
1 Introduction
AliOS Things is Alibaba's IoT version of AliOS family. It was announced in 2017
by Alibaba Cloud, and open sourced in 20th, October, 2017 under APACHE2.0
license at github (https://github.com/alibaba/AliOS-Things). The IoT devices
with AliOS Things integrated can connect to Alibaba Cloud (ACloud) and utilize
ACloud services.

1.1 AliOS Things architecture

AliOS Things consists of the following components in the layered architecture, as shown in Figure 1. on page 1.

• Board Support Package (BSP): mainly developed and maintained by SoC Vendors

• Hardware Abstraction Layer (HAL): like Flash, UART

• Kernel: Rhino RTOS Kernel, Yloop, VFS, KV Storage

• Protol Stack: LwIP, uMesh mesh networking stack

• Security: TLS, Trusted Framework Service(TFS), Trusted Execution Environment (TEE)

Figure 1. AliOS Things block diagram

Contents

1 Introduction..1

2 AliOS Things kernel porting............... 2

3 Hardware Abstraction Layer (HAL).... 3

4 Wi-Fi.. 4

5 AliOS Things application.................. 10

6 AliOS things certification.................. 11

7 Conclusion... 13

AN12390
ALIOS Porting Guide - Based on LPCXpresso5410x + GT202
Rev. 0 — April 2019 Application Note

https://github.com/alibaba/AliOS-Things

1.2 AliOS Things folder structure

Taking AliOS Things version 1.3.2 as example, Figure 2. on page 2 shows the structure of AliOS Things root folder. Notes are
added to explain the stuff under the folder.

Figure 2. AliOS Things folder structure

1.3 AliOS Things development

The tutorial for AliOS Things development is explained on https://github.com/alibaba/AliOS-Things/wiki/Quick-Start, where you
can find the information about environment setup and build procedures.

2 AliOS Things kernel porting

2.1 Rhino

Rhino is RTOS kernel in AliOS Things. Same to other real-time OS, Rhino supplies basic functionalities like task management
(task creation and deletion), task communication (queue, condition, semaphore, mutex), and memory management (heap
allocation and free). Also, utilities like software timer, lower power management is designed.

NXP Semiconductors

AliOS Things kernel porting

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 2 / 14

https://github.com/alibaba/AliOS-Things/wiki/Quick-Start

2.1.1 CPU architecture

AliOS Things supports various CPU architectures, like Arm
®
, MIPS, RL78, XTENSA. Specifically, in Arm processors, Armv5,

Armv6m, Armv7a and Armv7m are supported by the software release TAG1.2.2. Armv8m support is coming soon.

As to CPU architecture porting, there is Arm Cortex
®
-M4 processor in LPC54101. Arm Cortex M4 is with Armv7m architecture.

As Armv7m is already supported by AliOS Things, there is no extra work for CPU porting.

2.1.2 Tick interrupt

All real-time kernel needs tick interrupt for context switch. In Arm CPU, you can use SYSTICK interrupt.

2.1.2.1 Configuring SYSTICK timer

SYSTICK timer must be configured and enabled before the aos_start() function. The aos_start() function starts OS scheduler
which relies on TICK. The scheduler can check the task state and decide the context switch in TICK ISR. TICK period is decided
by the application.

2.1.2.2 TICK interrupt

The krhino_tick_proc() function must be called in the TICK interrupt function so that Rhino kernel can perform context switch
in period. The reference code for TICK interrupt is as follows (using SYSTICK ISR for TICK).

void tick_interrupt(void) {
 krhino_intrpt_enter();
 krhino_tick_proc();
 krhino_intrpt_exit();
}

krhino_intrpt_enter() and krhino_intrpt_exit() must be wrapped for all enabled interrupts.

 NOTE

3 Hardware Abstraction Layer (HAL)
HAL is designed in AliOS Things to adapt various boards and platforms. HAL APIs are enclosed in the header files like adc.h,
gpio.h, and i2c.h (\root\include\hal*) . NXP’s MCUXpresso SDK is used (https://mcuxpresso.nxp.com) for AliOS Things
HAL development.

3.1 UART and LOG

System log is dependent to UART HAL implementation. The standard input and output function, printf in C library, routes to the
hal_uart_send function in AliOS Things. ALI CLI works like a user shell. It uses the hal_uart_recv_II function to get user
commands for debugging. The UART HAL allows synchronized data transmission with user defined timeout. No callback based
asynchronous UART transmission is supported.

