
1 Introduction
The i.MX 8X series takes advantage of the Arm® Cortex®-M4 core with a
16K/16K L1 I/D-Cache. This delivers extremely high performance, regardless
of whether the code is executed from the on-chip RAM, external flash, or
external memory.

This document introduces the basic technology of the cache system that
includes the L1 cache, memory types, attributes, and MPU (Memory Protection
Unit) for the Cortex-M4 core embedded into the i.MX 8X series processors. It
guides you on how to use the cache to develop applications running correctly and with high performance. It does not describe the
details of the cache system. For more detailed information, see the Arm Cortex-M4 processor user's guide.

The software used for the example in this documentation is based on the i.MX 8QXP SDK release with the Arm CMSIS
implementation. The development environment is the IAR Embedded Workbench 8.40 IDE. The hardware used to verify the
example is the MIMX8QXP-MEK board.

2 Overview
This chapter describes the i.MX 8X Cortex-M4 system architecture with cache-related parts. It describes the L1 cache behavior,
Arm Cortex-M4 defined memory types/attributes, and the MPU (Memory Protection Unit) system. This provides an overview of
the i.MX 8X Cortex-M4 core cache system and how it affects the application use cases.

2.1 i.MX 8X system architecture (CM4 cache-related)

Figure 1. i.MX 8QXP core and system block diagram

Contents

1 Introduction......................................1
2 Overview... 1
3 Cache operation..............................5
4 Cache maintenance and data

coherency..6
5 Conclusion.....................................11
6 References....................................12
7 Revision history.............................12

AN13285
i.MX 8X Using L1 Cache for Cortex-M4 Core
Rev. 0 — 1 June 2021 Application Note

The i.MX 8X series implement a CM4 subsystem shown in Figure 1. The L1 I/D-Cache is embedded in the CM4 subsystem. Both
the data cache and the instruction cache have a cache line size of 16 bytes. The M4 code and system busses, cached by L1
caches, are connected to the AXBS-Lite. The DB(DRAM Block) subsystem is connected to the bus fabric slave port. The DDR
subsystem and the LSIO subsystem (including the OCRAM and two FlexSPIs that support the Serial NOR, NAND Flash, and
Hyper Flash/RAM, etc.) are connected to the DB subsystem as well. The CPU core accesses the subsystem through this bus
fabric using the L1 cache.

Because the access to the subsystems of those memories can take multiple cycles (especially on the external memory interfaces
with multiple wait states), the L1 cache is designed to speed up the read/write operation from/to the memory. This brings a big
performance boost.

The TCM is accessed directly by the CPU core and it bypasses the L1 cache. Therefore, it is recommended to put the critical code
and data, such as the vector table, into the TCM.

2.2 L1 cache behavior
Any access that is not for a TCM is handled by the appropriate cache controller. If the access is to a non-shared cacheable memory
and the cache is enabled, a lookup is performed in the cache and if found (a cache hit), the data is fetched from or written into the
cache. When the cache is not enabled and for a non-cacheable or shared memory, the accesses are performed using the AXI bus.

Both caches allocate a memory location to a cache line on a cache miss because of a read. That means that all cacheable
locations are Read-Allocate. In addition, the data cache can allocate on a write access if the memory location is marked as
Write-Allocate. When a cache line is allocated, the appropriate memory is fetched into a line-fill buffer by the AXI bus before being
written to the cache.

The write accesses that hit in the data cache are written into the cache RAMs. If the memory location is marked as Write-Through,
the write is also performed on the AXI bus, so that the data stored in the RAM remains coherent with the external memory system. If
the memory is Write-Back, the cache line is marked as dirty and the write is only performed on the AXI bus when the line is evicted.
When a dirty cache line is evicted, the data is passed to the write buffer in the AXI bus to be written to the external memory system.

2.3 Memory types and attributes
The memory map and the programming of the MPU splits the memory map into regions. Each region has a defined memory type
and some regions have additional memory attributes. The memory type and attributes determine the behavior of accesses to
the region.

The memory types are:

• Normal – The processor can re-order transactions for efficiency or perform speculative reads.

