AN13369

i.MX 8 - Boot Time Measurements Methodology

Rev. 1 — 29 April 2022

1 Introduction

This document presents a possible approach to measure the boot time on the

i.MX 8 platforms using the GPIO pins.

The main objectives of this document are as follows:
» Modifying the bootloader and system image for measuring

» Setting up the board and the external logic analyzer tool

» Achieving short boot times

1.1 Software environment

Application Note

Contents

1 Introduction..........ccceeeeeiieceenseceennnns 1
2 General description............ccccce....... 1
3 Examples.........ccooeiemrieicivnicecccieen, 2
4 Further optimizations..................... 43
5 References.......cccoooeeicivececccnnienn. 53
6 Revision history.........cccccoiveeneennne. 53
Legal information..............cccccvieiieninnnen. 54

Linux BSP release 5.4.70_2.3.0 is used to perform the measurements of i.MX 8MQ, i.MX 8MP, i.MX 8MM, and i.MX 8MN. Linux

BSP release 5.10.72_2.2.0 is used to perform the measurement of i.MX 8ULP.

1.2 Hardware setup and equipment

* Development kits:

— NXP i.MX 8MQ EVK LPDDR4
— NXP i.MX 8MP EVK LPDDR4
— NXP i.MX 8MM EVK LPDDR4
— NXP i.MX 8MN EVK LPDDR4
— NXP i.MX 8ULP EVK LPDDR4

Micro SD card. SanDisk Ultra 32 GB Micro SDHC | Class 10 is used for the current experiment.

Micro-USB cable for the debug port.
USB Type-C cable for data transfer.

Logic analyzer with the following minimum requirements to measure the times: 4 channels and 10 MS/s. Saleae Logic 8 or

Agilent 16902A is used for the current experiment.

Breadboard and FPC to 60x0.5 Extension Board (only for i.MX8 MQ).

2 General description

This section describes the general procedure that must be performed to obtain a baseline measurement for a clean system (with

no startup optimizations).

2.1 Choosing the GPIO pin for measurement

Use a general-purpose pin to generate a pulse signal at different booting phases. The desired GPIO pin is ideally chosen from
those that are not used in either the bootloader or Linux; this can be checked in the associated device tree.

r
4\

NXP Semiconductors

Examples

If this is not possible, disable the peripheral module that uses the pin in the next step. It is highly recommended to choose a pin
from the expansion connector on the board.

2.2 Updating the device tree at the bootloader and Linux level
After you choose the desired pin, make some modifications at the device-tree level.

Firstly, the functionalities of the desired pin are checked to find out the macros associated with the GPIO functionality. The header
files are at different location, depending on the board used.

Secondly, if a pin is used by some other peripheral modules, disable the respective module. This is done by setting the status
property to “disabled” in the configuration info for that peripheral module.

Thirdly, the adequate pin muxing is defined in the pinctrl hog section, using the GPIO macro for the chosen pin and the
pad-configuration values (IOMUXC_SwW_PAD CTL_PAD_*).

2.3 Adding the first pulse generator

The first period measured is between the board POR and the execution of the board_init_£ function of the SPL part of the
bootloader. To generate a pulse, configure the pin as the output. After this, you can drive the pin high for a short time and then
you can drive it low. You can do this without delay, because only the rising edge of the pulse is necessary.

2.4 Adding the second pulse generator

The second period measured is between the execution of the board init £ function of the SPL part of the bootloader and before
loading the kernel image from the U-Boot console. You can toggle that here using the U-Boot GPIO commands, which can be
written in the board configuration file, located in the /include/configs folder.

2.5 Adding the third pulse generator

The third period measured is between loading the kernel image from the U-Boot console and starting the psp1ash program, which
uses the frame buffer to show the relevant content on the display. To change the GPIO output state, add the 1ibgpiod package
to the psplash Yocto recipe. After adding the 1ibgpiod package, the gpiod functions are added to the psp1ash code to generate
a pulse right before the program uses the frame buffer for the first time.

2.6 Measuring the total time with the logic analyzer
The measurement stage can begin after building and flashing both the bootloader and Linux image to the board.

The boot-time is measured by starting the recording mode on the logic analyzer software and applying the reset button on the
board. The recording stops after the third rising edge on the chosen GPIO pin. The elapsed boot time is the time between the rising
edge of the nRST signal and the third rising edge of the GPIO pin.

3 Examples

3.1 i.MX 8M Quad

Choosing the pins

The chosen pin is the 19t pin on the J1801 expansion connector on the specified board. In the schematics for the baseboard,
the pin is used for the SAI 1 peripheral with the SAI1_RXFS function. Searching the specified pad in the reference manual for the
associated pin returns an alternate function of GPI04_IO[0].

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 2/56

NXP Semiconductors

Examples

ND

[

VSYS
AL D 5%
c1a01 ciam
A —2F uF
e
J1501 1
! =
1= Riz05 T ONE D
H R 0 OWB
—— it ... i
g H I FEAILMCLE 5 AFIM-6015-1AE
Hs SAIL_TXC SNSAN_THE 6
] SAlT_TEFS ;
iy AT TADD .
b] AT TROT Bt
107 TR TALT
oz TATTTADS £
1293 AT TALS B
1397 SR TALE B
:‘I-E" i AT TADE el
T EAIT TR 611
1T 9E SAI_RXC i
Y AT RS 5
20 AT AT JpERs 8
5 2 Sl QM1
2 LR ; ZAIRXDZ 5.1
= - SaliTREDS 54
e i NmD: £
25 [o2 NG SAIRXDS 6.1
2 [26 SATT_PAOT "*’.H_"';:':Bi 5-_
= = SRl SAITTRADT 61
e e — P
73 g SAIE MELE HEAIS MCLE 5
N P
3 o7 SAIE RAC C(SAIS_RNC 6
23 SAIS_FXF3 ae e s
BIE TATE_FROT A mere B
I SATS_FOROT :AI 2
ﬁ k] TATE_FRDZ o :
i gé SR TR SAIRXDE & 2.34mm pitch, Reserve for MIC header
H [T SAI3_MOLE . . SAI3 MCLK
33 0 :}}:-‘.I:_UC_"\ & r’"rer 1801
SAl3 FXC cp E
pr Al FRE CIAI_REC 6 SAE _RAE CTEREDE
a2 SAI3_RNFS sus mrEs s 343 R¥FS o3
3 FXD SAlZ_REFS SRR e
a2 o2 AL JOZAITRND 61517 a Tean
ﬁ = . RISIZ , . ~_ 0 DNE SPOIF_EXT_CLK
Fri SPOrE_TX . _ _
47 | ap e SSPOIF TXL 5
43 |¢ —){:.-F‘BI-_-'-:I [Fi1803] VDD_3V3
;3 = B)Eca SCL 618 Acd VDD 33 VPWRWO
513 ¢ ¥ I1IC3 5DA 618
521 ND_NCE3 5
53 2 NC_NWE &
54 MND WP &
e e MANDNREADY &
57 RAND_TATAD . _ - ~
5T [=¢ KR DATAD —— T NAND_DATARD 63
] RFRD DT
53 g
£3
RFIN-EDTE-1AH

Figure 1. Schematic view of the expansion connector for the i.MX 8MQ EVK board

YSPOIF_EXT CLK 6

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

3/56

NXP Semiconductors

Examples
8.2.5.83 SW_MUX_CTL_PAD_SAI1_RXFS SW MUX Control Register
(IOMUXC_SW_MUX_CTL_PAD_SAI1_RXFS)
SW_MUX_CTL Register
Address: 3033_0000h base + 15Ch offset = 3033_015Ch
Bit 3 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit 4 2 i 0
R
SION MUX_MODE
W
Reset 0 1 o 1
IOMUXC_SW_MUX_CTL_PAD_SAI1_RXFS field descriptions
Field Description
31-5 This field is reserved.
- Reserved
4 Software Input On Field
SION
Force the select mux mode Input path no matter of MUX_MODE functionality
0 SION_DISABLED — Input Path of pad SAI1_RXFS is determined by functionality
1 SION_ENABLED — Force Input Path of pad SAI1_RXFS
3 This field is reserved.
Reserved
MUX_MODE |[MUX Mode Select Field
Select 1 of 4 iomux modes to be used for pad: SAI1_RXFS
000 ALTO SAI1_RX SYNC — Select mux mode: ALTO mux port: RX_SYNC of instance: SAl1
001 ALT1_SAI5_RX_SYNC — Select mux mode: ALT1 mux port: RX_SYNC of instance: SAI5
100 ALT4_CORESIGHT_TRACE_CLK — Select mux mode: ALT4 mux port: TRACE_CLK of instance:
CORESIGHT
101 ALTS_GPIO4_l000 — Select mux mode: ALTS mux port: 1000 of instance: GPIO4
Figure 2. Associated mux control register for the chosen pad (SAI1_RXFS)
Updating the U-Boot Device tree
To get the necessary files, issue the following command:
$ bitbake -f -c unpack imx-boot
i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 4/56

NXP Semiconductors

Examples

To update the device tree, find out the macro associated to the desired functionality. This information

is in the <yocto build dir>/tmp/work/imx8mgevk-poky-linux/u-boot-imx/<specified git folder>/git/include/dt-
bindings/pinctrl/pins-imx8mg.h file. However, the use of this macro is not enough for an adequate pin mux setup, because
it requires a sixth value, which represents the pad configuration.

#define MX8MQ IOMUXC SAI1 RXFS SAI1l RX SYNC 0x15C 0x3C4 0x4C4 0x0 0x0
#define Mx8MQ IOMUXC SAI1 RXFS SAI5 RX SYNC 0x15C 0x3C4 0x4E4 0x1 0x1
#define MX8MQ IOMUXC SAI1 RXFS CORESIGHT TRACE CLK 0x15C 0x3C4 0x000 0x4 0x0
#define MX8MQ IOMUXC_SAI1l RXFS_GPIO4_IO0 0x15C 0x3C4 0x000 0x5 0x0

The associated DTS file for the i.MX 8MQ EVK board (<yocto build dir>/tmp/work/imx8mgevk-poky-1linux/u-boot-imx/
<specified git folder>/git/arch/arm/dts/imx8mg-evk.dts) shows that the pin is not used, so there is nothing to disable.
To use the pin with the GPIO functionality, add the following pin muxing in iomuxc.

pinctrl hog 1: hoggrp-1 {
fsl,pins = <
MX8MQ IOMUXC SAI1 RXFS GPIO4 I00 0x16
>;)
The 0x16 configuration is based on the following pad settings in the ToMuxCc_sw PAD CTL PAD SAI1 RXFS register:
» Drive Strength Field: 45_OHM
» Slew Rate Field: Fast
* Open Drain Enable field: Disabled
« Pull Up Enable Field: Disabled
» Schmitt trigger Enable Field: Disabled
 Lvttl Enable Field: Disabled
Updating the Linux device tree

To update the device tree, find out the macro associated to the desired functionality. This information is in the
<yocto_build_dir>/tmp/work—shared/imx8mqevk/kernel_source/arch/arm64/boot/dts/freescale/pins—immeq.hf”e.
However, the use of this macro is not enough for an adequate pin mux setup, because it requires a sixth value, which represents
the pad configuration.

#define MX8MQ IOMUXC SAI1 RXFS SAI1 RX SYNC 0x15C 0x3C4 0x4C4 0x0 0x0
#define MX8MQ IOMUXC SAIl RXFS SAI5 RX SYNC 0x15C 0x3C4 0x4E4 0x1 0xl
#define MX8MQ IOMUXC SAIl RXFS CORESIGHT TRACE CLK 0x15C 0x3C4 0x000 0x4 0x0
#define MX8MQ IOMUXC SAIl RXFS GPIO4 IO0 0x15C 0x3C4 0x000 0x5 0x0

The associated DTS file for the i.MX 8MQ EVK (<yocto build dir>/tmp/work-shared/imx8mgevk/kernel source/arch/
arm64/boot/dts/freescale/imx8mg-evk.dts) shows that the pin is already used with the SAI1 functionality. Change the status
property for the SAI1 from “okay” to “disabled”.