For UART HAL implementation, in LPC54102 MCUXpresso SDK, UART can support blocking transmission without considering
the timeout mechanism. Thus, peripheral functional APIs and raw registers access may be inevitable in the case.

NXP Semiconductors

Hardware Abstraction Layer (HAL)

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 3 / 14

https://mcuxpresso.nxp.com

3.2 Flash

FLASH HAL implementation is crucial to device over-the-air firmware update and Key-Value storage. FLASH HAL is a unified
interface for persistent storage like on-chip FLASH, external QSPI FLASH and EEPROM. Logical partition objects represent
FLASH usage for application. A hal_logic_partition_t object must be defined per usage. Read and write permission is
required to be explicitly assigned.

hal_logic_partition_t hal_logic_partition[HAL_PARTITION_MAX] =
{
 {HAL_FLASH_EMBEDDED, "Bootloader", 0, 0, PAR_OPT_WRITE_DIS|PAR_OPT_READ_DIS},
 {HAL_FLASH_EMBEDDED, "Application", 0x40000, 0x40000, PAR_OPT_WRITE_EN|PAR_OPT_READ_EN},
 {HAL_FLASH_NONE, NULL, 0, 0, PAR_OPT_WRITE_DIS|PAR_OPT_READ_DIS},
 {HAL_FLASH_NONE, NULL, 0, 0, PAR_OPT_WRITE_DIS|PAR_OPT_READ_DIS},
 {HAL_FLASH_NONE, NULL, 0, 0, PAR_OPT_WRITE_DIS|PAR_OPT_READ_DIS},
 {HAL_FLASH_NONE, NULL, 0, 0, PAR_OPT_WRITE_DIS|PAR_OPT_READ_DIS},
 {HAL_FLASH_NONE, NULL, 0, 0, PAR_OPT_WRITE_DIS|PAR_OPT_READ_DIS},
 {HAL_FLASH_NONE, NULL, 0, 0, PAR_OPT_WRITE_DIS|PAR_OPT_READ_DIS},
 {HAL_FLASH_NONE, NULL, 0, 0, PAR_OPT_WRITE_DIS|PAR_OPT_READ_DIS},
 {HAL_FLASH_NONE, NULL, 0, 0, PAR_OPT_WRITE_DIS|PAR_OPT_READ_DIS},
};

The structure of hal_logic_partition_t is described as follows.

typedef struct {
 hal_flash_t partition_owner; /* Physical media for storage */
 const char *partition_description; /* Text description */
 uint32_t partition_start_addr; /* Partition start address */
 uint32_t partition_length; /* Partition length */
 uint32_t partition_options; /* READ/WRITE Permission */
} hal_logic_partition_t;

All FLASH HAL APIs take the hal_logic_partition_t object name as the first parameter. The FLASH HAL implementation
maps the connection between logical partition and physical media storage and converts the logical partition operation to FLASH
read/write operation.

For LPC54102 implementation, FLASH IAP methods, used for FLASH programing in application, have rules on FLASH
programming.

• They only allow FLASH erase and write starting from FLASH page boundary per on-chip FLASH characteristic.

• They only allow the write length of 256 bytes, 512 bytes, 1024 bytes or 4096 bytes.

However, there is no limitation from FLASH HAL caller for the write starting address and size to write. FLASH HAL resolves
these IAP limitations. One possible solution is to use an intermediate buffer in FLASH HAL.

1. A new buffer is allocated.

2. FLASH data is retrieved in the buffer and new data are concatenated backwards or forwards.

• The concatenated data can be written using FLASH IAP methods.

Two things are important for FLASH HAL implementation.

• __disable_irq()/__enable_irq() is wrapped around FLASH IAP methods according to LPC5410x UM.

• Switch off the FLASH controller clock, kCLOCK_Flash when FLASH programming operation has completed for power
efficiency.

4 Wi-Fi

NXP Semiconductors

Wi-Fi

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 4 / 14

4.1 Overview

GT202 Kit is used for the Wi-Fi connectivity. GT202 kit can be installed on LPCXpresso54102 board via Arduino interface, as
shown in Figure 3. on page 5.

