
1 Introduction
LPC5460x does not support camera interface by hardware originally. However,
to enable the camera device with LPC5460x MCU, this function is implemented
with State Configurable Timer (SCT) and Direct Memory Access (DMA) with
suitable sync signals under a suitable configuration. SCT is used to capture the
sync signals and DMA is used to move data without the interaction of the CPU.
This document describes a design of software camera interface solution with
SCT and DMA on LPC5460x.

2 SCT hardware
SCT is a hardware module running based on hardware counter/timer. It has
various conditions to create events. The event depends on various conditions
including the counter value, input, signals, and other conditions. Then, the
event can react with several operations, like controlling the counter, setting the output pin voltage level, changing the state machine,
and so on.

The SCT module on LPC5460x MCU supports:

• 8 inputs

• 10 outputs

• 10 match/capture registers

• 10 events

• 10 states

2.1 SCT counter and pins
SCT is configured as two 16-bit counters or one 32-bit counter depending on the SCT_CONFIG[UNIFY] bit. In most case, the
32-bit counter is used by default.

SCT_CONFIG register is used to configure the basic counter.

SCT_CTRL register is used to control the basic counter directly, no need to wait for any events.

SCT_OUTPUTDIRCTRL register specifies (for each output) the counting direction of the basic counter.

SCT_COUNT register holds the current counter value moving per each SCT clock.

INPUT and OUTPUT registers are like the control registers to GPIO, they read and write the voltage level on the SCT input and
output signals. Each bit in INPUT register is for each SCT input signal. Each bit in OUTPUT register is for each SCT output signal.

The SCT input and output signal are not directly connected to the GPIO pins. INPUT MUX module makes the

mapping of the connection between SCT input/output signal and external GPIO pins.

 NOTE

Contents

1 Introduction..1

2 SCT hardware.......................................1
2.1 SCT counter and pins............. 1
2.2 Generation of events...............2
2.3 Operation of events.................2
2.4 State machine in SCT............. 2

3 Camera signals and connections
with MCU..3

4 Design a state machine to
capture the camera sync signals.....4

5 Demo show...8

6 Revision history................................. 10

AN12583
Enabling Camera on LPC5460x with State Configurable Timer
State Machine
Rev. 0 — 16 September 2019 Application Note

2.2 Generation of events
The following conditions define an event:

• a counter match condition.

• an input (or output) condition such as a rising or falling edge or level.

• a combination of match and/or input/output condition.

• in bidirectional mode, events can be enabled based on the count direction.

The value in SCT_MATCH registers are used to create events by comparing the counter's value. Match event occurs in the SCT
clock in which the counter is (or would be) incremented to the next value. After the match event, the SCT_MATCH would load the
new value from its responding SCT_MATCHRELn register.

The pin condition, the combination mode, and the bidirectional mode are set up in the SCT_EVn_CTRL register for each event.

2.3 Operation of events
Once the event occurs, it can:

• limit, halt, start, or stop a counter or change its direction.

• change state.

• output indicated voltage level on output pins.

• capture current counter value.

• trigger interrupt.

• trigger DMA.

SCT_LIMIT, SCTHALT, SCT_STOP, and SCT_START registers are to set up the operation to counter when event occurs. Each
bit in the register is for an event. For example, set the bit 2 in LIMIT means that the counter would turn to the opposite direction
or back to zero directly (according to the settings in SCT_OUTPUTDIRCTRL register) when the event 2 happens.

SCT_OUTn_SET and SCT_OUTn_CLR registers are like the output control registers to GPIO, but only driven by event, not output
to pin directly by software. Then write the logic voltage level on the SCT's output pins. Each SCT_OUTn_SET/OUTn_CLR register
is for a specific SCT output pin, while each bit in this register defines which event can operate this pin.

If enabling the capture function for several events in SCT_CAPCTRL register, once any enabled event occurs, the current counter
value would be captured in SCT_CAPn register. In this case, each index of SCT_CAPCTRL registers and SCT_CAPn registers
is for a capture monitor, while each bit in SCT_CAPCTRL register is for an event which can cause the capture operation.

