AN12781

Caffe Model Development on MNIST Dataset with CMSIS-NN

Library

Rev. 0 — 17 April 2020

1 Introduction

CMSIS-NN is a collection of optimized Neural Network (NN) functions for Arm
Cortex-M core microcontrollers to enable neural networks and machine
learning. The MCUXpresso SDK includes a software package with a pre-
integrated elQ CMSIS-NN library based on CMSIS-NN 1.0.0. This document
describes the process to train a Caffe model on MNIST dataset for digit
classification. The trained Caffe model is converted to a source file that can
run on i.MX RT platforms.

2 Deep neural network model development

There are several frameworks available for developing and training the deep
neural network model, such as TensorFlow, Caffe, and Keras. This deep
neural network has been designed with Caffe framework so that trained model
can be converted to a source file by a python script provided by Arm. This
python script from Arm for trained Caffe model can be converted to CMSIS-
NN function for execution on the edge.

This application note is an extension to the Handwritten Digit Recognition
Using TensorFlow Lite on RT1060 application note. This document describes
step-by-step process of deep neural network model training using the Caffe
framework on MNIST dataset, which contains 60,000 handwritten grayscale
images. The document also describes how to export the trained model on i.MX
RT board to recognize the handwritten digits and how to replace the TF-Lite
MNIST lock application with CMSIS-NN MNIST application.

2.1 Training Caffe model on MNIST dataset

Application Note

Contents
1 Introduction........ccccoiceveeiin s 1
2 Deep neural network model
(o [2YV7=1 o o] g =1 1 | 1
2.1 Training Caffe model
on MNIST dataset.......... 1
3 Caffe model conversion..........cccceeeveennne 5
3.1 Quantization................. 5

3.2 Converting the
quantized model into
source file......cccceeeeeni. 6

4 Adding source file in an application....... 7
4.1 Adding source code
in elQ cmsis-nn
cifar10 application.......... 7
4.2 Replacing
TensorFlow-Lite with
CMSIS-NN in Lock

application.................... 10

4.3 Application details....... 19

5 Test report on MNIST dataset............. 19
5.1 Redesigning Caffe

model and testing......... 20

5.2 Retrain model using
captured image from
LCD screen.................. 20

6 CONCIUSION.........cceeeeemee e eeeeeeeeas 21

Before heading towards model training, you need to set up the system for Caffe framework. There are different ways to set up
the Caffe framework; this document uses a Docker image that already contains the Caffe framework. You need to install some
additional libraries required for this application note. Make sure that Windows system is installed with MCUXpresso IDE (latest
version) and a serial terminal emulator (TeraTerm). This application note assumes that the user has basic knowledge of Linux

commands.
Following are the steps of the Docker setup on Windows 10:
1. Install Docker Desktop on Windows using the below link.
https://docs.docker.com/docker-for-windows/install
Novice users can follow the link below to get basics of Docker.

https://stackify.com/docker-tutorial/

2. Log in to the Caffe container by running the command below from Windows command prompt.

docker run -ti bvlc/caffe:cpu bash

h
P

https://www.nxp.com/docs/en/application-note/AN12603.pdf
https://www.nxp.com/docs/en/application-note/AN12603.pdf
https://stackify.com/docker-tutorial/
https://stackify.com/docker-tutorial/

NXP Semiconductors

Deep neural network model development

Figure 1. Caffe bash shell

Now you are in the Docker container (Caffe bash shell, and container ID is ‘708¢c93¢c287971’).

NOTE
When you are in Docker container, it does not support command for execution on Windows command prompt.
For executing commands on Windows command prompt, you must open a separate CMD terminal.

Below is the package required by the Python script in Docker container (Caffe bash shell).

apt-get update

pip install -U scikit-image
pip install opencv-python
pip install xlwt

pip install xlrd

apt-get install python-tk
apt-get install wget
apt-get install gzip

3. Install nano text editor (or any other preferred text editor) for text editing.
apt-get install nano

4. Itis recommended to commit Docker container as a backup. To commit the current Docker container, open a separate
Windows command prompt, and run the below command.

docker commit <container Id> imageNameforSave

5. Get container ID ‘708¢93¢28791’ from below figure.

:/worksp

Figure 2. Docker container ID

The Docker basic commands are available with the release package in docker_readme.xt.

NOTE
Return to container from the state in which it was shut down using the command below:

docker start --interactive <container ID>

The steps below describe the Caffe model training and image classification.

1. Data preparation: Download MNIST dataset from the MNIST website using the following command in Docker container
(Caffe bash shell).

cd $CAFFE_ROOT
./data/mnist/get_mnist.sh
./examples/mnist/create mnist.sh

NOTE
All commands are executed from Caffe root directory [/opt/caffe/] in Caffe bash shell unless explicitly mentioned
to execute on Windows command prompt.

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 2/22

NXP Semiconductors

Deep neural network model development

2. Data normalization: Subtract the mean image from each input image to ensure every feature pixel has zero mean. It is
required by Caffe model. For this, create the mean image file and format in the mnist_mean.binaryproto file using the
command below.

build/tools/compute image mean -backend=1mdb examples/mnist/mnist train lmdb examples/mnist/
mnist mean.binaryproto

Figure 3. Command for creating mean image file

The mean image file is created in the folder with the name, /opt/caffe/examples/mnist/mnist_mean.binaryproto.
This completes data pre-processing required during training and testing phase.