Figure 3. Installing GT202 Wi-Fi KIT on LPCXpresso54102 via Arduino interface

On GT202 Wi-Fi kit, there is a QCA4002 Wi-Fi module from Qualcomm. Figure 4. on page 6 shows the hardware connection
between LPC54102 and QCA4002 Wi-Fi module. One set of SPI and two GPIO pins are used. The PWD pin controls the QCA4002
power mode. QCA4002 is active when the pin is pulled high. QCA4002 can notify LPC54102 for incoming events by pin IRQ and
SPI is for bi-directional communication between QCA4002 and LPC54102.

NXP Semiconductors

Wi-Fi

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 5 / 14

Figure 4. Hardware connection between LPC54102 and QCA4002

4.2 Atheros WMI middleware

Atheros middleware implements QCA4002 device driver. Some MCU parts (e.g. LPC5460X, K64) support Atheros QCA
middleware in MCUXpresso SDK.

To deploy Atheros middleware in AliOS Things for a new board (e.g. LPCXpresso54102), platform dependent code in the wifi_qca
\port folder should be developed as follows.

1. chip support and board support

SPI platform driver (SPI FIFO, SPI DMA), PIN interrupt and GPIO operation may be different among different
microcontrollers. The driver might be adapted to new MCU part. As the driver is implemented using MCUXpresso SDK,
the chip support porting should be simple. For SPI, peripheral FIFO implementation can be slightly different.

New PIN MUX and IOCFG should be created according to the board setup.

2. critical region

WMI middleware requires methods for critical region. Entering critical region/Exiting critical region macros are declared in
the wifi_env.h.

#define OSA_EnterCritical(x) { RHINO_CRITICAL_ENTER(); }
#define OSA_ExitCritical(x) { RHINO_CRITICAL_EXIT();}

Rhino kernel supports critical region, RHINO_CRITICAL_ENTER() and RHINO_CRITICAL_EXIT()) are declared in rhino
kernel header file, k_critical.h.

A_ENTER_CRITICAL/A_EXIT_CRITICAL may be used for critical region methods in the coming release.

 NOTE

3. mutex

Rhino kernel supports mutex natively, Atheros WMI mutex can be implemented by Rhino kernel functions. Table 1. Mutex
in Atheros and WMI and Rhino on page 7 described the relation between Atheros WMI mutex and Rhino mutex functions.
Atheros WMI mutex implementation is in the file of wifi_qca\port\env\AliOS\wifi_env.c.

NXP Semiconductors

Wi-Fi

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 6 / 14

Table 1. Mutex in Atheros and WMI and Rhino

Atheros WMI Rhino

a_mutex_init krhino_mutex_create

a_mutex_acquire krhino_mutex_lock

a_mutex_release krhino_mutex_unlock

a_mutex_delete krhino_mutex_del

4. event

Rhino kernel supports event natively, Atheros WMI event can be implemented by Rhino kernel functions. Table 2. Event in
Atheros and WMI and Rhino on page 7 describes the relation between Atheros WMI event and Rhino event functions.
Atheros WMI event implementation is in the file of wifi_qca\port\env\AliOS\wifi_env.c.

Table 2. Event in Atheros and WMI and Rhino

Atheros WMI Rhino

a_event_init krhino_event_create

a_event_set krhino_event_set with flag of RHINO_OR

a_event_clear krhino_event_set with flag of RHINO_AND

a_event_wait krhino_event_get

a_event_delete krhino_event_del

5. time

Atheros WMI uses time for debug information. The a_time_get_msec function is used for retrieving time in milli-second.
The current implementation by Rhino kernel TICK function krhino_sys_tick_get which is less accurate but OK for debug
propose.

6. task creation and delay

Atheros WMI needs to create a task for executing network transmission requests asynchronously. The driver task,
Atheros_Driver_Task, is implemented in driver_main.c. The task creation function, Driver_CreateThread, is done in
wifi_driver_main.c using Rhino kernel function krhino_task_create.

The recommended stack size for WMI driver task is 256 words. The task priority is higher than user application and any
other tasks in ethernet data path to avoid network package lost.

Task delay function of a_task_delay in Atheros WMI is in line with Rhino kernel task sleep function, krhino_task_sleep.