• Device and Strongly-Ordered – The processor preserves the transaction order relative to other transactions to the Device
or Strongly-Ordered Memory.

The different ordering requirements for the Device and Strongly-Ordered Memory mean that the external memory system can
buffer a write to the Device memory, but it must not buffer a write to the Strongly-Ordered Memory.

The memory attributes include:

• Shareable (S) – For a shareable memory region, the memory system provides data synchronization between bus masters
in a system with multiple bus masters, for example, a processor with a DMA controller. For i.MX 8X, shareable means
non-cacheable by default.

• Execute Never (XN) – This means that the processor prevents instruction accesses. A fault exception is generated only on
execution of an instruction that is executed from an XN region.

• TEX, Cacheable (C), Bufferable (B) – This identifies the memory type and cache policy used by this region of memory.

• Access permission (AP) – These are the access permissions for privileged and unprivileged software. The value can be
“No access”, RW, or RO.

• Subregion disable (SRD) - The regions of 256 bytes (or more) are divided into eight equal-sized subregions. Set the
corresponding bit in the SRD field of the MPU_RASR to disable a subregion.

NXP Semiconductors
Overview

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 2 / 13

The memory type, S, TEX, C, B attributes determine the cache policy that the application should take care of. See the next section
for the cache policy.

2.3.1 Cache policy
The TEX/C/B attributes define the memory type and cache policy applied to the region of memory. The list of a full cache policy
settings table is in the Arm Cortex-M4 processor user's guide.

Table 1. Cache policy settings

TEX C B S Memory type Shareability Other attributes

0b000 0 0 x[a] Strongly Ordered Shareable -

1 x[a] Device Shareable -

1 0 0 Normal Not shareable Outer and inner Write-Through. No Write-Allocate.

1 Shareable

1 0 Normal Not shareable Outer and inner Write-Back. No Write-Allocate.

1 Shareable

0b001 0 0 0 Normal Not shareable Outer and inner noncacheable.

1 Shareable

1 x[a] Reserved encoding -

1 0 x[a] Contact the Arm partner for attributes used. -

1 0 Normal Not shareable Outer and inner Write-Back. Write and Read Allocate.

1 Shareable

0b010 0 0 x[a] Device Not shareable Nonshared Device.

1 x[a] Reserved encoding -

1 x[a] x[a] Reserved encoding -

0b1BB A A 0 Normal Not shareable Cached memory, BB = outer policy, AA = inner policy.

1 Shareable

[a] The MPU ignores the value of this bit.

Each of the cache policy is as follows:

• Write Allocation (WA) – A cache line is allocated on a write miss. This means that executing a store instruction on the
processor might cause a burst read.

• Write-Back (WB) – A write updates the cache only and marks the cache line as dirty. The external memory is updated only
when the line is evicted or explicitly cleaned.

• Write-Through (WT) – A write updates both the cache and the external memory system. This does not mark the cache line
as dirty.

NXP Semiconductors
Overview

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 3 / 13

https://developer.arm.com/documentation/
https://developer.arm.com/documentation/dui0646/b/cortex-m7-peripherals/optional-memory-protection-unit/mpu-access-permission-attributes?lang=en
https://developer.arm.com/documentation/dui0646/b/cortex-m7-peripherals/optional-memory-protection-unit/mpu-access-permission-attributes?lang=en
https://developer.arm.com/documentation/dui0646/b/cortex-m7-peripherals/optional-memory-protection-unit/mpu-access-permission-attributes?lang=en
https://developer.arm.com/documentation/dui0646/b/cortex-m7-peripherals/optional-memory-protection-unit/mpu-access-permission-attributes?lang=en
https://developer.arm.com/documentation/dui0646/b/cortex-m7-peripherals/optional-memory-protection-unit/mpu-access-permission-attributes?lang=en
https://developer.arm.com/documentation/dui0646/b/cortex-m7-peripherals/optional-memory-protection-unit/mpu-access-permission-attributes?lang=en
https://developer.arm.com/documentation/dui0646/b/cortex-m7-peripherals/optional-memory-protection-unit/mpu-access-permission-attributes?lang=en
https://developer.arm.com/documentation/

2.3.2 i.MX8QXP memory map
The default memory map of important regions with memory types and the bus policy is listed in Table 2 and Table 3. The
application can use an MPU to configure different memory types and cache policies to overwrite the default ones. The CM4
memory map shown in Table 2 and Table 3 is from the local point of view of the CM4.