3. Next, Caffe model definition file, ‘lenet_train_test.prototxt’, is required, which specifies Convolutional Neural Network
(CNN) architecture for MNIST handwritten digit classification.

The Caffe model definition file is available in the /opt/caffe/examples/mnist/ folder. Use the AlexNet CNN architecture for
model development and conversion to source file. Use the command below to copy model definition file,
alexnet_train_test.prototxt, available with the release package in the MNIST_model folder, from Windows desktop to
Docker container.

docker cp d:\path\to\folder\alexnet train test.prototxt [containerID]:/opt/caffe/examples/mnist
This step is independent of step 3. Check all Docker containers by executing the following command on Windows command
prompt. This command displays all running Docker containers. When you make a commit to create a backup, a new row

with a new container appears.

docker ps -a

About an hour ago Up About an hour

Figure 4. Docker container ID

4. Use the command below to copy file from Windows to Docker container ID 708c93c28791.
docker cp d:\path\to\folder\alexnet train test.prototxt 708c93c28791:/opt/caffe/examples/mnist

The Caffe model file for training is available in the MNIST_model folder with release package. It needs to be copied one
by one using the following steps.

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 3/22

NXP Semiconductors

Deep neural network model development

5. Apart from model definition file, the Solver definition file (lenet_solver.prototxt) is required. Use the command below to
copy Solver definition file alexnet_solver.prototxt available with release package in the folder, MNIST_model, from

Windows desktop to Docker container.

docker cp d:\path\to\folder\alexnet solver.prototxt 708c93c28791:/opt/caffe/examples/mnist

6. Training Model starts by running the train_alexnet.sh script available with the release package in the MNIST_model
folder. Use the command below to copy this script from Windows desktop to Docker container.

docker cp d:\path\to\folder\train alexnet.sh 708c93c28791:/opt/caffe/examples/mnist

7. Start training by using the command below from Caffe root directory /opt/caffe/.

./examples/mnist/train_alexnet.sh

While training, the following message displays on the screen. It takes 45 to 60 minutes to complete training depending

upon system configuration.

Figure 5. Caffe training message on console

solver from parameters:

_train_lmdb

examples/mnist/ folder.

After training completes, the trained Caffe model file, alexnet_iter_10000.caffemodel, generates in the /opt/caffe/

Figure 6. Caffe model training complete message

7] Snapshottir

to binary proto file examples/mnist/alexnet

Snapshotting solver state to binary proto file amp

output #1:

on Done.

8. Image Classification: For image classification, the classify_image.py script needs the following files. To classify an
unknown image, the trained model file is stored as caffemodel, which has trained model weights. So you need to load
these files and preprocess the input images. The output digit image is then predicted by the classify_image.py script.

* Mean file, mnist_mean.binaryproto, which is generated in the previous step.

+ Deploy file, alexnet_deploy.prototxt, in which input test image information and CNN architecture is mentioned.

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020

Application Note

4/22

NXP Semiconductors

Caffe model conversion

+ Trained Cafffe model file alexnet_iter_10000.caffemodel.
* Input test image, 28x28 grayscale image, from MNIST dataset, available in the image folder in the release package.

9. Copy the test image for digit two, two(4).png, from Windows using the command below:
docker cp d:\path\to\folder\two (4).png 708c93c28791:/opt/caffe/

If user wants to test the image for any other digit, it must be in MNIST dataset format. Download the MNIST dataset
handwritten digit image using the command below:

git clone https://github.com/myleott/mnist png.git

NOTE
The downloaded MNIST dataset is in zip format; unzip it for using it.

10. Perform the image classification by running the classify_image.py python script. The files, classify_image.py and
alexnet_deploy.prototxt, are available in the release package. Copy them from Windows to Docker container using the
commands below:

docker cp d:\path\to\folder\classify image.py 708c93c28791:/opt/caffe/
docker cp d:\path\to\folder\alexnet deploy.prototxt 708c93c28791:/opt/caffe/examples/mnist

11. Execute the classify_image.py script, and for image classification, run the command below from Caffe root
directory, /opt/caffe/.

python classify image.py

The following message displays on the screen after executing the classify_image.py script for test image, two(4).png

probability.

Figure 7. Image classification output

3 Caffe model conversion

3.1 Quantization

The Neural Network (NN) operation is trained using 32-bit floating-point data. Operating 32-bit floating point requires much
memory and high-processing power, which is a constraint for an embedded device. Quantization converts the Caffe model weights
and activations from 32-bit floating point to an 8-bit and fixed-point format, reducing the size of the model without sacrificing the
performance.

The output of this script is a serialized Python pickle(.pkl) file, which includes the network's model, quantized weights and
activations, and the quantization format of each layer. You can download the script from the following link: https://github.com/
ARM-software/ML-examples.git.

It is recommended to use the nn_quantizer.py python script available with this document in the /Scripts folder. This is because
quantization script available from Arm supports only conversion of trained Caffe model for cifar10 and requires some changes
for supporting the model trained with the MNIST dataset.