SCT_DMAREQ0 and SCT_DMAREQ1 are used to set up operation to DMA controller when event happens. Each bit in this
register is for the index number for each event. SCT has two DMA trigger sources.

SCT_EVEN is used to set up operation to interrupt controller when event happens. Each bit in this register is for the index number
for each event.

2.4 State machine in SCT
The state machine's status is kept in SCT_STATE register. its value can be updated per the events. in SCT_EVn_CTRL register
for each event, there are several fields to configure the operation to the state machine.

"STATELD" and "STATEV" would tell the SCT how to update the state value when the event occurs:

• When STATELD = 0, STATEV value is added into SCT_STATE.

• When STATELD = 1, STATEV value is loaded into SCT_STATE.

An important thing is, only the enabled events in current state can capture the event condition. The SCT_EVn_STATE register for
each event is used to keep the event available in any state. Each bit in registers is for an available state. For example, set the bit
3 in SCT_EVn_STATE means the event 2 can be available in state 3. Then, the SCT_EVn_STATE registers are used to create
the routines between states.

NXP Semiconductors

SCT hardware

Enabling Camera on LPC5460x with State Configurable Timer State Machine, Rev. 0, 16 September 2019
Application Note 2 / 11

3 Camera signals and connections with MCU
OV7620 camera module with onboard crystal clock source is used in the demo application. It is connected to MCU with a group
of signals:

• [input] I2C/SCCB bus to set up the camera sensor's internal registers.

• [output] 16 b/8 b parallel data of pixels.

• [output] three sync signal of pixel: PCLK for a new pixel, HREF for a new line and VSYNC for a new frame.

Table 1. Camera pins and connections

Camera Pins MCU Pins MCU Peripheral

SCCB_SDA PIO0_26 I2C2_SDA

SCCB_SCL PIO0_27 I2C2_SCL

PCLK PIO0_17 SCT_GPI7 > IN2

HREF PIO0_14 SCT_GPI1 > IN1

VSYNC PIO0_13 SCT_GPI0 > IN0

D0 PIO1_24 GPIO1

D1 PIO1_25 GPIO1

D2 PIO1_26 GPIO1

D3 PIO1_27 GPIO1

D4 PIO1_28 GPIO1

D5 PIO1_29 GPIO1

D6 PIO1_30 GPIO1

D7 PIO1_31 GPIO1

To read an available sequence of pixel data, the MCU should wait the VSYNC START (a falling edge on VSYNC pin) for a frame,
then wait the HREF START(a rising edge on HREF pin) for a new line, and finally to capture the pixel data from bus alone each
the PCLK (a rising edge on PCLK pin). At the end of a line, an HREF END (a falling edge on HREF pin) is used to tell the MCU
that the following pixels are not available until the next HREF START. At the end of a frame, the VSYNC END (a rising edge on
VSYNC pin) is used to tell that the following lines are not available until the next VSYNC START. Only the available pixels in
available lines are the wanted sensing image data.

Actually, in the LPC54605 project, the INPUT MUX module is used to map the external SCTGPIx pins to SCTINx signals.

#define APP_SCT_INPUT_LINE_VSYNC 0U
#define APP_SCT_INPUT_LINE_HREF 1U
#define APP_SCT_INPUT_LINE_PCLK 2U
 /*
 * Camera IO PinMux SCT line
 * VSYNC -> PIO0_13 -> SCT0_GPI0 -> IN0
 * HREF -> PIO0_14 -> SCT0_GPI1 -> IN1
 * PCLK -> PIO0_17 -> SCT0_GPI7 -> IN2

NXP Semiconductors

Camera signals and connections with MCU

Enabling Camera on LPC5460x with State Configurable Timer State Machine, Rev. 0, 16 September 2019
Application Note 3 / 11