&sail {

pinctrl-names = "default", "pcm b2m", "dsd";

pinctrl-0 = <&pinctrl sail pcm>;

pinctrl-1 = <&pinctrl sail pcm b2m>;

pinctrl-2 = <&pinctrl sail dsd>;

assigned-clocks = <&clk IMX8MQ CLK SAI1>;

assigned-clock-parents = <&clk IMX8MQ AUDIO PLL1 OUT>;

assigned-clock-rates = <49152000>;

clocks = <&clk IMX8MQ CLK SAIl IPG>, <&clk IMX8MQ CLK DUMMY>, <&clk IMX8MQ CLK SAI1 ROOT>,
<&clk IMX8MQ CLK DUMMY>, <&clk IMX8MQ CLK DUMMY>, <&clk IMX8MQ AUDIO PLL1 OUT>, <&clk
IMX8MQ AUDIO PLL2 OUT>;

clock-names = "bus", "mclkO0", "mclkl", "mclk2", "mclk3", "pll8k", "pllllk";

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 5/56

NXP Semiconductors

Examples

fsl,sai-multi-lane;

fsl,dataline,dsd = <0 O0xff Oxff 2 Oxff O0x11>;
dmas = <&sdma2 8 25 0>, <&sdma2 9 25 0>;
status = "disabled"; }

To use the pin with the GPIO functionality, add the following pin muxing to iomuxc. If the chosen pad has another pin mux
configuration, replace the respective pin muxing with the following to successfully generate the pulse in Linux:

pinctrl hog: hoggrp {
fsl,pins = <
MX8MQ IOMUXC NAND READY B GPIO3 I016 0x19

MX8MQ IOMUXC NAND WE B GPIO3 IO17 0x19

MX8MQ IOMUXC NAND WP B GPIO3 IO18 0x19

MX8MQ IOMUXC GPIOl IO08 GPIOl IO8 0xd6

MX8MQ IOMUXC GPIOl IO00 ANAMIX REF CLK 32K 0x16

MX8MQ IOMUXC SAI1 RXFS GPIO4 IOO0 0x16
>}

Adding the first pulse generator in <yocto build dir>/tmp/work/imx8mgevk-poky-linux/u-boot-imx/
<specified git folder>/git/board/freescale/imx8mq evk/spl.c

Firstly, declare a macro containing the pair of GPIO group and GPIO pin in the file:

#define TIMED GPIO IMX GPIO NR(4, 0)
Secondly, you need a macro to use a pad as a GPIO. In this case, it already exists:
#define USDHC_GPIO PAD CTRL (PAD CTL PUE | PAD CTL DSEL)
Now you can add the pulse generation code in the board init f function, after the BSS clearing part:

void board init f(ulong dummy) {

int ret;
/* Clear the BSS. */
memset (bss start, 0, bss end - bss start);

gpio request (TIMED GPIO, "timed gpio");
gpio direction output (TIMED GPIO, 1);
gpio direction output (TIMED GPIO, O0);
arch cpu init();

Adding the second pulse generator in <yocto_build dir>/tmp/work/imx8mgevk-poky-1linux/u-boot-imx/
<specified git folder>/git/include/configs/imx8mg evk.h

The commands responsible for toggling the pin are added in the environment variables for the bootloader, at the load image
property. The pin is set before loading the image and reset afterwards:

“loadimage=gpio set GPIO4 0;fatload mmc ${mmcdev}:S${mmcpart} S${loadaddr} S${image};gpio clear
GPIO4 0\0” \

To automate the process, create a patch which contains the U-Boot modifications in the sp1.c, imx8mg-evk.dts, and
imx8mg_evk.h files. Add the details after the last commands that describe the nature of the patch:

git add board/freescale/imx8mg evk/spl.c
git add arch/arm/dts/imx8mg-evk.dts

git add include/configs/imx8mg_evk.h

git commit -s

git format-patch HEAD~1

v O O i

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 6/56

NXP Semiconductors

Examples

Copy the resulting patch to the following location: <yocto dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/
u-boot/u-boot-imx. Add the name of the patch into the source location identifier in the Yocto recipe for U-Boot (<yocto dir>/

imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx_ 2020.04.bb):

SRC_URT = " ...\
file://<patch_name>.patch \

"

To check that the patch works after the modifications, apply the following commands, after which the files should contain the
following changes:

S bitbake -f -c clean u-boot-imx
$ bitbake u-boot-imx

S bitbake imx-boot

Adding the third pulse generator

For this stage, modify the Yocto recipe extension for psplash so that it can fetch the additional 1ibgpiod library necessary for the
toggling of the GPIO (<yocto dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash git.bbappend):

DEPENDS = "libgpiod"
RDEPENDS_${PN} = "libgpiod"
RDEPENDS ${PN}-dev = "libgpiod"

To get the necessary psplash files, issue the following command:
$ bitbake -f -c unpack psplash

Atfter fetching the necessary files, the makefile (<yocto_build_dir>/tmp/work/aarch64—poky—linux/psplash/
<specified git folder>/git/Makefile.am) is modified to include the 1gpiod:

AM CFLAGS = $(GCC_FLAGS) -D GNU SOURCE -lgpiod
GCC_FLAGS := $(GCC_FLAGS) -Lusr/lib -Iusr/include -lgpiod
LD FLAGS = $ (LD FLAGS) -lgpiod

Modify the source code (<yocto build dir>/tmp/work/aarch64-poky-linux/psplash/<specified git folder>/git/
psplash.c). The first step is to include the library:

#include "gpiod.h"

In the main function, declare some additional variables responsible for selecting the bank and the line for the GPIO. The banks
are zero-indexed, so the number of the GPIO bank must be decremented by one:

struct gpiod chip *chip;
struct gpiod line *line;

int gpio line = 0;

char dev[] = "/dev/gpiochip3";

Before sending the first command to the frame buffer (clearing the background), the program should acquire control of the pin,
toggle it, and release it.

chip = gpiod chip open(dev); if (!'chip) return -1;
line = gpiod chip get line(chip, gpio line); if ('line) {
gpiod chip close(chip); return -1; }
req = gpiod line request output(line, "SIGNAL", 2); if (req) {
gpiod chip close(chip); return -1; } if (gpiod line set value(line, 1) != 0){
printf ("Impossible to change line %d value to %d \n", gpio line, 1);
gpiod chip close(chip); return -1; } if (gpiod line set value(line, 0) != 0){

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 7156

NXP Semiconductors

Examples

printf ("Impossible to change line %$d value to %d \n", gpio line, 0);
gpiod chip close(chip); return -1; }

gpiod line release(line);

gpiod chip close(chip);

After applying all the modifications, build the psp1ash and the image using the following commands:

$ bitbake psplash
$ bitbake imx-image-core

To automate this process, create a patch which contains the modifications inthe Makefile.amand psplash.cfiles. Add the details
after the last commands describing the nature of the patch:

$ git add Makefile.am

$ git add psplash.c

$ git commit -s

$ git format-patch HEAD~1

The resulting patch is then copied to the following location: <yocto dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/
recipes-core/psplash/files. The name of the patch is then added into the source location identifier in the Yocto Recipe
extension for psplash (<yocto dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash git.bbappend).

SRC_URI += " \
file://psplash-start.service \
file://psplash-basic.service \
file://psplash-network.service \
file://psplash-quit.service \
file://<patch name>.patch \

"

To check that the patch works after the modifications, apply the following commands, after which the psplash.candMakefile.am
files should contain the following changes:

$ bitbake -f -c clean psplash
$ bitbake psplash
$ bitbake imx-image-core

Measuring the total time with the logic analyzer

This part starts by setting up all the preliminary connections, such as the power supply, debug port, download port, and MIPI-DSI
to HDMI connections. If the HDMI display is not connected and functional, the psplash pulse generation does not work, because
no frame buffers exist.

Build both the bootloader and Linux image using bi tbake. After that, they are written to the board using the UUU program, in which
you can choose between writing to the on-board eMMC or the SD card.

The measuring stand is set up by connecting the logic analyzer to the board. The nRST signal is used as a starting reference and
it is on the JTAG connector at pin 10.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 8/56

NXP Semiconductors

Figure 3. Schematic view of the JTAG connector available on the i.MX 8MQ EVK board

Examples
NVCC_ITAG_3V3 JTAG Debug
< JTAG_nTRST
D402 %jgg TTAGTDT
TP405 TTAG 100
I TP406 —
DNP | DNP | DNP P47
o R402 ® R403 ¥ R404 ® R405
10K 10K 10K 100
5% 5% 5% 1%
© R408
J401 10K
JTAG_TMS T™MS 2 [5o] 1 vec 5%
JTAG TCK TCK T o] 2 __GND
JTAG_TDO TDO 6 00 5 GND
JTAG_TOT NCITDI & | & 57 R406 0 5% ONP =
nRST 10 g RA07 _~ 0 5% GND
0 O %
HDR 2X5 R418 0 5% DNP JTAG_nTRST
GND
D401
7101920 POR_B <K EeF -
ZLLS400

To capture the rising edges of the chosen pin, connect the second probe of the analyzer to the 19t" pin on the J1801 expansion
connector. The evaluation board features an FPC socket, so plug an FPC to 60x0.5 extension board into the receptacle. This

ensures easy access to the required pins.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

9/56

NXP Semiconductors

Examples

Figure 4. Measurement setup on the i.MX 8MQ EVK board

After checking that both probes are referenced to the board’s ground, start the logic analyzer software, where you can set up the
probe parameters and the time frame.

Configure the board to start in the internal development mode, boot from the desired storage space, and then power it on. After
the psplash screen disappears, press the reset button on the board and start the recording on the logic analyzer software.

You should see a rising edge on the nRST pin, followed by three pulses on the chosen pin. At this moment, stop the recording
and place the measurement flags to find out the time for each phase. The boot time of the board in this configuration results from
the sum of the elapsed time for each stage.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 10/56

NXP Semiconductors

Examples

© Logic2 [Logic 8 - Connected]
File Edit Capture View Help

Measurements

Figure 5. Measurements on the boot-time for i.MX 8MQ EVK board

3.2 i.MX 8M Plus

Choosing the pins

The chosen pin is the 24! pin on the J21 expansion connector on the specified board. In the schematics for the baseboard, the
pin is used for the ECSPI 2 peripheral with the ECSPI12_SS0 function. Searching the specified signal in the reference manual for
the associated pin returns an alternate function of GPIO5_IO[13].

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note 11/56

NXP Semiconductors

Examples
VEXP_3V3 VEXP_5V
J21
3.3V 1 oo 2 =
2C3_SDA V3 EIE 3 Y13 =
o _SDA_ a0
P ‘i":g{ I3 SCL_IV3 SR el I
' T UARTS SIS _ava GFIC.T 7 o “1& THD UART3 TxD 3va
GHD 7] :_J =110 =xD UARTS R¥D V3
UART3 RTS 3v3 EEIC.0 11 | - = [17 GEIO.L
4 EXF P11 GFIC.Z 13 g; 14 GHD COpERPPID 4
4 ExP:P1:2§8< BElo.: M5 | ool 10 sE0. EXP_ P13 4
(EFEL 7| oo | 18 &FoE) CyE P a 4
ECSPIZ_MOSI_3vI | HosT 19| 530 &% - -
ECSEIZ_WIS0 _3V3 | MIso 21 | o o | 23 GFlo.E P
ECSPIZ_SCLE_3v3 | S0k 73 S: 34 CEQ ECSPIZ_550_3v3 CPEXPPOT 410
GHD 25 [|28 ol
S0a.0._, a7 Z8_T3cL.o
P — grro.st 20 _22_ 30 “GWD
—m GrIc.zz 31 [- = [32 GFIc.ze PRI 33
4 EXP P18 = sl =
4 EXFPRIT 4 _ GEFIC.Z2 33 = 34 GhD B
- POM_STREAM 3 GEIC.Z: 35 | o 36 GP10.27 | PDM_STREAM 2
FOM_STREAN_1 FFID.25 a7 | - - | 38 GFio.2E | PON_STREAND
GND 30 | 0040 ero.ze | FOMLCIK
e TEN-T20-01-F-DV-A |
GND GND
Figure 6. Schematic view of the expansion connector for the i.MX 8MP EVK board
i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 12/56

NXP Semiconductors

Examples

Figure 7. Associated mux control register for the chosen pad (ECSPI2_SS0)

8.2.4.123 SW_MUX _CTL PAD _ECSPI2_SS0 SW MUX Control
Register (IOMUXC_SW_MUX_CTL_PAD _ECSPI2_SS0)

SW_MUX_CTL Register

Address: 3033_0000h base + 1FCh offset = 3033_01FCh

Bit 3 30 20 28 7 26 25 24 23 22 21 20 19 18 17 16

SION MUX_MODE

Reset

IOMUXC_SW_MUX_CTL_PAD_ECSPI2_SS0 field descriptions

Fleld Description
31-5 This field is reserved.

- Reserved

4 Software Input On Field.
SION

Force the selected mux mode Input path no matter of MUX_MODE functionality.

1 ENABLED — Force input path of pad ECSPI2_SS0
0 DISABLED — Input Path is determined by functionality

3 This field is reserved.
- Reserved

MUX_MODE |MUX Mode Select Field.
Select 1 of 6 iomux modes to be used for pad: ECSPI2_SS0.

