AN13106 Migration guide from i.MX RT1060 to i.MX RT1170

Rev. 1 — February 18, 2021

by: NXP Semiconductors

Application Note

1 Introduction

This document describes key differences and new features on <u>i.MX RT1170</u>, compared with i.MX RT1060. This document can be used as the migration reference. It is intended for audience:

- who have developed some projects based i.MX RT1060 and decided to migrate the project into i.MX RT1170.
- who is familiar with i.MX RT1060 and want to start the new project based on previous knowledge on i.MX RT1060.

Contents

1 2 3 4 5 6 6.1 6.2	Introduction
7 8	Power mode/management6 DMA6
8 9 10	Memory map
11	Graphic and display8
11.1	Graphics Processing Unit (GPU2D)
11.2	LCDIFv28
12	Audio9
12.1	ASRC9
12.2	PDM MIC interface9
13	Low speed peripherals10
13.1	FlexIO10
14	EMVSIM
15	Watchdog10
16	Analog11
17	Boot11
18 19	Security 12 Software migration consideration14
20	References14
20 21	Revision history14

2 SOC comparison

Table 1 lists the SOC comparisons. Text in red is new features on i.MX RT1170.

Table 1. SOC comparison

Items for comparison	i.MX RT1060	i.MX RT1170
Core and on-chip RAM		
	CM7 @ Up to 600 MHz	CM7 @ Up to 1 GHz
Core 0	32 KB I-Cache	32 KB I-Cache
	32 KB D-Cache	32 KB D-Cache
		CM4 @ Up to 400 MHz
Core 1	—	16 KB I-Cache
		16 KB D-Cache
FLEX RAM	512 KB	512 KB
	512 KB	512 KB + 128 KB OCRAM1
OCRAM		512 KB + 128 KB OCRAM2
		256 KB (Shared with CM4 TCM)
External memory interface		
SEMC - SDRAM	8/16-bit SDRAM	8/16/32-bit SDRAM
	up to 166 MHz	Up to 200 MHz
SEMC - NAND	8/16-bit SLC NAND FLASH	8/16-bit SLC NAND FLASH
SEMC - Parallel NOR FLASH/SRAM	Up to 16 bit	Up to 16 bit
uSDHC - SD/eMMC	eMMC 4.5/SD 3.0	eMMC 5.0/SD 3.0
Flex SPI	2	2
Flex SPI - Width	Up to 8 bit	Up to 16 bit
Flex SPI - Single/Dual/Quad SPI interface	\checkmark	\checkmark
Flex SPI - Hyper	\checkmark	\checkmark
Flex SPI - PSRAM	_	\checkmark
Flex SPI - OCT interface with XIP support	\checkmark	\checkmark
Graphic, Display & Camera	•	•
LCDIF	\checkmark	\checkmark
LCDIFv2	-	\checkmark

Table continues on the next page...

Table 1. SOC comparison (continued)

Items for comparison	i.MX RT1060	i.MX RT1170	
РХР	\checkmark	\checkmark	
GPU	—	\checkmark	
Parallel CSI	\checkmark	\checkmark	
Parallel DSI	\checkmark	\checkmark	
MIPI CSI	_	\checkmark	
MIPI DSI	—	\checkmark	
Connectivity			
USB	2	2	
10/100M ENET with IEEE1588	2	1	
1G ENET with AVB	_	1	
1G ENET with TSN	_	1	
UART	8	12	
LPSPI	4	6	
12C	4	6	
FlexCAN	3	3	
FlexIO	3	2	
EVMSIM	_	2	
GPIO	149	174	
Audio			
SAI	3	4	
SPDIF	1	1	
ASRC	_	1	
PDM MIC		1	
MQS	1	1	
Timer	Timer		
WDOG	4	5	

Table continues on the next page ...