 */
 INPUTMUX_AttachSignal(INPUTMUX, 0U, kINPUTMUX_SctGpi0ToSct0); /* IN0. */
 INPUTMUX_AttachSignal(INPUTMUX, 1U, kINPUTMUX_SctGpi1ToSct0); /* IN1. */
 INPUTMUX_AttachSignal(INPUTMUX, 2U, kINPUTMUX_SctGpi7ToSct0); /* IN2. */

4 Design a state machine to capture the camera sync signals
As the camera would send mass data continually, we would like to handle the capture of sync signals and the data movement
totally by hardware. If using pin interrupt to capture these sync signals, heavy working load would be cost by MCU. Even then,
the MCU with software might miss a few sync tokens during the MCU is processing the data. So, in the desired the state machine,
SCT automatically handles all the transform between states and the trigger commands to DMA.

Figure 1. Hardware state machine for camera

In Figure 1, a state machine based on SCT is designed to capture the camera's sync signals and trigger the DMA to move available
pixel data to user memory. The hardware implements all the functions aand runs automatically without any software interaction.

5 events are pre-defined as the conditions of movement from one state to another.

• Event 0: VSYNC START (a falling edge on VSYNC line) to an SCT input pin.

• Event 1: VSYNC END (a rising edge on VSYNC line) to an SCT input pin.

• Event 2: HREF START (a rising edge on HREF line) to an SCT input pin.

• Event 3: HREF END (a falling edge on HREF line) to an SCT input pin.

NXP Semiconductors

Design a state machine to capture the camera sync signals

Enabling Camera on LPC5460x with State Configurable Timer State Machine, Rev. 0, 16 September 2019
Application Note 4 / 11

• Event 4: PCLK START (a rising edge on PCLK line) to an SCT input pin.

In the source code, they are defined with relevant codes.

#define APP_SCT_EVENT_VSYNC_START 0U /* IN0 falling edge. */
#define APP_SCT_EVENT_VSYNC_END 1U /* IN0 rising edge. */
#define APP_SCT_EVENT_HREF_START 2U /* IN1 rising edge. */
#define APP_SCT_EVENT_HREF_END 3U /* IN1 falling edge. */
#define APP_SCT_EVENT_PCLK_START 4U /* IN2 rising edge. */

Then 4 states are defined to represent the temporary states:

• State 0 is the initial state, waiting for a new frame. In the state 0, only the event 0 is available, while other events are masked.
Once the event 0 occurs (VSYNC START comes), it moves to the state 1 to wait for a new line.

• State 1 is waiting for a new line. The state 1 has two ways out:

— for event 1 (VSYNC STOP comes), it would return to state 0 for a new frame.

— for event 2 (HREF START comes), it would go to state 2 and wait for the first pixel data in the current line.

• State 2 is waiting for a new pixel. The state 3 has two ways out:

— for event 1 (VSYNC STOP comes), it would return to state 0 for a new frame.

— for event 3 (HREF STOP comes), it would return to state 1 for a new line.

— for event 4 (PCLK START comes), it would go to its shadow state 3.

— every time switch to the state 2, a DMA trigger is generated from SCT to tell DMA moving pixel data from data pins.

• State 3 is the shadow state of State 2. It is waiting for a new pixel as well. It accepts the same move condition to state 0 and
state 1. However, here we would like to sample the alternative pixel in a line to reduce the count of data as not all the pixels
are necessary (camera is already configured with alternative line sample mode). So the state 3 can be considered to jump(or
consume) the additional (unnecessary) triggers to DMA.

In the source code, they are defined with relevant codes.

#define APP_SCT_STATE_WAIT_NEW_FRAME 0U
#define APP_SCT_STATE_WAIT_NEW_LINE 1U
#define APP_SCT_STATE_WAIT_NEW_PCLK 2U
#define APP_SCT_STATE_WAIT_NEXT_FRAME 3U

If the state machine starts in the middle of frame's transfer, it would wait without any movement, since all the events are disabled
except the event 0 (waiting for VSTART START) in the initial state, Only when the next VSYNC START comes. the state machine
runs with the transform between states.

