
1 Introduction
This document presents a possible approach to measure the boot time on the
i.MX 8 platforms using the GPIO pins.

The main objectives of this document are as follows:

• Modifying the bootloader and system image for measuring

• Setting up the board and the external logic analyzer tool

• Achieving short boot times

1.1 Software environment
Linux BSP release 5.4.70_2.3.0 is used to perform the measurements of i.MX 8MQ, i.MX 8MP, i.MX 8MM, and i.MX 8MN. Linux
BSP release 5.10.72_2.2.0 is used to perform the measurement of i.MX 8ULP.

1.2 Hardware setup and equipment
• Development kits:

— NXP i.MX 8MQ EVK LPDDR4

— NXP i.MX 8MP EVK LPDDR4

— NXP i.MX 8MM EVK LPDDR4

— NXP i.MX 8MN EVK LPDDR4

— NXP i.MX 8ULP EVK LPDDR4

• Micro SD card. SanDisk Ultra 32 GB Micro SDHC I Class 10 is used for the current experiment.

• Micro-USB cable for the debug port.

• USB Type-C cable for data transfer.

• Logic analyzer with the following minimum requirements to measure the times: 4 channels and 10 MS/s. Saleae Logic 8 or
Agilent 16902A is used for the current experiment.

• Breadboard and FPC to 60x0.5 Extension Board (only for i.MX8 MQ).

2 General description
This section describes the general procedure that must be performed to obtain a baseline measurement for a clean system (with
no startup optimizations).

2.1 Choosing the GPIO pin for measurement
Use a general-purpose pin to generate a pulse signal at different booting phases. The desired GPIO pin is ideally chosen from
those that are not used in either the bootloader or Linux; this can be checked in the associated device tree.

Contents

1 Introduction......................................1
2 General description......................... 1
3 Examples...2
4 Further optimizations.....................43
5 References....................................53
6 Revision history.............................53
Legal information.................................... 54

AN13369
i.MX 8 - Boot Time Measurements Methodology
Rev. 1 — 29 April 2022 Application Note

If this is not possible, disable the peripheral module that uses the pin in the next step. It is highly recommended to choose a pin
from the expansion connector on the board.

2.2 Updating the device tree at the bootloader and Linux level
After you choose the desired pin, make some modifications at the device-tree level.

Firstly, the functionalities of the desired pin are checked to find out the macros associated with the GPIO functionality. The header
files are at different location, depending on the board used.

Secondly, if a pin is used by some other peripheral modules, disable the respective module. This is done by setting the status
property to “disabled” in the configuration info for that peripheral module.

Thirdly, the adequate pin muxing is defined in the pinctrl_hog section, using the GPIO macro for the chosen pin and the
pad-configuration values (IOMUXC_SW_PAD_CTL_PAD_*).

2.3 Adding the first pulse generator
The first period measured is between the board POR and the execution of the board_init_f function of the SPL part of the
bootloader. To generate a pulse, configure the pin as the output. After this, you can drive the pin high for a short time and then
you can drive it low. You can do this without delay, because only the rising edge of the pulse is necessary.

2.4 Adding the second pulse generator
The second period measured is between the execution of the board_init_f function of the SPL part of the bootloader and before
loading the kernel image from the U-Boot console. You can toggle that here using the U-Boot GPIO commands, which can be
written in the board configuration file, located in the /include/configs folder.

2.5 Adding the third pulse generator
The third period measured is between loading the kernel image from the U-Boot console and starting the psplash program, which
uses the frame buffer to show the relevant content on the display. To change the GPIO output state, add the libgpiod package
to the psplash Yocto recipe. After adding the libgpiod package, the gpiod functions are added to the psplash code to generate
a pulse right before the program uses the frame buffer for the first time.

2.6 Measuring the total time with the logic analyzer
The measurement stage can begin after building and flashing both the bootloader and Linux image to the board.

The boot-time is measured by starting the recording mode on the logic analyzer software and applying the reset button on the
board. The recording stops after the third rising edge on the chosen GPIO pin. The elapsed boot time is the time between the rising
edge of the nRST signal and the third rising edge of the GPIO pin.

