
1 Introduction
LPC546xx has external spi flash interface(SPIFI) which can R/W external flash
with single/dual/quad mode. It also supports XIP mode which means code can
be executed directly on spi flash. SPIFI greatly expands application’s code size,
and makes it possible to store large data(image or even videos). However,
downloading data into spi flash in development phase is always a troublesome
problem, since different spi flash vendors have different command sets.
Customers often meet the situation that original flash programming algorithm
in MDK cannot fit their hardware, which causes downloading data incorrectly.

This short AN give a solution to this issue. It provides step-by-step guide on
how to create a flash programming file for MDK, and provide a pre-compiled
flash programming algorithm which can be used directly.

This AN is helpful to:

1. Who uses MDK with LPC546xx/LPC540xx and wants to create a flash
programming algorithm for their own spi flash part.

2. Who wants to get knowledge for LPC546xx SPIFI peripheral

3. Who uses MDK with LPC546xx/LPC540xx and wants a common programming algorithm file to support most SPI flash
parts on markets.

1.1 Glossary

Table 1. Abbreviation

Items Description

SPIFI SPIFI module on LPC546xx series, which is used for access external spi flash.

MDK(Keil) Arm’s Integrated development environment

FLM MDK’s flash programming algorithm file(ELF format file)

2 Implementation

2.1 Overview
Flash Programming Algorithms(for MDK, use FLM for short) are a piece of software to erase or download applications to Flash
devices. A Pack with Device Support usually contains predefined FLM file that is supported by the DFP. A template for creating
algorithms is available in the CMSIS Pack. In MDK, the Flash Programing Algorithms is an FLM file. In fact, FLM file is in ELF
format.

Contents

1 Introduction..1
1.1 Glossary.................................. 1

2 Implementation.................................... 1
2.1 Overview.................................1
2.2 SPIFI.......................................2
2.3 How to modify SPIFI driver

to support new spi flash
device...................................... 2

2.4 Create Flash
Programming Algorithm File.... 2

3 How to use FLM file............................. 4
3.1 Add FLM in to Flash

Programming Algorithm List.... 4
3.2 Verify result............................. 5

4 Conclusion and Limitation..................6

AN12563
SPI Flash Programming Algorithms for LP546xx
Rev. 0 — 26 August, 2019 Application Note

http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/createPack_DFP.html

SPIFI in LPC546xx is a peripheral used to access external spi flash. Currently, if you want to download data into external spi flash
via MDK. Only LPC540xx_MT25QL128. FLM is available on DFP package. It means that only MT25QL128 is supported. Although
this algorithm can support most MICRON spi flash parts, it usually cannot support another vendor, such as Winbond or ISSI. The
reason is obvious: LPC540xx_MT25QL128 FLM algorithm uses quad program and quad read command set, in which those
command operands are different from vendor to vendor.

To address this issue. We must create a common FLM file which is compatible with most spi flash on markets. Although, there
may have some tradeoff. To achieve this goal, we must first implement SPIFI driver on LPC546xx, which is used to create flash
programming algorithms.

2.2 SPIFI
MCUXpresso SDK provides SPIFI driver for accessing external spi flash, and example code for SPIFI. SPIFI example is under:

\boards\lpcxpresso54608\driver_examples\spifi\polling_transfer

Before creating FLM file, you need SPIFI driver code to let you R/W external spi flash. This driver code and example is in
polling_transer demo. Make sure you can run polling_transfer demo successfully on your hardware platform, the SPIFI driver
code used by this demo is reused in flash programming algorithm. If polling_transer demo cannot run successfully on your
hardware, see section 2.3 about how to modify this example to fit your hardware.

2.3 How to modify SPIFI driver to support new spi flash device
There are some reasons that cause this demo fail to run:

• Incompatible pin configuration

• Spi flash command sets incompatible

2.3.1 Incompatible pin configuration

This issue is easy to find and easy to fix. Make sure that your hardware connection for spi flash is same with LPC546xxXpresso
board, otherwise, you must modify function BOARD_InitPins in pin_mux.c to align with your hardware.

2.3.2 Configurate spi flash command list

Different spi flash products have different command operands, especially for quad erase and quad programming function. Nearly
all spi flash products use the same command operand for single erase, single read and single programming. One simple way to
do with incompatible command operand is to use single read and single program function. This method might cause slower
programming speed. Figure 1 shows SPIFI command table which use single wire read and programming command, this command
list is compatible for most spi flash in market.

