# AN13249 i.MX 8QuadMax Current Drain with Low- and High-Power Use Cases

Rev. 1 — 22 July 2021

Application Note

## 1 Introduction

This application note presents current drain measurements of the i.MX 8 QuadMax Application Processor utilizing several low- and high-power use cases. The NXP MEK (Multisensory Evaluation Kit) Platform was utilized for test bench data collection.

Contents

| 1 | Introduction1                    |
|---|----------------------------------|
| 2 | System Power Tree1               |
| 3 | Test Cases, Hardware, and Data 2 |
| 4 | Supply Current for I/O11         |
| 5 | References12                     |
| 6 | Revision history12               |

You can use the *i.MX 8QuadMax Automotive and Infotainment Applications Processors* data sheet as a companion document with this application note. See the Operating Ranges table in the data sheet.

The data presented in this application note is based on empirical measurements taken on a small sample size of processor revision B0 silicon. Due to the sample size, the presented results are not guaranteed across all process, voltage, and temperature ranges.

## 2 System Power Tree

The i.MX 8 QuadMax processor has several power supply domains (voltage supply rails). The following table shows how some of the independent power rails of the processor are merged on the MEK design. Power rails referenced in this application note use MEK schematic power rail net names.

| Toble 1  | Dragogor | Dowor | Domoino | Consolidation |  |
|----------|----------|-------|---------|---------------|--|
| Table I. | FIOCESSO | rower | Domains | Consolidation |  |

| MEK Schematic Power Rail Net Name | Associated Processor and Peripheral Supply                                                  |
|-----------------------------------|---------------------------------------------------------------------------------------------|
| VCC_SNVS                          | VDD_SNVS_4P2                                                                                |
| VCC_SCU_1V8                       | VDD_SCU_1P8 + VDD_SCU_XTAL_1P8 + VDD_ANAx_1P8 +<br>VDD_SCU_ANA_1P8 + VDD_CP_1P8             |
| VCC_CPU1                          | VDD_A72                                                                                     |
| VCC_CPU0                          | VDD_A53                                                                                     |
| VCC_GPU0                          | VDD_GPU0                                                                                    |
| VCC_GPU1                          | VDD_GPU1                                                                                    |
| VCC_MEMC                          | VDD_MEMC                                                                                    |
| VCC_MAIN                          | VDD_MAIN + VDD_MIPI_CSIx_1P0 + VDD_MIPI_DSIx_1P0 +<br>VDD_MIPI_DSIx_PLL_1P0 + VDD_LVDSx_1P0 |
| VCC_DDRIO0                        | VDD_DDR_CH0_VDDQ + VDD_DDR_CH0_VDDQ_CKE +<br>External LPDDR4 DRAM VDDQ & VDD2               |



| MEK Schematic Power Rail Net Name | Associated Processor and Peripheral Supply                                    |
|-----------------------------------|-------------------------------------------------------------------------------|
| VCC_DDRIO1                        | VDD_DDR_CH1_VDDQ + VDD_DDR_CH1_VDDQ_CKE +<br>External LPDDR4 DRAM VDDQ & VDD2 |
| VCC_1V8                           | 1V8 <sup>1</sup>                                                              |
| VCC_3V3                           | 3V3 <sup>2</sup>                                                              |