Copy script from Windows to the docker container using the command below:

docker cp d:\path\to\folder\nn quantizer.py 708c93c28791:/opt/caffe/

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 5/22

https://github.com/myleott/mnist_png.git
https://stackify.com/docker-tutorial/
https://stackify.com/docker-tutorial/

NXP Semiconductors

Caffe model conversion

NOTE
Trained Caffe model files are available in the trained_model folder with this release package.

Start quantization using the command below from Caffe root directory:

python nn quantizer.py --model examples/mnist/alexnet train test.prototxt --weights examples/mnist/
alexnet iter 10000.caffemodel --save examples/mnist/mnist.pkl

Figure 8. Quantization script running command

The following message displays after quantization completes. It takes 10 - 20 minutes to complete quantization depending upon
system configuration. The mnist.pkl file generates in the /opt/caffe/examples/mnist folder.

Figure 9. Message after quantization

3.2 Converting the quantized model into source file

The Quantized model file, mnist.pKI, is used to generate source file. The file generates weights.h and parameter.h consisting of
quantization ranges. You must include the nn.cpp and nn.h files in the application to run the Neural Network (NN) on the EVK
i.MX RT board. The mnist.pkl file is used as a parameter in the code_gen.py script which you can run to generate source file.

Follow the steps below to convert the quantized model into source file:

1. Copy the code_gen.py script from Windows to Docker container using the command below:
docker cp d:\path\to\folder\ code gen.py 708c93c28791:/opt/caffe/
2. Execute the command below to run script for generating source file:

python code gen.py --model examples/mnist/mnist.pkl --mean examples/mnist/mnist mean.binaryproto
--out dir examples/mnist/code

Figure 10. Command for converting Quantized model into source file

The following message displays after execution of code_gen.py.

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 6/22

NXP Semiconductors

Adding source file in an application

Figure 11. Message after source file is generated

After execution of the code_gen.py script, the weights.h, parameter.h, and nn.cpp source files are available in the
examples/mnist/code folder.

3. Copy the source file folder code to Windows from Docker container using the command below. It is required at a later
stage for running model in the application.

docker cp 708c93c28791:/opt/caffe/examples/mnist/code d:\path\to\folder\

4 Adding source file in an application

It is assumed that the user is familiar with the elQ demo application cmsis_nn_cifar10. Novice users can follow the document
Getting Started with the elQ CMSIS-NN Library.pdf. This user guide (with document number EIQCMSISNNGSUG) is available
in SDK_2.x_EVK-MIMXRT1060 with the elQ component.

4.1 Adding source code in elQ cmsis-nn cifar10 application

Follow the steps below to replace the CIFAR10 dataset with the MNIST dataset (with the AlexNet CNN architecture) using existing
elQ cmsis-nn_cifar10 demo application:

1. Copy and replace weights.h and parameter.h header files in the application project with the header file available in the
code folder. The code folder was copied (in previous section) from Docker container. The below figure shows the right
file structure:

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 7/22

NXP Semiconductors

Adding source file in an application

Figure 12. Replacing header file

1 Regist.. ¥y Faults = O
2% - -

v == evkmimxrt1060_cmsis_nn_cifarl <Debug> ~
5 Project Settings
g’;ﬁ Binaries
[Includes
2 CMSIS
2 board
[component
2 device
2 drivers
2 libs
w 2 source
[n] inputs.h
[rnain.c
[n] parameter.h
[£] semihost_hardfault.c
[timer.c
[n] timer.h
[weights.h
[startup
2 utilities
2 xin e

5 Proje.. 33 | 2, Perip...

2. Add the Neural Network function (nn_run(uint8_t*)) and its buffer in the main source file of the application project by
copying the content of nn.cpp to the main source file, as shown in figures below:

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020

Application Note

8/22

NXP Semiconductors

Adding source file in an application

@ Welcome [£] main.c 2 | [n] weightsh [n] parameterh [0 inputs.h

#i!nclude "inputs.h”
#include “parameter.h”
#include “"weights.h”
#include "arm_nnfuncticns.h”

static const uint® t mean[DATA OUT CH*DATA OUT DIM*DATA OUT DIM] = MEAN_DATA;

static const q7_t convl wt[CONVI_IN_CH*CONV1 KER DIM*CONVL_KER DIM*CONVL_OUT CH] = CONVL WT;
static const g7_t convl_bias[CONV1_OUT_CH] = CONV1_BIAS;

static const
static const

q7_t conv2_wt[CONV2Z_TN_CH*CONVZ_KER_DIM*CONVZ_KER_DIM*CONVZ_OUT_CH] = CONVZ_WT;
q7_t conv2_bias[CONV2_OUT CH] = CONVZ_BIAS;

static const q7_t conv3_wt[CONV3_IN_CH*CONV3_KER DIM*CONV3_KER DIM*CONV3_OUT CH] = CONV3_WT;
static const g7_t conv3_bias[CONV3_OUT_CH] = CONV3_BIAS;

static const
static const

q7_t ipl_wt[IP1_IN_DIM*IP1_QUT_DIM] = IP1_WT;

q7_t ipl bias[IP1_OUT DIM] = IP1_BIAS;