2.3.2.1 From M4 code bus

Table 2. i.MX 8QXP code bus setting

Start address End address Size Comment

0x0010_0000 0x1BFF_FFFF 447 MB NIC maps to SSI outbound. Physically mapped to memory subsystem.

0x1C00_0000 0x1FBF_FFFF 60 MB NIC maps to SSI outbound. Reserved for M4 code bus mappings.

0x1FC0_0000 0x1FFD_FFFF 3968 KB Access generates bus error. Reserved for TCML growth.

0x1FFE_0000 0x1FFF_FFFF 128 KB TCML memory.

2.3.2.2 From M4 system bus

Table 3. i.MX8QXP system bus setting

Start Address End Address Size Comment

0x2000_0000 0x2001_FFFF 128 KB TCMU memory.

0x2002_0000 0x203F_FFFF 3968 KB Access generates bus error. Reserved for TCMU growth.

0x2040_0000 0x20FF_FFFF 12 MB NIC0 maps to SSI outbound. Reserved for M4 system bus mappings.

0x2100_0000 0x211F_FFFF 2 MB NIC0 maps to SSI outbound with translation. Alias for AP ROM and OCRAM.

0x2120_0000 0x27FF_FFFF 110 MB NIC0 maps to SSI outbound. Reserved for M4 system bus mappings.

0x2800_0000 0x3FFF_FFFF 384 MB NIC0 maps to SSI outbound. Physically mapped to smart subsystems.

0x4000_0000 0x40FF_FFFF 16 MB NIC0 maps to SSI outbound. Reserved for M4 system bus mappings.

0x4100_0000 0x417F_FFFF 8 MB AIPS-Lite0 peripherals.

0x4180_0000 0x41FF_FFFF 8 MB Default slave. Reserved for additional slave.

0x4200_0000 0x5FFF_FFFF 480 MB NIC0 maps to SSI outbound. Physically mapped to subsystems.

0x6000_0000 0x7FFF_FFFF 512 MB NIC0 maps to SSI outbound. Physically mapped to PCIe mapped I/O.

0x8000_0000 0xDFFF_FFFF 1.5 GB NIC0 maps to SSI outbound. Physically mapped to DRAM.

0xE000_0000 0xE00F_FFFF 1 MB M4 PPB (Private Peripheral Bus).

0xE010_0000 0xEFFF_FFFF 255 MB Access generates bus error. Arm recommends reserving this vendor-
specific region.

0xF000_0000 0xFFFF_FFFF 256 MB Vendor_SYS (Vendor System) region.

NXP Semiconductors
Overview

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 4 / 13

2.3.2.3 Commonly used cache policy on i.MX 8X

The NXP SDK MPU settings are usually in the board.c file of each example. They are the following:

The MPU region 0 sets the address space from 0x2000000 to 0x3FFFFFFF (512 MB) as non-shared device memory and disables
subregions 0 and 1 (from 0x2000000 to 0x27FFFFFF). This has the effect of setting the range from 0x20000000 to 0x27FFFFFF
as normal NX-cached memory (Cortex-M4 background memory attributes) and the range from 0x2800000 to 0x3FFFFFFF is set
to non-shared device memory.

The MPU region 1 set the address space of 0x80000000 ~ 0xFFFFFFFF to be non-cacheable. Subregions 6 and 7 are
disabled to use the background memory attributes for the address space of 0xE0000000 ~ 0xFFFFFFFF, that is non-shareable
device memory.

The MPU region 2 sets the text and data sections to be cacheable if the program runs on the DDR. The cacheable area base
address should be multiples of its size in the linker file (they can be modified according to the user's requirements).

