fix in the Outputtab, as shown in Figure 2. on
page 5.

Figure 2. Keil command for bin file 2

Then, once the project is built, an executable bin file is generated and updated automatically for every rebuild..

Taking the hello_world project as an example, its executable bin file is as shown in Figure 3. on page 6.

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 5 / 18

Figure 3. hello_world bin file

4.3 Flash memory arrangement

4.3.1 On-chip flash memory for SBL and firmware

The SBL and user software are both running inside the MCU, so the arrangement of these two parts of software is necessary.

SBL starts following the chip hardware booting. Its code is placed from the address 0x0000_0000, so the chip can recognize and
boot it automatically by default. Then, to facilitate the operation to FLASH, a whole sector of 32 KB memory is reserved for the
SBL. All the other memory of FLASH is for the user firmware.

Table 3. On-chip flash memory

Memory address FLASH sector Usage

0x0000_0000 - 0x0000_7FFF Sector 0 2nd Bootloader

0x0000_8000 - 0x0007_FFFF Sector 1 - 15 User firmware

The arrangement of these address settings are defined in the demo code.

/* for user firmware. */
#define BOOT_FIRMWARE_BASE_ADDRESS (1U * FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES) /*
(1024 * 32) Bytes. */
#define BOOT_FIRMWARE_INFO_OFFSET (1024U-32U) /* The last 32 bytes in
vector table. */

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 6 / 18

Keep the firmware version information in the unused vector items. Arm reserves 256 vectors for Cortex-M4's vector table with 1
KB memory space, but not all the 256 vectors are implemented for a specific chip. For the LPC54608 MCU, only 73 vectors are
used, while the tailing 652 Byte are spare in the vector table. In this application demo, the tailing 32 bytes are used to record the
file name of the user firmware.

Figure 4. Using spare space in FW vector table

Figure 4. on page 7 shows the binary image files generated from the SBL software and the modified hello_world demo project
in MCUXpresso SDK software library.

• The FLASH with the address lower than 0x0000_8000 is all 0xFF. The memory is just erased for SBL space but not used.

• The FLASH with the address beginning from 0x0000_8000 is for the user firmware.

• The FLASH with the address between 0x0000_8000 and 0x0000_8400 is for user firmware's vector table with the length of
1 KB. Only the front items are used as the exeception/interrupt function's entries. The memory for unused vectors is all
zero.

• The FLASH with the address between 0x0000_83E0 and 0x0000_8400 are the tailing 16 bytes in user firmware's vector
table. In this application demo, the memory is used to keep the firmware's file name. As shown in Figure 4. on page 7,
0x68, 0x65, 0x6C, 0x6C, 0x6F, 0x5F, 0x77, 0x6F, 0x72, 0x6C, 0x64, 0x5F, 0x30, 0x31, 0x30, 0x32, 0x2E, 0x62, 0x69, and
0x6E are just the ASICC codes for the string of hello_world_0102.bin.

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 7 / 18

4.3.2 Compiler link configuration

The SBL project's memory mapping is similar to the normal project, which starts the image address from 0x0000_0000, and no
additional setting is needed. As the image of the user firmware project starts from 0x0000_8000 (sector 1), perform the following
steps to modify its linker configurations.

1. Update the linker file.

Add an address offset of m_bootloader_offset to reserve the space for bootloader, as shown in Figure 5. on page 8.

Figure 5. Updating linker file

2. Update the memory setting in IDE.

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 8 / 18

Figure 6. Updating memory settings in IDE

After the modifications, the user firmware's image may not be downloaded into the chip with the IDE's debug tool. It cannot be
debugged unless the 2nd bootloader exists inside the chip.

• If the 2nd bootloader is not ready yet, when entering the debug demo, the chip boots from the address of 0x0000_0000,
but the available code in current project starts from 0x0000_8000, so the chip can run to current firmware.

• If the 2nd bootloader is ready, the chip boots from the address of 0x0000_0000, the 2nd bootloader can help to jump to the
current firmware, and then the debugger can monitor the statement and catch the break point for the current project.

4.4 YModem file transfer protocol

4.4.1 YModem overview

YModem is a general file transfer protocol for transferring files between PC and embedded system in the embedded development.
It is fast and high-efficient to transfer the file with CRC check to make sure the data is right. Also, the receiver sends the ACK to
the sender for next package when it is ready to catch that one, and the data stream is under control. It is a typical way to implement
the bootloader for MCU as well.

YMODEM-1K uses a block size of one kilobyte instead of the standard 128 bytes. 1 K-blocks is an option in the original YMODEM
standard, but this variant neglects the rest of the features, and is best described as a 1 k variant of XMODEM.