67 //Add input data and output data in top main.cpp file

&3 const char* labels[] = {"@&", "1", "2", "3, "4, "5*, "g", "7", "8", "9"};
69 uintd_t image data[DATA_OUT CH*DATA_OUT DIM*DATA OUT DIM]=DIGIT IMG_DATA;
78 q7_t output_data[IP1_OUT_DIM];

71

72 q7_t col_buffer[5eee];

73 q7_t scratch_buffer[27208];

74

75= void mean_subtract(uints_t* image_data) {

76 for(int i=@; i<DATA_OUT_CH*DATA_OUT_DIM*DATA OUT_DIM; i++) {

77 image_data[i] = (g7_t)_ SSAT(((int)(image_data[i] - mean[i]) »> DATA_RSHIFT), 8);
78}

79 1}

Figure 13. Adding Neural Network function and its buffer in main source file

28

81

82
83
84
85
86
87
838
89
98
91
92
93
94
a5
96
a7

void run_nn{uintd_t* input_data) {

g7_t* bufferl = scratch_buffer;
gq7_t* buffer2 = bufferl + 15688;
mean_subtract(input_data);
arm_convolve HWC_q7_basic((q7_t*)input_data, CONV1_IN_DIM, CONV1_IN CH, convl_wt, CONVI_OUT_CH,
arm_relu_gq7(bufferl, RELUL_OUT DIM*RELUL_OUT DIM*RELUL_OUT_CH);
arm_maxpocl_g7_HWC(bufferl, POOL1_IN DIM, POOL1_IN_CH, POOL1_KER _DIM, POOL1_PAD, POOL1_STRIDE, |
arm_convolve HWC g7 _fast(buffer2, CONV2Z_IN DIM, CONV2_IN_CH, conv2_wt, CONV2 OUT_CH, CONV2 KER I
arm_relu_q7(bufferl, RELUZ_QUT_DIM*RELU2Z_QUT_DIM*RELU2 OUT_CH);
arm_maxpocl_ g7 HWC(bufferl, POOL2_IN_DIM, POOL2Z IN CH, POOL2_KER_DIM, POOL2_PAD, POOL2 STRIDE, |
arm_convolve HWC_q7_fast(buffer2, CONV3_IN_DIM, CONV3_IN_CH, conv3_wt, CONV3_OUT_CH, CONV3_KER_I
arm_relu_gq7(bufferl, RELU3_OUT_DIM*RELU3_0QUT DIM*RELUZ_OUT CH);
arm_maxpocl_g7_HWC(bufferl, POOL3_IN_DIM, POOL3_IN_CH, POOL3_KER _DIM, POOL3_PAD, POOL3_STRIDE, |
arm_fully cennected q7_opt(buffer2, ipl wt, IP1_IN DIM, IP1 OUT_DIM, IP1_BIAS_LSHIFT, IP1_OUT_R¢
arm_softmax_q7 (output_data, 1@, output_data);

}

Figure 14. Adding Neural Network function

3. Add print message statement and comment the statement under int main(void), as shown below:

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020

Application Note

9/22

NXP Semiconductors

Adding source file in an application

uint32_t start_time, stop_time;

uintd_t image data[32 * 32 * 3] = SHIP_IMG_DATA;
q7_t max_wvalue;
uint32_t max_index;

F F F
I = =
[I T R B O RTINS =]

PRINTF("CIFAR-18 object recognition example using convolutional neural networkhrin®);
PRINTF("MNIST dataset example using AlexNet CNN Architecture ‘rin"});
start_time = get_time_in us();

Figure 15. Comment statement and add print message

4. To execute image classification on the edge (i.MX RT board), generate image buffer array using the
mnist_png_to_array.py script. It is available in the scripts folder in the release package. Copy it from Windows using the
command below:

docker cp d:\path\to\folder\mnist png to array.py 4fdb32b62ee2:/opt/caffe/

The execution of mnist_png_to_array.py generates image buffer array, DIGIT_IMG_DATA, in the inputs.h file. This file
generates in the /opt/caffe folder.

5. Copy and replace image buffer array file, inputs.h, in your elQ cmsis-nn_cifar10 demo application, as shown below:

P 2R b = 8 @ Welcome [g] *main.c weights.h parameter.h [n] inputs.h &2 = 3
= <§|)| | . - = 1 #define DIGIT_IMG_DATA {b,s,@,9,9,9,3,3,9,8,4,9,9,9,9,9,9,?,4,9,9,6,5,2,9)9,9,5,1,9,9,9,4,1,9,9,9,9,9

wopa

2 component A~
2 device
2 drivers
2 libs
w2 source
[n| inputs.h
€] main.c
parameter.h
[€] semihost_hardfault.c
[g] timer.c
timer.h
weights.h
(2 startup
2 utilities

Figure 16. Image buffer array file

6. Save the changes in the file. Flash the binary in the i.MX RT board through debug mode.

The following message displays in TeraTerm serial terminal for MNIST handwritten digit prediction. The output displays
Digit 2 also known as predicted class by the model for input image two(4).png.

