
by: NXP Semiconductors

1 Introduction
Error Correction Code, or ECC, is commonly utilized with memories in
applications where data corruption via soft-errors is not easily tolerated.
Software errors can be caused by radiation (a neutron or alpha particles),
electro-magnetic interference, electrical noise, or a short circuit between cells.

The ECC method used in S32K1xx family, provide Single Error Correction (SEC) and Double Error Detection (DED) capability.

This application note is intended to describe how the ECC protection is implemented in S32K1xx family and understand the
particular ECC event response for S32K14x and S32K11x devices. It also offers some software examples for illustration of
mentioned behavior.

2 SRAM ECC error handling

2.1 SRAM initialization after power-on-reset
The SRAM is split in two regions: SRAM_L and SRAM_U. The RAM is implemented such that the SRAM_L and SRAM_U ranges
from a contiguous block in the memory map. For more details please refer the S32K1xx_memory_map.xlsx file attached in the
Reference Manual.

The SRAM_L is not ECC protected for the S32K11x devices. The FlexRAM used as system RAM is not ECC

projected. LPUART and FlexCAN RAM are ECC protected.

 NOTE

The reset state of the SRAM is unknown, thus data may contain random data. Most probably the first read attempt to any address
would generate non-correctable ECC error. It is essential that each memory address be written to a known value before being
read. If an uninitialized memory address is read, it is likely the read will result in a multiple-bit ECC error and an errored transaction
on the AHB. Therefore, the SRAM must be initialized after power-up and this includes the peripherals RAM memories as the
LPUART and FlexCAN RAMs.

2.2 Used ECC algorithm
The ECC implementation for the SRAM uses a Modified Hamming Code scheme with 40-bit check base that consists of 32-bits
of data plus 8-parity bits.

2.3 ECC for single bit errors
The S32K14x and S32K11x devices handle the single bit error in the same way. The Error Reporting Module (ERM) can generate
an interrupt (if enabled) to notify a single-bit correction event which can be enabled setting the CR0[ESCIEx] bit to 1. There are
three ways to proceed with the error after the event has happened:

1. Normal MCU operation: The MCU detects the fault (fault detection time) and then corrects it (fault reaction time). At this
point the MCU continues operating correctly.

Contents

1 Introduction..1

2 SRAM ECC error handling.................. 1

3 FLASH ECC error handling.................3

4 References... 4

AN12522
S32K1xx ECC Error Handling
Rev. 0 — July 2019 Application Note

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

2. With an appropriate functional safety mechanism to manage the fault: The MCU detects the fault (fault detection time)
and then corrects it (fault reaction time). At this point the software has to switch to a safe_state_system (a safe_state_system
is an operating mode without an unreasonable probability of occurrence of physical injury or damage to the health of any
persons). The safe_state_system has to be defined by the user.

3. Without any suitable functional safety mechanism: The MCU detects the fault (fault detection time) and then corrects
it but the user was not notified that an error happened. A hazard may appear after the Fault Tolerant Time Interval (FTTI)
has elapsed.

Figure 1. Fault tolerant time for single point faults

2.4 ECC for non-correctable errors
The S32K14x and S32K11x devices handle the non-correctable error in a different way. The Error Reporting Module (ERM) can
generate an interrupt (if enabled) to notify a double -bit error event, which can be enabled setting the CR0[ENCIEx] bit to 1.

• S32K14x Error Handling: When the fault occurs, the CPU jumps to Error Reporting Module (ERM) interrupt handler (if
enabled).

• S32K11x Error Handling: When the fault occurs, the CPU jumps to the hard fault error interrupt handler first and just after
that, the ERM interrupt flag is set. At this point, the user has to check if the ERM status register is showing a non-correctable
ECC error event. If yes, it is recommended to follow the recommended reaction (system reset).

It must be ensured that no read access is done onto SRAM_U during hard fault exception handling or it will cause

core lock up. Hence, linker file should be updated such that stack, vector table, variables used in hard fault handler

etc. should not be in SRAM_U area. SRAM_L or FlexRAM can be used for this.

 NOTE

There are three ways to proceed, once this event has happened:

1. Normal MCU operation: The MCU detects the fault (fault detection time) and then reports it (fault reaction time).

2. With an appropriate functional safety mechanism to manage the fault: The MCU detects the fault (fault detection time)
and then reports it (fault reaction time).