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 9 / 18

In this application demo, a YModem protocol component is created for general use cases. As this component is coded with a
pure C language, it can be easily ported to other embedded system.

4.4.2 MCU: Port YModem receiver

In the YModem component, xymodem.h/xymodem.c files process the protocol interaction, and users implement the two functions
based on the specific hardware platform in the xymodem_port.c file.

• void XYModem_Uart_SendByte(unsigned char ch)

This function sends out a byte of unsigned char ch through the user USART channel. In the application demo code, this
function is implemented with the polling method to send out the character through the Terminal UART (USART0).

• int XYModem_Uart_RecvByteTimeout(unsigned char *ch)

This function receives a byte in an indicated time period (defined in the implementation but not as parameter). It returns 1 if
this function runs timeout with no available data received, returns 0 if the new available data received in time and the received
data is returned through pointer unsigned char * ch. In the application demo code, this receiving function is implemented
with the a hardware timer (RIT) a USART receiver working in interrupt mode and a ring FIFO to buffer the receiving data.
When using this function to read a data, the timer and the FIFO (connect to the receiver) are enabled together. Either for the
event that the timer runs timeout or there is any available received data in the FIFO, this function will return and tell the return
event.

In the xymodem_port.c file:

/*
 * send byte "ch".
 */
void XYModem_Uart_SendByte(unsigned char ch)
{
 Terminal_PutChar(ch);
}

/*
 * return 1 if timeout without available received data.
 * return 0 if data is available before timeout.
 */
int XYModem_Uart_RecvByteTimeout(unsigned char *ch)
{
 return Terminal_GetCharTimeout(ch, 1000u) ? 0 : 1;
}

The detail implementation's code is in the terminal_uart.c file:

 #define APP_TERMINAL_UART_RX_BUF_LEN 32u
 static uint8_t gAppTerUartRxBuf[APP_TERMINAL_UART_RX_BUF_LEN];
 static RBUF_Handler_T gAppTerUartRxFifoHandle;
 volatile bool bAppRitTimeout = false;

 void Terminal_Init(uint32_t baudrate)
 {
 usart_config_t usartConfigStruct;
 rit_config_t ritConfigStruct;

 /* prepare the uart rx buffer and software flags. */
 RBUF_Init(&gAppTerUartRxFifoHandle, gAppTerUartRxBuf, APP_TERMINAL_UART_RX_BUF_LEN);
 bAppRitTimeout = false;

 /* setup uart. */
 USART_GetDefaultConfig(&usartConfigStruct);

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 10 / 18

 usartConfigStruct.baudRate_Bps = baudrate;
 usartConfigStruct.enableRx = true;
 usartConfigStruct.enableTx = true;
 usartConfigStruct.txWatermark = kUSART_TxFifo0;
 usartConfigStruct.rxWatermark = kUSART_RxFifo1;
 USART_Init(USART0, &usartConfigStruct, CLOCK_GetFreq(kCLOCK_Flexcomm0));

 /* enable uart rx interrupt. */
 USART_EnableInterrupts(USART0, kUSART_RxLevelInterruptEnable);
 NVIC_EnableIRQ(FLEXCOMM0_IRQn);

 /* setup rit timer. */
 ritConfigStruct.enableRunInDebug = true;
 RIT_Init(RIT, &ritConfigStruct);
 RIT_ClearCounter(RIT, true); /* Enable auto-clear when the counter reach to compare value.*/
 RIT_SetTimerCompare(RIT, CLOCK_GetFreq(kCLOCK_CoreSysClk)); /* Interval 1s. */
 NVIC_EnableIRQ(RIT_IRQn);
 }

 /* ISR entry for USART0. */
 void FLEXCOMM0_IRQHandler(void)
 {
 uint32_t flags = USART_GetStatusFlags(USART0);
 uint8_t rxDat;

 /* rx available interrupt. */
 if (kUSART_RxFifoNotEmptyFlag == (kUSART_RxFifoNotEmptyFlag & flags))
 {
 rxDat = USART_ReadByte(USART0);
 if (!RBUF_IsFull(&gAppTerUartRxFifoHandle))
 {
 RBUF_PutDataIn(&gAppTerUartRxFifoHandle, rxDat);
 }
 }
 USART_ClearStatusFlags(USART0, flags);
 }

 /* putchar through terminal uart. */
 void Terminal_PutChar(uint8_t ch)
 {
 USART_WriteBlocking(USART0, &ch, 1U);
 }

 /* ISR entry for RIT timer. */
 void RIT_IRQHandler(void)
 {
 uint32_t flags;

 flags = RIT_GetStatusFlags(RIT);

 bAppRitTimeout = true;