Elapsed time: 303 ms

Predicted class: 2 (1080% confidence)

Figure 17. Image classification output on TeraTerm serial terminal

4.2 Replacing TensorFlow-Lite with CMSIS-NN in Lock application

Following are the steps to replace MNIST TF-Lite lock source code with MNIST CMSIS-NN inference. You can find detailed
information on MNIST TF-Lite lock application in AN12603 (TensorFlow Lite Model to Perform Handwritten Digit Recognition)
application note.
1. Add the Neural Network library. Get the library from the cmsis_nn_cifar10 project available in the CMSIS folder. The
library added to the tensorflow_lite_mnist_lock project should appear as displayed in figure below:

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 10/22

NXP Semiconductors

Adding source file in an application

Figure 18. Neural Network library path

v '_._i:- evkmimurt1080_tensorflow_lite_mnist_lock
& Project Settings
f;? Binaries
[m Includes
v E CMSIS
» = NN
[n] arm_commen_tables.h
[n] arm_const_structs.h
[n] arrm_math.h
[emsis_armcc.h
[n] emsis_armclang.h
[emsis_compiler.h
[n] emsis_gcch
[R] emsis_iccarm.h
[n] emsis_version.h

2. Get the libarm_cortexM7Ifdp_math.a library from cmsis_nn_cifar10 project under libs folder as shown in figure below:

Figure 19. Static Library path

v =% evkmimxrt1060_cmsis_nn_cifar10 <Debug>

€ Project Settings
ﬁ“’ Binaries
[Includes
2 CMSIS
2 board
2 component
2 device
2 drivers
v 2 libs
libarm_cortexM7Ifdp_math.a
2 source
2 startup
2 utilities

The library added to the MNIST CMSIS-NN application should appear as shown below:

Figure 20. Static library added

v '_,_13- evkmimuxrt1060_tensorflow_lite_mnist_lock

5 Project Settings

g’;ﬁ Binariez

[Includes

& CMSIS

2 board

[component

2 device

2 drivers

2 embeddedwizard

w [libs

libarm_cortexM7lfdp_math.a
libewgfi-m7-gcc.a
libewrte-m7-gce.a
libtensorflow-lite.a

2 source

[startup

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020

Application Note

11/22

NXP Semiconductors

Adding source file in an application

3. Include NN library path in compiler/IDE. Go to Project Explorer windows and select your application project. Then right-
click to navigate and select properties.

4. In the dialog box that appears, select Settings from the C/C++ Build drop-down menu on left side.

5. Select Includes from the MCU C Compiler drop-down menu on right side, and add the directory path for NN/Include
folder, as shown below:

type filter text Settings - -
suiml:: v & MCU C Compiler Include paths (-] ad@jal
B Diglect —_
v C/Ces Build g o l
Build Variabi (2 Preprocesse- : -
uild Variables eetoryf -
: 2 Includes
Enwr\fmm'!nf (= Optimizatic Di
ogging (£ Debugging s
MCU settings g Warnings

i | (5 Miscellanes
— Tool Chain Editor 4

B Folder selection] A

Select one or more Workspace Folders Cancel Workspace.., File system...

=5 evkmimxrt1060_cmsis_nn_cifarl0 -
v =5 evkmimxrt1060_tensoflow_lite_mnist_lock
» = settings
» = board
v = CMSIS
W = NN
» [ActrvationFunctions
» = ConvolutionFunctions
» [FullyConnectedFunctions
» [Include
» = NMNSupportfunctions
» = PoclingFunctions
» [SoftmaxFunctions

r ” 1

Include files (~include) £

» = component
5 = Debug
= device b

¥

@ -
@ Cancel Restore Defaults Apply

@ Apply and Close Cancel

Figure 21. Neural network library

6. Select Libraries from the MCU Linker drop-down menu, and link the arm_cortexM7Ifdp_math library as shown in figure
below:

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 12/22

NXP Semiconductors

Adding source file in an application

type filter text Settings R
> Resource
Builders v ECU C Compiler ‘I Libraries (-) 88 8 5l g’|| ~
v C/C++ Build (3 Dialect —
Build Variables (5 Preprocessq 09 Edit Dialog X
Environment E%: lnCh.Jd.es ! Libraries (-I)
Legging =2 Optimizatig
MCU settings (# Debugging | arm_cortexM7Ifdp_math|
Settings (22 Warnings
Tool Chain Editor (£ Miscellaneg
5 C/C++ General (# Architectur
MCUXpresse Config Tools v & MCU Assembl
Project Matures (2 General Cancel
Project References (# Architectur
Run/Debug Settings ~ B MCU Linker
Task Tags (2 General
> Validation (# Libraries

@ Miscellaneous
@ Shared Library Settings
(# Architecture
(22 Managed Linker Script
@ Multicore
w B MCU Debugger
(2 Debug
@ Miscellanecus

Library search path (-L) ER ERERIRY

Restore Defaults Apply | v

® Apply and Close Cancel

Figure 22. The arm_cortexM7Ifdp_math library

7. Make sure ARM_MATH_CM7=1 symbol is defined under MCU C Compiler -> Preprocessor, as shown in figure below.

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 13/22

NXP Semiconductors

Adding source file in an application

Resource
Builders
s CfC++ Build

Build Variables
Environment
Legging
MUCU settings
Settings
Tool Chain Editor

C/C++ General

Project Natures
Project References
Run/Debug Settings
Task Tags

Validation

7’\.