- VDD\_PCIE\_IOB\_1P8, VDD\_ADC\_1P8, VDD\_ADC\_DIG\_1P8, VDD\_HDMI\_RX0\_1P84, VDD\_HDMI\_TX0\_1P8, VDD\_LVDS0\_1P8, VDD\_LVDS1\_1P8, VDD\_MIPI\_CSI0\_1P8, VDD\_MIPI\_CSI1\_1P8, VDD\_MIPI\_DSI0\_1P8, VDD\_MIPI\_DSI1\_1P8, VDD\_MLB\_1P8, VDD\_PCIE\_LDO\_1P8, VDD\_PCIE\_SATA0\_PLL\_1P84, VDD\_PCIE0\_PLL\_1P8, VDD\_PCIE1\_PLL\_1P8, VDD\_USB\_HSIC0\_1P8, VDD\_ANA0\_1P8, VDD\_MIPI\_CSI\_DIG\_1P8xx, VDD\_ENET1\_1P8\_2P5\_3P3, VDD\_ENET0\_1P8\_3P3, VDD\_EMMC0\_1P8\_3P3, VDD\_USDHC\_VSELECT\_1P8\_3P3, VDD\_ESAI0\_MCLK\_1P8\_3P3, VDD\_ESAI1\_SPDIF\_SPI\_1P8\_3P3, VDD\_LVDS\_DIG\_1P8\_3P3, VDD\_M4\_GPT\_UART\_1P8\_3P3, VDD\_MIPI\_DSI\_DIG\_1P8\_3P3, VDD\_QSPI0\_1P8\_3P3, VDD\_SPI\_SAI\_1P8\_3P3. 2 x DRAM VDD1, eMMC VCCQ, and several low-power peripheral devices are powered by VCC\_1V8.
- VDD\_HDMI\_RX0\_VH\_RX\_3P3, VDD\_HDMI\_TX0\_DIG\_3P3, VDD\_USB\_OTG1\_3P3, VDD\_USB\_OTG2\_3P3, VDD\_USB\_SS3\_TC\_3P3, VDD\_PCIE\_DIG\_1P8\_3P3, VDD\_ENET\_MDIO\_1P8\_3P3 (VDD\_ENET\_MDIO\_1P8\_2P5\_3P3), VDD\_FLEXCAN\_1P8\_3P3, VDD\_MLB\_DIG\_1P8\_3P3, VDD\_QSPI1A\_1P8\_3P3. . The LDO that generates VCC\_EXT\_LDO\_USB for processor HSIC is powered by VCC\_3V3. In addition, the ENET PHY, PCIe 100 MHz reference clock generator, and several low-power peripheral devices are powered by VCC\_3V3.

## 3 Test Cases, Hardware, and Data

Data is presented utilizing several low-power and high-power use cases as described in the next subsections. Junction temperature conditions of 25°C, 105°C, and 125°C are shown in the tables. In the following tables, some entries appear lower at high temperature as readings are impacted by several factors including noise and the 60-second measurement interval for average current. DRAM current includes both the processor and DRAM chip.

Hardware utilized is a modified NXP MEK (Multisensory Evaluation Kit) Platform. Additional series resistors are added on MEK power rails at the PMIC inductor sites to facilitate current measurement. The exception is VCC\_SCU\_1V8 where the series resistor site is used. Data is obtained by measuring voltage drop across  $0.025 \Omega$  series resistors on each supply rail, then dividing by the resistor value to derive current. The tolerance of the  $0.025 \Omega$  resistors is 1%.

VCC\_SCU\_1V8 setpoint is 1.7 V, as defined in the *i.MX 8QuadMax Automotive and Infotainment Applications Processors* data sheet.

With the exception of KS0, data is representative of several samples both from randomly-selected devices and matrix lots. Data is presented as the minimum and maximum values extracted from raw data for the samples selected.

## 3.1 KS0 – Low-Power Key State 0

KS0 is defined by the following conditions.

- VDD\_SNVS = 4.2 V, all other supplies = 0 V
- · 32.768 kHz oscillator enabled
- RTC (Real-Time Clock) running
- Tamper not active

Summarized data on > 1000 processor samples are presented. Data is presented as minimum and maximum values extracted from ATE (Automated Test Equipment) data.

i.MX 8QuadMax Current Drain with Low- and High-Power Use Cases, Rev. 1, 22 July 2021

#### Table 2. KS0 Results

|                                   |         | 125 °C          |         |  |
|-----------------------------------|---------|-----------------|---------|--|
| MEK Schematic Power Rail Net Name | Voltage | Max Min         |         |  |
|                                   | (V)     | Average         | Average |  |
|                                   |         | Current Current |         |  |
|                                   |         | (mA)            | (mA)    |  |
| VCC_SNVS                          | 4.2     | 0.047           | 0.007   |  |

### 3.2 KS1 – Low-Power Key State 1

KS1 is defined by the following conditions.