Table 1. SOC comparison (continued)

Items for comparison	i.MX RT1060	i.MX RT1170
GPT	6	6
QDC	4	4
QTimer	4	4
FlexPWM	4	4
PIT	1	2
Analog		
АСМР	4	4
ADC	2	0
LPADC	0	2
ADC ETC	1	1
DAC	0	1
TSC	1	0
Others		
eDMA	1	2
8 × 8 Keypad	\checkmark	\checkmark
Security	\checkmark	\checkmark

3 Package

As shown in Table 2, i.MX RT1170 is a 289-pin MAPBGA while i.MX RT1060 is a 196-pin MAPBGA. i.MX RT1170 has a larger package in order to accommodate additional functionality and change to the power architecture.

Table 2. Package comparison

	RT1060	RT1170
Package	196-pin MAPBGA	289-pin MAPBGA

4 Pin mux

For the new pin mux on i.MX RT1170, user can refer to Table 3.

Table 3. Pin mux information/tools

Pin mux information/tools	Comments
Muxing Options table in RM	Give pin list information for a peripheral.
Pin Assignments in RM	Give pin mux list information on a pin and also show pad setting.
Pin Assignments in excel format	This table is in the attachment of this document as an option for pin assignment.
Pin config tool in MCUXpresso or standalone tools	A powerful graphic tool help customer to assign pin for application.

5 Power supply change

The following describes key differences between i.MX RT1170 and RT1060. For details, see *Hardware Development Guide for the MIMXRT1170 Processor* (document MIMXRT1170HDUG) and *MIMXRT1170 EVK Board Hardware User's Guide* (document MIMXRT1170EVKHUG).

- i.MX RT1170 has more power domains than RT1060, especially introduces NVCC_LPSR domain. You will see during power up sequence only if VDD LPSR DIG is stable, VDD SOC IN can be applied after 1 ms delay.
- i.MX RT1170 uses POR pin reset in VDD_SNVS_DIG (1.8 V) domain, which means to add external pull up or to use external POR logic, guarantee the voltage level first.
- i.MX RT1170 internal DCDC has two outputs, VDD_DIG for core platform and 1.8 V for chip supply. i.MX RT1060 has only one output.
- i.MX RT1170 is an automotive grade product and the internal DCDC load capacity is limited, so external PMIC is required to power the core platform. For RT1060, internal DCDC is suggested for different standard products.

6 Clock

6.1 Overview

i.MX RT1170 clock architecture is new. It consists of three parts:

- Crystal/OSC/PLL/PLL_PFD as clock source
- · Available clock source for each clock root and divider setting
- Clock gate

For more important information related to the below, see i.MX RT1170 Processor Reference Manual (document IMXRT1170RM).

- System Clocks Table: Gives the IP clock mapping to system clock source.
- Clock Tree: Gives the clock path from clock source to each root clock.
- Clock Sources Table: Lists all possible clock sources.
- Clock Root Table: Give the available clock source for each root clock.
- Clock Gate Table: Lists all the gate control.
- Clock Group: Lists all the clock groups (Synchronized clock).

6.2 Oscillator & PLL

Table 4. Oscillator & PLL comparison

Oscillator & PLL	RT1060	RT1170
Crystal Oscillator 24 MHz	\checkmark	\checkmark
Crystal Oscillator 32 KHz	\checkmark	\checkmark
RC Oscillator 32 KHz	\checkmark	\checkmark
RC Oscillator 16 MHz	_	\checkmark
RC Oscillator 24 MHz	\checkmark	—
RC Oscillator 48 MHz	_	\checkmark
RC Oscillator 400 MHz		\checkmark
PLL1	ARM PLL (Up to 600 MHz core)	ARM PLL (Up to 1 GHz core)
PLL2	SYS PLL (Dedicated 528 MHz)	SYS PLL1 Dedicated 1 GHz)
PLL3	USB1 PLL (Dedicated 480 MHz)	SYS PLL2 (Dedicated 528 MHz)
PLL4	AUDIO PLL (650-1300 MHz)	SYS PLL3 (Dedicated 480 MHz)
PLL5	VIDEO PLL (650-1300 MHz)	AUDIO PLL (650-1300 MHz)
PLL6	ENET PLL (Dedicated 500 MHz)	VIDEO PLL (650-1300 MHz)
PLL7	USB2 PLL (Dedicated 480 MHz)	_

7 Power mode/management

Compared with i.MX RT1060, i.MX RT1170 is based on brand new power architecture. For more details, see *i.MX RT1170 Processor Reference Manual* (document IMXRT1170RM) and *Debug and Application for RT1170 Clock and Low Power Feature* (document AN13104).