000 ALTO_ECSPI2_§50 — Select mux mode: ALTO mux port: ECSP12_SS80 of instance: ecspi2
001 ALT1_UART4 RTS B — Select mux mode: ALT1 mux port: UART4_RTS_B of instance: uart4
010 ALT2_12C4_SDA — Select mux mode: ALT2 mux port: I2C4_SDA of instance: i2c4

100 ALT4 _CCM_CLKO2 — Select mux mode: ALT4 mux port: CCM_CLKOZ2 of instance: cem

101 ALTS5 GPIO5_IO[13] — Select mux mode: ALTS mux port: GPIOS_IO13 of instance: gpioS

Updating the U-Boot device tree

Issue the following command to get the necessary files:

$ bitbake -f -c unpack imx-boot

To update the device tree, find out the macro associated to the desired functionality. This information is

in the <yocto build dir>/tmp/work/imx8mpevk-poky-linux/u-boot-imx/<specified git folder>/git/arch/arm/dts/

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

13/56

NXP Semiconductors

Examples

imx8mp-pinfunc.h file. However, the use of this macro is not enough for an adequate pin mux setup, because it requires a sixth
value, which represents the pad configuration.

#define
#define
#define
#define
#define
#define

MX8MP IOMUXC ECSPI2 SSO ECSPI2 SSO
MX8MP TOMUXC ECSPI2 SSO_UART4 DCE_RTS
MX8MP IOMUXC ECSPI2 SSO UART4 DTE CTS
MX8MP IOMUXC ECSPI2 SSO I2C4 SDA
MX8MP IOMUXC ECSPI2 SSO CCM CLKO2
MX8MP IOMUXC ECSPI2 SSO GPIOS5 IO13

0x1FC
0x1FC
0x1FC
0x1FC
0x1FC
0x1FC

0x45C
0x45C
0x45C
0x45C
0x45C
0x45C

0x574
0x5FC
0x000
0x5C0
0x000
0x000

0x0
0x1
0x1
0x2
0x4
0x5

0x1
0x3
0x0
0x4
0x0
0x0

The associated DTS file for the i.MX 8MP EVK board (<yocto build dir>/tmp/work/imx8mpevk-poky-1linux/u-boot-imx/
<specified git folder>/git/arch/arm/dts/imx8mp-evk.dts) shows that the pin is not used, because there is nothing to
disable. To use the pin with the GPIO functionality, add the following pin muxing in iomuxc:

pinctrl hog: hoggrp {

fsl,pins = <

MX8MP_IOMUXC ECSPI2 SSO_ GPIOS5 IOl

>}

The 0x16 configuration is based on the following pad settings in the TomMuxc_sw PAD CTL PAD ECSPI2 SSO register:

* Drive Strength Field: DSE_X6
» Slew Rate Field: Fast
* Open Drain Enable field: Disabled

* Pull Up/Down Config Field: Weak pull-down
* Input Select Field: CMOS
* Pull Select Field: Pull Disabled

Updating the Linux device tree

To update the device tree, find out the macro associated to the desired functionality. This information is in the

0x16

<yocto build dir>/tmp/work-shared/imx8mpevk/kernel source/arch/armé64/boot/dts/freescale/imx8mp-pinfunc.h
file. However, the use of this macro is not enough for an adequate pin mux setup, because it requires a sixth value, which

represents

#define
#define
#define
#define
#define
#define

the pad configuration.

MX8MP_IOMUXC ECSPI2 SS0 ECSPI2 SSO
MX8MP IOMUXC ECSPI2 SSO UART4 DCE RTS
MX8MP IOMUXC ECSPI2 SSO UART4 DTE CTS
MX8MP IOMUXC ECSPI2 SSO I2C4 SDA
MX8MP IOMUXC ECSPI2 SSO CCM CLKO2
MX8MP_IOMUXC ECSPI2 SS0 GPIO5 IO13

0x1FC
0x1FC
0x1FC
0x1FC
0x1FC
0x1FC

0x45C
0x45C
0x45C
0x45C
0x45C
0x45C

0x574
0x5FC
0x000
0x5C0
0x000
0x000

0x0
0x1
0x1
0x2
0x4
0x5

0x1
0x3
0x0
0x4
0x0
0x0

The associated DTS file for the i.MX 8MP EVK (<yocto build dir>/tmp/work-shared/imx8mpevk/kernel source/arch/
arm64/boot/dts/freescale/imx8mp-evk.dts) shows that the pin is already used with the ECSPI2 functionality. Change the
status property for the ECSPI2 from “okay” to “disabled”.

&ecspiz

{

#address-cells = <1>;
#size-cells = <0>;

fsl,spi-num-chipselects = <1>;

pinctrl-names = "default";

pinctrl-0 = <&pinctrl ecspi2 &pinctrl ecspi2 cs>;
cs-gpios = <&gpio5 13 GPIO ACTIVE LOW>;

status

= "disabled";

spidevl: spi@0 {

reg =

<0>;

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

14 /56

NXP Semiconductors

Examples

compatible = "rohm,dh2228fv";
spi-max-frequency = <500000>; }; };

To use the pin with the GPIO functionality, add the following pin muxing to iomuxc. If the chosen pad has another pin mux
configuration, replace the respective pin muxing with the following to successfully generate the pulse in Linux:

pinctrl hog: hoggrp {
fsl,pins = <
MX8MP_IOMUXC_HDMI_ DDC_SCL__HDMIMIX HDMI SCL 0x400001c3
MX8MP IOMUXC HDMI DDC SDA HDMIMIX HDMI SDA 0x400001c3
MX8MP IOMUXC HDMI HPD HDMIMIX HDMI HPD 0x40000019
MX8MP IOMUXC HDMI CEC__HDMIMIX HDMI CEC 0x40000019
MX8MP_IOMUXC ECSPI2 SSO_ GPIO5 IO13 0xl6
>

bi

Adding the first pulse generator in <yocto build dir>/tmp/work/imx8mpevk-poky-linux/u-boot-imx/
<specified git_folder>/git/board/freescale/imx8mp evk/spl.c

Firstly, declare a macro containing the pair of GPIO group and GPIO pin in the file:
#define TIMED GPIO IMX GPIO NR(5, 13)

Secondly, create a macro to use a pad as a GPIO. The macro is already created in this case:
#define USDHC GPIO PAD CTRL (PAD CTL HYS | PAD CTL DSEL)

Add the pulse generation code in the board_init_f£ function, after the BSS clearing part.

void board init f(ulong dummy) {

int ret;
/* Clear the BSS. */
memset (_ bss start, 0, _bss end - bss start);

gpio_request (TIMED GPIO, "timed gpio");
gpio_direction output (TIMED GPIO, 1);
gpio direction output (TIMED GPIO, 0);
arch cpu init();

Adding the second pulse generator in <yocto_build dir>/tmp/work/imx8mpevk-poky-1linux/u-boot-imx/
<specified git folder>/git/include/configs/imx8mp evk.h

Add the commands responsible for pin toggling into the environment variables for the bootloader at the load image property. The
pin is set before image loading and reset afterwards:

“loadimage=gpio set GPIO5 13;fatload mmc ${mmcdev}:S${mmcpart} S${loadaddr} S${image};gpio clear
GPIO5 13\0” \

To automate the process, create a patch that contains the U-Boot modifications inthe sp1.c, imx8mp-evk.dts,and imx8mp evk.h
files. Add the details after the last commands describing the nature of the patch:

git add board/freescale/imx8mp evk/spl.c
git add arch/arm/dts/imx8mp-evk.dts

git add include/configs/imx8mp evk.h

git commit -s

git format-patch HEAD~1

o A 0 0y

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 15/56

NXP Semiconductors

Examples

Copy the resulting patch to the following location: <yocto dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/
u-boot/u-boot-imx. Add the name of the patch into the source location identifier in the Yocto recipe for u-boot (<yocto dir>/

imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx_ 2020.04.bb).

SRC_URT = " ...\
file://<patch_name>.patch \

"

Apply the following commands to check that the patch works after the modifications, after which the files should contain the
following changes:

S bitbake -f -c clean u-boot-imx
$ bitbake u-boot-imx

S bitbake imx-boot

Adding the third pulse generator

For this stage, modify the Yocto recipe extension for psplash so that it can fetch the additional 1ibgpiod library necessary to
toggle the GPIO (<yocto dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash git.bbappend):

DEPENDS = "libgpiod"
RDEPENDS_${PN} = "libgpiod"
RDEPENDS ${PN}-dev = "libgpiod"

Issue the following command to get the necessary psplash files:
$ bitbake -f -c unpack psplash

After fetching the necessary files, modify the makefile (<yocto build dir>/tmp/work/aarch64-poky-linux/psplash/
<specified git folder>/git/Makefile.am) to include the 1gpiod

AM CFLAGS = $(GCC_FLAGS) -D_GNU SOURCE -lgpiod
GCC_FLAGS := $(GCC_FLAGS) -Lusr/lib -Iusr/include -lgpiod
LD FLAGS = $(LD_FLAGS) -lgpiod

Modify the source code (<yocto build dir>/tmp/work/aarch64-poky-linux/psplash/<specified git folder>/git/
psplash.c). The first step is including the library:

#include "gpiod.h"

Declare some additional variables in the main function, responsible for selecting the bank and the line for the GPIO. The banks
are zero-indexed, so the number of the GPIO bank must be decremented by one:

struct gpiod chip *chip;
struct gpiod line *line;

int gpio line = 13;

char dev[] = "/dev/gpiochip4d";

The program should acquire control of the pin, toggle it, and release it before sending the first command to the frame buffer
(clearing the background).

chip = gpiod chip open(dev); if (!'chip) return -1;
line = gpiod chip get line(chip, gpio_line); if (!'line) ({
gpiod chip close(chip); return -1; }
req = gpiod line request output(line, "SIGNAL", 2); if (req) {
gpiod chip close(chip); return -1; } if (gpiod line set value(line, 1) != 0){
printf ("Impossible to change line %d value to %d \n", gpio line, 1);
gpiod chip close(chip); return -1; } if (gpiod line set value(line, 0) != 0){

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 16 /56

NXP Semiconductors

Examples

printf ("Impossible to change line %$d value to %d \n", gpio line, 0);
gpiod chip close(chip); return -1; }

gpiod line release(line);

gpiod chip close(chip);

After applying all the modifications, you can build the psplash and the image using the following commands:

$ bitbake psplash
$ bitbake imx-image-core

To automate this process, create a patch that contains the modifications in the Makefile.amand psplash.c files. Add the details
after the last commands describing the nature of the patch:

$ git add Makefile.am

$ git add psplash.c

$ git commit -s

$ git format-patch HEAD~1

The resulting patch is then copied to the following location: <yocto dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/
recipes-core/psplash/files. The name of the patch is then added in the source location identifier in the Yocto Recipe
extension for psplash (<yocto dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash git.bbappend).

SRC_URI += " \
file://psplash-start.service \
file://psplash-basic.service \
file://psplash-network.service \
file://psplash-quit.service \
file://<patch name>.patch \

"

Apply the following commands to check that the patch works after the modifications, after which the psplash.c and Makefile.am
should contain the following changes:

$ bitbake -f -c clean psplash
$ bitbake psplash
$ bitbake imx-image-core

Measuring the total time with the logic analyzer

This part starts by setting up all the preliminary connections, such as the power supply, debug port, download port, and HDMI
connections. If the HDMI display is not connected and functional, the psplash pulse generation does not work, because there are
no frame buffers.

Build both the bootloader and Linux images using bitbake. After that, write them to the board using the UUU program, in which
you can choose between writing to the on-board eMMC or the SD card.

Set up the measuring stand by connecting the logic analyzer to the board. The JTAG_RESET signal is used as a starting reference
and it is on the JTAG connector at pin 10.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 17 /56

NXP Semiconductors

Examples
VDD_1va
D22
W NSRo220
R243 % R244 ¥ R245 £ R24G
10K 2 10K, 10K 2 100
1%
2
CON_JTAG_TMS TMS 2 [o] 1 VIREF
COM_JTAG_TGK TCK 45513 GHD
COM_JTAG_TD0 TOO 6 [a2 GND
COM_JTAG_T01 TDI 8 [~ 17 RMT 0
AG_RESET 70 [- ¢ o
JTAG] = I R248 "0
fom N D26 Dr;l:F' L
4 PoRE (= P Warm Reset, CPU ONLY ono
NZRO220
D232
SYS_nRST A c
. - F Cold Reset
NSRO320
Figure 8. Schematic view of the JTAG connector available on the i.MX 8MP EVK board
To capture the rising edges of the chosen pin, connect the second probe of the analyzer to the 24 pin on the J21
expansion connector.
i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 18/56

NXP Semiconductors

Examples

o
=
ma
5N
(e
©
1
(o8]
oz}

Figure 9. Measurement setup on the i.MX 8MP EVK board

After checking that both probes are referenced to the board’s ground, start the logic analyzer software, where the probe
parameters and the time frame is set up.

Configure the board to start in the internal development mode, boot from the desired storage space, and then power it on. After
the psplash screen disappears, press the reset button on the board and start the recording on the logic analyzer software.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note

19/56

NXP Semiconductors

Examples

You shall see a rising edge on the JTAG_RESET pin, followed by three pulses on the chosen pin. Stop the recording and place
the measurement flags to find out the time for each phase. The boot time of the board in this configuration results from the sum
of the elapsed time for each stage.