- RAM and I/O state retained
- · 32.768 kHz oscillator enabled
- · 24 MHz oscillator, PLLs, and ring oscillators off
- DRAM in self-refresh, associated I/Os disabled
- · PHYs in idle state
- MEMC, A53, A72, and GPUs not powered
- VCC\_MAIN = 0.8 V

#### Table 3. KS1 Results

|                                      |                | 25°C                           |                                   | 105°C                          |                                   | 125°C                          |                                   |
|--------------------------------------|----------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|
| MEK Schematic Power<br>Rail Net Name | Voltage<br>(V) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) |
| VCC_MAIN                             | 0.8            | 12.1                           | 2.0                               | 96.3                           | 31.7                              | 148                            | 58                                |
| VCC_CPU0 (A53)                       | 0              | -                              | -                                 | -                              | -                                 | -                              | -                                 |
| VCC_CPU1 (A72)                       | 0              | -                              | -                                 | -                              | -                                 | -                              | -                                 |
| VCC_GPU0                             | 0              | -                              | -                                 | -                              | -                                 | -                              | -                                 |
| VCC_GPU1                             | 0              | -                              | -                                 | -                              | -                                 | -                              | -                                 |
| VCC_DDRIO0                           | 1.1            | 1.6                            | 1.1                               | 4.6                            | 3.6                               | 6.6                            | 6.4                               |
| VCC_DDRIO1                           | 1.1            | 1.6                            | 1.3                               | 4.9                            | 3.8                               | 6.9                            | 6.8                               |
| VCC_MEMC                             | 0              | -                              | -                                 | -                              | -                                 | -                              | -                                 |
| VCC_1V8                              | 1.8            | 7.5                            | 7.3                               | 9.4                            | 8.7                               | 11                             | 10                                |

#### Table 3. KS1 Results (continued)

|                                      |                | 25°C                           |                                   | 105°C                          |                                   | 125°C                          |                                   |
|--------------------------------------|----------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|
| MEK Schematic Power<br>Rail Net Name | Voltage<br>(V) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) |
| VCC_3V3 <sup>1</sup>                 | 3.3            | 107                            | 106                               | 109                            | 105                               | 109                            | 109                               |
| VCC_SCU_1V8                          | 1.7            | 6.0                            | 2.3                               | 6.7                            | 2.5                               | 7.0                            | 2.9                               |

 Approximately 88 mA is consumed by the PCIe 100 MHz reference and ENET PHY peripheral devices across temperature. With these 2 devices removed from one board, KS1 VCC\_3V3 system current drain measured approximately 20 mA across temperature. Although not measured, the PCA9511 I2C buffer data sheet indicates typical supply current of 3.5 mA each. Two of these devices are on the VCC\_3V3 rail.

## 3.3 KS2 – Low-Power Key State 2

KS2 is defined by the following conditions.

- · Linux operating
- 1 x A53 powered, running at 900 MHz
- 2 x A72 not powered
- GPUs powered and idling
- Screens are off, no display traffic occurring

|                                      |                | 25°C                           |                                   | 105°C                          |                                   | 125°C                          |                                   |
|--------------------------------------|----------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|
| MEK Schematic Power<br>Rail Net Name | Voltage<br>(V) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) |
| VCC_MAIN                             | 1.0            | 596                            | 586                               | 900                            | 882                               | 1135                           | 1118                              |
| VCC_CPU0 (A53)                       | 1.0            | 31                             | 19                                | 112                            | 95                                | 175                            | 151                               |
| VCC_CPU1 (A72)                       | 0              | -                              | -                                 | -                              | -                                 | -                              | -                                 |
| VCC_GPU0                             | 1.1            | 22                             | 22                                | 252                            | 229                               | 442                            | 420                               |
| VCC_GPU1                             | 1.1            | 21                             | 21                                | 245                            | 228                               | 415                            | 415                               |
| VCC_DDRIO0                           | 1.1            | 80                             | 61                                | 81                             | 63                                | 87                             | 64                                |
| VCC_DDRIO1                           | 1.1            | 77                             | 60                                | 81                             | 63                                | 80                             | 64                                |

