
1 FLEXIO overview
This application note describes how to use FlexIO module to emulate IrDA
protocol based on RT1010. Although RT1010 LPUART supports IrDA function,
FLEXIO emulation is an option when LPUART is not used.

FlexIO is an on-chip peripheral available on NXP i.MX RT series. It is a highly
configurable module capable of emulating a wide range of communication
protocols, such as UART, I2C, SPI, and I2S. Users can also use FlexIO to
generate PWM and PFM waveform.

For this application note, it is based on the function of the FLEXIO UART, using
a timer to implement the encoding and decoding of NRZ data.

2 IrDA overview
IrDA is a standardized wireless infrared data communication method. To
reduce the bit error rate, NRZ format data is used. At the same time, the transmitted data should be mixed with the carrier. Carrier
frequency is 38 kHz. The circuit in the Figure 2 shows how to mix the transmitted data and carrier. Infrared receiver is used to
receive mixed data and then the source data is used by MCU.

Figure 1. UART data and NRZ data

Contents

1 FLEXIO overview...................................1

2 IrDA overview.. 1

3 IrDA by FLEXIO..................................... 2
3.1 How to generate carrier

PWM by FLEXIO.....................3
3.2 How to configure an NRZ

encoder by FLEXIO.................3
3.3 How to configure an NRZ

decoder by FLEXIO4
3.4 Summary for NRZ data

encoding and decoding........... 5

4 How to develop it based on RT1010
EVK... 7

5 Revision history..................................... 8

AN12721
Emulating IRDA with the FlexIO on RT1010
Rev. 0 — 31 January 2020 Application Note

Figure 2. IrDA TX circuit

Figure 3. IrDA RX circuit

3 IrDA by FLEXIO
• How to generate carrier PWM by FLEXIO

• How to configure an NRZ encoder by FLEXIO

• How to configure an NRZ decoder by FLEXIO

• Summary for NRZ data encoding and decoding

NXP Semiconductors
IrDA by FLEXIO

Emulating IRDA with the FlexIO on RT1010, Rev. 0, 31 January 2020
Application Note 2 / 9

3.1 How to generate carrier PWM by FLEXIO
As the IrDA TX Circuit shows, a PWM is needed as a carrier. The frequency of PWM can be 38 kHz and duty is 50 %. There is
an Application Note Generating PWM and PFM by using FlexIO. User can take this AN for a reference to know how to generate
38 kHz and 50 % duty PWM.

3.2 How to configure an NRZ encoder by FLEXIO
There is a demo example for FLEXIO in RT1010 SDK: flexio_uart_interrupt_transfer. The encoder can develop based on it. The
TX data should be NRZ format, so that UART data falling edge triggers encode timer. Once there is a falling edge, the NRZ data
pin sends a fix duty pulse, so that the timer mode should configure as PWM mode. The following lists show the detail about the
encoder timer configuration:

• triggerSelect: Triggered by FLEXIO UART TX pin

• triggerSource: Internal trigger

• triggerPolarity: Trigger Polarity is Active Low

• pinConfig: Pin output

• pinPolarity: Pin Polarity is Active High

• pinSelect: NRZ data output pin

• timerMode: Dual 8-Bit PWM

• timerOutput: Never Reset

• timerDecrement: Decrement counter on FlexIO clock, Shift clock equals Timer output

• timerDisable: Timer disabled on Timer compares

• timerEnable: Timer enabled on Trigger high

• timerReset: Timer never resets

• timerStart: Start bit disable

• timerStop : Stop bit is enabled on timer disable

Besides these settings, the frequency of PWM and the duty of the pulse must be configured. The duty of pulse can be 3/16 period
of PWM. The frequency of PWM is same with the baud rate.

The Compare Register must be configured to determine the frequency and duty of the PWM. The timer is working under Dual 8-
bits mode, the lower 8-bits determines the High-level timing and the upper 8-bits determines the low-level timing. For specific
calculation and configuration, FLEXIO PWM demo in the SDK can take a reference: boards\evkmimxrt1010\driver_examples
\flexio\pwm.

Figure 4 shows a timing sequence for UART TX data(Character U) and NRZ data.