H

MCUXpresso Config Tools

Settings

(2 Includes
& Optimization
(& Debugging
@ Warnings
(# Miscellaneous
(2 Architecture
w 83 MCU C Compiler
@ Dialect
@ Preprocessor
2 Includes
@ Optimization
@ Debugging
(2 Warnings
& Miscellaneous
(# Architecture
~ By MCU Assembler
(2 General
(2 Architecture & Headers
w B8 MCU C++ Linker
2 General
(2 Libraries
@ Miscellaneous
(5 Shared Library Settings
(8 Architecture
(# Managed Linker Script
(# Multicore
w 8 MCU Debugger
(2 Debug
@ Miscellaneous

Lefined symbols (L)

o ow w0l

KIP_BOOT_HEADER_EMABLE=1

XIP_BOOT_HEADER_DCD_EMABLE=1

SKIP_SYSCLE_IMIT
SDE_DEBUGCONSOLE_UART
FLATEUFFERS_LITTLEENDIAM
TFLITE_MCU
ARM_MATH_CM7=1
__FPU_PRESENT=1
EW_USE_PIXEL_FORMAT_SCREEN

EW_MAX_SURFACE_CACHE_SIZE=0x200000
EW_MAX_GLYPH_SURFACE WIDTH=256

EW_MAX_GLYPH_SURFACE_HEIG
EW_USE_DOUBLE_BUFFER=1
EW_USE_FREE_RTOS=0
EW_SURFACE_ROTATION=0

<

~

HT=256

Undefined symbols (-U)

&

Figure 23. Enable ARM_MATH_CM7

Apply and Close

Restore Defaults Apply

Cancel

W

8. Copy and replace weights.h and parameter.h header files in the application project with the header file available in the
code folder (copied in previous section from Docker container). Your file should appear as shown below:

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020

Application Note

14/22

NXP Semiconductors

Adding source file in an application

Figure 24. Adding header file

=1E=4 &~

= embeddedwizard
= libs

~ 2 source

[h bitmap_helpers_impl.h

[bitmap_helpers.cpp

[K bitmap_helpers.h

[£] DeviceDriver.c

[1 DeviceDriver.h

[ewmain.c

[n ewmain.h

[K get_top_n_implh

[n get_top_n.h

[£] image.c

[W imageh

[W] inputs.h

[n] labels.h

[K mnist_lock_settings.h

[mnist_lock.cpp

[1 mnist_leck.h
5 [h| parameter.h

[semihost_hardfault.c
5 [h] weightsh

2 startup

{5 Proj.. 22 |%, Peri. iifRegi. #AFpFaults = O

=

~

9. Add the Neural Network function (nn_run(uint8_t*)) and its buffer in the main source file of the application project. Do
this by copying the contents of nn.cpp and nn.h, and replace the existing TF-Lite Inferencelnit() and Runinference()
functions with this content, in the main source file. Also, comment the statements as highlighted in figure below:

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020

Application Note

15/22

NXP Semiconductors

Adding source file in an application

33 #define LOG(x) std::cout

34 gdefine PRINT_INPUT false

35 #define PRINT_CONFIDEWCE false

35 #include "arm_math.h"

37 #include "parameter.h™

32 #include "weights.h™

32 #include "CMSIS/NN/Include/arm_nnfunctions.h™

4 static const uintE_t mean[DATA_OUT _CH*DATA_OUT_DIM*DATA_OUT_DIM] = MEAN_DATA;

42 static const g7_t convi_wt[CONVL_IN_CH*CONV1_KER_DIM*CONV1_KER_DIM*CONV1_OQUT_CH] = CONVL1_WT;
43 static const g7_t convl_blas[CONV1_OUT_CH] = COWVI_BIAS;

45 static const g7_t conv2_wt[CONVZ_IN_CH*CONV2_KER_DIM*CONVZ_KER_DIM*CONVZ_OUT_CH] = CONV2_WT;
4t static const g7_t conv2_bias[CONV2_OUT_CH] = CONV2_BIAS;

48 static const g7_t conv3_wt[CONV3_IN_CH*CONV3_KER_DIM*CONV3_KER_DIM*CONV3_OUT_CH] = CONV3_WT;
43 static const g7_t conv3_blas[CONVI_OUT_CH] = COWV3_BIAS;

51 static const g7_t ipl wi[IP1_IN_DIM*IP1_OUT_DIM] = IP1_WT;
2 static const gq7_t ip1_bias[IP1_OUT_DIM] = IP1_BIAS;

54 //add input_data and output_data in top main.cpp file

st const char® labels[] = {"g", "1", "2", "3", "a", "s", "g", "7", "8", "3"};
56 J/uints_t image_data[DATA_OUT_CH*DATA_OUT_DIM*DATA_OUT DIM]=DIGIT_IMG DATA;
57 g7_t output_data[IP1_oUT_DIM];

53 g7_t col_buffer[5eea];
&8 qg7_t scratch_buffer[27288];

2= vwoid mean_subtract(uintz_t* image data) {

&3 for(int i=@; i<DATA_OUT_CH*DATA_OUT_DIM®DATA_OUT_DIM; is#+) {

&4 image_data[i] = (g7_t)__ Ssat{ (({int)(image_data[i] - mean[i]} >> DATA_RSHIFT), 8};
&5 T