Table 4. i.MX 8QXP SDK common memory type and cache policy

Region Number Start Address Size XN AP TEX S C B SRD[7..0] Memory Type

0 0x2000_0000 512 MB 1 RW 2 0 0 0 0b00000011 Device

1 0x8000_0000 2 GB 0 RW 0 0 0 1 0b11000000 Device

2 0x8800_0000 1 MB 0 RW 1 0 1 1 0b00000000 Normal

2.4 MPU (Memory Protection Unit)
The MPU divides the memory map into a few regions and defines the location, size, access permissions, and memory attributes
of each region. It supports the following:

• Independent attribute settings for each region

• Overlapping regions

• Export of memory attributes to the system

The memory attributes affect the behavior of memory accesses to the region. The i.MX 8X MPU defines:

• 16 separate memory regions (0-15)

• Background region

When memory regions overlap, a memory access is affected by the attributes of the region with the highest number. For example,
the attributes for region 15 take precedence over the attributes of any region that overlaps region 15. The background region has
the same memory access attributes as the default memory map, but it is accessible only from privileged software.

The MPU memory map is unified. This means that instruction accesses and data accesses have the same region settings. If a
program accesses a memory location that is prohibited by the MPU, the processor generates a MemManage fault. This causes
a fault exception and it might cause a termination of the process in an OS environment.

Typically, the application or embedded OS uses the MPU for memory protection and memory cache policy configurations. See
Cache maintenance in SDK driver for how to use the MPU to configure a memory region for a different cache policy.

3 Cache operation
There are the following three types of cache operations:

• Cache Enable/Disable – Cache on/off

• Cache Clean – Writes the dirty cache lines back to the memory (sometimes called a flush)

• Cache Invalidate – Marks the contents in the cache as invalid (basically, a delete operation)

NXP Semiconductors
Cache operation

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 5 / 13

The i.MX 8X SDK provides the below way to perform cache operations.

3.1 Accessing the cache using SDK
The i.MX 8X SDK provides a cache driver (fsl_cache.h and fsl_cache.c) for L1 cache operations, configuring the register of the
CM4 peripheral as follows:

void L1CACHE_EnableCodeCache(void)
void L1CACHE_DisableCodeCache(void)
void L1CACHE_InvalidateCodeCache(void)
void L1CACHE_InvalidateCodeCacheByRange(uint32_t address, uint32_t size_byte)
void L1CACHE_EnableSystemCache(void)
void L1CACHE_DisableSystemCache(void)
void L1CACHE_InvalidateSystemCache(void)
void L1CACHE_InvalidateSystemCacheByRange(uint32_t address, uint32_t size_byte)
void L1CACHE_CleanSystemCacheByRange(uint32_t address, uint32_t size_byte)
void L1CACHE_CleanInvalidateSystemCacheByRange(uint32_t address, void uint32_t size_byte)

4 Cache maintenance and data coherency
The cache brings a great performance boost, but the user must pay attention to the cache maintenance for data coherency.

4.1 Typical use case
To get better understanding of the cache maintenance and data coherency, this section describes a typical use case as an
example: playback of an audio file stored in the external flash.

Figure 2. Data flow

NXP Semiconductors
Cache maintenance and data coherency

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 6 / 13

Figure 3. Subsystem interconnection diagram

The CPU reads the audio file content in the SRC buffer through the L1 D-Cache and decodes the PCM frame data written into the
DRAM’s USER buffer. When the USER buffer is full, the eDMA is started to copy the PCM frame data into the FIFO inside the SAI
IP module. The SAI then shifts out the FIFO data to the SAI bus for audio playback. When the CPU writes the frame data to the
DRAM with the L1 cache enabled, the data may only be written to the cache, because the default cache policy for the DRAM is
Write-Back. The eDMA will then transfer the incorrect data to the SAI FIFO.

To avoid such data coherency issue, here are some solutions:

1. Perform a D-Cache clean operation after the CPU writes data to the DRAM.

2. Configure the DRAM memory region cache policy from Write-Back to Write-Through in the MPU before this write starts.

3. Configure the DRAM memory region cache policy to non-cacheable in the MPU.

4. Configure the DRAM memory region as shareable in the MPU, which means that it is non-cacheable.

For areas where the DMA is used frequently, it is better to configure it as a non-cacheable region, following solutions 3 and 4.
However, for some specific application area, a non-cacheable region reduces the flexibility of the memory, so solutions 1 and 2
would be better.