3. Without any suitable functional safety mechanism: The MCU detects the fault (fault detection time). A hazard will appear
after the Fault Tolerant Time Interval (FTTI) has elapsed.

NXP Semiconductors

SRAM ECC error handling

S32K1xx ECC Error Handling , Rev. 0, July 2019
Application Note 2 / 5

Figure 2. Fault tolerant time interval for latent faults

2.5 SRAM error injection
The Error Injection Module (EIM) is used for diagnostic purposes to induce single-bit and multi-bit inversions on read data when
accessing the SRAM. When the EIM is used to inject faults on memory, any access to the SRAM generates the corresponding
error injected (single or double bit error).The EIM supports two error injection channels which correspond to a specific RAM array.

The following table shows the channel assignments for the different S32K1xx derivatives.

Table 1. SRAM injection channels

EIM Channel RAM Array

S32K14x S32K11x

0 SRAM_L SRAM_U

1 SRAM_U Reserved

For safety applications, it is recommended to check the ECC functionality injecting errors into the SRAM to check the reporting
of such errors.

3 FLASH ECC error handling
The ECC logic implemented in the S32K1xx Flash memory can correct single-bit fault automatically and can detect multiple-bit
fault in each NVM sections. The multiple-bit fault is enabled using the FERCNFG[DFDIE] bit. When the multiple-bit error is
detected, the FERSTAT[DFDIF] flag is set, and the interrupt request is generated.

When the FlexNVM region is configured as Emulated EEPROM, any single-bit ECC errors are automatically corrected before
copying data into EEERAM at the read access from Emulated EEPROM. Any double-bit ECC errors on valid Emulated EEPROM
locations which contains data that need to be copied to EEERAM and are reflected as the corresponding data records left as all
1's in EEERAM.

3.1 Used ECC algorithm
The ECC implementation for the NVM memories use a Modified Hamming Code scheme with 72-bit check base that consists of
64-bits of data plus 8-parity bits.

NXP Semiconductors

FLASH ECC error handling

S32K1xx ECC Error Handling , Rev. 0, July 2019
Application Note 3 / 5

3.2 ECC for non-correctable errors
The S32K14x and S32K11x devices handle the non-correctable error in the same way. The Flash Memory Module (FTFC) can
generate an interrupt (if enabled) to notify a multiple -bit error event which can be enabled setting the FERCNFG[DFDIE] bit to 1.

• S32K1xx Error Handling: When the fault occurs, the FERSTAT[DFDIF] flag is set notifying that a double bit fault was
detected. The flash controller will generate a AHB error response resulting in a bus fault (if enabled). After serving the bus
fault, jump to the Flash Memory Module (FTFC) interrupt handler (if enabled). The software can handle the error depending
on whether the error occurred in Code Space or Data Space.

• If an uncorrectable error fault occurs during execution of a machine exception, a safe state shall be entered.

• The bus fault is disabled by default. Therefore, it will be getting escalated to hard fault.

 NOTE

3.3 Flash error emulation
The Flash Memory Module (FTFC) allows the users to emulate the setting of the FERSTAT[DFDIF] flag to check the associated
interrupt routine. Setting the FERCNFG[FDFD] bit creates the error emulation.

Consider that the real flow is first jump into the BusFault (if enabled) before going into the Flash error handler.

 CAUTION

Cumulative programming of bits (back-to-back program operations without an intervening erase) within a flash

memory location is not allowed.

 NOTE

4 References
• S32K1xx Series Reference Manual by NXP semiconductors.

NXP Semiconductors

References

S32K1xx ECC Error Handling , Rev. 0, July 2019
Application Note 4 / 5

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.

All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,

Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,

DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,

SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,

µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. The related technology may be protected by any or all of patents,

copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and

the Power and Power.org logos and related marks are trademarks and service marks licensed

by Power.org.
© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: July 2019

Document identifier: AN12522

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 SRAM ECC error handling
	2.1 SRAM initialization after power-on-reset
	2.2 Used ECC algorithm
	2.3 ECC for single bit errors
	2.4 ECC for non-correctable errors
	2.5 SRAM error injection

	3 FLASH ECC error handling
	3.1 Used ECC algorithm
	3.2 ECC for non-correctable errors
	3.3 Flash error emulation

	4 References