Timing Mark

Measurements

Figure 10. Measurements on the boot-time for i.MX 8MP EVK board

3.3 i.MX 8M Mini

Choosing the pins

The chosen pin is the 24t pin on the J1003 expansion connector on the specified board. In the schematics for the baseboard, the
pin is used for the ECSPI 2 peripheral with the ECSPI2_SS0 function. Searching for the specified signal in the reference manual
for the associated pin returns an alternate function of GPIO5_IO[13].

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note 20/56

NXP Semiconductors

Figure 11. Schematic view of the expansion connector for the i.MX 8MM EVK board

Examples
VEXT_3v3 VDD_5V
L v
J1003
]2 =v
S
- ools @
. P B TAD e =
7 UART3_CTS : UART3 THD 7
2 2 - - s o6 — >><J.'-.ETE:=.:':D 7
g o 7 UART3 RTS (¢ 0 — COMEXP 108 T
o "i,ir 7 EXP_ IR oo }g .
& & 7 BP0 &% oo - ¢ SHERP_IDI T
] i — 0 o
_] 2_MOS ac
g 2. 150 o o .
5 52 I_SCLK £ g g SWECSPIZ 330 7
== O
= tols
GND 7 EXF_IDH4 22 o0 ¢ EXPIOTT 7
7 EXP_IC13 Lo o
ESD Pars close o comnnector .15 SA E:FI;'? E}g} g e E:g::N g %-:-@_Ex;':
e B oa R'IMENA/_D 5 -':a::;:é:E'E 715
TERTI0-01-F-0V-A
GRo GaD

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

21/56

NXP Semiconductors

Examples

8.2.5.128 Pad Mux Register
(IOMUXC_SW_MUX_CTL_PAD_ECSPI2_SS0)

Address: 3033_0000h base + 210h offset = 3033_0210h

Bit El 30 28 e a7 6 25 24 23 22 21 20 13 18 i7 16

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SIONM MUX_MODE

Reset O 0 0 0 0 0 0 0 0 0 0 0

IOMUXC_SW_MUX_CTL _PAD _ECSPI2_SS0 field descriptions

Field Description
31-5 This field is resarved.

- Resorved

4 Software Input On Field.
SI0N

Force the selected mux mode input path no matter of MUX_MODE functionality.

1 EMNABLED — Force input path of pad ECSPIZ2_S50
0 DISABLED — Input Path is daterminad by functionality of the selected mux mode (regular).

3 Thig field is resarved.
Resarved

MUX_MODE | MUX Mode Selact Field.
Select 1 of 3 iomux modes to be used for pad: ECSPI2_S50.

NOTE: Pad ECSPI2_SS50 iz involved in Daisy Chain.
000 ALTO — Selact signal ECSPI2_S50
001 ALT1 — Select signal UART4 _RATS_B

- Configure register IDMUXC_UART4_RTS B SELECT INPUT for mode ALT1.
101 ALT5 — Select signal GPIO5_1013

Figure 12. Associated mux control register for the chosen pad (ECSPI2_SS0)

Updating the U-Boot Device tree

Issue the following command to get the necessary files:

$ bitbake -f -c unpack imx-boot

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 22/56

NXP Semiconductors

To update the device tree, find out the macro associated to the desired functionality. This information is

Examples

in the <yocto build dir>/tmp/work/imx8mmevk-poky-linux/u-boot-imx/<specified git folder>/git/arch/arm/dts/
imx8mm-pinfunc.h file. However, the use of this macro is not enough for an adequate pin mux setup, because it requires a sixth
value, which represents the pad configuration.

#define MX8MM IOMUXC ECSPI2 SSO ECSPI2 SSO 0x210
#define MX8MM IOMUXC ECSPI2 SSO UART4 DCE RTS B 0x210
#define MX8MM IOMUXC ECSPI2 SSO UART4 DTE CTS B 0x210
#define MX8MM IOMUXC ECSPI2 SSO GPIO5 I013 0x210
#define MX8MM IOMUXC ECSPI2 SSO TPSMP HDATAL5 0x210

0x478
0x478
0x478
0x478
0x478

0x000
0x508
0x000
0x000
0x000

0x0
0x1
0x1
0x5
0x7

0x0
0x1
0x0
0x0
0x0

The associated DTS file for the i.MX 8MM EVK board (<yocto build dir>/tmp/work/imx8mmevk-poky-linux/u-boot-imx/
<specified git folder>/git/arch/arm/dts/imx8mm-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin muxing into iomuxc.

pinctrl hog 1: hoggrp-1 {

fsl,pins =

<

MX8MM IOMUXC ECSPI2 SS0 GPIO5 IO13 0x16

>;
Y

The 0x16 configuration is based on the following pad settings in the ToMuxC_sw_PAD CTL PAD ECSPI2_SSO register:
» Drive Strength Field: X6
+ Slew Rate Field: Fast

* Open Drain Enable field: Disabled

» Control 10 ports PS: Pull-down resistors
» Hysteresis Enable Field: CMOS
» Pull Resistors Enable Field: Pull Disabled

Updating the Linux device tree

To update the device tree, find out the macro associated to the desired functionality. This information is in the

<yocto build dir>/tmp/work-shared/imx8mmevk/kernel source/arch/armé64/boot/dts/freescale/imx8mm-pinfunc.h
file. However, the use of this macro is not enough for an adequate pin mux setup, because it requires a sixth value, which
represents the pad configuration.

#define MX8MM IOMUXC ECSPI2 SSO ECSPI2 SSO 0x210
#define MX8MM IOMUXC ECSPI2 SSO UART4 DCE RTS B 0x210
#define MX8MM IOMUXC ECSPI2 SSO UART4 DTE CTS B 0x210
#define MX8MM IOMUXC ECSPI2 SSO GPIO5 IO13 0x210
#define MX8MM IOMUXC ECSPI2 SSO TPSMP HDATALS 0x210

0x478
0x478
0x478
0x478
0x478

0x000
0x508
0x000
0x000
0x000

0x0
0x1
0x1
0x5
0x7

0x0
0x1
0x0
0x0
0x0

The associated DTS file for the i.MX 8MM EVK (<yocto build dir>/tmp/work-shared/imx8mmevk/kernel source/arch/

armé4/boot/dts/freescale/imx8mm-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin muxing into iomuxc. If the chosen pad has another pin mux

configuration, replace the respective pin muxing with the following to successfully generate the pulse in Linux:

pinctrl hog: hoggrp {

fsl,pins =

<

MX8MM IOMUXC ECSPI2 SSO GPIO5 IO13 0x16

>;
}i

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

23 /56

NXP Semiconductors

Add the first pulse generator into <yocto build dir>/tmp/work/imx8mmevk-poky-linux/u-boot-imx/
<specified git folder>/git /board/freescale/imx8mm evk/spl.c.

Firstly, declare a macro containing the pair of GPIO group and GPIO pin in the file:
#define TIMED GPIO IMX GPIO NR(5, 13)

Secondly, there must be a macro to use a pad as a GPIO. In this case, the macro already exists:
#define USDHC GPIO PAD CTRL (PAD CTL HYS | PAD CTL DSEL)

Add the pulse generation code into the board init_£ function, after the BSS clearing part.

void board init f(ulong dummy) {

int ret;
/* Clear the BSS. */
memset (_ bss start, 0, _ bss end - _ bss start);

gpio request (TIMED GPIO, "timed gpio");
gpio _direction output(TIMED GPIO, 1);
gpio direction output (TIMED GPIO, O0);
arch cpu init();

Adding the second pulse generator in <yocto_build dir>/tmp/work/imx8mmevk-poky-1linux/u-boot-imx/

<specified git folder>/git/include/configs/imx8mm evk.h

Examples

The commands to toggle the pin are added in the environment variables for the bootloader, at the load image property. Set the

pin before loading the image and reset it afterwards:

“loadimage=gpio set GPIO5 13;fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${image};gpio clear

GPIO5 13\0” \

To automate the process, create a patch, which contains the U-Boot modifications in the sp1.c, imx8mm-evk.dts, and

imx8mm_evk.h files. Add the details after the last commands describing the nature of the patch:

git add board/freescale/imx8mm evk/spl.c
git add arch/arm/dts/imx8mm-evk.dts

git add include/configs/imx8mm evk.h

git commit -s

git format-patch HEAD~1

U O O i n

Copy the resulting patch to the following location: <yocto dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/
u-boot /u-boot-imx. Add the name of the patch into the source location identifier in the Yocto recipe for U-Boot (<yocto dir>/

imx—yocto—bsp/sources/meta—imx/meta—bsp/recipes—bsp/u—boot/u—boot—imx72O2O.O4.bbx

SRC URI = " ...\
file://<patch name>.patch \

"

Apply the following commands to check that the patch works after the modifications, after which the files should contain the

following changes:
$ bitbake -f -c clean u-boot-imx

$ bitbake u-boot-imx
$ bitbake imx-boot

Adding the third pulse generator

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

24 /56

NXP Semiconductors

Examples

For this stage, modify the Yocto recipe extension for psplash so that it can fetch the additional 1ibgpiod library necessary to
toggle the GPIO (<yocto dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash git.bbappend):

DEPENDS = "libgpiod"
RDEPENDS_${PN} = "libgpiod"
RDEPENDS ${PN}-dev = "libgpiod"

Issue the following command to get the necessary psplash files:
$ bitbake -f -c unpack psplash

After fetching the necessary files, modify the makefile (<yocto build dir>/tmp/work/aarch64-poky-linux/psplash/
<specified git folder>/git/Makefile.am) to include the 1gpiod:

AM CFLAGS = $(GCC_FLAGS) -D GNU SOURCE -lgpiod
GCC_FLAGS := $(GCC_FLAGS) -Lusr/lib -Iusr/include -lgpiod
LD FLAGS = $ (LD _FLAGS) -lgpiod

Modify the source code (<yocto build dir>/tmp/work/aarch64-poky-linux/psplash/<specified git folder>/git/
psplash.c). The first step is to include the library:

#include "gpiod.h"

Declare some additional variables in the main function, responsible for selecting the bank and the line for the GPIO. The banks
are zero-indexed, so the number of the GPIO bank must be decremented by one:

struct gpiod chip *chip;
struct gpiod line *line;

int gpio_line = 13;

char dev[] = "/dev/gpiochip4";

Before sending the first command to the frame buffer (clearing the background), the program should acquire control of the pin,
toggle it, and release it.

chip = gpiod chip open(dev); if (!'chip) return -1;
line = gpiod chip get line(chip, gpio line); if ('line) {
gpiod chip close(chip); return -1; }

req = gpiod line request output(line, "SIGNAL", 2); if (req) {

gpiod chip close(chip); return -1; } if (gpiod line set value(line, 1) != 0){
printf ("Impossible to change line %d value to %d \n", gpio line, 1);
gpiod chip close(chip); return -1; } if (gpiod line set value(line, 0) != 0){
printf ("Impossible to change line %d value to %d \n", gpio line, 0);
gpiod chip close(chip); return -1; }

gpiod line release(line);

gpiod chip close(chip) ;

After applying all the modifications, build the psp1ash and the image using the following commands:

$ bitbake psplash
$ bitbake imx-image-core

To automate this process, create a patch that contains the modifications in the Makefile.amand psplash.c files. Add the details
after the last commands describing the nature of the patch:

$ git add Makefile.am
$ git add psplash.c

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 25/56

NXP Semiconductors

Examples

$ git commit -s
$ git format-patch HEAD~1

The resulting patch is then copied to the following location: <yocto dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/
recipes-core/psplash/files. The name of the patch is then added into the source location identifier in the Yocto Recipe
extension for psplash (<yocto dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash git.bbappend).

SRC_URI += " \
file://psplash-start.service \
file://psplash-basic.service \
file://psplash-network.service \
file://psplash-quit.service \
file://<patch name>.patch \

"

Apply the following commands to check that the patch works after the modifications, after which the psplash.c and Makefile.am
should contain the following changes:

$ bitbake -f -c clean psplash
$ bitbake psplash

$ bitbake imx-image-core

Measuring the total time with the logic analyzer

This part starts by setting up all the preliminary connections, such as the power supply, debug port, download port, and MIPI-DSI
to HDMI connections. If the HDMI display is not connected and functional, the psplash pulse generation does not work, because
there are no frame buffers.

Both the bootloader and the Linux image must be built using bitbake. After that, write them to the board using the UUU program,
in which you can choose between writing to the on-board eMMC or the SD card.