Figure 1. Common LUT for spi flash operation

2.4 Create Flash Programming Algorithm File

NXP Semiconductors

Implementation

SPI Flash Programming Algorithms for LP546xx, Rev. 0, 26 August, 2019
Application Note 2 / 7

2.4.1 Implement Flash Programming Code

Flash programming algorithms are defined with functions to erase and program the Flash device. Special compiler and linker
settings are required. A step-by-step guide for how to create a flash programming algorithm is available, refer to CMSIS
documentation:

http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/flashAlgorithm.html

Here are some important key points and tips:

1. Do not create a new uVision project, Copy the content from the ARM:CMSIS Pack folder (usually C:\Keil\ARM\Pack
\ARM\CMSIS\version\Device_Template_Flash) to a new folder.

2. There is no main entry for flash programming algorithm. It is a position independent code.

3. The file FlashPrg.c contains the mandatory Flash programming functions Init, UnInit, EraseSector,
and ProgramPage. Optionally, depending on the device features (or to speed up execution), the
functions EraseChip, BlankCheck, and Verify can be implemented. As Table 2 shows:

Table 2. Flash programming algorithm API need to implement

Function Name Indication Description

BlankCheck optional Check and compare patterns

EraseChip optional Delete entire Flash memory content

EraseSector mandatory Delete Flash memory content of a specific secto

Init mandatory Initialize and prepare device for Flash programming

ProgramPage mandatory Write the application into the Flash memory

UnInit mandatory
De-initialize the microcontroller after one of the Flash
programming steps.

Verify optional Compare Flash memory content with the program code.

The functions which are considered to keep maximum compatibility with different vendors, have already been implemented in
attached software. The Read and ProgramPage API uses spi one wire mode to keep compatibility with different flash vendors.

1. The file FlashDev.c contains parameter definitions for FlashDevice structure which is recognized by MDK. This
structure contains all flash description including name, flash size, sector size, start address and so on, as Figure 2
shows.

NXP Semiconductors

Implementation

SPI Flash Programming Algorithms for LP546xx, Rev. 0, 26 August, 2019
Application Note 3 / 7

http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html
http://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/algorithmFunc.html

Figure 2. Flash programming algorithm API need to implement

2.4.2 Compile and create FLM file

After finish implementing FlashDev.c and FlashPrg.c. and compile the whole project. output file will be generated. In attached
software, the output name is: LPC5460x_SPIFI_ALL.FLM

3 How to use FLM file

3.1 Add FLM in to Flash Programming Algorithm List
Perform following steps to Add FLM in to Flash Programming Algorithm List:

1. Copy the FLM file into ARM \Keil\ARM\Flash folder.

2. Open your application MDK project. Open Flash Download dialog and add LPC5460x SPIFI ALL into Programming
Algorithm.

3. Remove previous spi flash FLM file if exist. This will let MDK use our FLM when downloading data into spi flash. As Figure
3 shows.

NXP Semiconductors

How to use FLM file

SPI Flash Programming Algorithms for LP546xx, Rev. 0, 26 August, 2019
Application Note 4 / 7

Figure 3. Add Flash Programming Algorithm

3.2 Verify result
Click load button to start downloading your application, as Figure 4 shows.

Figure 4. Download application to target

MDK shows the output log in the Build Output window. The log “Verify OK.” indicates your application downloaded in to MCU
successfully. As Figure 5 shows.

NXP Semiconductors

How to use FLM file

SPI Flash Programming Algorithms for LP546xx, Rev. 0, 26 August, 2019
Application Note 5 / 7

Figure 5. MDK output log “Verify OK”

4 Conclusion and Limitation
This AN is a guide on how to create a spi flash programming algorithm for MDK. It also provides a pre-compiled, ready to use
FLM file which can support most spi flash on market.

To keep compatibility, the FLM project in attached software uses default core clock, single wire read and single wire programming
command operand. The download speed is slower than using quad mode ones.

NXP Semiconductors

Conclusion and Limitation

SPI Flash Programming Algorithms for LP546xx, Rev. 0, 26 August, 2019
Application Note 6 / 7

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.

All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,

Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,

DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,

SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,

µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. The related technology may be protected by any or all of patents,

copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and

the Power and Power.org logos and related marks are trademarks and service marks licensed

by Power.org.
© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 26 August, 2019

Document identifier: AN12563

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	SPI Flash Programming Algorithms for LP546xx
	Contents
	1 Introduction
	1.1 Glossary

	2 Implementation
	2.1 Overview
	2.2 SPIFI
	2.3 How to modify SPIFI driver to support new spi flash device
	2.3.1 Incompatible pin configuration
	2.3.2 Configurate spi flash command list

	2.4 Create Flash Programming Algorithm File
	2.4.1 Implement Flash Programming Code
	2.4.2 Compile and create FLM file

	3 How to use FLM file
	3.1 Add FLM in to Flash Programming Algorithm List
	3.2 Verify result

	4 Conclusion and Limitation