8 DMA

Table 5. DMA for i.MX RT1060 and i.MX RT1170

Items for comparison	i.MX RT1060	i.MX RT1170
eDMA (32 channel)	\checkmark	\checkmark
eDMA_LPSR (32 channel)	_	\checkmark

9 Memory map

 Table 6 lists some key memory maps for comparison. For more detailed information, see *i.MX RT1170 Processor Reference Manual* (document IMXRT1170RM).

Items for comparison	i.MX RT1060	i.MX RT1170
CM7 FLEX RAM ITCM	0x0000_0000 - 0x0001_FFFF (Default 128 KB)	0x0000_0000 - 0x0003_FFFF (Default 256 KB)
CM7 FLEX RAM DTCM	0x2000_0000 - 0x2001_FFFF (Default 128 KB)	0x2000_0000 - 0x2003_FFFF (Default 256 KB)
CM7 OCRAM (mapping from CM4 TCM)	_	0x2020_0000 - 0x2023_FFFF (256 KB)
CM7 OCRAM1	0x2020_0000 - 0x2027_FFFF (512 KB)	0x2024_0000 - 0x202B_FFFF (512 KB)
CM7 OCRAM2	_	0x202C_0000 - 0x2033_FFFF (512 KB)
CM7 OCRAM1 ECC	_	0x2034_0000 - 0x2034_FFFF (64 KB)
CM7 OCRAM2 ECC	_	0x2035_0000 - 0x2035_FFFF (64 KB)
CM7 OCRAM(FLEX RAM ECC)	_	0x2036_0000 - 0x2037_FFFF (128 KB)
CM7 FLEX RAM OCRAM	0x2028_0000 - 0x2028_FFFF (Default 256 KB)	0x2038_0000 - 0x2038_0000 (Default 0 KB, maximum 512 KB)
CM4 ITCM	_	0x1FFE_0000 - 0x1FFF_FFFF (128 KB)
СМ4 DTCM	_	0x2000_0000 - 0x2001_FFFF (128 KB)
CM4 OCRAM (From CM4 TCM)	_	0x2020_0000 - 0x2023_FFFF (256 KB)
CM4 OCRAM1	_	0x2024_0000 - 0x202B_FFFF (512 KB)
CM4 OCRAM2	_	0x202C_0000 - 0x2033_FFFF (512 KB)
CM4 OCRAM1 ECC	_	0x2034_0000 - 0x2034_FFFF (64 KB)
CM4 OCRAM2 ECC	_	0x2035_0000 - 0x2035_FFFF (64 KB)
CM4 OCRAM(From FLEX RAM ECC)	_	0x2036_0000 - 0x2037_FFFF (128 KB)
CM4 OCRAM (From CM7 FLEX RAM)	_	0x2038_0000 - 0x2038_0000 (Default 0 KB, maximum 512 KB)
SEMC	0x8000_0000 - 0xDFFF_FFFF (1.5 GB)	0x8000_0000 - 0xDFFF_FFFF (1.5 GB)
FlexSPI1	0x6000_0000 - 0x6FFF_FFFF (256 MB)	0x3000_0000 - 0x3FFF_FFFF (256 MB)
FlexSPI2	0x7000_0000 - 0x7EFF_FFFF (240 MB)	0x6000_0000 - 0x6FFF_FFFF (256 MB)

10 ECC

Table 7 lists ECC feature comparison.