4.2 Cache maintenance in SDK driver
The following drivers in the SDK maintain the data coherency of the cache:

Ethernet

In the ENET, a unified DMA (uDMA) engine is designed. It optimizes the data transfer between the ENET core and the SoC and
supports an enhanced buffer descriptor programming model to support the IEEE 1588 functionality.

The user can pass cacheable buffers to this driver. The driver takes care of the data coherency. For other cases that use the DMA,
the user should take care of the data coherency using cache operations. See the next section.

4.3 Cache maintenance by application
There are two ways to perform cache maintenance in an application.

NXP Semiconductors
Cache maintenance and data coherency

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 7 / 13

4.3.1 Using cacheable buffers
Normally, the buffers on the DRAM can be Cacheable and Write-Back. To use such buffer as a DMA source, the user must perform
a DCACHE clean operation before the DMA starts. This ensures that all of the data are committed to the memory from the cache.
If a buffer is used as a DMA receive destination, the DCACHE invalidate operation must be done after the DMA completes and
before the CPU or other masters read. The buffer address should have the aligned L1 cache line size (16 bytes on the i.MX 8X).

1.linker file

Configure the "symbol __CACHE_REGION_START" and "__CACHE_REGION_SIZE" entries in the linker file.

 define symbol m_data_start = 0x88200000;
 define symbol m_resume_end = 0x883FFFFF;
 define exported symbol __CACHE_REGION_START = m_data_start;
 define exported symbol __CACHE_REGION_SIZE = m_resume_end - m_data_start + 1 ;

2.MPU configuration

The SDK board.c "BOARD_InitMemory" function will parse these parameters as follows:

 extern uint32_t __CACHE_REGION_START[];
 extern uint32_t __CACHE_REGION_SIZE[];
 uint32_t cacheStart = (uint32_t)__CACHE_REGION_START;
 uint32_t size = (uint32_t)__CACHE_REGION_SIZE;

Before the user can configure any regions, the MPU must be disabled by "MPU->CTRL = 0;". To configure the region,
"MPU->RBAR" and "MPU->RASR" must be configured separately.

To configure the region number and its base address, the register can be configured as follows:

/* Select Region 2 and set its base address to the cacheable region start address. */
MPU->RBAR = (cacheStart & MPU_RBAR_ADDR_Msk) | MPU_RBAR_VALID_Msk | (2 << MPU_RBAR_REGION_Pos);

Configure the cacheable, bufferable, and others as follows:

 /* Region 2 setting:
 * 1) Enable Instruction Access;
 * 2) AP = 011b, full access;
 * 3) Outer and inner Cacheable, write and read allocate;
 * 4) Region Not Shared;
 * 5) All Sub-Region Enabled;
 * 6) MPU Protection Region size get from linker file;
 * 7) Enable Region 2.
 */MPU->RASR = (0x3 << MPU_RASR_AP_Pos) | (0x1 << MPU_RASR_TEX_Pos) | (0x1 << MPU_RASR_C_Pos) | (0x1
<< MPU_RASR_B_Pos) | ((i - 1) << MPU_RASR_SIZE_Pos) | MPU_RASR_ENABLE_Msk;

• SRD means to disable the subregion, which is used in the region overlap case. Just ignore it and set it to 0.

• The size is defined as the region size in bytes = 2(SIZE+1).

• The XN/AP/TEX/S/C/B/SRD parameters are exactly the same as the attributes defined in Memory types and attributes.

4.3.2 Using non-cacheable buffers
Using a non-cacheable buffer would make the process easier, because it can avoid the cache data coherency problem. However,
its downside is that the performance of accessing the buffer is not good as with the cacheable ones when the CPU accesses them
multiple times.

To make buffers non-cacheable, the user must configure at least one region of memory as a non-cacheable attribute in the MPU
and put the buffers into this region by the linker of a toolchain.