#### Table 4. KS2 Results (continued)

|                                      |                | 25°C                           |                                   | 105°C                          |                                   | 125°C                          |                                   |
|--------------------------------------|----------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|
| MEK Schematic Power<br>Rail Net Name | Voltage<br>(V) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) |
| VCC_MEMC                             | 1.1            | 625                            | 514                               | 957                            | 834                               | 1118                           | 1013                              |
| VCC_1V8                              | 1.8            | 252                            | 235                               | 258                            | 241                               | 266                            | 248                               |
| VCC_3V3 <sup>1</sup>                 | 3.3            | 125                            | 125                               | 128                            | 128                               | 128                            | 128                               |
| VCC_SCU_1V8                          | 1.7            | 55                             | 54                                | 53                             | 52                                | 53                             | 52                                |

 Approximately 88 mA is consumed by the PCIe 100 MHz reference and ENET PHY peripheral devices across temperature. Although not measured, the PCA9511 I2C buffer data sheet indicates typical supply current of 3.5 mA each. Two of these devices are on the VCC\_3V3 rail.

### 3.4 KS3 – Low-Power Key State 3

KS3 is defined by the following conditions.

- · Linux operating, command prompt
- 1 x A53 CPU powered and idling @ 900 MHz
- 2 x A72 not powered
- Both GPUs powered but idle
- One 1080p screen active, displaying static image
- GPU not rendering an active, changing frame buffer

|                                      |                | 25°C                           |                                   | 10                             | 105°C                             |                                | 5°C                               |
|--------------------------------------|----------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|
| MEK Schematic Power<br>Rail Net Name | Voltage<br>(V) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) |
| VCC_MAIN                             | 1.0            | 619                            | 602                               | 929                            | 900                               | 1175                           | 1128                              |
| VCC_CPU0 (A53)                       | 1.0            | 64                             | 19                                | 127                            | 96                                | 183                            | 150                               |
| VCC_CPU1 (A72)                       | 0              | -                              | -                                 | -                              | -                                 | -                              | -                                 |
| VCC_GPU0                             | 1.1            | 179                            | 23                                | 1132                           | 235                               | 1776                           | 398                               |
| VCC_GPU1                             | 1.1            | 211                            | 22                                | 1002                           | 234                               | 1457                           | 394                               |

Table 5. KS3 Results (continued)

|                                      |                | 2                              | 25°C                              |                                | 105°C                             |                                | 5°C                               |
|--------------------------------------|----------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|
| MEK Schematic Power<br>Rail Net Name | Voltage<br>(V) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) | Max<br>Peak<br>Current<br>(mA) | Min<br>Average<br>Current<br>(mA) |
| VCC_DDRIO0                           | 1.1            | 181                            | 133                               | 185                            | 135                               | 185                            | 136                               |
| VCC_DDRIO1                           | 1.1            | 181                            | 132                               | 186                            | 134                               | 202                            | 138                               |
| VCC_MEMC                             | 1.1            | 1187                           | 1119                              | 1554                           | 1456                              | 1768                           | 1660                              |
| VCC_1V8                              | 1.8            | 257                            | 245                               | 263                            | 252                               | 268                            | 260                               |
| VCC_3V3 <sup>1</sup>                 | 3.3            | 125                            | 125                               | 128                            | 128                               | 129                            | 128                               |
| VCC_SCU_1V8                          | 1.7            | 82                             | 55                                | 81                             | 53                                | 81                             | 52                                |

 Approximately 88 mA is consumed by the PCIe 100 MHz reference and ENET PHY peripheral devices across temperature. Although not measured, the PCA9511 I2C buffer data sheet indicates typical supply current of 3.5 mA each. Two of these devices are on the VCC\_3V3 rail.

## 3.5 PS0 - Power State 0

PS0 is defined by the following conditions.