3 Examples

3.1 i.MX 8M Quad
Choosing the pins

The chosen pin is the 19th pin on the J1801 expansion connector on the specified board. In the schematics for the baseboard,
the pin is used for the SAI 1 peripheral with the SAI1_RXFS function. Searching the specified pad in the reference manual for the
associated pin returns an alternate function of GPIO4_IO[0].

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 2 / 56

Figure 1. Schematic view of the expansion connector for the i.MX 8MQ EVK board

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 3 / 56

Figure 2. Associated mux control register for the chosen pad (SAI1_RXFS)

Updating the U-Boot Device tree

To get the necessary files, issue the following command:

$ bitbake -f -c unpack imx-boot

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 4 / 56

To update the device tree, find out the macro associated to the desired functionality. This information
is in the <yocto_build_dir>/tmp/work/imx8mqevk-poky-linux/u-boot-imx/<specified_git_folder>/git/include/dt-
bindings/pinctrl/pins-imx8mq.h file. However, the use of this macro is not enough for an adequate pin mux setup, because
it requires a sixth value, which represents the pad configuration.

#define MX8MQ_IOMUXC_SAI1_RXFS_SAI1_RX_SYNC 0x15C 0x3C4 0x4C4 0x0 0x0
#define MX8MQ_IOMUXC_SAI1_RXFS_SAI5_RX_SYNC 0x15C 0x3C4 0x4E4 0x1 0x1
#define MX8MQ_IOMUXC_SAI1_RXFS_CORESIGHT_TRACE_CLK 0x15C 0x3C4 0x000 0x4 0x0
#define MX8MQ_IOMUXC_SAI1_RXFS_GPIO4_IO0 0x15C 0x3C4 0x000 0x5 0x0

The associated DTS file for the i.MX 8MQ EVK board (<yocto_build_dir>/tmp/work/imx8mqevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/arch/arm/dts/imx8mq-evk.dts) shows that the pin is not used, so there is nothing to disable.
To use the pin with the GPIO functionality, add the following pin muxing in iomuxc.

pinctrl_hog_1: hoggrp-1 {
 fsl,pins = <
 MX8MQ_IOMUXC_SAI1_RXFS_GPIO4_IO0 0x16
 >; };

The 0x16 configuration is based on the following pad settings in the IOMUXC_SW_PAD_CTL_PAD_SAI1_RXFS register:

• Drive Strength Field: 45_OHM

• Slew Rate Field: Fast

• Open Drain Enable field: Disabled

• Pull Up Enable Field: Disabled

• Schmitt trigger Enable Field: Disabled

• Lvttl Enable Field: Disabled

Updating the Linux device tree

To update the device tree, find out the macro associated to the desired functionality. This information is in the
<yocto_build_dir>/tmp/work-shared/imx8mqevk/kernel_source/arch/arm64/boot/dts/freescale/pins-imx8mq.h file.
However, the use of this macro is not enough for an adequate pin mux setup, because it requires a sixth value, which represents
the pad configuration.

#define MX8MQ_IOMUXC_SAI1_RXFS_SAI1_RX_SYNC 0x15C 0x3C4 0x4C4 0x0 0x0
#define MX8MQ_IOMUXC_SAI1_RXFS_SAI5_RX_SYNC 0x15C 0x3C4 0x4E4 0x1 0x1
#define MX8MQ_IOMUXC_SAI1_RXFS_CORESIGHT_TRACE_CLK 0x15C 0x3C4 0x000 0x4 0x0
#define MX8MQ_IOMUXC_SAI1_RXFS_GPIO4_IO0 0x15C 0x3C4 0x000 0x5 0x0

The associated DTS file for the i.MX 8MQ EVK (<yocto_build_dir>/tmp/work-shared/imx8mqevk/kernel_source/arch/
arm64/boot/dts/freescale/imx8mq-evk.dts) shows that the pin is already used with the SAI1 functionality. Change the status
property for the SAI1 from “okay” to “disabled”.