The following are the steps to be done in the application:

NXP Semiconductors
Cache maintenance and data coherency

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 8 / 13

1. Buffer definition

The SDK provides the following two macros for the application to define the buffers (variable) in the “Noncacheable” section of
the program:

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
AT_NONCACHEABLE_SECTION(var)

The first macro defines the buffer (var) with the start address aligned by alignbytes. The second macro defines the buffer (var) with
start address aligned automatically by the compiler (4-bytes aligned). Some use cases require the application to explicitly define
the buffer aligned with the special bytes. As with the framebuffer for the eLCDIF, 8-bytes aligned is required:

AT_NONCACHEABLE_SECTION_ALIGN(static uint8_t buffer[256], 8);

2. Linker file

The DDR memory region can be allocated for the CM4 noncacheable data. Add the NCACHE_VAR block (NonCacheable section)
with the size for the user buffers' size requirement. Put this "NCACHE_VAR" block into the DDR DATA2 region.

define symbol m_data2_start = 0x88100000;
define symbol m_data2_end = 0x8FFFFFFF;
define region DATA2_region = mem:[from m_data2_start to m_data2_end];
define block NCACHE_VAR { section NonCacheable , section NonCacheable.init };
place in DATA2_region { block NCACHE_VAR };

3. MPU configurations

Before the user can configure any regions, the MPU must be disabled by "MPU->CTRL = 0;". To configure the region, the
"MPU->RBAR" and "MPU->RASR" entries must be configured seperately.

To configure the region number and its base address, the register can be configured as follows:

/* Select Region 0 and set its base address to the M4 code bus start address 0x20000000. */
 MPU->RBAR = (0x20000000U & MPU_RBAR_ADDR_Msk) | MPU_RBAR_VALID_Msk | (0 << MPU_RBAR_REGION_Pos);

To configure the cacheable, bufferable, and others:

 /* Region 0 setting:
 * 1) Disable Instruction Access;
 * 2) AP = 011b, full access;
 * 3) Non-shared device;
 * 4) Region Not Shared;
 * 5) Sub-Region 0,1 Disabled;
 * 6) MPU Protection Region size = 512M byte;
 * 7) Enable Region 0.
 */
MPU->RASR = (0x1 << MPU_RASR_XN_Pos) | (0x3 << MPU_RASR_AP_Pos) | (0x2 << MPU_RASR_TEX_Pos) |
(0x3 << MPU_RASR_SRD_Pos) | (28 << MPU_RASR_SIZE_Pos) | MPU_RASR_ENABLE_Msk;

After configuring all the regions, enable the priviliged default memory map and the MPU as follows:

MPU->CTRL = MPU_CTRL_ENABLE_Msk | MPU_CTRL_PRIVDEFENA_Msk

If the "MPU_CTRL_PRIVDEFENA_Msk" is not asserted, any memory access to a location not covered by an enabled region
causes a fault.

4.3.3 DDR aliasing
For a general case, TCML is used for code, TCMU for data, and DRAM for a non-cacheable buffer and non-cacheable memory.
In some cases, the code must run in the DDR.

NXP Semiconductors
Cache maintenance and data coherency

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 9 / 13

The i.MX 8X devices include a basic translation block that can be leveraged to alias the DDR memory onto the Cortex-M code
bus. This aliasing allows for performance improvements when the Cortex-M code is located in the DDR memory by enabling the
CODE BUS and I-Cache. The Cortex-M image can activate the aliasing during the execution by updating the MCM Process ID
register (MCM_PID).

If the DDR aliasing is enabled, the DDR region will be aliased in an area originally dedicated to the FlexSPI0 memory-mapped
(XIP) space. The application must manage this case.

4.3.3.1 Enabling the DDR aliasing

The DDR aliasing is supported by NXP’s SDK. The "__STARTUP_CONFIG_DDR_ALIAS=1" should be defined in the target
toolchain. The map file can be checked and the ".text" section should be in the 0x0800_0000 - 0x0FFF_FFFF region.

