
1 Introduction
This document describes how to build a tutorial like example to implement a
communication bridge between USB bus and CAN-bus. USB is enumerated
as a USB CDC device to transmit data.

The document is helpful to:

1. Anyone who wants to familiar and getting started with USB CDC
application.

2. Anyone who wants to get knowledge for SDK CAN driver usage.

3. Anyone who wants to build a USB_CAN bridge quickly for their
application usage.

1.1 Glossary

Table 1. Abbreviation

Items Description

CAN Controller area network

CDC USB communication device class

2 Implementation

2.1 Overview
The aim of this application note is to build a USB_CAN bridge where the USB data retransmit to CAN-bus and vice versa. The
LPC54608 has 2 USB controllers and 2 CAN controllers. We only use one USB controllers and one CAN controller.

Table 2. MCU peripheral resource used

IP used Description

USB1 Use USB1 as full speed USB device

CAN0 CAN0 interface

System block diagram is shown in Figure 1 .The CAN driver and USB Stack is already provided by SDK. You need to add 2 buffers
for each pipe, one for USB->CAN-bus, another for CAN-bus->US. The two pipes are independent to make sure best performance.

Contents

1 Introduction..1
1.1 Glossary.................................. 1

2 Implementation.................................... 1
2.1 Overview.................................1
2.2 Related SDK example.............2
2.3 Combine the two

examples into USB CAN
bridge application.................... 2

3 Test... 4

4 Conclusion and limitation...................5

AN12646
USB CAN Bridge for LPC546xx
Rev. 0 — November 2019 Application Note

Figure 1. System block diagram

2.2 Related SDK example
The software is based on two SDK examples:

2.2.1 MCAN loopback example

MCAN is a simple CAN loopback example which demonstrates usage of LPC54608’s CAN module. This example enables CAN
module’s internal loopback and send a CAN frame, the CAN frame loopbacks into CAN receiver and MCU displays any received
CAN frames on UART terminal. We suggest user read the readme documentation, and running it in order to get familiar with this
example.

Example location:

\SDK_2.6.0_LPC54608J512\boards\lpcxpresso54608\driver_examples\mcan\loopback

2.2.2 usb_device_cdc_vcom example

USB CDC class example enumerates USB as a communication device class. When USB enumerates complete, a COM port
pops out on device, any character send through this COM port loopback to display. See readme documentation for this example
for how to install device driver and run the demo.

Example location:

SDK_2.6.0_LPC54608J512\boards\lpcxpresso54608\usb_examples\usb_device_cdc_vcom\bm

2.3 Combine the two examples into USB CAN bridge application
The above two SDK examples provide the building block for implement a USB-CAN bridge. The software need to do the following
tasks:

1. Integrate CAN driver into usb_device_cdc_vcom example and enable and configure CAN0 module into loopback mode.

2. USB and CAN are running with different speed, we need to implement two FIFOs, one for CAN Tx buffer and one for
CAN Rx buffer as Figure 1 shows

3. Link those communication interfaces, when USB_OUT packet arrived, buffer data into CAN_TX buffer. When CAN-bus
receive a frame, buffer data into CAN_RX buffer.

4. Create two separate threads, one use for CAN_TX send: when CAN_TX buffer is not empty, fetch buffer data and send
to CAN-bus. Another thread serves USB_IN: when CAN_RX buffer is not empty, fetch buffer data and send to PC via
USB CDC.

.

The main modifications are list as follows:

NXP Semiconductors

Implementation

USB CAN Bridge for LPC546xx , Rev. 0, November 2019
Application Note 2 / 6

1. In CAN0 interrupt handler, when a CAN frame received, buffer data into CAN_RX_BUFFER:

 void CAN0_IRQ0_IRQHandler(void)
 {
 static mcan_rx_buffer_frame_t rxFrame;
 MCAN_ClearStatusFlag(CAN0, CAN_IR_RF0N_MASK);
 MCAN_ReadRxFifo(CAN0, 0, &rxFrame);
 msg_t msg;
 msg.cmd = MSG_CAN_RX;
 msg.len = rxFrame.dlc;
 memcpy(msg.buf, rxFrame.data, msg.len);
 /* push data into CAN_RX_BUFFER */
 mq_push(msg);
 }

