
1 FLEXIO overview
This application note describes how to use FlexIO module to emulate IrDA
protocol based on RT1010. Although RT1010 LPUART supports IrDA function,
FLEXIO emulation is an option when LPUART is not used.

FlexIO is an on-chip peripheral available on NXP i.MX RT series. It is a highly
configurable module capable of emulating a wide range of communication
protocols, such as UART, I2C, SPI, and I2S. Users can also use FlexIO to
generate PWM and PFM waveform.

For this application note, it is based on the function of the FLEXIO UART, using
a timer to implement the encoding and decoding of NRZ data.

2 IrDA overview
IrDA is a standardized wireless infrared data communication method. To
reduce the bit error rate, NRZ format data is used. At the same time, the transmitted data should be mixed with the carrier. Carrier
frequency is 38 kHz. The circuit in the Figure 2 shows how to mix the transmitted data and carrier. Infrared receiver is used to
receive mixed data and then the source data is used by MCU.

Figure 1. UART data and NRZ data
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Figure 2. IrDA TX circuit

Figure 3. IrDA RX circuit

3 IrDA by FLEXIO
• How to generate carrier PWM by FLEXIO

• How to configure an NRZ encoder by FLEXIO

• How to configure an NRZ decoder by FLEXIO

• Summary for NRZ data encoding and decoding
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3.1 How to generate carrier PWM by FLEXIO
As the IrDA TX Circuit shows, a PWM is needed as a carrier. The frequency of PWM can be 38 kHz and duty is 50 %. There is
an Application Note Generating PWM and PFM by using FlexIO. User can take this AN for a reference to know how to generate
38 kHz and 50 % duty PWM.

3.2 How to configure an NRZ encoder by FLEXIO
There is a demo example for FLEXIO in RT1010 SDK: flexio_uart_interrupt_transfer. The encoder can develop based on it. The
TX data should be NRZ format, so that UART data falling edge triggers encode timer. Once there is a falling edge, the NRZ data
pin sends a fix duty pulse, so that the timer mode should configure as PWM mode. The following lists show the detail about the
encoder timer configuration:

• triggerSelect: Triggered by FLEXIO UART TX pin

• triggerSource: Internal trigger

• triggerPolarity: Trigger Polarity is Active Low

• pinConfig: Pin output

• pinPolarity: Pin Polarity is Active High

• pinSelect: NRZ data output pin

• timerMode: Dual 8-Bit PWM

• timerOutput: Never Reset

• timerDecrement: Decrement counter on FlexIO clock, Shift clock equals Timer output

• timerDisable: Timer disabled on Timer compares

• timerEnable: Timer enabled on Trigger high

• timerReset: Timer never resets

• timerStart: Start bit disable

• timerStop : Stop bit is enabled on timer disable

Besides these settings, the frequency of PWM and the duty of the pulse must be configured. The duty of pulse can be 3/16 period
of PWM. The frequency of PWM is same with the baud rate.

The Compare Register must be configured to determine the frequency and duty of the PWM. The timer is working under Dual 8-
bits mode, the lower 8-bits determines the High-level timing and the upper 8-bits determines the low-level timing. For specific
calculation and configuration, FLEXIO PWM demo in the SDK can take a reference: boards\evkmimxrt1010\driver_examples
\flexio\pwm.

Figure 4 shows a timing sequence for UART TX data(Character U) and NRZ data.
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Figure 4. CH3 is the source data with UART and CH2 is the NRZ format after encoding

3.3 How to configure an NRZ decoder by FLEXIO
After the RX circuit processes the IrDA, signal the FLEXIO input pin can provide the NRZ format data.

A timer is used to convert NRZ format data to UART TTL level data. Figure 1 shows that the timer is triggered by rising edge of
the NRZ data. The following settings sre used:

• triggerSelect: Triggered by FLEXIO IrDA RX pin

• triggerSource: Internal trigger

• triggerPolarity: Trigger Polarity is Active High

• pinConfig: Pin output

• pinPolarity: Pin Polarity is Active Low

• pinSelect: FLEXIO UART RX pin

• timerMode: Dual 8 Bit Baud Mode

• timerOutput: Never Reset

• timerDecrement: Decrement counter on FlexIO clock, Shift clock equals Timer output

• timerDisable: Timer disabled on Timer compares

• timerEnable: Timer enabled on Trigger high

• timerReset: Timer reset on Trigger rising edge

• timerStart: Start bit disable

• timerStop: Stop bit disable

The value of lower 8 bits of CMP is calculated using:
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CMP[7:0] = FLEXIO_CLOCK_FREQUENCY / BOARD_DEBUG_UART_BAUDRATE - 1

Figure 5. CH2 is the NRZ format data and CH4 is the data after decoding

3.4 Summary for NRZ data encoding and decoding
Figure 6 shows the process for NRZ data encoding and decoding. Besides this, Figure 7 and Figure 8 shows the details trigger
sequence for encoding and decoding. The meaning of each channel in Figure 7 and Figure 8, can be found in Figure 6.

Figure 6. Entire process of NRZ data encoding and decoding
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Figure 7. Entire process of NRZ data encoding and decoding trigger sequence

Figure 8. Entire process of NRZ data encoding and decoding trigger sequence
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4 How to develop it based on RT1010 EVK
Hardware settings:

• CH2: TX NRZ data, fly a wire from the second pad of R1820 and connect to J26-8

• CH3: TX TTL data

• CH4: RX TTL data

Use the oscilloscope to connect the test points as in Figure 9 to complete the preparation for the hardware test.

Figure 9. Entire process of NRZ data encoding and decoding trigger sequence

Software settings:

The software is based on flexion_uart_polling_transfer in SDK 2.6.1 with IAR Tool Chain.

Replace the pin_mux.c and flexio_uart_polling_transfer.c with the attached files. Download it to the flash, change the value of
IrDA by IAR watch feature, then run the code, the value of ch changes and is same for IrDA. There is another way to check the
value, connect J26-4 to the J31-1. Open a terminal with baud rate 115200, the value of ch prints in the terminal.
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Figure 10. How to change TX data

5 Revision history
This table summarizes revisions to this document.

Table 1. Revision history

Revision number Date Substantive changes

0 01/2020 Initial release
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