The measuring stand is set up by connecting the logic analyzer to the board. The nRST signal is used as a starting reference,
which can be found on the JTAG connector at pin 10.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 26 /56

NXP Semiconductors

Examples

VDD_1V8

JTAG Debug

Figure 13. Schematic view of the JTAG connector available on the i.MX 8MM EVK board

<
Dan?
V' NsrO320
Q
one | one | owe
RS17 ¥ RE18 ¥ RE1E RE20
1w S K S K 100
5% 5% 5% 1%
JTAG_TMS p
7 JTAG_TMS AG_THS ™S 2 [11 e
L aeen TTAG_ICF TCK alooTs GhD
L=l TTAG_TDQ TDO e[-5T5 GND
T JTAG_ TDO (G NCTDl B[22 7 Rz 5% ONF =
7 JTAGTDI SHh—TC ! 006 =
- nRST 10 [o9 RG22 5 GND
HDR 2X5 RE23 5% DNP JTAG NTRST o -0 rmer 718
D908
7PORE FORB A »
NSRO320

To capture the rising edges of the chosen pin, connect the second probe of the analyzer to the 24t pin on the J1003

expansion connector.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

27/ 56

NXP Semiconductors

Examples

Figure 14. Measurement setup on the i.MX 8MM EVK board

After checking that both probes are referenced to the board’s ground, start the logic analyzer software, where you can set up the
probe parameters and the time frame.

Configure the board to start in the internal development mode, boot from the desired storage space, and then power it on. After
the psplash screen disappears, press the reset button on the board and start the recording on the logic analyzer software.

You should see a rising edge on the nRST pin, followed by three pulses on the chosen pin. Stop the recording and place the
measurement flags to find out the time for each phase. The boot time of the board in this configuration results from the sum of the
elapsed time for each stage.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 28/56

NXP Semiconductors

Examples

Figure 15. Measurement setup on the i.MX 8MM EVK board

Timing Markers

-
Pl

P2 5 A5323029200s

Measurements

3.4 i.MX 8M Nano

Choosing the pins

The chosen pin is the 24™ pin on the J1003 expansion connector on the specified board. In the schematics for the baseboard, the
pin is used for the ECSPI 2 peripheral with the ECSPI2_SSO0 function. Searching the specified signal in the reference manual for

the associated pin returns an alternate function of GPIO5_IO[13].

EXP CN

VEXT 33

VDD 5V
k4

ESD Parts close o connector

3
. 5
N ;
21 2 T
] i
L N7 3 =
i i T
| < q
= pi
=F = 23
& 5= H
a7
iy
75
3 33
—3E

RO

[

Figure 16. Schematic view of the expansion connector for the i.MX 8MN EVK board

G SHEXP_ION T

¢y EXPIDIZ T

\E_RAD2 7108
UKD 15

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

29/56

NXP Semiconductors

Examples

8.2.5.104 Pad Mux Register
(IOMUXC_SW_MUX_CTL_PAD_ECSPI2_SS0)

Address: 3033_0000h bass + 210h offset = 3033_0210h

Be Hn] o b] = 26 25 24 2 =2 o o 1 18 17 16

Resat

Reset O 0 0 0 0 o 0 0 0 0 0 0

IOMUXC_SW_MUX_CTL_PAD_ECSPI2_SS0 field descriptions

Field Description
31-5 This field is reserved.

- Reserved

4 Software Input On Fisld.
SION

Force the selected mux mode input path no matter of MUX_MODE functionality.

1 ENABLED — Force input path of pad ECSPI2_SS0
0 DISABLED — Input Path is determined by functionality of the selected mux mode (regular).

IOMUXC_SW_MUX_CTL_PAD_ECSPI2_SS0 field descriptions (continued)
Field Description
3 This field is reserved.
- Reserved
MUX_MODE |[MUX Mods Salect Field.
Select 1 of 4 iomux modes to be used for pad: ECSP12_S80.

NOTE: Pad ECSPI2_SS0 is involved in Daisy Chain.

000 ALTO— Selact signal ECSPI2_SS0

- Configure register IOMUXC_ECSPI2_SS0_SELECT_INPUT for mode ALTO.
001 ALT{ — Select signal UART4 RTS B

- Configure register IDMUXC_UART4_RTS_B_SELECT_INPUT for mode ALT1.
010 ALT2 — Select signal 12C4_SDA

- Configure register IOMUXC _|2C4_SDA_SELECT _INPUT for mode ALT2.
101 ALTS — Select signal GPIOS_1013

Figure 17. Associated mux control register for the chosen pad (ECSPI2_SS0)

Updating the U-Boot device tree

Issue the following command to get the necessary files:

$ bitbake -f -c unpack imx-boot

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 30/56

NXP Semiconductors

Examples

To update the device tree, find out the macro associated to the desired functionality. This information is

in the <yocto build dir>/tmp/work/imx8mnevk-poky-linux/u-boot-imx/<specified git folder>/git/arch/arm/dts/
imx8mn-pinfunc.h file. The use of this macro is not enough for an adequate pin mux setup, because it requires a sixth value,
which represents the pad configuration.

#define MX8MN_ TOMUXC ECSPI2 SSO ECSPI2_ SSO 0x0210 0x0478 0x0570 0x0 0x0
#define MX8MN IOMUXC ECSPI2_ SSO UART4 DCE RTS B 0x0210 0x0478 0x0508 0x1 0x1
#define MX8MN_IOMUXC ECSPI2 SSO UART4 DTE CTS B 0x0210 0x0478 0x0000 Ox1 0x0
#define MX8MN_ IOMUXC ECSPI2 SSO I2C4 SDA 0x0210 0x0478 0x058C 0x2 0x5
#define MX8MN_ IOMUXC ECSPI2 SSO GPIOS I013 0x0210 0x0478 0x0000 0x5 0x0

The associated DTS file for the i.MX 8MN EVK board (<yocto build dir>/tmp/work/imx8mnevk-poky-linux/u-boot-imx/
<specified git folder>/git/arch/arm/dts/imx8mn-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin muxing into iomuxc:
pinctrl hog 1: hoggrp-1 {
fsl,pins = <
MX8MN IOMUXC ECSPI2 SS0 GPIO5 IO13 0x16
>;
};
The 0x16 configuration is based on the following pad settings in the ToMUxC_sw_PAD CTL PAD ECSPI2_SSO register:
» Drive Strength Field: X6
» Slew Rate Field: Fast
* Open Drain Enable field: Disabled
» Control 10 ports PS: Pull-down resistors
» Hysteresis Enable Field: CMOS
» Pull Resistors Enable Field: Pull Disabled

Updating the Linux device tree

To update the device tree, find out the macro associated to the desired functionality. This information is in the

<yocto build dir>/tmp/work-shared/imx8mnevk/kernel source/arch/armé64/boot/dts/freescale/imx8mn-pinfunc.h
file. The use of this macro is not enough for an adequate pin mux setup, because it requires a sixth value, which represents the
pad configuration.

#define MX8MN IOMUXC ECSPI2 SSO ECSPI2 SSO 0x210 0x478 0x570 0x0 0x0
#define MX8MN IOMUXC ECSPI2 SSO UART4 DCE RTS B 0x210 0x478 0x508 0x1 0x1
#define MX8MN TOMUXC FECSPI2_SSO UART4 DTE CTS B 0x210 0x478 0x000 0x1 0x0
#define MX8MN IOMUXC ECSPI2 SS0 I2C4 SDA 0x210 0x478 0x58C 0x2 0x5
#define MX8MN IOMUXC ECSPI2 SSO GPIO5 I013 0x210 0x478 0x000 0x5 0x0

The associated DTS file for the i.MX 8MN EVK (<yocto build dir>/tmp/work-shared/imx8mnevk/kernel source/arch/
armé4/boot/dts/freescale/imx8mn-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin muxing into iomuxc. If the chosen pad has another pin mux
configuration, the respective pin muxing must be replaced with the following to successfully generate the pulse in Linux:

pinctrl hog: hoggrp {

fsl,pins = <

MX8MN IOMUXC ECSPI2 SSO GPIO5 I013 0x16
>;

}i

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 31/56

NXP Semiconductors

Examples

Adding the first pulse generator in <yocto build dir>/tmp/work/imx8mnevk-poky-linux/u-boot-imx/
<specified git folder>/git/board/freescale/imx8mn evk/spl.c

Firstly, declare a macro containing the pair of GPIO group and GPIO pin in the file:
#define TIMED GPIO IMX GPIO NR(5, 13)

There must be a macro for using a pad as a GPIO. In this case, it already exists.
#define USDHC GPIO PAD CTRL (PAD CTL HYS | PAD CTL DSEL)

Add the pulse generation code into the board init_£ function, after the BSS clearing part:

void board init f(ulong dummy) {

int ret;
/* Clear the BSS. */
memset (_ bss start, 0, _ bss end - _ bss start);

gpio request (TIMED GPIO, "timed gpio");
gpio _direction output(TIMED GPIO, 1);
gpio direction output (TIMED GPIO, O0);
arch cpu init();

Adding the second pulse generator in <yocto_build dir>/tmp/work/imx8mnevk-poky-1linux/u-boot-imx/
<specified git folder>/git/include/configs/imx8mn evk.h

Add the commands to toggle the pin into the environment variables for the bootloader, at the load image property. Set the pin
before loading the image and reset it afterwards:

“loadimage=gpio set GPIO5 13;fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${image};gpio clear
GPIO5 13\0” \

To automate the process, create a patch that contains the U-Boot modifications in the spl.c, imx8mn-evk.dts and
imx8mn_evk.h files. Add the details after the last commands, describing the nature of the patch:

git add board/freescale/imx8mn_evk/spl.c
git add arch/arm/dts/imx8mn-evk.dts

git add include/configs/imx8mn_evk.h

git commit -s

git format-patch HEAD~1

U O i i n

Copy the resulting patch to the following location: <yocto dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/
u-boot/u-boot-imx. Add the name of the patch into the source location identifier in the Yocto recipe for U-Boot (<yocto dir>/

imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx_ 2020.04.bb):

SRC_ URI = " ...\
file://<patch name>.patch \

"

To check that the patch works after the modifications, apply the following commands, after which the files should contain the
following changes:

$ bitbake -f -c clean u-boot-imx
$ bitbake u-boot-imx

$ bitbake imx-boot

Adding the third pulse generator

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 32/56

NXP Semiconductors

Examples

For this stage, modify the Yocto recipe extension for psp1ash so that it can fetch the additional 1ibgpiod library to toggle the GPIO
(<yocto_dir>/sources/meta—imx/meta—bsp/recipes—core/psplash/psplash_git.bbappendr

DEPENDS = "libgpiod"
RDEPENDS_${PN} = "libgpiod"
RDEPENDS ${PN}-dev = "libgpiod"

Issue the following command to get the necessary psplash files:
$ bitbake -f -c unpack psplash

After fetching the necessary files, modify the makefile (<yocto build dir>/tmp/work/aarché4-poky-linux/psplash/
<specified git folder>/git/Makefile.am) o include the 1gpiod:

AM CFLAGS = $(GCC_FLAGS) -D_GNU_SOURCE -lgpiod
GCC_FLAGS := $(GCC_FLAGS) -Lusr/lib -Iusr/include -lgpiod
LD FLAGS = $(LD_FLAGS) -lgpiod

Modify the source code (<yocto build dir>/tmp/work/aarch64-poky-linux/psplash/<specified git folder>/git/
psplash.c). The first step is to include the library:

#include "gpiod.h"

Declare some additional variables in the main function to select the bank and the line for the GPIO. The banks are zero-indexed,
so the number of the GPIO bank must be decremented by one.

struct gpiod chip *chip;
struct gpiod line *line;

int gpio_line = 13;

char dev[] = "/dev/gpiochip4";

The program should acquire control of the pin, toggle it, and release it before sending the first command to the frame buffer
(clearing the background):

chip = gpiod chip open(dev); if (!'chip) return -1;
line = gpiod chip get line(chip, gpio line); if ('line) {
gpiod chip close(chip); return -1; }

req = gpiod line request output(line, "SIGNAL", 2); if (req) {

gpiod chip close(chip); return -1; } if (gpiod line set value(line, 1) != 0){
printf ("Impossible to change line %d value to %d \n", gpio line, 1);

gpiod chip close(chip); return -1; } if (gpiod line set value(line, 0) != 0){
printf ("Impossible to change line %d value to %d \n", gpio line, 0);

gpiod chip close(chip); return -1; }
gpiod line release(line);
gpiod chip close(chip) ;

After applying all the modifications, build the psp1ash and the image using the following commands:

$ bitbake psplash
$ bitbake imx-image-core

To automate this process, create a patch that contains the modifications in the Makefile.amand psplash.c files. Add the details
after the last commands, describing the nature of the patch:

$ git add Makefile.am
$ git add psplash.c

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 33/56

NXP Semiconductors

Examples

$ git commit -s
$ git format-patch HEAD~1

The resulting patch is then copied to the following location: <yocto dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/
recipes-core/psplash/files. The name of the patch is then added in the source location identifier in the Yocto Recipe
extension for psplash (<yocto dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash git.bbappend).