4.3 Wi-Fi HAL

Wi-Fi HAL implementation is necessary when Wi-Fi connection is required. In Wi-Fi HAL, all operations and interfaces are
capsulated in the structure of hal_wifi_module_t in wifi_hal.h. A hal_wifi_module_t instance must be created in Wi-Fi HAL
to adapt GT202 Wi-Fi module. The hal_wifi_module_t module consists of Wi-Fi HAL callback and Wi-Fi HAL interface.

4.3.1 Callback

Netmgr means that the net manager controls the WiiFi module in AliOS Things framework. The Netmgr module can register Wi-
Fi HAL module and invoke Wi-Fi HAL interface. It can register the hal_wifi_event_cb_t callback function to Wi-Fi HAL. When
Wi-Fi is starting and running, Wi-Fi HAL can invoke this registered callback function to report events to the netmgr module in a
task context.

NXP Semiconductors

Wi-Fi

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 7 / 14

The Wi-Fi HAL callback function prototype is declared in wifi_hal.h.

typedef struct {
 /* Notify connection failure reason */
void (*connect_fail)(hal_wifi_module_t *m, int err, void *arg);
/* Notify IP when IP is assigned */
void (*ip_got)(hal_wifi_module_t *m, hal_wifi_ip_stat_t *pnet, void *arg);
/* Notify the WiFi state change */
void (*stat_chg)(hal_wifi_module_t *m, hal_wifi_event_t stat, void *arg);
/* Notify AP information when channel scan is completed */
 void (*scan_compeleted)(hal_wifi_module_t *m, hal_wifi_scan_result_t *result, void *arg);
/* Notify detailed AP information when channel scan is completed */
 void (*scan_adv_compeleted)(hal_wifi_module_t *m,
hal_wifi_scan_result_adv_t *result, void *arg);
 /* Notify AP Information when info changed */
void (*para_chg)(hal_wifi_module_t *m, hal_wifi_ap_info_adv_t *ap_info, char *key, int key_len, void
*arg);
/* Notify the fatal error */
 void (*fatal_err)(hal_wifi_module_t *m, void *arg);
} hal_wifi_event_cb_t;

4.3.2 Interface

Perform the following Wi-Fi HAL interface functions to support the device-cloud communication.

• init

The init function is designed to initialize Wi-Fi hardware module, resources like memory heap, OS related materials, and
peripherals.

For QCA4004 porting, perform the following initializations:

— SPI and SPI DMA are initialized for QCA4002 data transmission.

— PIN interrupt is declared for QCA4002 notification.

— A new task is created for data transmission. The task priority is higher than the application task so that network data is
timely responded.

— A semaphore is initialized to synchronize the initialization process. Do not start any network activity until Wi-Fi is
initialized.

• get_mac_addr

Wi-fi physical address is retrieved when the get_mac_addr is invoked.

For QCA4002, use the qcom_get_bssid function. The MAC address is expressed in ASCII.

• start

The start function carries the parameter of mode, so Wi-Fi module can start either in AP mode or station mode. Typically,
LPC54102 acting as IoT device works in station mode and it can connect to router for internet access. IoT device IP can be
set in two ways, statically assigned or assigned by router via DHCP service. Once IoT device owns its IP, the got_ip callback
function is invoked to notify the system that the network connection is available.

• get_ip_stat

The get_ip_stat function is used to get device IP, gateway, sub-mask, and MAC information.

• start_scan

The start_scan function can get Access Point (AP) information by scanning channels. When AP information is retrieved,
the scan_compeleted callback function is called. Allocate the memory in scan implementation for storing the AP information,
and set free the memory only after the scan_compeleted callback function is returned.

NXP Semiconductors

Wi-Fi

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 8 / 14

4.4 Registration

The device calls the hal_wifi_register_module to register Wi-Fi HAL to system. The system only registers one Wi-Fi HAL
module. When the system is initialized, the hal_wifi_init function is called to initialize the Wi-Fi HAL.

After the registration, any task can get WI-FI HAL instance and manipulate Wi-Fi through the Wi-Fi HAL interface.

4.5 Network socket

AliOS Things application uses the BSD socket interface for network transmission. In IoT world, some devices use TCP/IP stack
(like LWIP) at host side with ethernet interface, but more often, IoT devices consist of a Wi-Fi module in the system. The Wi-Fi
module has integrated TCP/IP stack which meant no TCP/IP stack is needed as host side.