Figure 25. Adding Neural Network function and its buffer in main source file

10. In the Neural Network function, (run_nn()), add marked statement, and make sure that return type for rnn_nn() function

should be int pointer as shown below:

%= int *run_nn{uints_t* input_data) {

&9 g7_t* bufferl = scratch_buffer;

78 g7_t* buffer2 = bufferl + 15&88;

71 mean_subtract{input_data);

72 arm_convolve HWC_gq7_basic((gq7_t*)input_data, CONV1_IN_DIM, CONV1_IN_CH, convl_wt, CONV1_OUT_CH, CONV1_KER_DIM,
73 arm_relu_g7(bufferl, RELUL_OUT_ DIM*RELUL_CUT_DIM*RELUL_OUT_CH);

74 arm_maxpool_g7_HWC(bufferl, POOL1_IN_DIM, POOL1_IM_CH, POOL1_KER_DIM, POOL1_PAD, POOL1_STRIDE, POOL1_OUT_DIM, 1
75 arm_convolve HWC_g7_fast(buffer2, CONV2Z2_IN_DIM, CONV2_IN_CH, conv2_wt, CONV2_OUT_(H, CONV2_KER_DIM, CONVZ_PAD,
76 arm_relu_gq7(bufferl, RELUZ_OUT_DIM*RELU2_OUT_DIM*RELUZ_OUT_CH);

77 arm_maxpool_g7_HwC(bufferl, POOL2_IN_DIM, POOL2_IN_CH, POOL2_KER_DIM, POOL2_PAD, POOL2_STRIDE, POOL2_OUT_DIM,
78 arm_convolve_HwC_gq7_fast(buffer2, CONV3I_IN_DIM, CONVI_IN_CH, conv3i_wt, CONV3_OUT_CH, CONV3I_KER_DIM, CONV3_PAD,
79 arm_relu_q7(bufferl, RELU3_QUT_DIM*RELU3_OUT_DIM*RELU3_QUT_CH);

2@ arm_maxpool_g7_HWC(bufferl, POOL3_IN_DIM, POOL3_IN_CH, POOL3_KER_DIM, POOL3_PAD, POOL3_STRIDE, POOL3_OUT_DIM, 1
81 arm_fully connected_q7_opt(buffer2, ipi_wt, IP1_IN_DIM, IP1_OUT_DIM, IP1_BIAS LSHIFT, IP1_OUT_RSHIFT, ipi_hias
2 arm_softmax_gq7({cutput_data, 18, ocutput_data);

34 /* Get the object class with the highest confidence value */

98 result_array
91 result_array[1]

if (result_array[e]

95 ult_array[e] [y((((int)max_value + 128} * 188) / 255);

L if (PRINT_CO

99 LOG(INFD) < : (" << (int)result array[8] < % confidence
188 return result_array;

181 }

Figure 26. Adding neural network function

11. Under main() function in the mnist_lock.cpp file, comment the TF-Lite Inferencelnit() function, as shown in below figure.

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020

Application Note

16/22

NXP Semiconductors

Adding source file in an application

/* Tensorflow-lite initialization. */
NI tflite::mnist: :Inferencelnit(false);

Figure 27. Comment TF-Lite Inferencelnit() function

12. Under processimage() function in the mnist_lock.cpp file, replace TF-Lite tensors with the inputimage[] array.
Comment the TF-Lite tensors and add the marked statement as shown in below figure.

2682 /* int input = interpreter-sinputs(}[e];

269 fleat* input_tensor = interpreter-»typed_tenseor<fleoat»(input);
278

271 int k = 8;

272 for (int h = 8; h < 28; h++)

273

274 for (int w = 8; W < 28B; w+t)

275 {

276 input_tensor[k] = img-»imagepata[k] / 255.8;
277 k4

278 3

275 h

238

281 if (PRINT_INPUT)

282 {

283 LOG(INFO)} << "Input Tensor:n\r®;

234 int 1 = &;

285 for (int h = @; h < 28; h++)

286

287 for (int w = 8; w < 28] w+t)

288

289 if (interpreter->typed_tensor<float>(input)}[l] == &)
298 LOG(INFO) << "8

291 glse

292 LOG(INFO)} << "17;

293

294 1++;

295 ¥

296 LOG(INFO} << "\n\r";

297 3

238 LOG(INFO) << "“nhn\n\r";

293 std: :flush(std: :cout);

388 1

381 uint2_t inputImage[725];

382 int k = &;

383 for (int h = 8; h < 28; h++)

384 {

385 for (int w = 8; < 28; wii)

386 {

387 inputImage[k] = img->imageDatalk];

388 J/ add extra 3 pixels to improve the quality of image
389 if(img->imageData[k] == 255)}{ ff o
318 if((h-1) < : 1
311 ipputImage[w + (h - 1} * 28

312 if((w-1)»8)

313 inputImage[(w - 1) + h * 28

314 if((w+l) < 28)

315 inputImage[(w + 1) + h * 28

316]

317

318

313 ki

Figure 28. Replacing TF-lite tensors with inputimage[] array

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 17/22

NXP Semiconductors

Adding source file in an application

13. Under processimage() function in the mnist_lock.cpp file, replace the TF-Lite inference function, Runinference(), with
the CMSIS-NN function, run_nn(), in return statement.

tflite::mnist::Settings s; // use the default settings
return tflite::mnist::RunInference(ds);
return run_nn{inputImage);

Figure 29. Replacing TF-lite inference function with CMSIS-NN function

14. Remove TF-Lite related files from the project. Below is a list of files to exclude from the project.
+ mnsit_lock_settings.h
* labels.h
« bitmap_helpers.h / bitmap_helpers.cpp
* bitmap_helpers_impl.h
+ converted_model.h
+ get_top_n_impl.h
+ get_top_n.h
+ tensorflow_lite (folder)

After removing all the TF-Lite project file, the file structure should appear as shown below.