SRC_URT += " \
file://psplash-start.service \
file://psplash-basic.service \
file://psplash-network.service \
file://psplash-quit.service \
file://<patch name>.patch \

"

To check that the patch works after the modifications, apply the following commands, after which the psplash.candMakefile.am
should contain the following changes:

$ bitbake -f -c clean psplash
$ bitbake psplash

$ bitbake imx-image-core

Measuring the total time with the logic analyzer

This part starts by setting up all the preliminary connections, such as the power supply, debug port, download port, and MIPI-DSI
to HDMI connections. If the HDMI display is not connected and functional, the psplash pulse generation does not work, because
there are no frame buffers.

Both the bootloader and Linux image must be built using bitbake. After that, write them to the board using the UUU program, in
which you can choose between writing to the on-board eMMC or the SD card.

Set up the measuring stand by connecting the logic analyzer to the board. The nRST signal is used as a starting reference and
it is on the JTAG connector at pin 10.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 34 /56

NXP Semiconductors

Examples

VDD_1V8

JTAG Debug

Figure 18. Schematic view of the JTAG connector available on the i.MX 8MN EVK board

<
Dan?
V' NsrO320
Q
one | one | owe
RS17 ¥ RE18 ¥ RE1E RE20
1w S K S K 100
5% 5% 5% 1%
JTAG_TMS p
7 JTAG_TMS AG_THS ™S 2 [11 e
L aeen TTAG_ICF TCK alooTs GhD
L=l TTAG_TDQ TDO e[-5T5 GND
T JTAG_ TDO (G NCTDl B[22 7 Rz 5% ONF =
7 JTAGTDI SHh—TC ! 006 =
- nRST 10 [o9 RG22 5 GND
HDR 2X5 RE23 5% DNP JTAG NTRST o -0 rmer 718
D908
7PORE FORB A »
NSRO320

To capture the rising edges of the chosen pin, connect the second probe of the analyzer to the 24t pin on the J1003

expansion connector.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

35/56

NXP Semiconductors

Examples

Figure 19. Measurement setup on the i.MX 8MN EVK board

After checking that both probes are referenced to the board’s ground, start the logic analyzer software, where you can set the
probe parameters and the time frame.

Configure the board to start in the internal development mode, boot from the desired storage space, and then power it on. After
the psplash screen disappears, press the reset button on the board and start the recording on the logic analyzer software.

You should see a rising edge on the nRST pin, followed by three pulses on the chosen pin. Stop the recording and place the
measurement flags to find out the time for each phase. The boot time of the board in this configuration results from the sum of the
elapsed time for each stage.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 36/56

NXP Semiconductors

Examples

© Logic2 [Logic 8 - Connected]
File Edit View Help

Timing Markers

Measurements

Figure 20. Measurements on the boot time for i.MX 8MN EVK board

3.5 i.MX8ULP

Choosing the pins

The chosen pin is the 15t pin on the J20 Arduino headers on the specified board. In the schematics for the baseboard, the pin
is used for the LPI2C 6 peripheral with the Lp12c6_scrL function. Searching the specified signal in the reference manual for the
associated pin returns an alternate function of PTFO.

PER_3V3
v

o
(]
(=1
-

[=]

RN

| |) | U | | OO 5

0000000000 |

Figure 21. Schematic view of the Arduino headers for the i.MX 8ULP EVK board

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 37/56

NXP Semiconductors

Examples

Function
IOMUX PCR{DOMAIN}_{PADNAME]}, Pad Control Register implements configuration fields for an specific {PADNAME}.

Diagram
Bits | 30 29 28 | 27 26 25 24 | 23 22 2 20 19 18 17 16
R Reserved Reserved
DFD DFCS DFE OBE IBE
w
Reset 0 0 0 0 | 0 0 0 0 | 0 0 0 0 0 0 0 0
Bits 15 14 13 12 11 10 9 8 7 6 5 4 | 3 2 1 0
Reserv
R Reserved Reserved
LK MUX ed DSE ODE SRE PE PS
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0

Figure 22. Pad control register for the chosen pad (PTFO0)

Updating the U-Boot device tree

Use the following command to get the necessary files:
$ bitbake -f -c unpack imx-boot

To update the device tree, find out the macro associated to the desired functionality. This information is

inthe <yocto build dir>/tmp/work/imx8ulpevk-poky-linux/u-boot-imx/<specified git folder>/git/arch/arm/dts/
imx8ulp-pinfunc.h file. The use of this macro is not enough for an adequate pin MUX setup, because it requires a 6! value,
which represents the pad configuration.

#define MXBULP PAD PTF0 PTF0 0x0100 0x0000 0xl 0x0

#define MXBULP PAD PTF0 FXIOl DO 0x0100 0x083C 0x2 0x2
#define MXBULP PAD PTF0 LPUART6 CTS B 0x0100 0x09CC 0x4 0x2
#define MXBULP PAD PTF0 LPI2C6 SCL 0x0100 0x09B8 0x5 0x2
#define MXBULP PAD PTF0 I2S7 RX BCLK 0x0100 0x0B64 0x7 0x2
#define MXBULP PAD PTFO SDHC1 D1 0x0100 0x0A68 0x8 0x2
#define MXBULP PAD PTF0 ENETO RXD1 0x0100 0x0AFC 0x9 0x2

#define
#define
#define
#define

MXULP PAD PTFO USBl ID 0x0100 O0xOACC Oxa 0x3
MX8ULP PAD PTFO EPDCO SDOE 0x0100 0x0000 Oxb 0x0
MXULP_PAD PTFO DPIO D23 0x0100 0x0000 Oxc 0x0
MXSULP_PAD PTFO WUUl P8 0x0100 0x0000 Oxd 0x0

The associated DTS file for the i.MX 8ULP EVK board (<yocto_build_dir>/tmp/work/imx8ulpevk—poky—linux/u—boot—imx/
<specified git_ folder>/git/arch/arm/dts/imx8ulp-evk.dts) shows thatthe pinis not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin MUXing into iomuxc:

pinctrl hog 1: hoggrp-1 {

fsl,pins = <
MX8ULP_PAD PTFO PTFO 0x42
>;

bi

The 0x42 configuration is based on the following pad settings in the ToMux PCR1_PTFO register:

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note 38/56

NXP Semiconductors

Examples

« Drive strength enable: high drive strength
» Slew rate enable: standard slew rate

» Open drain enable: push-pull output

* Pull select: pull-down selected

» Pull-up enable: pull enabled

Updating the Linux device tree

To update the device tree, find the macro associated to the desired functionality. This information is

in the <yocto build dir>/tmp/work-shared/imx8ulpevk/kernel source/arch/armé64/boot/dts/freescale/imx8ulp-
pinfunc.h file. The use of this macro is not enough for an adequate pin mux setup, because it requires a 6! value, which
represents the pad configuration.

#define MX8ULP PAD PTFO PTFO 0x0100 0x0000 Ox1 0xO
#define MX8ULP_PAD PTFO__FXIOl DO 0x0100 0x083C 0x2 0x2
#define MX8ULP_PAD PTFO LPUART6 CTS B 0x0100 0x09CC 0x4 0x2
#define MX8ULP_PAD PTFO__LPI2C6_SCL 0x0100 0x09B8 0x5 0x2
#define MX8ULP_PAD PTFO I2S7 RX BCLK 0x0100 0x0B64 0x7 0x2
#define MX8ULP PAD PTFO SDHC1 D1 0x0100 O0x0A68 0x8 0x2
#define MX8ULP PAD PTFO ENETO RXD1 0x0100 OxOAFC 0x9 0x2
#define MX8ULP_PAD PTFO USBL ID 0x0100 O0x0ACC Oxa 0x3
#define MX8ULP_PAD PTFO__EPDCO_SDOE 0x0100 0x0000 Oxb 0x0
#define MX8ULP_PAD PTFO__ DPIO_D23 0x0100 0x0000 Oxc 0x0
#define MX8ULP_PAD PTFO__WUUl_ P8 0x0100 0x0000 0xd 0x0

The associated DTS file for the i.MX 8ULP EVK (<yocto build dir>/tmp/work-shared/imx8ulpevk/kernel source/arch/
armé64/boot/dts/freescale/imx8ulp-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin MUXing into iomuxc. If the chosen pad has another pin MUX
configuration, the respective pin MUXing must be replaced with the following to successfully generate the pulse in Linux:

pinctrl-names = "default";

pinctrl-0 = <&pinctrl hog>;

pinctrl hog: hoggrp {

fsl,pins = <MX8ULP_PAD PTFO PTFO 0x42

freescale/imx8ulp_evk/spl.c

Add the pulse generation code into the board_init_£ function, after the BSS clearing part:

void board init f (ulong dummy)

{

/* Clear the BSS. */

memset (_ bss_start, 0, _ bss end - _ bss start);
__raw writel(0x142, 0x298c0100);

__raw_writel (0xc0000000, 0x2980007c) ;

int wval;

val = raw readl (0x2d010044) ;
val |= 0x1;

_ raw _writel(val, 0x2d010044);
val = raw readl (0x2d010054) ;
val |= 0x1;

__raw _writel(val, 0x2d010054);
val = raw readl (0x2d010048) ;
val |= 0x1;

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 39/56

NXP Semiconductors

Examples

_ raw _writel(val, 0x2d010048);
val = raw readl (0x2d010054) ;
val |= 0x1;

__raw _writel(val, 0x2d010054);
timer init();

arch cpu init();

Adding the 2™ pulse generator in <yocto_build_dir>/tmp/work/imx8ulpevk-poky-linux/u-boot-imx/<specified_git_folder>/qit/
include/configs/imx8ulp_evk.h

Add the commands to toggle the pin into the environment variables for the bootloader, at the load-image property. Set the pin
before loading the image and reset it afterwards:

“loadimage=gpio set GPIO3 0;fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${image};gpio clear
GPIO3_0\0” \

To automate the process, create a patch that contains the U-Boot modifications in the spl.c, imx8ulp-evk.dts, and
imx8ulp evk.h files. Add the details after the last commands, describing the nature of the patch:

git add board/freescale/imx8ulp evk/spl.c
git add arch/arm/dts/imx8ulp-evk.dts

git add include/configs/imx8ulp evk.h

git commit -s

git format-patch HEAD~1

U A i A

Copy the resulting patch to the following location: <yocto dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/
u-boot/u-boot-imx. Add the name of the patch into the source location identifier in the Yocto recipe for U-Boot (<yocto dir>/

imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx 2021.04.bb):

SRC_URI = " ...\

file://<patch name>.patch \

To check that the patch works after the modifications, apply the following commands, after which the
files should contain the following changes:

$ bitbake -f -c clean u-boot-imx

$ bitbake u-boot-imx

$ bitbake imx-boot

Adding the 3™ pulse generator

For this stage, modify the Yocto recipe extension for psp1ash so that it can fetch the additional 1ibgpiod library to toggle the GPIO
(<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash git.bbappend):

DEPENDS = "libgpiod"
RDEPENDS_${PN} = "libgpiod"
RDEPENDS ${PN}-dev = "libgpiod"

Use the following command to get the necessary psplash files:
$ bitbake -f -c unpack psplash

After fetching the necessary files, modify the make file (<yocto build dir>/tmp/work/cortexa35-poky-linux /psplash/
<specified git folder>/git/Makefile.am) to include 1gpiod

AM CFLAGS = $(GCC_FLAGS) $(EXTRA GCC_FLAGS) -D GNU SOURCE -lgpiod -DFONT HEADER=\"$ (FONT NAME) -
font.h\" -DFONT DEF=$ (FONT NAME) font

GCC_FLAGS := $(GCC_FLAGS) -Lusr/lib -Iusr/include -lgpiod

LD FLAGS = $(LD_FLAGS) -lgpiod

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 40/ 56

NXP Semiconductors

Examples

Modify the source code (<yocto build dir>/tmp/work/aarch64-poky-linux/psplash/<specified git folder>/git/
psplash.c). The first step is to include the library:

#include "gpiod.h"
Declare some additional variables in the main function to select the bank and the line for the GPIO.

struct gpiod chip *chip;
struct gpiod line *line;

int gpio line = 0;
int reg;
char dev[] = "/dev/gpiochip6";

The program should acquire control of the pin, toggle it, and release it before sending the 15t command to the frame buffer (clearing
the background):

chip = gpiod chip open(dev); if (!chip) return -1;

line = gpiod chip get line(chip, gpio line); if (!line) {

gpiod chip close(chip); return -1; }

req = gpiod line request output(line, "SIGNAL", 2); if (req) {

gpiod chip close(chip); return -1; } if (gpiod line set value(line, 1) != 0){
printf ("Impossible to change line %d value to %d \n", gpio line, 1);

gpiod chip close(chip); return -1; } if (gpiod line set value(line, 0) != 0){
printf ("Impossible to change line %d value to %d \n", gpio line, 0);

gpiod chip close(chip); return -1; }

gpiod line release(line);

gpiod chip close (chip);

In BSP 5.10.72_2.2.0, the following modification is required to build imx-image-core:

In sources/meta-virtualization/recipes-containers/runc/runc-opencontainers git.bb:

- git://github.com/opencontainers/runc;branch=master \
+ git://github.com/opencontainers/runc;branch=main \

After applying all the modifications, build the psp1ash and the image using the following commands:

$ bitbake psplash
$ bitbake imx-image-core

To automate this process, create a patch that contains the modifications in the Makefile.amand psplash.c files. Add the details
after the last commands, describing the nature of the patch:

$ git add Makefile.am

$ git add psplash.c

$ git commit -s

$ git format-patch HEAD~1

The resulting patch is then copied to the following location: <yocto dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/
recipes-core/psplash/files. The name of the patch is then added in the source location identifier in the Yocto Recipe
extension for psplash (<yocto dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash _git.bbappend).