 RIT_ClearStatusFlags(RIT, flags);
 RIT_StopTimer(RIT); /* for one time trigger. */
 }

 /* getchar from terminal within the timeout period defined by "ms" */
 bool Terminal_GetCharTimeout(uint8_t *rxDat, uint32_t ms)
 {
 bool bRet = false;

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 11 / 18

 /* setup alert timer. */
 bAppRitTimeout = false;
 if (ms > 0u)
 {
 RIT_StopTimer(RIT);
 RIT_ClearStatusFlags(RIT, kRIT_TimerFlag);
 RIT->COUNTER = 0u; RIT->COMPVAL_H = 0u; /* clear counter. */
 RIT_SetTimerCompare(RIT, CLOCK_GetFreq(kCLOCK_CoreSysClk) / 1000 * ms); /* setup timeout
period. */
 RIT_StartTimer(RIT);
 }
 while (1)
 {
 if (!RBUF_IsEmpty(&gAppTerUartRxFifoHandle))
 {
 *rxDat = RBUF_GetDataOut(&gAppTerUartRxFifoHandle);
 bRet = true;
 break; /* return with available rx data. */
 }
 if (bAppRitTimeout)
 {
 bRet = false;
 break; /* return without available rx data. */
 }
 }
 RIT_StopTimer(RIT); /* terminate trigger. */
 RIT->COUNTER = 0u; RIT->COMPVAL_H = 0u; /* clear counter. */
 return bRet;
 }

4.4.3 PC: Send file through YModem as host

Most terminal softwares integrate the YModem protocol, so there is no need to build a special desktop software for communicating
with MCU. In this application demo, the Tera Term software is used as the desktop terminal software on PC. Select File ->
Transfer -> YMODEM -> Send... to activate the window for transferring the given file, as shown in Figure 7. on page 13.

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 12 / 18

Figure 7. Tera Term YModem

4.5 MCUXPresso SDK driver for IAP

IAP function is used for MCU to program the the received image file to on-chip FLASH. NXP's MCUXpresso SDK software library
provides the IAP driver to erase and write the FLASH.

Five APIs are used in this application demo:

• status_t IAP_PrepareSectorForWrite(uint32_t startSector, uint32_t endSector): to prepare for any FLASH
operation.

• status_t IAP_EraseSector(uint32_t startSector, uint32_t endSector, uint32_t systemCoreClock): to erase
the FLASH.

• status_t IAP_BlankCheckSector(uint32_t startSector, uint32_t endSector): to check whether the FLASH is
really erased after erase operation.

• status_t IAP_CopyRamToFlash(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes, uint32_t

systemCoreClock): to write the FLASH.

• status_t IAP_Compare(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes): to check whether the
FLASH is really written after the write operation.

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 13 / 18

In the demo code, SBL software knows the length of firmware image according to the first package of YModem transfer, erases
enough FLASH sectors for the coming image data, and then writes binary data to FLASH when receiving a new package.

 /* start the ymodem and get the first package. */
 err = ymodem_init(&gAppModemStruct);

 gAppFwWriteImageLen = gAppModemStruct.filelen;
 gAppFwWriteSectorStart = BOOT_FIRMWARE_BASE_ADDRESS / FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES;
 gAppFwWriteSectorCount = (gAppFwWriteImageLen + FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES-1) /
FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES;

 /* erase the flash sectors to be programmed. */
 IAP_PrepareSectorForWrite(gAppFwWriteSectorStart, gAppFwWriteSectorStart
+gAppFwWriteSectorCount-1);
 IAP_EraseSector(gAppFwWriteSectorStart, gAppFwWriteSectorStart+gAppFwWriteSectorCount-1,
SystemCoreClock);
 errIAP = IAP_BlankCheckSector(gAppFwWriteSectorStart, gAppFwWriteSectorStart
+gAppFwWriteSectorCount-1);
 if (errIAP != kStatus_IAP_Success)
 {
 modem_cancle();
 Terminal_PutString("Sector Erase failed.\r\n");
 FwBoot_Exit();
 }

 do /* recevie the firmware data and program the flash. */
 {
 err = modem_recvdata(&gAppModemStruct);
 if (err == 1)
 {
 break; /* done. */
 }

 if (gAppModemStruct.cur_num == 1u) /* the first package would include the firmware info. */
 {
 /* copy the file name of firmware into the image. */
 strcpy((char *)(gAppModemStruct.buf+BOOT_FIRMWARE_INFO_OFFSET), (char
*)gAppModemStruct.filename);
 }

