
1 Introduction
This application note describes how to use FlexIO module to emulate LIN
(Local Interconnect Network) bus based on i.MX RT series platform.

LIN is a widely used serial network protocol between components in vehicles.
While the RT series MCU does not directly support LIN peripheral, the LPUART
module of i.MX RT series can emulate the LIN bus. The FlexIO module can be
a good workaround when LPUART is occupied.

FlexIO is an on-chip peripheral available on NXP i.MX RT series. It is a highly
configurable module which is capable of emulating a wide range of
communication protocols, such as UART, I2C, SPI, I2S, and so on. Users can
also use FlexIO to emulate LIN bus.

This application creates a simple software demo based on the i.MX RT series
platform for users to use FlexIO module emulating LIN Master&Slave with
related configurations.

2 LIN overview
LIN is a low-cost serial communication protocol based on UART/SCI. LIN bus adopts the communication mode of one master
and multiple slaves, and the transmission rate of LIN can reach up to 20 kbit/s. A LIN communication network can connect up to
16 nodes, 1 host node, and 1 to 15 slave nodes. The topology of LIN bus is linear which means all node devices are connected
through single line. The following figure shows the LIN bus topology.

Figure 1. LIN bus topology

The host node contains the host task and the slave task, while the slave node contains only the slave task. The master task
decides when and which frame shall be transferred on the bus. The slave tasks provide the data transported by each frame.

Contents

1 Introduction.. 1

2 LIN overview.. 1

3 Emulating LIN by using FlexIO.............. 2
3.1 LIN transmitter

configuration.................. 2
3.2 LIN receiver

configuration.................. 4
3.3 LIN task model..............6

4 Run the example....................................9
4.1 Development

platform.......................... 9
4.2 Run the demo............. 11

5 References.. 12

6 Revision history................................... 13

AN12788
Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU
Rev. 0 — March, 2020 Application Note

A frame of LIN consists of a header (provided by the master task) and a response (provided by a slave task). The host task sends
the frame header, and the slave task determines whether to send or receive the response according to the frame header
information. The following figure shows the data transmission process on the bus.

Figure 2. LIN bus Data transmission process

The header consists of a break field and sync field followed by a frame identifier. The frame identifier uniquely defines the purpose
of the frame. The response consists of a data field and a checksum field. The following figure shows the structure of a complete
data frame.

Figure 3. LIN frame structure

The break field is used to signal the beginning of a new frame and it shall be at least 13 nominal bit times of dominant value. The
format of the rest of the data from the synchronous field to the checksum field is the same as that of the standard asynchronous
serial port. For each byte of data, there is 1 low-level start bit(dominant bit), 1 high-level stop bit(recessive bit), and no checksum
bit. A signal of LIN bus is transmitted with the LSB first and the MSB last. The sync field is a byte field with the data value 0x55.

3 Emulating LIN by using FlexIO
This chapter mainly introduces how to emulate LIN by using FlexIO module. LIN bus is a kind of low-cost serial communication
system. So, the configuration of FlexIO used in emulating LIN is similar to that used in emulating UART.

3.1 LIN transmitter configuration
To emulate the LIN transmitter, users must use the following resources:

• One timer — configured as 8-bit baud counter mode to control the data shift.

• One shifter — controlled by Timer to shift data from SHIFTBUF.

• One pin — connect to the Shifter to output data.

NXP Semiconductors
Emulating LIN by using FlexIO

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 2 / 14

Timer 0 is used to shift control the Shifter 0. The following figure shows the LIN transmitter block diagram.

Figure 4. LIN transmitter block diagram

Limited by the protocol, the baud rate of this application demo is set as 19200. The following table shows the configuration for
Timer 0.

Table 1. Configurations for Timer 0

Items Configurations

Trigger Select Shifter 0 status flag

Trigger Polarity Active low

Trigger Source Internal trigger

Pin Config Output disable

Pin Select N/A

Pin Polarity N/A

Timer mode Dual 8-bit counters baud mode

Timer Output Timer output is logic one when enabled and is not affected by timer reset

Timer Decrement Decrement counter on FlexIO clock, shift clock equals Timer output

Timer Reset Timer never resets

Table continues on the next page...

NXP Semiconductors
Emulating LIN by using FlexIO

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 3 / 14

Table 1. Configurations for Timer 0 (continued)

Timer Disable Timer disabled on timer compare

Timer Enable Timer enabled on trigger high

Timer Stop Bit Enabled on timer disable

Timer Start Bit Enable

Timer Compare ((bitCountPerChar1 * 2 - 1) << 8) | (baudrate_divider2/ 2 - 1))

1. bitCountPerChar is the number of bits of each data.
2. baudrate_divider can be calculated from FlexIO clock divided by LIN baud rate.