SRC_URT += " \
file://psplash-start.service \
file://psplash-basic.service \
file://psplash-network.service \
file://psplash-quit.service \

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 41 /56

NXP Semiconductors

Examples

file://<patch_name>.patch \

"

To check that the patch works after the modifications, apply the following commands, after which the psplash.candMakefile.am
files should contain the following changes:

$ bitbake -f -c clean psplash
$ bitbake psplash

$ bitbake imx-image-core

Measuring the total time using the logic analyzer

This part starts by setting up all the preliminary connections, such as the power supply, debug port, download port, and HDMI
connections. If the HDMI display is not connected and functional, the psp1ash pulse generation does not work, because there are

no frame buffers.
Both the bootloader and the Linux image must be built using bitbake. After that, write them to the board using the UUU program.

Set up the measuring stand by connecting the logic analyzer to the board. In the i.MX 8ULP boot-time measurement, Agilent
16902A Logic Analyzer was used. The JTac_RESET signal is used as a starting reference and it is on the JTAG connector at pin
10. Connect this pin to the first probe of the logic analyzer.

VDD_PTA
4
4
D44
RB521S30T1G
o
¥ RIBY RIOP RI2 o R34
10K 2 10K > 10K Z 100
¢ S)
18 CON_JTAG_TMS g o i 00 ;Ix S
18 CONJTAG TC 5 (2915 G
5 CONITAGTEO > DO el
18 CON_JTAG_TDI R e ResET .3 001 Eggg' (D)
= -0 = AN
DNP HDR 2X5 Sl
131820 RESETOB <G PR =t Warm Reset, CPU ONLY b 53
e - A c
12,18 SYS_Global RST_b <& s Pressors Cold Reset
Figure 23. Schematic view of the JTAG connector available on the i.MX 8ULP EVK board

To capture the rising edges of the chosen pin, connect the second probe of the analyzer to the 15t pin on the J20 Arduino
headers connector.

After checking that both probes are referenced to the board’s ground, start the logic analyzer software, where you can set the
probe parameters and the time frame.

Configure the board to boot from eMMC and power it on. After the psplash screen disappears, press the reset button on the board
and start the recording on the logic analyzer software.

You should see arising edge on the JTac_RESET pin, followed by three pulses on the chosen pin. Stop the recording and find out
the time for each phase. The boot time of the board in this configuration results from the sum of the elapsed time for each stage.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 42 /56

NXP Semiconductors

Further optimizations

:Iﬂle Edit View Setup Tools Markers Run/Stop Waveform Window Help

Dﬁméﬂl'ﬁ& #® |_H Tr Q& | |is

n Wl to M2 = 3.860200498 s |

\ Scale ‘ Ef_ div| 1) Delay. see0158874s (@)(m](s J(T) (20)
Ll M2

Bus/Signal \ Simple Trigger ‘_ Sk 3'615 B 5'6;85 ¥9a:

i i 14.930653076 s 8.660158876 s

] Overview

For Help, pressF1

e

Figure 24. Measurements on the boot time for i.MX 8ULP EVK board

4 Further optimizations

4.1 No delay in kernel loading

Before the U-Boot Kernel image loads according to the autoboot sequence, there is a delay during which you can stop the process.
This delay is defined in the u-boot environment variables as bootdelay and it may vary between the boards.

To achieve shorter boot times, configure the bootdelay to 0 after interrupting the autoboot sequence during the delay:
u-boot=> setenv bootdelay 0
u-boot=> saveenv

Saving Environment to MMC... Writing to MMC(l)... OK

After measuring the boot times, the total time shall decrease by the default bootdelay period.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 43 /56

NXP Semiconductors

Further optimizations

4.2 Quiet operation

During the Linux start-up sequence, different messages are sent through the debug port, which has a limited speed (serial
console). To achieve shorter boot times, suppress some of these messages using the quiet parameter in the mmcargs
environment variable.

u-boot=> edit mmcargs

edit: setenv bootargs ${jh clk} console=${console} root=${mmcroot} quiet
u-boot=> saveenv

Saving Environment to MMC... Writing to MMC(l)... OK

4.3 Enabling fast boot and using higher speeds for the storage

For the SD and eMMC storage, you can set higher speeds in the ROM stage of booting, depending on the available configuration.
For eMMC, you can activate the fast boot mode. You can set these modifications using the boot fuses. In some cases, there is
also the option to bypass the fuses using a predefined GPIO.

The following examples are applicable for the eMMC storage, because no notable decreases in boot time have been observed
for the SD.

Case | : Changes can be applied externally by GPIO pins

The prerequisite for this mode is that the BT Fuse_skL fuse must be intact (0), so that the GPIO boot overrides can work. The board
must also boot from the MicroSD card.

* i.MX 8M Quad

The GPIO pins that override the fuses are in the i.MX 8MQ reference manual.

Package pin Direction on reset eFuse
BOOT_MODE1 Input Boot mode selection
BOOT_MODEOD Input
SA_RXD0 Input BOOT_CFG[0]
SAI1_RXD1 Input BOOT_CFG[1]
SAH_RXD2 Input BOOT_CFG[2]
SAI_RXD3 Input BOOT_CFG[3]
SAI1_RXD4 Input BOOT_CFG[4]
SAI_RXD5 Input BOOT_CFG[5]
SA_RXD& Input BOOT_CFG[A]
SAI1_RXD7 Input BOOT_CFG[7]
SAN_TXDO Input BOOT_CFG[a]
SAI1_TXD1 Input BOOT_CFG[9]
SAI1_TxD2 Input BOOT_CFG[10]
SA_TXD3 Input BOOT_CFG[11]
SAI1_TXD4 Input BOOT_CFG[12]
SAI1_TXD5 Input BOOT_CFG[13]
SA_TXD6 Input BOOT_CFG[14]
SA_TXD7 Input BOOT_CFG[15]

Figure 25. GPIO overrides for the i.MX 8MQ EVK board

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 44 /56

NXP Semiconductors

Further optimizations

In the board configuration, the onboard eMMC supports the DDR mode, which can lead to shorter boot times. You can set the
MMC speed to high and enable the fast boot mode.

0x470[15:8] BOOT_CFG[15] BOOT_CFG[14] | BOOT_CFG[13] | BOOT_CFG[12]| BOOT_CFG[11] | BOOT_CFG[10] BOOT_CFG[9] | BOOT_CFG[8]
Ox470[15:8] 001 - 5D/eSD Port Select Power Cycle Enable 5D Loopback Clock
00 - e5DHCL 0' - No power cycle Source Sal [for SDRSO
01- eSDHC2 i ¥
Ox470[15:8] 010 - MMC/eMMC o 'oe:tgh 5D pad
Pages In Block: Nand_Row_address_bytes
Ox470[15:8] infinit-Loop 011 - NAND gf ;iv gf 2
[Debug USE only) 10-32 10-4
0 - Disable 11-256 11-5
1-Enable
Q5P Instanc SDR SMP
Ox470[15:8] 00 - QSPI o- m:;z:oe "000" : Default
1 - Reserved "001-111"
5P1 Add
OxA70[15:8] 110 - SPI NOR o-3by
1- 2-bytes (16-bit
OxA70[15:8] Others - Reserved for future use
BOOT_CFG[T] BOOT_CFG[A] BOOT_CFG[5] BOOT_CFG[4] BOOT_CFG[3] | BOOT_CFG[2] BOOT_CFG[1] BOOT_CFG[0]
0x470[7:0] Reserved Reserved speed Resarved
000 - Normal/SDR12
SD/esD ggé - High/SDR25
011 -
101 -
Fast Boot Other
0 - Regular
0x470[7:0] 4 - Fast Boat spead
00 - Normal
p 01- High
MMC/eMMC 10- Reserved for H5200
11 - Reserved
047001 BOOT_SEARCH_COUNT Resarved
NAND BT_TOGGLEMODE
0x470[7-01 HSPHS: Half Speed HSDLY: Half Speed | FSPHS: Full Speed FSDLY: Full Speed Reserved Reserved Reserved Reserved
Phase salection Delay selection phase salection Delay selection
0 : select sampling 0 : one clock delay 0 : select sampling 0: one clock delay
QsPl Eto:t:.n-lnféﬂ‘.d 1: two clock delay 3tarc|.:n-|nve't5d 1: two clock delay
1: salect sampling 1: salect sampling
at inverted clock at inverted clock
Oxd70[7-0] €S select (SPI only): Reserved Reserved Reserved Reserved Reserved Reserved
SPINOR 90- C5#0 {dafault)
10 - cs#2
11- C5#3

Figure 26. Fuse settings for speed and fast boot for the i.MX 8MQ EVK board

To apply the modifications mentioned above, connect the associated pins to a 3v3 power source. The J801 I,C header provides a
solution to this problem on the 5% pin. The 3v3 power source is shared on a breadboard for the desired BooT cFG pins (7, 6, 5, 2).

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

45/56

NXP Semiconductors

Further optimizations

VDD _3V3
GND
J801
6,16,17,18 12C2_SCL gz ; O O i
6,16,17,18 12C2_SDA << > £ O O 5
e = O O 3 ,
T2 % 175 {{IPOD_nRST 6
OO
C804 CON 2X5 ¥ R844
—=—0.1uF 10K
50v 5%
GND GND
Figure 27. 12C header schematic for the i.MX 8MQ EVK board

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 46 /56

NXP Semiconductors

Further optimizations

Figure 28. Board setup with breadboard for the i.MX 8MQ EVK board

NOTE
Before you apply any of the following commands, identify the eMMC device in both U-Boot and Linux, because the
associated id/name is used in the next steps. The storage mapping for the evaluation board is as follows: eSDHC1
for the eMMC card and eSDHC2 for the MicroSD.

To use fast boot, rebuild the u-boot image using the f1ash_evk emmc_fastboot target. You can do this by adding the following
lines to the 1ocal.conf file in the <yocto build dir>/conf directory:

IMXBOOT TARGETS append = " flash evk emmc fastboot"

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 47 /56

NXP Semiconductors

Further optimizations

After this, rebuild the image using the following bitbake commands:

$ bitbake -f -c clean imx-boot
$ bitbake imx-boot

An additional image that contains the f1ash evk emmc fastboot settings should be available in the <yocto build dir>/tmp/
deploy/images/imx8mgevk/ directory.

The majority of the MMC settings can be modified in the U-Boot using the mmc bootbus command, which sets the
BOOT BUS_WIDTH field:

u-boot=> mmc bootbus <device number> 2 1 2

Write the Image Vector Table (IVT) to a different offset, as per the reference manual (from 33 kB to 1 kB). You can do this
in Linux by enabling the write rights to the bootpartition, writing the new U-Boot image, disabling the rights, and setting it as
the bootpartition.

root@imx8mgevk:~# echo 0 > /sys/block/mmcblk<device number>boot<partition number>/force ro
root@imx8mgek:~# dd if=<location to flash.bin>/flash.bin of=/dev/

mmcblk<device_ number>boot<partition_ number> seek=1 bs=1k conv=fsync

root@imx8mgek:~# echo 1 > /sys/block/mmcblk<device number>boot<partition number>/force ro
root@imx8mgevk:~# mmc bootpart enable 1 0 /dev/mmcblk<device number>

root@imx8mgevk:~# sync

* i.MX 8M Mini
The GPIO pins that override the fuses are in the i.MX 8MM reference manual.
Package pin Direction on reset eFuse
BOOT_MODE1 Input Boot mode selection
BOOT_MODED Input
SAl{_RXDO Input BOOT_CFGI0]
SAI{_RXD{ Input BOOT_CFG[1]
SAl_RXD2 Input BOOT_CFG[Z]
SAl1_RXD3 Input BOOT_CFGI[3]
SAli_RXD4 Input BOOT_CFG[4]
SAl_RXDS Input BOOT_CFGIS]
SAl{_RXDE Input BOOT_CFGIE]
SAl{_RXD7 Input BOOT_CFG[7]
SAI_TXDO Input BOOT_CFG[8]
SAH_TXD{ Input BOOT_CFGI9]
SAl{_TXD2 Input BOOT_CFG[10]
SAI1_TXD3 Input BOOT_CFG[11]
SAl1_TXD4 Input BOOT_CFG[12]
Package pin Direction on resat eFuse
SAN_TXDS Input BOOT_CFG[13]
SAl{_TXDé Input BOOT_CFG[14)
SAI_TXD7 Input BOOT_CFG[15]
Figure 29. GPIO overrides for the i.MX 8MM EVK board

In the board configuration, the on-board eMMC supports the DDR mode, which can lead to shorter boot times. You can set the
MMC speed to high and enable the fast boot mode.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 48 /56

NXP Semiconductors

Further optimizations

BOOT_CFGI[7] BOOT_CFG[6] BOOT_CFG[5] BOOT_CFG[4] BOOT_CFG[3] | BOOT_CFG[2] BOOT_CFG[1] BOOT_CFG[0]
Speed
Bus Width: 000 - Namjg\jsDRJ
SD/eSD 0x470[7:0] Reserved Reserved 0-1-bit SEE ;I[\)gﬁ?“s/gDﬁzs Reserved
L-4-bit 011- SDR104
Others - Reserved
Fast Boot:
0- Regular
1- Fast Boot Bus Width:
000 - 1-bit USDHC 10 VOLTAGE
-4-bi SELECTION Fe
MMC/eMMC 0x470[7-0] foL ot Mol Bt Mode Reserved
101 - 4-bit DDR (MMC 4.4) 0-3.3V
110 - 8-bit DDR (MMC 4.4) 1-18v
Else - reserved.