Here the DMA is configured as in burst mode. Once a DMA trigger comes, the DMA controller move one pixel data from
PIO1[24:31] to user memory. After it moves a line of pixels (320 pixels in a line in current demo application), a DMA transfer done
interrupt would be executed. In the DMA ISR function, the transfer task must be reconfigured, since the LPC DMA cannot support
longer transfer than 1024 items. There is enough time to run this piece of software during the line sync is inactive. A software
counter is used to count the lines. When enough lines are collected for an image (240 lines in current demo application), it can
tell the higher-level application software that a full image is ready in MCU's RAM.

The events of line start, line stop, frame start, frame end can be also monitored in SCT module. For example, the frame end in
event 1 can be configured to generate the SCT interrupt and tell the higher application software that the image is ready. This way
is more more suitable and recommended, as the DMA and the SCT can handle the different task separately: the DMA ISR can
focus on the data transfer and SCT ISR can focus on the event detection.

The most important work in MCU source project is to program each event. Finally, when coding for the SCT configuration, we
must convert our state machine's view from state-orient to event-orient. It means, even the state machine is describing states and
the transform between them under the event condition, we have to say that they are events in their surviving states. Then, the
code would be:

NXP Semiconductors

Design a state machine to capture the camera sync signals

Enabling Camera on LPC5460x with State Configurable Timer State Machine, Rev. 0, 16 September 2019
Application Note 5 / 11

Setup the event's condition and the target state:

/* setup the event operations. */
 /* VSYNC START event：
 * - APP_SCT_INPUT_LINE_VSYNC occurs on VSYNC input falling edge.
 * - switch to APP_SCT_STATE_WAIT_NEW_LINE, wait for a new line.
 */
 SCT0->EVENT[APP_SCT_EVENT_VSYNC_START].CTRL = SCT_EVENT_CTRL_MATCHSEL(0) /* no use. */
 | SCT_EVENT_CTRL_HEVENT(0) /* no use. */
 | SCT_EVENT_CTRL_OUTSEL(0) /* input pin trigger. */
 | SCT_EVENT_CTRL_IOSEL(APP_SCT_INPUT_LINE_VSYNC) /*
VSYNC pin. */
 | SCT_EVENT_CTRL_IOCOND(2) /* pin falling edge
trigger. */
 | SCT_EVENT_CTRL_COMBMODE(2) /* use io without
counter. */
 | SCT_EVENT_CTRL_STATELD(1) /* load state value. */
 |
SCT_EVENT_CTRL_STATEV(APP_SCT_STATE_WAIT_NEW_LINE) /* new state. */
 | SCT_EVENT_CTRL_MATCHMEM(0) /* no use. */
 | SCT_EVENT_CTRL_DIRECTION(0) /* no use. */
 ;
 /* HREF START event：
 * - APP_SCT_INPUT_LINE_HREF occurs on HREF input rising edge.
 * - switch to APP_SCT_STATE_WAIT_NEW_PCLK, wait for a new pixel.
 */
 SCT0->EVENT[APP_SCT_EVENT_HREF_START].CTRL = SCT_EVENT_CTRL_MATCHSEL(0) /* no use. */
 | SCT_EVENT_CTRL_HEVENT(0) /* no use. */
 | SCT_EVENT_CTRL_OUTSEL(0) /* input pin trigger. */
 | SCT_EVENT_CTRL_IOSEL(APP_SCT_INPUT_LINE_HREF) /*
HREF pin. */
 | SCT_EVENT_CTRL_IOCOND(1) /* pin rising trigger. */
 | SCT_EVENT_CTRL_COMBMODE(2) /* use io without
counter. */
 | SCT_EVENT_CTRL_STATELD(1) /* load state value. */
 |
SCT_EVENT_CTRL_STATEV(APP_SCT_STATE_WAIT_NEW_PCLK) /* new state. */
 | SCT_EVENT_CTRL_MATCHMEM(0) /* no use. */
 | SCT_EVENT_CTRL_DIRECTION(0) /* no use. */
 ;
 /* PCLK START event：
 * - APP_SCT_INPUT_LINE_PCLK occurs on PCLK input rising edge.
 * - switch to APP_SCT_STATE_WAIT_NEW_PCLK itself, wait for a new pixel.
 */
 SCT0->EVENT[APP_SCT_EVENT_PCLK_START].CTRL = SCT_EVENT_CTRL_MATCHSEL(0) /* no use. */
 | SCT_EVENT_CTRL_HEVENT(0) /* no use. */
 | SCT_EVENT_CTRL_OUTSEL(0) /* input pin trigger. */
 | SCT_EVENT_CTRL_IOSEL(APP_SCT_INPUT_LINE_PCLK) /*
PCLK pin. */
 | SCT_EVENT_CTRL_IOCOND(1) /* pin rising trigger. */
 | SCT_EVENT_CTRL_COMBMODE(2) /* use io without
counter. */
 | SCT_EVENT_CTRL_STATELD(1) /* load state value. */
 |
SCT_EVENT_CTRL_STATEV(APP_SCT_STATE_WAIT_NEW_PCLK) /* new state. */
 | SCT_EVENT_CTRL_MATCHMEM(0) /* no use. */
 | SCT_EVENT_CTRL_DIRECTION(0) /* no use. */
 ;
 /* HREF END event：
 * - APP_SCT_INPUT_LINE_HREF occurs on HREF input falling edge.