5 Pro.. 22 | &, Per.. ifiiRe.. #Fa.. = O
25| @~ -
A2 CMSIS ~
A board
2 component
A device
2 drivers
= embeddedwizard
A libs
w (A2 source
[£] DeviceDriver.c
[1] DeviceDriver.h
[£ ewrmain.c
[n ewrmain.h
[£] image.c
[0 imageh
[£] mnist_lock.cpp
[B] mnist_lock.h
[B] parameter.h
[£] semihost_hardfault.c
[B] weights.h
2 startup
2 utilities
2 xip
== Debug "

Figure 30. Removing TF-lite project files

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 18/22

NXP Semiconductors

Test report on MNIST dataset

4.3 Application details

In application code, when user drags finger over user input slot area on TFT LCD, single pixel line is drawn under the finger with
pixel value “1” and all other pixels are assumed “0”. After pressing unlock/lock Ul button on LCD, input digit image gets captured.
The size of the captured image is 112x112 as compared to MNIST dataset 28x28. So, it needs to be resized to 28x28 to match
the inference input.

To preserve the captured image, extra pixel of 3x3 matrix size is added across each pixel value “1”. Then image is cropped and
resized to 28x28. To improve the quality of image further, three extra pixels are added.

The application passes the image as pointer argument to CNN by calling the run_nn(uint8_t*) function. The arm_softmax_q7()
function returns the prediction of highest class for image recognition.

Figure 31. Correct input

Figure 32. Incorrect input

For more details on the MNIST Lock application, see application note AN12603.

5 Test report on MNIST dataset

The section illustrates results that demonstrate the behavior of the application when using different parameters for the CNN
definition and using user-defined training data.

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 19/22

NXP Semiconductors

Test report on MNIST dataset

5.1 Redesigning Caffe model and testing
You can redesign Caffe model by changing CNN parameter in the following designs.

» Design 1: Default design in Caffe model definition file, alexnet_train_test.prototxt

» Design 2:
— Filters in CONV1 layer = 20 (default)
— Filters in CONV2 layer vary from 20 to 32
— Filters in CONV2 layer vary from 50 to 64 in CNN Architecture.
» Design 3: Iteration for training Caffe model varies from 10k to 20k.
The Test report table below shows result of all the designs for each test case after redesigning Caffe model.

Table 1. Test report after redesigning Caffe model

Test type Total no. of digits Accuracy(%)

Design 1 100 98
Design 2 100 92
Design 3 100 97

Note: The test was performed with MNIST dataset on CMSIS-NN hello world application for total 100 images (10 images for each
digit from 0 to 9). Same image was used for all the test cases.

5.2 Retrain model using captured image from LCD screen

The test is performed by training the Caffe model with the captured images from LCD screen or MNIST dataset.

 Design 1: Retrained Caffe model = 8 k images (LCD).
» Design 2: Trained Caffe model = 8 k images (LCD), 54 K images (MNIST dataset).
» Design 3: Trained Caffe model = 8 k images (LCD), 72 K images (MNIST dataset).

The table below shows the test report of each test case after training Caffe model with captured LCD image.

Table 2. Test report after training Caffe model with captured LCD image

Test type Total no. of digits Accuracy(%)

Design 1 100 98

Design 2 100 97

Design 3 100 99
NOTE

Accuracy forimage testing may vary depending upon dataset on which model is trained and on the images through
which testing is performed.

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020

Application Note 20/22

NXP Semiconductors

Conclusion

6 Conclusion

This document explains Caffe model training with MNIST dataset for image classification of trained model using CMSIS-NN. The
document also describes how the trained model is converted to C source files and how to implement it on different existing projects
running on i.MX RT platforms.

Caffe Model Development on MNIST Dataset with CMSIS-NN Library, Rev. 0, 17 April 2020
Application Note 21/22

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

‘/RoHS

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink,
EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or
service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI,
Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,
DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, pVision,
Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US
and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of
Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power
and Power.org logos and related marks are trademarks and service marks licensed by
Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 17 April 2020
Document identifier: AN12781

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Deep neural network model development
	2.1 Training Caffe model on MNIST dataset

	3 Caffe model conversion
	3.1 Quantization
	3.2 Converting the quantized model into source file

	4 Adding source file in an application
	4.1 Adding source code in eIQ cmsis-nn cifar10 application
	4.2 Replacing TensorFlow-Lite with CMSIS-NN in Lock application
	4.3 Application details

	5 Test report on MNIST dataset
	5.1 Redesigning Caffe model and testing
	5.2 Retrain model using captured image from LCD screen

	6 Conclusion