Socket Adaptation Layer (SAL) is developed in AliOS Things so that network application gets minimized impaction from different
TCP/IP implementation. SAL defines an interface for adapting Wi-Fi modules which is various in the IoT market. The SAL path
in AliOS Thing is /device/sal.

In LPCXpresso54102 + GT202 approach, TCP/IP stack is implemented GT202 Wi-Fi module. Atheros WMI supplies a suite of
TCP/UDP APIs for network data transmission. For socket integration, GT202 Wi-Fi module is in the /device/sal/wifi/. The
corresponding integration code and makefile should be made.

4.5.1 Socket interface

In the GT202.c file, the sal_op_t typed instance is implemented and registered to SAL. In the sal_op_t structure, all lower level
dependencies are capsulated. The sal_op_t structure and interfaces are defined as below.

typedef struct {
 char *version;
 /* Initialize WiFi socket module, socket handle is returned */
 int (*init)(void);
/* Request module to start a connection using
* 1. Socket Handle, 2, Connection type TCP/UDP
* 3. Addr IP or domain name
* 4. Local Port/Remote port
* 5. TCP keep active time */
 int (*start)(sal_conn_t *c);
/* Send data through socket in blocking mode */
/* fd is the handle created by init function */
 int (*send)(int fd, uint8_t *data, uint32_t len,
 char remote_ip[16], int32_t remote_port);
 /* Convert domain string to IP address, only IPV4 is supported */
int (*domain_to_ip)(char *domain, char ip[16]);
/* Close a socket handle locally */
 int (*close)(int fd, int32_t remote_port);
 /* De-initialize WiFi socket module if needed*/
 int (*deinit)(void);
 /* Register callback function for RX data arriving */
int (*register_netconn_data_input_cb)(netconn_data_input_cb_t cb);
} sal_op_t;

NXP Semiconductors

Wi-Fi

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 9 / 14

4.5.2 Socket registration

In sal_device.c, GT202 module is initialized in SAL initialization. A new Wi-Fi module is added when other Wi-Fi module is
integrated.

int sal_device_init()
{
int ret = 0;
#ifdef DEV_SAL_GT202
 ret = GT202_sal_init();
#endif
 if (ret){
 LOGE(TAG, "device init fail ret is %d\n", ret);
 }
 return ret;
}

In GT202_sal_init, the sal_op_t instance is created and registered. In GT202 porting, the GT202_sal_op instance is created
in GT202_sal.c and is registered with the sal_module_register(>202_sal_op) function.

5 AliOS Things application
There are 48 examples AliOS Things applications under “example” folder in AliOS Things release 1.3.2. To build one specific
example, below command should be used.

$ aos make example_name@board_name

The machine executable binary is generated at output folder in the bin and hex format.

Tools like MCUXpresso, JLINK or Keil can program executable binary into the flash.

In this chapter, two examples, nano and mqttapp are elaborated.

5.1 Nano

Nano is the simplest example for AliOS Things. In the example, USART log is printed with task name information in period.

To build nano on LPCXpresso54102, it is necessary to apply example name – nano and board name – LPCXpresso54102.

$ aos make nano@LPCXpresso54102

After the binary is programed, print the following UART log after the chip resets.

nano app_delayed_action: 10 app

5.2 Mqttapp

Mqttapp demonstrates the communication between AliOS Things device and AliCloud via MQTT protocol. MQTT protocol is
described as a machine-to-machine/Internet of Things connectivity protocol. For detailed information about MQTT, refer to http://
mqtt.org/.

To use mqttapp in AliOS Thing, user should follow the instructions in AliOS Things Wiki. Wiki page “AliOS Things MQTT channel
test guide” elaborates the details for the preparation work for mqttapp.

NXP Semiconductors

AliOS Things application

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 10 / 14

http://mqtt.org/
http://mqtt.org/

A new created device must consist product attributes “product key”, “device name” and “device secret”. These product attributes
should be updated in mqtt-example.c, there are three corresponding MACROS in the code.

Users need to build mqttapp with the aos make mqttapp@LPCXpresso54102 command and place the output binary in the out/
mqttapp@lpc54102xpresso54102 folder.

Mqttapp demonstrates a bi-direction communication between AliOS Things device and AliCloud.