- 4 x A53 = 1 V running Coremark @ 900 MHz
- 2 x A72 power-gated off

Table 6. PS0 Results

|                                      |                | 25                                | 25°C                                 |                                  | 105°C                                |                                   | j°C                                  |
|--------------------------------------|----------------|-----------------------------------|--------------------------------------|----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| MEK Schematic<br>Power Rail Net Name | Voltage<br>(V) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) |
| VCC_MAIN                             | 1.0            | 0.667                             | 0.585                                | 1.367                            | 0.881                                | 1.780                             | 1.099                                |
| VCC_CPU0 (A53)                       | 1.0            | 0.506                             | 0.440                                | 0.913                            | 0.610                                | 1.114                             | 0.716                                |
| VCC_CPU1 (A72)                       | 1.0            | 0.001                             | 0.001                                | 0.001                            | 0.001                                | 0.001                             | 0.001                                |
| VCC_GPU0                             | 1.1            | 0.066                             | 0.020                                | 0.551                            | 0.236                                | 0.830                             | 0.392                                |
| VCC_GPU1                             | 1.1            | 0.081                             | 0.019                                | 0.636                            | 0.233                                | 0.948                             | 0.388                                |
| VCC_DDRIO0                           | 1.1            | 0.094                             | 0.059                                | 0.097                            | 0.062                                | 0.103                             | 0.064                                |

|                                      |                | 25°C                              |                                      | 105°C                            |                                      | 125°C                             |                                      |
|--------------------------------------|----------------|-----------------------------------|--------------------------------------|----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| MEK Schematic<br>Power Rail Net Name | Voltage<br>(V) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) |
| VCC_DDRIO1                           | 1.1            | 0.094                             | 0.060                                | 0.099                            | 0.063                                | 0.100                             | 0.065                                |
| VCC_MEMC                             | 1.1            | 1.085                             | 0.517                                | 1.568                            | 0.827                                | 1.406                             | 0.994                                |
| VCC_1V8                              | 1.8            | 0.262                             | 0.239                                | 0.273                            | 0.244                                | 0.281                             | 0.251                                |
| VCC_3V31                             | 3.3            | 0.127                             | 0.125                                | 0.130                            | 0.128                                | 0.130                             | 0.128                                |
| VCC_SCU_1V8                          | 1.7            | 0.054                             | 0.053                                | 0.054                            | 0.051                                | 0.058                             | 0.050                                |

#### Table 6. PS0 Results (continued)

1. Approximately 0.088 A is consumed by the PCIe 100 MHz reference and ENET PHY peripheral devices across temperature.

### 3.6 PS1 – Power State 1

PS1 is defined by the following conditions.

- 4 x A53 = 1.1 V running Coremark @ 1.2 GHz
- 2 x A72 power-gated off

Table 7. PS1 Results

|                                      |                | 25                                | °C                                   | 105°C                            |                                      | 125°C                             |                                      |
|--------------------------------------|----------------|-----------------------------------|--------------------------------------|----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| MEK Schematic<br>Power Rail Net Name | Voltage<br>(V) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) |
| VCC_MAIN                             | 1.0            | 0.668                             | 0.586                                | 1.356                            | 0.873                                | 1.773                             | 1.083                                |
| VCC_CPU0 (A53)                       | 1.1            | 0.859                             | 0.684                                | 1.669                            | 1.043                                | 2.026                             | 1.266                                |
| VCC_CPU1 (A72)                       | 1.0            | 0.001                             | 0.001                                | 0.001                            | 0.001                                | 0.001                             | 0.001                                |
| VCC_GPU0                             | 1.1            | 0.067                             | 0.020                                | 0.542                            | 0.231                                | 0.821                             | 0.386                                |
| VCC_GPU1                             | 1.1            | 0.082                             | 0.019                                | 0.626                            | 0.226                                | 0.937                             | 0.379                                |
| VCC_DDRIO0                           | 1.1            | 0.091                             | 0.060                                | 0.092                            | 0.064                                | 0.110                             | 0.063                                |
| VCC_DDRIO1                           | 1.1            | 0.189                             | 0.064                                | 0.168                            | 0.063                                | 0.101                             | 0.065                                |