In 8-bit Baud Counter Mode, the 16-bit counter is divided into two 8-bit counters. The lower 8-bits are used to configure the baud
rate of the shift clock. The upper 8-bits are used to configure the number of shift clock edges in the transfer. When the lower 8-
bits decrease to zero, the timer output is toggled and the lower 8-bits reload from the compare register. The upper 8-bits decrease
when the lower 8-bits equal zero.

Table 2. Configurations for Shifter 0

Items Configurations

Timer Select Timer 0

Timer Polarity Shift on positive edge of shift clock

Pin Config Shifter pin output

Pin Select FlexIO_D21

Pin Polarity Active high

Shifter Mode Transmit mode

Input Source N/A

Shifter Stop Bit Stop bit high

Shifter Start Bit Start bit low

The shifter status flag is set when SHIFTBUF data has been transferred to the Shifter (SHIFTBUF is empty), and the status flag
is cleared when the SHIFTBUF register is written. The shifter status flag of Shifter 0 is configured to be the trigger of the Timer
0. So, as soon as the SHIFTBUT is written, the status flag is cleared and Timer 0 is enabled. The FlexIO_D21 pin is configured
as the data output pin. The Shifter 0 begins to shift out the data on the positive edge of the clock until the Timer 0 is disabled.
Timer 0 is disabled when the timer counter counts down to 0.

3.2 LIN receiver configuration
To emulate the LIN receiver, use the following resources:

• One timer — configured as 8-bit baud counter mode to control the data shift.

• One shifter — controlled by timer to input data into SHIFTBUF.

• One pin — connect to the shifter to input data.

NXP Semiconductors
Emulating LIN by using FlexIO

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 4 / 14

Timer 1 is used to shift control the Shifter 1. The following figure shows the LIN receiver block diagram.

Figure 5. LIN receiver block diagram

Table 3. Configurations for Timer 1

Items Configurations

Trigger Select trigger from pin FlexIO_D26

Trigger Polarity active high

Trigger Source external trigger

Pin Config output disable

Pin Select N/A

Pin Polarity N/A

Timer mode dual 8-bit counters baud mode

Timer Output Timer output is logic one when enabled and on timer reset

Timer Decrement decrement counter on FlexIO clock, shift clock equals Timer output

Timer Reset Timer reset on Timer Pin rising edge

Table continues on the next page...

NXP Semiconductors
Emulating LIN by using FlexIO

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 5 / 14

Table 3. Configurations for Timer 1 (continued)

Timer Disable Timer disabled on Timer compare

Timer Enable Timer enabled on Pin rising edge

Timer Stop Bit enabled on timer disable

Timer Start Bit enable

Timer Compare ((bitCountPerChar * 2 - 1) << 8) | (baudrate_divider / 2 - 1))

The FlexIO_D26 pin’s rising edge is configured to enable the Timer 1. The Shifter 1 begins to shift in the data on the negative
edge of the clock until the timer is disabled. The timer is disabled when the timer counter counts down to 0. Table 4 shows the
configuration for Shifter 1.

Table 4. Configurations for Shifter 1

Items Configurations

Timer Select Timer 1

Timer Polarity Shift on negative edge of shift clock

Pin Config Output disable

Pin Select FlexIO_D26

Pin Polarity Active high

Shifter Mode Receive mode

Input Source Input from pin

Shifter Stop Bit Stop bit high

Shifter Start Bit Start bit low

3.3 LIN task model
The configurations of transmitter and receiver of emulating LIN bus are the same as emulating UART, but these configurations
cannot meet the requirement of LIN host task generating break field. This section introduces how to implement LIN protocol data
transmission and reception.

3.3.1 Header of frame
The length of break field is at least 13 bits dominant value (low level). However, the standard format data includes a recessive
bit (high level), low level exceeding 9 bits cannot be transmitted under the normal configuration. So when master task needs to
initiate a data transfer, the configuration of FlexIO needs to be changed to implement the break field. Since the break field and
the synchronous field are fixed values, and the total number of bits of these two fields is 24 bits, we can disable the start and
stop bits of the first three bytes. The following figure shows the structure of these two fields.

NXP Semiconductors
Emulating LIN by using FlexIO

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 6 / 14

Figure 6. Structure of break and synchronous field

When master node send the Header, users can change the setting of Timer 0 and Shifter 0:

• Timer Stop Bit: Disable

• Timer Start Bit: Disable

• Shifter Stop Bit: Disable

• Shifter Stop Bit: Disable

And set the send size as 3 bytes, send data as {0x00, 0xA0, 0xAA}.