 /* get the following indexes according to package index gAppModemStruct.cur_num:
 * - gAppFwWriteSectorCurIdx
 * - gAppFwWriteCurAddr
 */
 gAppFwWriteCurAddr = BOOT_FIRMWARE_BASE_ADDRESS
 + (gAppModemStruct.cur_num-1) * MODEM_PACKAGE_BYTE_COUNT;
 gAppFwWriteSectorCurIdx = gAppFwWriteCurAddr / FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES;
 /* program to flash. */
 IAP_PrepareSectorForWrite(gAppFwWriteSectorCurIdx, gAppFwWriteSectorCurIdx);
 IAP_CopyRamToFlash(
 gAppFwWriteCurAddr, /* dstaddr. */
 (uint32_t *)(gAppModemStruct.buf), /* srcAddr. */
 MODEM_PACKAGE_BYTE_COUNT, /* numOfBytes. */
 SystemCoreClock /* systemCoreClock. */
);
 errIAP = IAP_Compare(
 gAppFwWriteCurAddr, /* dstaddr. */
 (uint32_t *)(gAppModemStruct.buf), /* srcAddr. */
 MODEM_PACKAGE_BYTE_COUNT /* numOfBytes. */
);

NXP Semiconductors

Software design

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 14 / 18

 if (errIAP != kStatus_IAP_Success)
 {
 err = 10;
 }

 } while (err == 0u);

Considering the package is error and will be re-sent from the host, though the auto-creasing mode is simpler, the SBL uses the
package index to get the writing sector index and the address instead.

Prepare the sector before the write operation, and Compare or Check the written data from FLASH after the write operation.

5 Demonstration
The SBL project and the modifed hello_world and rit_example demo projects from MCUXpresso SDK software library are
packed alone with this application note. The projects are originally developed with Keil IDE, but can be easily ported to other IAR
IDE like MCUXpresso IDE or IAR IDE. The demo projects are originally verified on the LPCXpresso54608 board. The following
introduces how to run the demo.

1. Connect the board debug port to PC with a USB cable.

2. Prepare the user firmware's binary image file.

• Any existing project for LPC54608 is OK to be a base project. In this application note, the hello_world demo is
used as it is considerted as the simplest demo project in the software library and the rit_example demo is used as
it enables the interrupt event.

• Change their linker configurations by following the guide in Compiler link configuration on page 8.

• Add the user command for generating the binary image file.

• Build the project and get the binary image file.

3. Download the SBL project.

• Build the SBL project and download it through IDE. Other downloading way, like debug operation or command line
tool, is available.

4. Launch the YModem to download the image.

• Execute the Tera Term to open the UART port to LPCXpresso54608 with 115200 baudrate, no parity, 1 stop bit.

• Reset the board, and a question is printed to the UART terminal. The SBL will wait for the input for about five
seconds, as shown in Figure 8. on page 16.

— For no input, it jumps to the per-downloaded user firmware automatically.

— For input n, it jumps to the pre-downloaded user firmware immediately.

— For input y, it starts the YModem communication immediately and wait to get a new firmware image file.

NXP Semiconductors

Demonstration

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 15 / 18

Figure 8. Demo step 1

• Input y to start the YModem receiver for the first time.

Many C come, as shown in Figure 9. on page 16, because YModem is waiting for input and timeout. Feed it with the
image file.

Figure 9. Demo step 2

• Send the prepared user firmware image file using the YModem tool of Tera Term, by following the guide in PC:
Send file through YModem as host on page 12. Then the progress bar appears in the dialog window, as shown in
Figure 10. on page 17.

NXP Semiconductors

Demonstration

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 16 / 18

Figure 10. Demo step 3

5. Watch the result.

After downloading the image, the SBL resets the MCU automatically. The question will come again, enter the 2nd
bootloader [y/n] Press n or just wait to timeout, and the SBL will jump to the new firmware with printing its file name,
as shown in Figure 11. on page 17.

Figure 11. Demo step 4

You can try to download another prepared firmware (for example, using rit_example.bin) to see whether the new firmware can
be executed. Of course, it works.

NXP Semiconductors

Demonstration

LPC5460x UART Secondary Bootloader using YModem, Rev. 0, April 2019
Application Note 17 / 18

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,

big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,

Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,

ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: April 2019

Document identifier: AN12384

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Abstract
	2 Overview
	3 Hardware platform based on LPC54608 MCU
	3.1 LPC54608 MCU

	4 Software design
	4.1 Boot to new firmaware in application
	4.2 Format of Arm executable image file
	4.3 Flash memory arrangement
	4.3.1 On-chip flash memory for SBL and firmware
	4.3.2 Compiler link configuration

	4.4 YModem file transfer protocol
	4.4.1 YModem overview
	4.4.2 MCU: Port YModem receiver
	4.4.3 PC: Send file through YModem as host

	4.5 MCUXPresso SDK driver for IAP

	5 Demonstration