Items for comparison	i.MX RT1060	i.MX RT1170
FLEX RAM ECC	_	\checkmark
OCRAM MECC64	_	\checkmark
External XECC	_	\checkmark

Table 7. ECC comparison

11 Graphic and display

11.1 Graphics Processing Unit (GPU2D)

Graphics Processing Unit (GPU) provides high performance, low-power consumption, and high-quality graphics. It supports raster, vector graphics encompassing most of the embedded graphics use-case scenarios. The following hardware platform and operating system independent APIs are provided. These APIs provide user controls for optimizing the acceleration capabilities available with GPU.

- OpenVG 1.1 API Standard for Vector Graphics Acceleration
- VGLite Graphics API

11.1.1 OpenVG 1.1 API standard for vector graphics acceleration

OpenVG is a royalty-free, cross-platform API managed by Khronos Group. It provides a low-level hardware acceleration interface for vector graphics libraries such as Flash and SVG. OpenVG is used for acceleration of high-quality vector graphics for user interfaces and text on small screen devices.

11.1.2 VGLite graphic API

The GPU can also be used with the VGLite Graphics API. It is designed to support menu-driven user interfaces optimized for a system's overall resource requirements. The goal is to provide maximum performance and keep the memory footprint to a minimum. It has a feature set smaller than required to pass Khronos OpenVG CTS. Supported features include: Porter-Duff Blending, Gradient Controls, Fast Clear, Arbitrary Rotations, Path Filling rules, Path painting, and Pattern Path Filling.

The VGLite API is partitioned to provide controls for following functionalities:

- Initialization: For Hardware and Software initialization
- Pixel Buffers Management: For GPU surface buffer allocate/free
- · Matrix control: For transformation including rotation, scale, and translate
- Blit: For Raster rendering with compositing, blending, CSC, etc.
- · Vector Path Control: For 2D path data setup
- **Draw**: For Draw operations

The VGLite Graphics API document is available as a part of the Software Development Kit (SDK).

11.2 LCDIFv2

LCDIFv2 is a new graphic IP on i.MX RT1170 with the following features:

- Display layers can support up to maximum eight layers of alpha blending.
 - One Background (BG) layer for static background image
 - One Foreground (FG) layer for video

- Six User Interface (UI) layers for the icons, test, moving pointers etc.
- The UI layers are for small objects which can be stored in OCRAM.
- The index color (1/2/4/8 bpp) support for each layer and lookup with separate. Color Look-Up Table (CLUT) memory to 32 bits ARGB pixel.
- · Each layer supports:
 - Programmable plane size, Width/Height/Pitch, and X/Y offset on the panel.
 - Background color for plane graphics
 - Embedded alpha and global alpha
 - Index color, 1/2/4/8 bpp
 - Other layer encoding formats:
 - · RGB565/ARGB1555/ARGB4444
 - · YCbCr422, supporting up to two YCbCr layers in blending operation
 - · RGB888/ARGB8888/ABGR8888
- Support one parallel camera interface input and the following data formats of CSI-2:

12 Audio

12.1 ASRC

The Asynchronous Sample Rate Converter (ASRC) is a new IP on i.MX RT1170 which converts the sampling rate of a signal associated with an input clock into a signal associated with a different output clock.

The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120 dB THD+N and supports up to three sampling rate pairs.

The incoming audio data to this chip may be received from various sources at different sampling rates. The outgoing audio data of this chip may have different sampling rates and it can be associated with output clocks that are asynchronous to the input clocks.

12.2 PDM MIC interface

i.MX RT1170 has a new feature which supports four lanes up to eight channel of PDM D-MIC audio input.