NXP Semiconductors

Design a state machine to capture the camera sync signals

Enabling Camera on LPC5460x with State Configurable Timer State Machine, Rev. 0, 16 September 2019
Application Note 6 / 11

 * - switch to APP_SCT_STATE_WAIT_NEW_LINE, wait for a new line.
 */
 SCT0->EVENT[APP_SCT_EVENT_HREF_END].CTRL = SCT_EVENT_CTRL_MATCHSEL(0) /* no use. */
 | SCT_EVENT_CTRL_HEVENT(0) /* no use. */
 | SCT_EVENT_CTRL_OUTSEL(0) /* input pin trigger. */
 | SCT_EVENT_CTRL_IOSEL(APP_SCT_INPUT_LINE_HREF) /*
HREF pin.*/
 | SCT_EVENT_CTRL_IOCOND(2) /* pin falling trigger. */
 | SCT_EVENT_CTRL_COMBMODE(2) /* use io without
counter. */
 | SCT_EVENT_CTRL_STATELD(1) /* load state value. */
 |
SCT_EVENT_CTRL_STATEV(APP_SCT_STATE_WAIT_NEW_LINE) /* new state. */
 | SCT_EVENT_CTRL_MATCHMEM(0) /* no use. */
 | SCT_EVENT_CTRL_DIRECTION(0) /* no use. */
 ;
 /* VSYNC END event：
 * - APP_SCT_INPUT_LINE_VSYNC occurs on VSYNC input rising edge.
 * - switch to APP_SCT_STATE_WAIT_NEW_FRAME, wait for a new frame.
 */
 SCT0->EVENT[APP_SCT_EVENT_VSYNC_END].CTRL = SCT_EVENT_CTRL_MATCHSEL(0) /* no use. */
 | SCT_EVENT_CTRL_HEVENT(0) /* no use. */
 | SCT_EVENT_CTRL_OUTSEL(0) /* input pin trigger. */
 | SCT_EVENT_CTRL_IOSEL(APP_SCT_INPUT_LINE_VSYNC) /*
VSYNC pin.*/
 | SCT_EVENT_CTRL_IOCOND(1) /* pin rising trigger. */
 | SCT_EVENT_CTRL_COMBMODE(2) /* use io without
counter. */
 | SCT_EVENT_CTRL_STATELD(1) /* load state value. */
 |
SCT_EVENT_CTRL_STATEV(APP_SCT_STATE_WAIT_NEW_FRAME) /* new state */
 | SCT_EVENT_CTRL_MATCHMEM(0) /* no use. */
 | SCT_EVENT_CTRL_DIRECTION(0) /* no use. */
 ;