NXP Semiconductors
IrDA by FLEXIO

Emulating IRDA with the FlexIO on RT1010, Rev. 0, 31 January 2020
Application Note 3 / 9

Figure 4. CH3 is the source data with UART and CH2 is the NRZ format after encoding

3.3 How to configure an NRZ decoder by FLEXIO
After the RX circuit processes the IrDA, signal the FLEXIO input pin can provide the NRZ format data.

A timer is used to convert NRZ format data to UART TTL level data. Figure 1 shows that the timer is triggered by rising edge of
the NRZ data. The following settings sre used:

• triggerSelect: Triggered by FLEXIO IrDA RX pin

• triggerSource: Internal trigger

• triggerPolarity: Trigger Polarity is Active High

• pinConfig: Pin output

• pinPolarity: Pin Polarity is Active Low

• pinSelect: FLEXIO UART RX pin

• timerMode: Dual 8 Bit Baud Mode

• timerOutput: Never Reset

• timerDecrement: Decrement counter on FlexIO clock, Shift clock equals Timer output

• timerDisable: Timer disabled on Timer compares

• timerEnable: Timer enabled on Trigger high

• timerReset: Timer reset on Trigger rising edge

• timerStart: Start bit disable

• timerStop: Stop bit disable

The value of lower 8 bits of CMP is calculated using:

NXP Semiconductors
IrDA by FLEXIO

Emulating IRDA with the FlexIO on RT1010, Rev. 0, 31 January 2020
Application Note 4 / 9

CMP[7:0] = FLEXIO_CLOCK_FREQUENCY / BOARD_DEBUG_UART_BAUDRATE - 1

Figure 5. CH2 is the NRZ format data and CH4 is the data after decoding

3.4 Summary for NRZ data encoding and decoding
Figure 6 shows the process for NRZ data encoding and decoding. Besides this, Figure 7 and Figure 8 shows the details trigger
sequence for encoding and decoding. The meaning of each channel in Figure 7 and Figure 8, can be found in Figure 6.

Figure 6. Entire process of NRZ data encoding and decoding

NXP Semiconductors
IrDA by FLEXIO

Emulating IRDA with the FlexIO on RT1010, Rev. 0, 31 January 2020
Application Note 5 / 9

Figure 7. Entire process of NRZ data encoding and decoding trigger sequence

Figure 8. Entire process of NRZ data encoding and decoding trigger sequence

NXP Semiconductors
IrDA by FLEXIO

Emulating IRDA with the FlexIO on RT1010, Rev. 0, 31 January 2020
Application Note 6 / 9

4 How to develop it based on RT1010 EVK
Hardware settings:

• CH2: TX NRZ data, fly a wire from the second pad of R1820 and connect to J26-8

• CH3: TX TTL data

• CH4: RX TTL data

Use the oscilloscope to connect the test points as in Figure 9 to complete the preparation for the hardware test.

Figure 9. Entire process of NRZ data encoding and decoding trigger sequence

Software settings:

The software is based on flexion_uart_polling_transfer in SDK 2.6.1 with IAR Tool Chain.

Replace the pin_mux.c and flexio_uart_polling_transfer.c with the attached files. Download it to the flash, change the value of
IrDA by IAR watch feature, then run the code, the value of ch changes and is same for IrDA. There is another way to check the
value, connect J26-4 to the J31-1. Open a terminal with baud rate 115200, the value of ch prints in the terminal.

NXP Semiconductors
How to develop it based on RT1010 EVK

Emulating IRDA with the FlexIO on RT1010, Rev. 0, 31 January 2020
Application Note 7 / 9

Figure 10. How to change TX data

5 Revision history
This table summarizes revisions to this document.

Table 1. Revision history

Revision number Date Substantive changes

0 01/2020 Initial release

NXP Semiconductors
Revision history

Emulating IRDA with the FlexIO on RT1010, Rev. 0, 31 January 2020
Application Note 8 / 9

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 31 January 2020
Document identifier: AN12721

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Emulating IRDA with the FlexIO on RT1010
	Contents
	1 FLEXIO overview
	2 IrDA overview
	3 IrDA by FLEXIO
	3.1 How to generate carrier PWM by FLEXIO
	3.2 How to configure an NRZ encoder by FLEXIO
	3.3 How to configure an NRZ decoder by FLEXIO
	3.4 Summary for NRZ data encoding and decoding

	4 How to develop it based on RT1010 EVK
	5 Revision history