Features:

- Decimation filters
 - Fixed filtering characteristics for audio application
 - 24-bit signed filter output
 - Dynamic range: <140dB at 1KHz tone (0dBFS); per AES17
 - Internal clock divider for a programmable PDM clock generation
 - Full or partial set of channels operation with individual enable control
 - Programmable decimation rate
 - Programmable DC remover
 - Range adjustment capability
 - FIFOs with interrupt and DMA capability
 - Each FIFO with 8 entries length

- Hardware Voice Activity Detector (HWVAD)
 - Interrupt capability
 - Zero-Crossing Detection (ZCD) option

13 Low speed peripherals

13.1 FlexIO

Table 8. FlexIO

Items for comparison	i.MX RT1060	i.MX RT1170
Instance count	3	2
Port size	Up to 32 bit	Up to 32 bit
Shifter count	4	8
Timer count	4	8

14 EMVSIM

Relative to i.MX RT1060, the EMVSIM module is a new IP on i.MX RT1170 which supports the following features:

- Independent clock for SIM logic (transmitter + receiver) and independent clock for register read-write interface
- 16 byte deep FIFO for transmitter and receiver
- · Automatic NACK generation on parity error and receiver FIFO overflow error
- Both Inverse and Direct conventions
- · Re-transmission of byte upon Smart Card NACK request with programmable threshold of re-transmissions
- Auto detection of Initial Character in receiver and setting of data format, inverse or direct
- · NACK detection in receiver
- · Independent timers to measure character wait time, block wait time and block guard time
- Two general purpose counters available for use by software application with programmable clock selection for the counters
- DMA support is available to transfer data to/from FIFOs. Programmable option is available to select interrupt or DMA feature
- Programmable Pre-scaler generates the desired frequency for Card Clock and Baud Rate Divisor generates the internal ETU clocks for transmitter and receiver for any F/D ratio
- · Deep sleep wake-up via Smart Card presence detect interrupt
- · Manual control of all Smart Card interface signals
- Automatic power down of port logic on Smart Card presence detect
- · 8-bit LRC and 16-bit CRC generation for bytes from the transmitter and incoming message checksum for the receiver

15 Watchdog

Table 9 lists the watchdog comparison.

Table 9. Watchdog comparison

Items for comparison	i.MX RT1060	i.MX RT1170
Watchdog	2	2
RTWDOG	1	2
External Watchdog Monitor (EWM)	1	1

16 Analog

RT1170 does not contain Touch Screen Controller (TSC).

The ADC peripherals for RT1170 are redesigned LPADC and the block diagram structure is completely different from that of the i.MX RT1060. For details, see *i.MX RT1170 Processor Reference Manual* (document IMXRT1170RM).

Table 10 lists the feature comparison.

Table 10. ADC for i.MX RT1060 and i.MX RT1170

Items for comparison	i.MX RT1060	i.MX RT1170
Max sampling rate	1 MS/s	4.2 MS/s
External analog inputs	16	20
Differential operation with 13-bit resolution	_	\checkmark
Result data FIFO supported	—	\checkmark
Command buffers	_	15
Channel scaling	_	\checkmark

17 Boot

Table 11 lists differences related to system boot between the RT1060 and the RT1170.

Table 11. System boot differences between RT1060 and RT1170

Feature	Decryption	i.MX RT1060	i.MX RT1170
Boot Device	 Serial NOR/NAND Raw NAND SD/MMC 1-bit SPI NOR/EEPROM 	Supported	Supported
	Parallel NOR	Supported	Unsupported
Serial Downloader		sdphost	blhost
	• USB-HID	Supported	Supported

Table continues on the next page...

Feature	Decryption	i.MX RT1060	i.MX RT1170
	• UART		
Boot Core	N/A	CM7	CM7/CM4
External	• DCD	Supported	Supported
RAM destination	• XMCD	Unsupported	Supported
Internal RAM ECC	N/A	Unsupported	Supported

Table 11. System boot differences between RT1060 and RT1170 (continued)

18 Security

Table 12 lists differences related to the security between RT1060 and RT1170.