|                                      |                | 25°C                              |                                      | 105°C                            |                                      | 125°C                             |                                      |
|--------------------------------------|----------------|-----------------------------------|--------------------------------------|----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| MEK Schematic<br>Power Rail Net Name | Voltage<br>(V) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) |
| VCC_MEMC                             | 1.1            | 0.818                             | 0.545                                | 1.542                            | 0.855                                | 1.894                             | 0.987                                |
| VCC_1V8                              | 1.8            | 0.263                             | 0.252                                | 0.277                            | 0.257                                | 0.280                             | 0.249                                |
| VCC_3V3 <sup>1</sup>                 | 3.3            | 0.128                             | 0.126                                | 0.130                            | 0.128                                | 0.130                             | 0.128                                |
| VCC_SCU_1V8                          | 1.7            | 0.076                             | 0.073                                | 0.078                            | 0.076                                | 0.078                             | 0.075                                |

#### Table 7. PS1 Results (continued)

1. Approximately 0.088 A is consumed by the PCIe 100 MHz reference and ENET PHY peripheral devices across temperature.

## 3.7 PS2 – Power State 2

PS2 is defined by the following conditions.

- 4 x A53 = 1 V running Coremark @ 900 MHz
- 1 x A72 = 1 V running Coremark @ 1.06 GHz
- 1 x A72 power-gated off

#### Table 8. PS2 Results

|                                      |                | 25                                | 25°C                                 |                                   | 105°C                                |                                   | 5°C                                  |
|--------------------------------------|----------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| MEK Schematic<br>Power Rail Net Name | Voltage<br>(V) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) |
| VCC_MAIN                             | 1.0            | 0.670                             | 0.586                                | 1.357                             | 0.875                                | 1.768                             | 1.082                                |
| VCC_CPU0 (A53)                       | 1.0            | 0.509                             | 0.429                                | 0.908                             | 0.585                                | 1.110                             | 0.683                                |
| VCC_CPU1 (A72)                       | 1.0            | 0.482                             | 0.422                                | 0.740                             | 0.499                                | 0.889                             | 0.597                                |
| VCC_GPU0                             | 1.1            | 0.067                             | 0.020                                | 0.542                             | 0.243                                | 0.817                             | 0.395                                |
| VCC_GPU1                             | 1.1            | 0.082                             | 0.019                                | 0.628                             | 0.231                                | 0.946                             | 0.384                                |
| VCC_DDRIO0                           | 1.1            | 0.124                             | 0.066                                | 0.125                             | 0.070                                | 0.148                             | 0.074                                |
| VCC_DDRIO1                           | 1.1            | 0.126                             | 0.064                                | 0.126                             | 0.067                                | 0.124                             | 0.070                                |
| VCC_MEMC                             | 1.1            | 1.071                             | 0.612                                | 1.977                             | 0.974                                | 2.280                             | 1.068                                |

|                                      |                | 25°C                              |                                      | 105°C                             |                                      | 125°C                             |                                      |
|--------------------------------------|----------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| MEK Schematic<br>Power Rail Net Name | Voltage<br>(V) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) |
| VCC_1V8                              | 1.8            | 0.263                             | 0.251                                | 0.274                             | 0.246                                | 0.282                             | 0.252                                |
| VCC_3V3 <sup>1</sup>                 | 3.3            | 0.128                             | 0.125                                | 0.130                             | 0.128                                | 0.130                             | 0.128                                |
| VCC_SCU_1V8                          | 1.7            | 0.059                             | 0.057                                | 0.058                             | 0.055                                | 0.058                             | 0.055                                |

#### Table 8. PS2 Results (continued)

1. Approximately 0.088 A is consumed by the PCIe 100 MHz reference and ENET PHY peripheral devices across temperature.

## 3.8 PS3 – Power State 3

PS3 is defined by the following conditions.