A slave node shall use a break detection threshold of 11 dominant local slave bit times. Get rid of the first bit as the start bit.
Change the upper 8 bits of the Timer 1, which configure the number of bits in each word, to a 10-bit per word.

• Timer Compare[15:8]: 0x13

3.3.2 Master node state machine
In this application, to simulate the send and response status, we set a state machine to manage the multiple running states. This
state machine contains the application layer and the driver layer. This application sets two enumeration variables to represent
the two layers. The following figure shows the state machine of LIN master node. Blue boxes represent application layer state,
green boxes represent driver layer state.

NXP Semiconductors
Emulating LIN by using FlexIO

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 7 / 14

Figure 7. Master node state machine

3.3.3 Slave node state machine
Same as the master node, the state machine of slave node also contains the application layer and the driver layer. The following
figure shows the state machine of LIN slave node.

NXP Semiconductors
Emulating LIN by using FlexIO

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 8 / 14

Figure 8. Slave node state machine

In this application, the slave node keeps monitoring the break field from the LIN bus. We use the FlEXIO_LIN_RxBreak_Enable
to change the setting for receiving break field and FlEXIO_LIN_RxData_Enable to set configuration back to normal for receiving
other fields.

4 Run the example

4.1 Development platform
This document describes the example application based on the i.MX RT1010-EVK board shown in the following figure. Users
can also easily enable this application on other i.MX RT series EVK board.

NXP Semiconductors
Run the example

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 9 / 14

Figure 9. i.MX RT1010-EVK Board

In this application, FlexIO using FlexIO_D21 as the transmitting pin and FlexIO_D26 as the receiving pin.

This demo uses two boards, one board as master and one board as slave. In order to comply with the physical layer standard of
Lin bus, a LIN transceiver is needed. This demo uses two TJA1020 modules to implement the single-wire LIN. The transceiver
uses GPIO21 to enable.

The connection between LIN nodes and transceivers is as follows:

Table 5. LIN nodes and transceiver connections

Master Node Transceiver Transceiver Slave Node

J26-4(LIN_TX) ↔ RX LIN ↔ LIN TX ↔ J26-8(LIN_RX)

J26-8(LIN_RX) ↔ TX INH INH RX ↔ J26-4(LIN_TX)

J26-2(Trans_EN) ↔ SLP 12 V 12 V SLP ↔ J26-2(Trans_EN)

J60-14(GND) ↔ GND GND ↔ GND GND ↔ J60-14(GND)

NXP Semiconductors
Run the example

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 10 / 14

4.2 Run the demo
Users can download the software from www.nxp.com. Find the IAR project flexio_LIN. This demo contains the master node and
slave node codes which are separated by a macro. In flexio_LIN_driver.h file, set the macro FLEXIO_LIN_MODE as
FLEXIO_LIN_SLAVE_MODE and FLEXIO_LIN_MASTER_NODE, and separately download to two boards, connect these boards
and transceiver modules as above and run the two boards.

The following figure shows the waveform that an oscilloscope captures from the LIN bus.

Figure 10. Header of LIN captured by oscilloscope

The following figure shows the information printed by debug port when the master node controls the slave node’s LED brightness.
Users can type in the characters ‘L’,’M’, or ‘H’ in the master node’s debug console to change the remote slave node’s LED
brightness.

NXP Semiconductors
Run the example

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 11 / 14

https://www.nxp.com

Figure 11. Control information printed by debug console

5 References
1. i.MX RT1010 Processor Reference Manual (document I.MXRT1010RM)

2. MCUXpresso SDK: Software Development Kit for NXP MCUs (https://mcuxpresso.nxp.com/en/welcome).

NXP Semiconductors
References

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 12 / 14

https://www.nxp.com.cn/products/processors-and-microcontrollers/arm-microcontrollers/i.mx-rt-series/i.mx-rt1010-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1010?tab=Documentation_Tab
https://mcuxpresso.nxp.com/en/welcome

6 Revision history
Table 6. Revision history

Revision number Date Substantive changes

0 03/2020 Initial release

NXP Semiconductors
Revision history

Emulating LIN Master/Slave with the FlexIO on i.MX RT Series MCU, Rev. 0, March, 2020
Application Note 13 / 14

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: March, 2020
Document identifier: AN12788

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 LIN overview
	3 Emulating LIN by using FlexIO
	3.1 LIN transmitter configuration
	3.2 LIN receiver configuration
	3.3 LIN task model
	3.3.1 Header of frame
	3.3.2 Master node state machine
	3.3.3 Slave node state machine

	4 Run the example
	4.1 Development platform
	4.2 Run the demo

	5 References
	6 Revision history