Table 12. Security differences between RT1060 a	and RT1170
---	------------

Feature	Decryption	i.MX RT1060	i.MX RT1170
	Authenticated & Encrypted boot	Supported	Supported
	Signature Format	CMS PKCS#1	CMS PKCS#1
	Public Key Type	RSA public keys (1024-bit, 2048-bit, 3072-bit and 4096-bit)	 RSA public keys (1024-bit, 2048-bit, 3072-bit and 4096-bit) ECC (P256/P384/P-521)
	Certificate Format	• X.509v3 certificates	X.509v3 certificates
Secure Boot	Encrypted XIP	 BEE AES-128 ECB and CTR Decrypt cypher context of FlexSPI 	 OTFAD1/2 CTR-AES (128 bit) Decrypt cypher context of FlexSPI IEE XTS-AES 256, 512 bit CTR-AES 128, 256 bit RAM encryption/decryption FlexSPI decryption only
Crypto Engine	Hash Algorithm Engine	• DCP — SHA-1, SHA-256	• CAAM SHA-1, SHA-2 224/256/384/512 MD5 HMAC

Table continues on the next page ...

Table 12. Security differences between RT1060 and RT1170 (continued)

Feature	Decryption	i.MX RT1060	i.MX RT1170
	Symmetric Algorithm Engines	• DCP — AES-128 (ECB and CBC modes)	 CAAM AES 128, 192, 256 with baseline modes (additional modes include GCM, CMAC) 3DES/DES
	Asymmetric Algorithm Engine	• DCP — Unsupported	 CAAM RSA (up to 4096 bits) ECDSA (up to 521) ECDH Scalar-number Arithmetic ECC point Arithmetic
	RNG	 SA-TRNG — Entropy source 	CAAM — RNG4 seeded by TRNG
Key management	Key Mangement	• OCOTP — OTPMK — SW_GP2	 OCOTP — OTPMK — USER_KEY1/2/3/4/5 PUF
Always-on Domain	Secure Non-Volatile Storage (SNVS)	 Secure Real-time Clock (SRTC) Zero Master Key (ZMK 128 bits) Digital Low-Voltage Detector Power glitch detector 	 Secure Real-time Clock (SRTC) Zero Master Key (ZMK 256 bits) Digital Low-Voltage Detector Power glitch detector 4 KB secure retention RAM Provides a 1 K bit register protected by tamper Voltage, temperature and Frequency Tamper detector (RT1173 only) 10 external Tamper PINs (RT1173 only)
Secure Debug	Challenge-response mechanism	SJC (56 bit response)	JTAGC (128 bit response)
Others	Access Protection	• CSU	 RDC xRDC IEE_APC

Table continues on the next page...

Table 12. Security differences between RT1060 and RT1170 (continued)
--

Feature	Decryption	i.MX RT1060	i.MX RT1170
	Manufacturing Protection (MP)	Unsupported	Supported

For tamper feature application, see How to use Tamper Function (document AN13078).

19 Software migration consideration

For software migration, similar with i.MX RT1060, i.MX RT1170 SW ecosystem is based on MCUXpresso SDK/IDE/Tools, as listed in Table 13.

Items for comparison	i.MX RT1060	i.MX RT1170
MCUXpresso SDK	\checkmark	\checkmark
MCUXpresso IDE	\checkmark	\checkmark
MCUXpresso Config Tools	\checkmark	\checkmark
MCUXpresso Secure Provisioning Tools	\checkmark	\checkmark
IAR	\checkmark	\checkmark
Keil	\checkmark	\checkmark
GCC	\checkmark	\checkmark

For the software-related silicon features, such as, clock, power mode, new IP on i.MX RT1170, users need to port the codes or re-design on the i.MX RT1170 platform.

Codes related with the same IP feature on both i.MX RT1170 and i.MX RT1060 can be reused. Differences due to different SDK version should be considered.

20 References

- i.MX RT1170 Processor Reference Manual (document IMXRT1170RM)
- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products (document IMXRT1170CEC)

21 Revision history

Table 14. Revision history

Rev.	Date	Description
0	December 30, 2020	Initial release
1	February 18, 2021	Updated RT1050/60 with RT1060

How To Reach Us Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020-2021.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: February 18, 2021 Document identifier: AN13106