- 4 x A53 = 1.1 V running Coremark @ 1.2 GHz
- 1 x A72 = 1.1 V running Coremark @ 1.6 GHz
- 1 x A72 power-gated off

#### Table 9. PS3 Results

|                                      |                | 25                                | °C                                   | 105°C                             |                                      | 125ºC                             |                                      |
|--------------------------------------|----------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| MEK Schematic<br>Power Rail Net Name | Voltage<br>(V) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) |
| VCC_MAIN                             | 1.0            | 0.672                             | 0.588                                | 1.358                             | 0.875                                | 1.771                             | 1.118                                |
| VCC_CPU0 (A53)                       | 1.1            | 0.857                             | 0.659                                | 1.658                             | 1.032                                | 2.040                             | 1.257                                |
| VCC_CPU1 (A72)                       | 1.1            | 0.930                             | 0.792                                | 1.661                             | 1.244                                | 2.035                             | 1.496                                |
| VCC_GPU0                             | 1.1            | 0.067                             | 0.020                                | 0.537                             | 0.218                                | 0.820                             | 0.375                                |
| VCC_GPU1                             | 1.1            | 0.083                             | 0.019                                | 0.623                             | 0.214                                | 0.945                             | 0.368                                |
| VCC_DDRIO0                           | 1.1            | 0.167                             | 0.068                                | 0.171                             | 0.069                                | 0.146                             | 0.071                                |
| VCC_DDRIO1                           | 1.1            | 0.137                             | 0.069                                | 0.131                             | 0.074                                | 0.148                             | 0.068                                |
| VCC_MEMC                             | 1.1            | 1.179                             | 0.590                                | 1.981                             | 0.932                                | 2.029                             | 1.121                                |
| VCC_1V8                              | 1.8            | 0.264                             | 0.242                                | 0.276                             | 0.248                                | 0.285                             | 0.252                                |

#### Table 9. PS3 Results (continued)

|                                      |                | 25°C                              |                                      | 105°C                             |                                      | 125°C                             |                                      |
|--------------------------------------|----------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| MEK Schematic<br>Power Rail Net Name | Voltage<br>(V) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) |
| VCC_3V3 <sup>1</sup>                 | 3.3            | 0.128                             | 0.125                                | 0.130                             | 0.128                                | 0.130                             | 0.128                                |
| VCC_SCU_1V8                          | 1.7            | 0.092                             | 0.088                                | 0.095                             | 0.091                                | 0.096                             | 0.092                                |

1. Approximately 0.088 A is consumed by the PCIe 100 MHz reference and ENET PHY peripheral devices across temperature.

### 3.9 PS4 – Power State 4

PS4 is defined by the following conditions.

• 2 x GPUs running GLmark2

#### Table 10. PS4 Results

|                                      |                | 25                                | °C                                   | 10                                | 5°C                                  | 125                               | 5°C                                  |
|--------------------------------------|----------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| MEK Schematic<br>Power Rail Net Name | Voltage<br>(V) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) |
| VCC_MAIN                             | 1.0            | 0.798                             | 0.678                                | 1.504                             | 0.991                                | 1.857                             | 1.201                                |
| VCC_CPU0 (A53)                       | 1.1            | 0.488                             | 0.163                                | 1.291                             | 0.482                                | 1.627                             | 0.676                                |
| VCC_CPU1 (A72)                       | 1.0            | 0.542                             | 0.046                                | 2.107                             | 0.171                                | 3.060                             | 0.326                                |
| VCC_GPU0                             | 1.1            | 2.110                             | 0.977                                | 2.821                             | 1.486                                | 3.181                             | 1.662                                |
| VCC_GPU1                             | 1.1            | 2.048                             | 1.142                                | 3.369                             | 1.624                                | 3.957                             | 1.829                                |
| VCC_DDRIO0                           | 1.1            | 0.627                             | 0.405                                | 0.658                             | 0.392                                | 0.625                             | 0.416                                |
| VCC_DDRIO1                           | 1.1            | 0.645                             | 0.494                                | 0.670                             | 0.521                                | 0.649                             | 0.513                                |
| VCC_MEMC                             | 1.1            | 1.807                             | 1.533                                | 2.563                             | 1.881                                | 2.949                             | 2.100                                |
| VCC_1V8                              | 1.8            | 0.282                             | 0.251                                | 0.290                             | 0.258                                | 0.296                             | 0.264                                |
| VCC_3V3 <sup>1</sup>                 | 3.3            | 0.128                             | 0.125                                | 0.130                             | 0.128                                | 0.130                             | 0.130                                |
| VCC_SCU_1V8                          | 1.7            | 0.134                             | 0.113                                | 0.135                             | 0.116                                | 0.137                             | 0.115                                |

1. Approximately 0.088 A is consumed by the PCIe 100 MHz reference and ENET PHY peripheral devices across temperature.

### 3.10 PS5 - Power State 5

PS5 is defined by the following conditions.