2. In APPTask function, poll message buffer to see if any message come in, if there is CAN_TX message received, call
SDK driver CAN_Tx function to send data to CAN-bus. If there is CAN_RX message received, call USB Stack API:
USB_DeviceCdcAcmSend to send data to PC.

 void APPTask(void)
 {
 msg_t can_tx_msg;
 msg_t *pMsg;
 uint8_t usb_tx_flag = 0;
 if ((1 == s_cdcVcom.attach) && (1 == s_cdcVcom.startTransactions))
 {
 if ((0 != s_recvSize) && (0xFFFFFFFFU != s_recvSize))
 {
 /* push data to CAN_TX_BUFFER */
 can_tx_msg.cmd = 0;
 can_tx_msg.len = s_recvSize;
 memcpy(can_tx_msg.buf, s_currRecvBuf, can_tx_msg.len);
 mq_push(can_tx_msg);
 s_recvSize = 0;
 }
 /* handle messages */
 if(mq_exist())
 {
 pMsg = mq_pop();
 switch(pMsg->cmd)
 {
 case MSG_USB_RX:
 app_can_send(CAN_TX_ID, pMsg->buf, pMsg->len)
 break;
 case MSG_CAN_RX:
 //dump_data(pMsg->buf, pMsg->len);
 memcpy(s_currSendBuf, pMsg->buf, pMsg->len);
 USB_DeviceCdcAcmSend(s_cdcVcom.cdcAcmHandle, USB_CDC_VCOM_BULK_IN_ENDPOINT,
s_currSendBuf, pMsg->len);
 usb_tx_flag = 1;
 break;
 }
 }
 /* send a empty USB_IN packet */
 if(usb_tx_flag == 0)
 {

NXP Semiconductors

Implementation

USB CAN Bridge for LPC546xx , Rev. 0, November 2019
Application Note 3 / 6

 USB_DeviceCdcAcmSend(s_cdcVcom.cdcAcmHandle, USB_CDC_VCOM_BULK_IN_ENDPOINT,
s_currSendBuf, 0);
 }
 usb_tx_flag = 0;
 }
 }

3 Test
Since CAN loopback mode is enabled and CAN Tx frame ID is same with CAN Rx FIFO, any data send by CAN0 loopback to
itself. Therefore, any data send from PC loopback to PC. We use this point to check the functionality of the code.

Plug USB cable to J3 USB full speed port, the USB CDC device pops up as Figure 2 shows:

Figure 2. USB CDC COM port

Using Putty on open COM port, input any character less or equal than 8 bytes, the data loopback on terminal. See Figure 3shows:

Figure 3. SB_CAN loopback test

NXP Semiconductors

Test

USB CAN Bridge for LPC546xx , Rev. 0, November 2019
Application Note 4 / 6

4 Conclusion and limitation
This document explains a simple way to build a CAN_UART bridge base on MCUXpresso SDK software and provides a general
architecture for async communication software pipes.

The limitations are:

1. In this example, CAN Tx frame and CAN Rx frame are all using standard data frame with ID:0x123

2. According to CAN2.0 specification, one CAN data frame can only carry up to 8 bytes data. So, USB CDC can only send
up to 8 bytes at one time. If data length is larger than 8 bytes, the remainings are discarded.

NXP Semiconductors

Conclusion and limitation

USB CAN Bridge for LPC546xx , Rev. 0, November 2019
Application Note 5 / 6

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.

All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,

Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,

DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,

SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,

µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. The related technology may be protected by any or all of patents,

copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and

the Power and Power.org logos and related marks are trademarks and service marks licensed

by Power.org.
© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: November 2019

Document identifier: AN12646

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Glossary

	2 Implementation
	2.1 Overview
	2.2 Related SDK example
	2.2.1 MCAN loopback example
	2.2.2 usb_device_cdc_vcom example

	2.3 Combine the two examples into USB CAN bridge application

	3 Test
	4 Conclusion and limitation