Setup the events about in which states they can survive:

 /* setup the enabled event in each state. */
 /* APP_SCT_EVENT_VSYNC_START event is used in these states：
 * - APP_SCT_STATE_WAIT_NEW_FRAME
 * - APP_SCT_STATE_WAIT_NEXT_FRAME (optional)
 */
 SCT0->EVENT[APP_SCT_EVENT_VSYNC_START].STATE = (1U << APP_SCT_STATE_WAIT_NEW_FRAME)
 | (1U << APP_SCT_STATE_WAIT_NEXT_FRAME)
 ;
 /* APP_SCT_EVENT_HREF_START is used in these states：
 * - APP_SCT_STATE_WAIT_NEW_LINE
 */
 SCT0->EVENT[APP_SCT_EVENT_HREF_START].STATE = (1U << APP_SCT_STATE_WAIT_NEW_LINE)
 ;
 SCT0->EVENT[APP_SCT_EVENT_PCLK_START].STATE = (1U << APP_SCT_STATE_WAIT_NEW_PCLK)
 ;
 /* APP_SCT_EVENT_VSYNC_END event can be available in all state.
 * It would switch to APP_SCT_STATE_WAIT_NEW_FRAME.
 */
 SCT0->EVENT[APP_SCT_EVENT_VSYNC_END].STATE = (1U << APP_SCT_STATE_WAIT_NEW_FRAME)
 | (1U << APP_SCT_STATE_WAIT_NEW_LINE)
 | (1U << APP_SCT_STATE_WAIT_NEW_PCLK)
 | (1U << APP_SCT_STATE_WAIT_NEXT_FRAME)
 ;

NXP Semiconductors

Design a state machine to capture the camera sync signals

Enabling Camera on LPC5460x with State Configurable Timer State Machine, Rev. 0, 16 September 2019
Application Note 7 / 11

 /* APP_SCT_EVENT_VSYNC_END only occus in APP_SCT_STATE_WAIT_NEW_FRAME state. */
 SCT0->EVENT[APP_SCT_EVENT_HREF_END].STATE = //(1U << APP_SCT_STATE_WAIT_NEW_FRAME)
 //(1U << APP_SCT_STATE_WAIT_NEW_LINE)
 (1U << APP_SCT_STATE_WAIT_NEW_PCLK)
 //| (1U << APP_SCT_STATE_WAIT_NEXT_FRAME)

5 Demo show
In the actual demo, an OLED screen is used to display the camera sensing image in runtime. When running the demo, an arrow
is drawn as the visual target. In Figure 2, it can be seen that an image with the target arrow is captured from camera and displayed
in the OLED screen.

NXP Semiconductors

Demo show

Enabling Camera on LPC5460x with State Configurable Timer State Machine, Rev. 0, 16 September 2019
Application Note 8 / 11

Figure 2. LPC5460x camera demo

NXP Semiconductors

Demo show

Enabling Camera on LPC5460x with State Configurable Timer State Machine, Rev. 0, 16 September 2019
Application Note 9 / 11

6 Revision history
Table 2 summarizes the changes done to this document since the initial release.

Table 2. Revision history

Revision number Date Substantive changes

0 09/2019 Initial release

NXP Semiconductors

Revision history

Enabling Camera on LPC5460x with State Configurable Timer State Machine, Rev. 0, 16 September 2019
Application Note 10 / 11

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.

All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,

Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,

DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,

SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,

µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. The related technology may be protected by any or all of patents,

copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and

the Power and Power.org logos and related marks are trademarks and service marks licensed

by Power.org.
© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 September 2019

Document identifier: AN12583

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Enabling Camera on LPC5460x with State Configurable TimerState Machine
	Contents
	1 Introduction
	2 SCT hardware
	2.1 SCT counter and pins
	2.2 Generation of events
	2.3 Operation of events
	2.4 State machine in SCT

	3 Camera signals and connections with MCU
	4 Design a state machine to capture the camera sync signals
	5 Demo show
	6 Revision history