- 4 x A53 = 1.1 V running Coremark @ 1.2 GHz
- 1 x A72 = 1.1 V running graphics @ 1.6 GHz
- 1 x A72 power-gated off
- VPU decoding HEVC 3840 x 2160 @ 60 fps
- · AACLC @ 48 kHz, 6 channels audio

#### Table 11. PS5 Results

|                                      |                | 25                                | °C                                   | 10                                | 5°C                                  | 125°C                             |                                      |
|--------------------------------------|----------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|
| MEK Schematic<br>Power Rail Net Name | Voltage<br>(V) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) | Maximum<br>Peak<br>Current<br>(A) | Minimum<br>Average<br>Current<br>(A) |
| VCC_MAIN                             | 1.0            | 1.535                             | 1.374                                | 2.252                             | 1.683                                | 2.635                             | 1.294                                |
| VCC_CPU0 (A53)                       | 1.1            | 0.893                             | 0.702                                | 1.668                             | 1.058                                | 2.038                             | 1.225                                |
| VCC_CPU1 (A72)                       | 1.1            | 1.127                             | 0.364                                | 1.809                             | 0.802                                | 2.338                             | 1.116                                |
| VCC_GPU0                             | 1.1            | 1.690                             | 0.904                                | 3.097                             | 1.080                                | 3.221                             | 1.690                                |
| VCC_GPU1                             | 1.1            | 2.035                             | 1.013                                | 2.921                             | 1.390                                | 3.868                             | 0.584                                |
| VCC_DDRIO0                           | 1.1            | 0.694                             | 0.582                                | 0.718                             | 0.568                                | 0.690                             | 0.582                                |
| VCC_DDRIO1                           | 1.1            | 0.719                             | 0.619                                | 0.722                             | 0.639                                | 0.685                             | 0.609                                |
| VCC_MEMC                             | 1.1            | 1.952                             | 1.643                                | 2.708                             | 1.997                                | 2.952                             | 2.407                                |
| VCC_1V8                              | 1.8            | 0.284                             | 0.257                                | 0.295                             | 0.264                                | 0.300                             | 0.129                                |
| VCC_3V3 <sup>1</sup>                 | 3.3            | 0.128                             | 0.125                                | 0.130                             | 0.128                                | 0.130                             | 0.130                                |
| VCC_SCU_1V8                          | 1.7            | 0.137                             | 0.125                                | 0.133                             | 0.117                                | 0.137                             | 0.127                                |

1. Approximately 0.088 A is consumed by the PCIe 100 MHz reference and ENET PHY peripheral devices across temperature.

## 4 Supply Current for I/O

A general equation for estimated current drain of an I/O supply rail is as follows.

 $I = N \times C \times V \times R \times F$ 

Where:

- N Number of I/O powered by the supply rail
- C Equivalent external capacitive load
- V I/O supply voltage

R – Data change rate (for example use 0.5 for  $\frac{1}{2}$  of the clock rate)

F - Clock rate

I is in Amps, C in Farads, V in Volts, and F in Hertz.

## **5** References

- i.MX 8QuadMax Automotive and Infotainment Applications Processors
- MCIMX8QM-CPU MEK Platform

## 6 Revision history

#### Table 12. Revision history

| Revision number | Date         | Substantive changes                                                                                                                      |
|-----------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 22 July 2021 | Updated footnotes in Table 1                                                                                                             |
|                 |              | <ul> <li>Added footnotes in Table 3, Table<br/>4, Table 5, Table 6, Table 7,<br/>Table 8, Table 9, Table 10, and<br/>Table 11</li> </ul> |
| 0               | 4 May 2021   | Initial release                                                                                                                          |

How To Reach Us Home Page: nxp.com Web Support: nxp.com/support Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

**Right to make changes** - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm77, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

#### © NXP B.V. 2021.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: 22 July 2021 Document identifier: AN13249