Figure 30. Fuse settings for speed and fast boot for the i.MX 8MM EVK board

To apply the modifications mentioned above, connect the associated pins to a 3v3 power source. The evaluation board has two
sets of ten switches through which the pins can be set or reset: SW1101 and SW1102.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

49/56

NXP Semiconductors

Further optimizations

VDD 1va VDD 3v3
ol el il Rl el vl vl e el el B I vl vl el
= | = | = | = | 1= | = = | = = | = AR EEEEEE
| | | o || oF | F | | F | | o || oF | | o | | | |

LW
S
LN
N
B
S NP
S N
B
S
A
M
S NN
LA
S W
S
WY
LA
LA
N

gelssazasld gssayaEgEe
be| o | e | | e [e e e [o 1 o el o ol
] o e o]] o R 152 o anf e 2d i]
switor |1 I EW1102
§7C10ST B7C10ST
rNﬁﬂ'Lﬁ@-I‘hme rmﬂﬁwu‘&mhtﬂm‘ﬁ_
BOOT_MODED
BUOT_RMUDET BOOT_MODED 7
BOOT _MODET BOOT_MODEY 7
BOOT_MODES JTAG nTRST 7,14
= TEST_MODE 7
S SAI_RXDQ 7,15
- SAN_RXD1 7,15
e SAI_RXD2 7,15
o el SANM_RXD3 7,15
BTCFGS SAI1_RXD4 7,15
o el SAN_RXDS 7,15
T SAI_RXD6 7,15
= SAN_RXD7 7,15
SR SAIM_TXDO 7,15
ST SAH_TXDM 7,15
ST SAN_TXD2 7,15
TR SAN_TXD3 7,15
ST SAN_TXD4 7,15
=t SAN_TXD5 7,15
e el SAI_TXD6 7,15
== SAH_TXD7 7,15
|) | | | | | e | | |) | e |
e] e e el e e e = = 22| 22| 22|22 ==
=EEEEEEEEEE =R REEFEEERE
I}I}Ilz} .>§§ I}l}l}l}zl
s(g=lelelzl==zlq =lu=EEEE
e 1 e e g e O e e o e e e

7]
=1
=]

Figure 31. Schematic view of the GPIO override switches on the i.MX 8MM EVK board

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 50/56

NXP Semiconductors

Further optimizations

NOTE
Before you apply any of the following commands, identify the eMMC device in both U-Boot and Linux, because
the associated id/name is used in the next steps. The storage mapping for the development board is as follows:
eSDHC2 for the MicroSD card and eSDHC3 for the eMMC.

To use the fast boot, rebuild the U-Boot image using the f1ash_evk emmc_fastboot target. You can do this by adding the
following lines to the 1ocal.conf file in the <yocto build dir>/conf directory:

IMXBOOT TARGETS append = " flash evk emmc fastboot"

After this, rebuild the image using the following bitbake commands:

$ bitbake -f -c clean imx-boot
$ bitbake imx-boot

An additional image that contains the f1ash evk emmc fastboot settings should be available in the <yocto build dir>/tmp/
deploy/images/imx8mmevk/ directory.

You can modify the majority of the MMC settings in the U-Boot using the mmc bootbus command, which sets the
BOOT_ BUS_WIDTH field:

u-boot=> mmc bootbus <device number> 2 1 2

Write the Image Vector Table (IVT) to a different offset, as per the reference manual (from 33 kB to 1 kB). You can do this
in Linux by enabling the write rights to the bootpartition, writing the new U-Boot image, disabling the rights, and setting it as
the bootpartition.

root@imx8mmevk:~# echo 0 > /sys/block/mmcblk<device number>boot<partition number>/force ro
root@imx8mmek:~# dd if=<location to flash.bin>/flash.bin of=/dev/

mmcblk<device number>boot<partition number> seek=1 bs=1k conv=fsync

root@imx8mmek:~# echo 1 > /sys/block/mmcblk<device number>boot<partition number>/force ro
root@imx8mmevk:~# mmc bootpart enable 1 0 /dev/mmcblk<device number>

root@imx8mmevk:~# sync

Case Il : Changes can be applied by writing the boot fuses
* i.MX 8M Plus

In the board configuration, the onboard eMMC supports the DDR mode, which can lead to shorter boot times. You can set the
MMC speed to high and the fast boot mode can be enabled.

i _ SDMMC_BUS_WIDT SD_SPEED: USDHC_MFG_VOL_SEL
EMMC_FAST_B 00 - 8-bit 0 For Mfg Mode 10 Voltage
0 - Regular 3V

1 - Fast Boot

0x490[15:0] | 0x490[7:0]

0-3.
1-1.8V

1
11 - SDR104

Figure 32. Fuse settings for speed and fast boot for the i.MX 8MP EVK board

NOTE
Before you apply any of the following commands, identify the eMMC device in both U-Boot and Linux, because the
associated id/name is used in the next steps. The storage mapping for the evaluation board is as follows: eSDHC2
for the MicroSD card and eSDHC3 for the eMMC.

You can modify the majority of the MMC settings in the U-Boot using the mmc bootbus command, which sets the
BOOT_BUS_WIDTH field:

u-boot=> mmc bootbus <device number> 2 1 2

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 51/56

NXP Semiconductors

Further optimizations

NOTE
To apply the modifications mentioned above at the chip level, you must blow the fuses. This process is irreversible,
so double check the values before writing the fuses according to the reference manual.

The fuses are written in the u-boot using the fuse prog command. This requires the bank and word in which the fuse resides,
followed by a word containing the settings for the fuses. Find out the bank and word as follows:
(0x490-0x400)/0x10= 0x9 Hexadecimal = 9 Decimal
9/4 = 2 and the remainder is 1 (Bank = 2 and Word = 1)
The fuses that you must blow are as follows:
» 0x490[6] — Fast Boot
+ 0x490[5] - 8-bit DDR
+ 0x490[2] - EMMC Speed High

The resulting word to write for the desired configuration is 0x64:
u-boot=> fuse prog 2 1 0x64

To use the fast boot, there is no additional modification to the U-Boot image, because there is no different offset for the Image
Vector Table (IVT).
* i.MX 8M Nano

The board configuration shows that the on-board eMMC supports the DDR mode, which can lead to shorter boot times. You can
set the MMC speed to high and enable the fast boot mode.

Addr 7 6 5 4 3 2 1 0
0x490[7:0] USDHC_P | EMMC_FA | SDMMC_BUS_WIDTH SD_SPEED: USDHC_V | USDHC_M
WR_EN | STBT 00 - 8-bit 00 - Normal/SDR12 | O--SEL |FGVOL.S
0-No 0 - Regular For Normal EL
01 - 4-bit 01 - High/SDR25
power cycle 1 - Fast Boot Mode For Mfg
10 - 8-hit DDR (MMC 4.4) 10 - SDR50 |0 Voltage Mode |O
1 - Enabled Boot Voltage
11 - 4-bit DDR (MMC 4.4) 11 - SDR104 0-3.3V 9
EMMC_SPEED: 1-1.8V 0-3.3V
00 - Normal 1-1.8V
01 - High
Figure 33. Fuse settings for speed and fast boot for the i.MX 8MN EVK board
NOTE
Before applying any of the following commands, you must identify the eMMC device in both U-Boot and Linux,
because the associated id/name is used in the next steps. The storage mapping for the evaluation board is as
follows: eSDHC2 for the MicroSD card and eSDHC3 for the eMMC.
You can modify the majority of the MMC settings in the U-Boot using the mmc bootbus command, which sets the
BOOT BUS_WIDTH field:
u-boot=> mmc bootbus <device number> 2 1 2
NOTE
To apply the modifications mentioned above at the chip level, you must blow the fuses. This process is irreversible,
so double check the values before writing the fuses according to the reference manual.
i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 52 /56

NXP Semiconductors

References

The fuses are written in the U-Boot using the fuse prog command, which requires the bank and word in which the fuse resides,
followed by a word containing the settings for the fuses. Find out the bank and word as follows:

(0x490-0x400)/0x10= 0x9 Hexadecimal = 9 Decimal
9/4 = 2 and the remainder is 1 (Bank = 2 and Word = 1)
The fuses that you must blow are as follows:

* 0x490[6] — Fast Boot

+ 0x490[5] - 8-bit DDR

+ 0x490[2] - EMMC Speed High

The resulting word to write for the desired configuration is 0x64:

u-boot=> fuse prog 2 1 0x64

To use the fast boot, there is no additional modification to the U-Boot image, because there is no different offset for the Image

Vector Table (IVT).

5 References

* i.MX 8M Quad Applications Processor Reference Manual (document)
* i.MX 8M Plus Applications Processor Reference Manual (document)
* i.MX 8M Mini Applications Processor Reference Manual (document)

* i.MX 8M Nano Applications Processor Reference Manual (document)

6 Revision history

Table 1. Revision history

Revision number Date Substantive changes
1 29 April 2022 Added i.MX8 ULP
0 07 September 2021 Initial release

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

53 /56

NXP Semiconductors

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no

liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed

to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical

or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Legal information

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept

any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,

as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement

is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization

from competent authorities.

Suitability for use in non-automotive qualified products — Unless this

data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.

It is neither qualified nor tested in accordance with automotive testing

or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive

equipment or applications.

In the event that customer uses the product for design-in and use in automotive
applications to automotive specifications and standards, customer (a) shall use
the product without NXP Semiconductors’ warranty of the product for such
automotive applications, use and specifications, and (b) whenever customer
uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and (c) customer
fully indemnifies NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of the product for
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

54 /56

NXP Semiconductors

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and

English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the

ultimate design decisions regarding its products and is solely responsible

for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, pVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.
ColdFire — is a trademark of NXP B.V.
ColdFire+ — is a trademark of NXP B.V.
EdgeLock — is a trademark of NXP B.V.
EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

Legal information

elQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.
Freescale — is a trademark of NXP B.V.
HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.
Immersiv3D — is a trademark of NXP B.V.
12C-bus — logo is a trademark of NXP B.V.
Kinetis — is a trademark of NXP B.V.
Layerscape — is a trademark of NXP B.V.
Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.
MOBILEGT — is a trademark of NXP B.V.
NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.
QorlQ — is a trademark of NXP B.V.
SafeAssure — is a trademark of NXP B.V.
SafeAssure — logo is a trademark of NXP B.V.
StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright ©2021 Synopsys, Inc. Used with permission.

All rights reserved.
Tower — is a trademark of NXP B.V.
UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022

Application Note

55 /56

mailto:PSIRT@nxp.com
http://www.cadence.com/go/trademarks

arm

Please be aware that important notices concerning this document and the product(s) described

herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 29 April 2022
Document identifier: AN13369

	Contents
	1 Introduction
	1.1 Software environment
	1.2 Hardware setup and equipment

	2 General description
	2.1 Choosing the GPIO pin for measurement
	2.2 Updating the device tree at the bootloader and Linux level
	2.3 Adding the first pulse generator
	2.4 Adding the second pulse generator
	2.5 Adding the third pulse generator
	2.6 Measuring the total time with the logic analyzer

	3 Examples
	3.1 i.MX 8M Quad
	3.2 i.MX 8M Plus
	3.3 i.MX 8M Mini
	3.4 i.MX 8M Nano
	3.5 i.MX 8ULP

	4 Further optimizations
	4.1 No delay in kernel loading
	4.2 Quiet operation
	4.3 Enabling fast boot and using higher speeds for the storage

	5 References
	6 Revision history
	Legal information