4.3.3.2 How DDR aliasing works

The MCM_PID has two work mode values, configured in the Reset Handler startup assembly code with a value of 0x7E:

Reset_Handler
#ifdef __STARTUP_CONFIG_DDR_ALIAS
LDR R0, =0xE0080030
MOV R1, #0x7E
STR R1, [R0]
ISB
LDR R0, =alias_start
MOV PC, R0
alias_start:
#endif

Table 5. i.MX8QXP DDR alias MCM_PID configuration

MCM_PID DDR Region Size Alias

0x7E 0x88000000 - 0x8FFFFFFF 128 MB 0x08000000 - 0x0FFFFFFF

0x7F 0x90000000 - 0x97FFFFFF 128 MB 0x10000000 - 0x17FFFFFF

Other N/A N/A No Alias

The linker file will also modify the code address and the relative cache region.

if (isdefinedsymbol(__STARTUP_CONFIG_DDR_ALIAS)) {
 define symbol m_interrupts_start = 0x08000000;
 define symbol m_interrupts_end = 0x080009FF;
 define symbol m_text_start = 0x08000A00;
 define symbol m_text_end = 0x081FFFFF;
} else {
 define symbol m_interrupts_start = 0x88000000;
 define symbol m_interrupts_end = 0x880009FF;
 define symbol m_text_start = 0x88000A00;
 define symbol m_text_end = 0x881FFFFF;
}
if (isdefinedsymbol(__STARTUP_CONFIG_DDR_ALIAS)) {
 define exported symbol __CACHE_REGION_START = m_data_start;
 define exported symbol __CACHE_REGION_SIZE = m_data_end - m_data_start + 1 ;
} else {
 define exported symbol __CACHE_REGION_START = m_interrupts_start;
 define exported symbol __CACHE_REGION_SIZE = m_data_end - m_interrupts_start + 1 ;
}

NXP Semiconductors
Cache maintenance and data coherency

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 10 / 13

The SCFW always checks the configuration of the MCM_PID and its I-Cache. In the alias mode, that cache is open
by default.

 NOTE

4.3.4 OCRAM aliasing
The M4 can use the OCRAM only if it has access to the OCRAM and OCRAM Alias memory regions and its partition contains the
"SC_R_OCRAM" resource.

Consider the fact that there is only one OCRAM memory (256 KB) which has several aliases, so it is the user's task to use
this memory in a proper manner to avoid data corruption between code and data. The OCRAM is mapped at "0x0000_0000 --
0x0001_7FFF (OCRAM Aliasing (lower 96 kb)) and 0x0010_0000 -- 0x0013FFFF (OCRAM)". It can be used for the M4 code to
use the benefit brought by the Code Bus and I-Cache of Cortex-M4. It is also mapped at "0x2100_0000 -- 0x2101_7FFF(OCRAM
Aliasing (lower 96 kb)) and 0x2110_0000 -- 0x2113FFFF (OCRAM Aliasing)", which can be used for the M4 System Bus and
D-Cache of Cortex-M4.

Table 6. i.MX8QXP OCRAM and OCRAM aliasing

Start Address End Address Size Comment

0x0000_0000 0x0001_7FFF 96 KB OCRAM Alias (lower 96 kb)

0x0010_0000 0x0013_FFFF 256 KB OCRAM

0x2100_0000 0x2101_7FFF 96 KB OCRAM Alias (lower 96 kb)

0x2110_0000 0x2113_FFFF 256 KB OCRAM Alias

On the current architecture of the i.MX 8/8X, the M4 can be booted from the TCM, DDR, and flash (NOR), but it cannot be booted
directly from the OCRAM. Note that the OCRAM memory can be used only if the A cores are not used. An example is the U-boot
that uses it for SPL booting. To use the OCRAM for the TEXT/code, the OCRAM can be used only after the M4 execution jumps
from the previous memory from which it booted. The "L1CACHE_EnableCodeCache" and "L1CACHE_DisableCodeCache()"
functions can be used to control the I-Cache for the OCRAM. To enable the D-cache for the OCRAM, the following is the example
code to configure the MPU:

 /* Region 3 setting:
 * 1) Enable Instruction Access;
 * 2) AP = 011b, full access;
 * 3) Outer and inner Cacheable, write and read allocate;
 * 4) Region Not Shared;
 * 5) All Sub-Region Enabled;
 * 6) MPU Protection Region size 256KB, starting from 0x21100000;
 * 7) Enable Region 3.
 */
MPU->RBAR = (0x21100000 & MPU_RBAR_ADDR_Msk) | MPU_RBAR_VALID_Msk | (3 << MPU_RBAR_REGION_Pos);
MPU->RASR = (0x3 << MPU_RASR_AP_Pos) | (0x1 << MPU_RASR_TEX_Pos) | (0x1 << MPU_RASR_C_Pos) | (0x1 <<
MPU_RASR_B_Pos) | (17 << MPU_RASR_SIZE_Pos) | MPU_RASR_ENABLE_Msk;

For information on how to use the OCRAM memory for the DATA/TEXT on Cortex-M4, see OCRAM for DATA/
TEXT on Cortex-M4.