1. AliOS Things device initializes the MQTT client and subscribes the get topic.

2. AliOS Things device publishes dummy temperature messages to AliCloud in a period of three seconds.

3. AliOS Things device unsubscribes MQTT topic get after 200 dummy temperature messages are sent.

During the period between subscribing and unsubscribing get topic, user can publish user-defined message to the topic from
AliCloud console, and the device can get the message. Figure 5. on page 11 shows the overall server-client communication.

Figure 5. Messages between AliOS Things and AliCloud in MQTTAPP example

6 AliOS things certification

6.1 Introduction

According to AliOS Things Wiki page, AliOS IoT certification services consists of AliOS Things kernel test, AliOS Things
channel test, AliOS Things uMesh test, AliOS Things OTA test, and AliOS Things security test, etc.

Alibaba can grant AliOS Things devices certification if the devices are verified in AliOS certification test organized by Alibaba.
Device or platform vendor should follow the certification procedures in the latest AliOS Things Certify Guideline document for
certification application.

Figure 6. on page 12 describes the procedure for AliOS Things certification.

NXP Semiconductors

AliOS things certification

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 11 / 14

Figure 6. Procedures for AliOS Thing certification

1. Test the device against AliOS Things test specification

There are test specifications released from Alibaba for pre-certification unit tests. For example, AliOS channel test
specification is for channel test and YTS test is for AliOS kernel test. More unit tests can be released from Alibaba with
AliOS Things evolution. For more details about AliOS Things kenel test, refer to Kernel test on page 12.

2. Commit and push code to AliOS Things Github

AliOS Things is open sources software in Github, and there are project maintainers in Alibaba. The project maintainer can
help to have the new code reviewed and pushed to Github public repository.

3. Apply certification test by sending emails to Alibaba and courier devices to Alibaba

A formal request should be sent to Alibaba for certification application. The applicant information is supplied and supporting
documents like schematics, kernel test report, datasheet, device photos should be enclosed in the email. The supporting
document checklist is explained in the Alibaba certification application form document.

4. Alibaba starts to execute certification tests and feedback applicant for bug reports or information request. Certification can
be issued once all certification tests are passed.

6.2 Kernel test

Rhino Kernel test should be done by YTS application, when building YTS application, CLI module must be enabled and USART
HAL must be implemented.

Before building the YTS test application, fill in device information in the aos_test.c file. The test configuration can be changed
in the file considering memory constraint.

To build YTS application for LPCXpresso54102 in Linux, type in the following command line in the terminal.

$ aos make yts@LPCXpresso54102

The output firmware is yts@LPCXpresso54102.hex in the output folder.

Before running the test, connect the LPCXpresso54102 to PC for UART communication, which is typically USB VCOM and keep
the USART terminal open. Type in the yts_run command in CLI shell terminal to start the YTS test. The test will run automatically,
and test report will be printed in CLI shell terminal when test is completed.

NXP Semiconductors

AliOS things certification

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 12 / 14

7 Conclusion
This document introduces AliOS porting on LPC5410x microcontroller and can be regarded as supplementary information to
AliOS Things Github Wiki.

AliOS Things porting guide introduces detailed porting guideline about kernel, HAL and Wi-Fi, and information about AliOS Things
application and certification.

NXP Semiconductors

Conclusion

ALIOS Porting Guide - Based on LPCXpresso5410x + GT202, Rev. 0, April 2019
Application Note 13 / 14

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,

big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,

Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,

ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: April 2019

Document identifier: AN12390

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 AliOS Things architecture
	1.2 AliOS Things folder structure
	1.3 AliOS Things development

	2 AliOS Things kernel porting
	2.1 Rhino
	2.1.1 CPU architecture
	2.1.2 Tick interrupt
	2.1.2.1 Configuring SYSTICK timer
	2.1.2.2 TICK interrupt

	3 Hardware Abstraction Layer (HAL)
	3.1 UART and LOG
	3.2 Flash

	4 Wi-Fi
	4.1 Overview
	4.2 Atheros WMI middleware
	4.3 Wi-Fi HAL
	4.3.1 Callback
	4.3.2 Interface

	4.4 Registration
	4.5 Network socket
	4.5.1 Socket interface
	4.5.2 Socket registration

	5 AliOS Things application
	5.1 Nano
	5.2 Mqttapp

	6 AliOS things certification
	6.1 Introduction
	6.2 Kernel test

	7 Conclusion