 NOTE

5 Conclusion
To use the i.MX 8X L1 cache in a correct and efficient way, the following are several recommendations and tips:

NXP Semiconductors
Conclusion

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 11 / 13

https://community.nxp.com/t5/iMX-and-Vybrid-Support/i-MX8X-How-to-use-OCRAM-memory-for-DATA-TEXT-on-Cortex-M4/ta-p/1120607
https://community.nxp.com/t5/iMX-and-Vybrid-Support/i-MX8X-How-to-use-OCRAM-memory-for-DATA-TEXT-on-Cortex-M4/ta-p/1120607

• Put the critical code and data into the TCM. This is the fastest way for the CPU to access the code and data.

• Always call the SDK cache driver API to cache operations. This makes sure that the cache is cleaned before it is disabled
and invalidated before it is enabled to avoid unpredictable issues.

• If the software is using cacheable memory regions for the DMA source/or destination buffers, the software must trigger a
cache clean before starting a DMA operation to ensure that all the data are committed to the subsystem memory. After the
DMA transfer completes and when reading the data from the peripheral, the software must perform a cache invalidation
before reading the DMA updated memory region. NXP recommends to use non-cacheable regions for DMA buffers. The
software can use the MPU to configure a non-cacheable memory region to be used as a shared buffer between the CPU
and DMA.

When using the FlexSPI for the external NOR Flash read by the AHB bus, the cacheable memory would cause problems. Because
the flash erase and program operation goes through the IP command but not through the AHB bus, a cache invalid operation is
needed before the CPU reads the FlexSPI memory map after any erase and program completes.

The DDR aliasing and OCRAM aliasing would help to build a more flexible application and enhance the performance using the
I-cache and they are very useful and suggested to be used.

6 References
• ARM Cortex-M4 Devices Generic User Guide (Revision: 1.0,b)

• ARM Cortex-M4 Processor Technical Reference Manual (Revision: r0p1)

• i.MX 8X Reference Manual

• SCU sc_fw_port.pdf

• Cache (computer) - https://en.wikipedia.org/wiki/Cache_(computing)

7 Revision history
Table 7 summarizes the changes done to this document since the initial release.

Table 7. Revision history

Revision number Date Substantive changes

0 1 June 2021 Initial release

NXP Semiconductors
References

i.MX 8X Using L1 Cache for Cortex-M4 Core, Rev. 0, 1 June 2021
Application Note 12 / 13

https://developer.arm.com/documentation/dui0553/b
https://developer.arm.com/documentation/100166/0001
https://en.wikipedia.org/wiki/Cache_(computing)

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 June 2021
Document identifier: AN13285

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Overview
	2.1 i.MX 8X system architecture (CM4 cache-related)
	2.2 L1 cache behavior
	2.3 Memory types and attributes
	2.3.1 Cache policy
	2.3.2 i.MX8QXP memory map
	2.3.2.1 From M4 code bus
	2.3.2.2 From M4 system bus
	2.3.2.3 Commonly used cache policy on i.MX 8X

	2.4 MPU (Memory Protection Unit)

	3 Cache operation
	3.1 Accessing the cache using SDK

	4 Cache maintenance and data coherency
	4.1 Typical use case
	4.2 Cache maintenance in SDK driver
	4.3 Cache maintenance by application
	4.3.1 Using cacheable buffers
	4.3.2 Using non-cacheable buffers
	4.3.3 DDR aliasing
	4.3.3.1 Enabling the DDR aliasing
	4.3.3.2 How DDR aliasing works

	4.3.4 OCRAM aliasing

	5 Conclusion
	6 References
	7 Revision history