&sai1 {
 pinctrl-names = "default", "pcm_b2m", "dsd";
 pinctrl-0 = <&pinctrl_sai1_pcm>;
 pinctrl-1 = <&pinctrl_sai1_pcm_b2m>;
 pinctrl-2 = <&pinctrl_sai1_dsd>;
 assigned-clocks = <&clk IMX8MQ_CLK_SAI1>;
 assigned-clock-parents = <&clk IMX8MQ_AUDIO_PLL1_OUT>;
 assigned-clock-rates = <49152000>;
 clocks = <&clk IMX8MQ_CLK_SAI1_IPG>, <&clk IMX8MQ_CLK_DUMMY>, <&clk IMX8MQ_CLK_SAI1_ROOT>,
<&clk IMX8MQ_CLK_DUMMY>, <&clk IMX8MQ_CLK_DUMMY>, <&clk IMX8MQ_AUDIO_PLL1_OUT>, <&clk
IMX8MQ_AUDIO_PLL2_OUT>;
 clock-names = "bus", "mclk0", "mclk1", "mclk2", "mclk3", "pll8k", "pll11k";

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 5 / 56

 fsl,sai-multi-lane;
 fsl,dataline,dsd = <0 0xff 0xff 2 0xff 0x11>;
 dmas = <&sdma2 8 25 0>, <&sdma2 9 25 0>;
 status = "disabled"; }

To use the pin with the GPIO functionality, add the following pin muxing to iomuxc. If the chosen pad has another pin mux
configuration, replace the respective pin muxing with the following to successfully generate the pulse in Linux:

pinctrl_hog: hoggrp {
 fsl,pins = <
 MX8MQ_IOMUXC_NAND_READY_B_GPIO3_IO16 0x19
 MX8MQ_IOMUXC_NAND_WE_B_GPIO3_IO17 0x19
 MX8MQ_IOMUXC_NAND_WP_B_GPIO3_IO18 0x19
 MX8MQ_IOMUXC_GPIO1_IO08_GPIO1_IO8 0xd6
 MX8MQ_IOMUXC_GPIO1_IO00_ANAMIX_REF_CLK_32K 0x16
 MX8MQ_IOMUXC_SAI1_RXFS_GPIO4_IO0 0x16
 >; };

Adding the first pulse generator in <yocto_build_dir>/tmp/work/imx8mqevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/board/freescale/imx8mq_evk/spl.c

Firstly, declare a macro containing the pair of GPIO group and GPIO pin in the file:

#define TIMED_GPIO IMX_GPIO_NR(4, 0)

Secondly, you need a macro to use a pad as a GPIO. In this case, it already exists:

#define USDHC_GPIO_PAD_CTRL (PAD_CTL_PUE | PAD_CTL_DSE1)

Now you can add the pulse generation code in the board_init_f function, after the BSS clearing part:

void board_init_f(ulong dummy) {
int ret;
/* Clear the BSS. */
memset(__bss_start, 0, __bss_end - __bss_start);
gpio_request(TIMED_GPIO, "timed_gpio");
gpio_direction_output(TIMED_GPIO, 1);
gpio_direction_output(TIMED_GPIO, 0);
arch_cpu_init();

Adding the second pulse generator in <yocto_build_dir>/tmp/work/imx8mqevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/include/configs/imx8mq_evk.h

The commands responsible for toggling the pin are added in the environment variables for the bootloader, at the load image
property. The pin is set before loading the image and reset afterwards:

“loadimage=gpio set GPIO4_0;fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${image};gpio clear
GPIO4_0\0” \

To automate the process, create a patch which contains the U-Boot modifications in the spl.c, imx8mq-evk.dts, and
imx8mq_evk.h files. Add the details after the last commands that describe the nature of the patch:

$ git add board/freescale/imx8mq_evk/spl.c
$ git add arch/arm/dts/imx8mq-evk.dts
$ git add include/configs/imx8mq_evk.h
$ git commit -s
$ git format-patch HEAD~1

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 6 / 56

Copy the resulting patch to the following location: <yocto_dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/
u-boot/u-boot-imx. Add the name of the patch into the source location identifier in the Yocto recipe for U-Boot (<yocto_dir>/
imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx_2020.04.bb):

SRC_URI = " ...\
file://<patch_name>.patch \
"

To check that the patch works after the modifications, apply the following commands, after which the files should contain the
following changes:

$ bitbake -f -c clean u-boot-imx
$ bitbake u-boot-imx
$ bitbake imx-boot

Adding the third pulse generator

For this stage, modify the Yocto recipe extension for psplash so that it can fetch the additional libgpiod library necessary for the
toggling of the GPIO (<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash_git.bbappend):

DEPENDS = "libgpiod"
RDEPENDS_${PN} = "libgpiod"
RDEPENDS_${PN}-dev = "libgpiod"

To get the necessary psplash files, issue the following command:

$ bitbake -f -c unpack psplash

After fetching the necessary files, the makefile (<yocto_build_dir>/tmp/work/aarch64-poky-linux/psplash/
<specified_git_folder>/git/Makefile.am) is modified to include the lgpiod:

AM_CFLAGS = $(GCC_FLAGS) -D_GNU_SOURCE -lgpiod
GCC_FLAGS := $(GCC_FLAGS) -Lusr/lib -Iusr/include -lgpiod
LD_FLAGS = $(LD_FLAGS) -lgpiod

Modify the source code (<yocto_build_dir>/tmp/work/aarch64-poky-linux/psplash/<specified_git_folder>/git/
psplash.c). The first step is to include the library:

#include "gpiod.h"

In the main function, declare some additional variables responsible for selecting the bank and the line for the GPIO. The banks
are zero-indexed, so the number of the GPIO bank must be decremented by one:

struct gpiod_chip *chip;
struct gpiod_line *line;
int gpio_line = 0;
char dev[] = "/dev/gpiochip3";

Before sending the first command to the frame buffer (clearing the background), the program should acquire control of the pin,
toggle it, and release it.

chip = gpiod_chip_open(dev); if (!chip) return -1;
 line = gpiod_chip_get_line(chip, gpio_line); if (!line) {
 gpiod_chip_close(chip); return -1; }
 req = gpiod_line_request_output(line, "SIGNAL", 2); if (req) {
 gpiod_chip_close(chip); return -1; } if (gpiod_line_set_value(line, 1) != 0){
 printf("Impossible to change line %d value to %d \n", gpio_line, 1);
 gpiod_chip_close(chip); return -1; } if (gpiod_line_set_value(line, 0) != 0){

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 7 / 56

 printf("Impossible to change line %d value to %d \n", gpio_line, 0);
 gpiod_chip_close(chip); return -1; }
 gpiod_line_release(line);
 gpiod_chip_close(chip);

After applying all the modifications, build the psplash and the image using the following commands:

$ bitbake psplash
$ bitbake imx-image-core

To automate this process, create a patch which contains the modifications in the Makefile.am and psplash.c files. Add the details
after the last commands describing the nature of the patch:

$ git add Makefile.am
$ git add psplash.c
$ git commit -s
$ git format-patch HEAD~1

The resulting patch is then copied to the following location: <yocto_dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/
recipes-core/psplash/files. The name of the patch is then added into the source location identifier in the Yocto Recipe
extension for psplash (<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash_git.bbappend).

SRC_URI += " \
 file://psplash-start.service \
 file://psplash-basic.service \
 file://psplash-network.service \
 file://psplash-quit.service \
 file://<patch_name>.patch \
 "

To check that the patch works after the modifications, apply the following commands, after which the psplash.c and Makefile.am
files should contain the following changes:

$ bitbake -f -c clean psplash
$ bitbake psplash
$ bitbake imx-image-core

Measuring the total time with the logic analyzer

This part starts by setting up all the preliminary connections, such as the power supply, debug port, download port, and MIPI-DSI
to HDMI connections. If the HDMI display is not connected and functional, the psplash pulse generation does not work, because
no frame buffers exist.

Build both the bootloader and Linux image using bitbake. After that, they are written to the board using the UUU program, in which
you can choose between writing to the on-board eMMC or the SD card.

The measuring stand is set up by connecting the logic analyzer to the board. The nRST signal is used as a starting reference and
it is on the JTAG connector at pin 10.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 8 / 56

Figure 3. Schematic view of the JTAG connector available on the i.MX 8MQ EVK board

To capture the rising edges of the chosen pin, connect the second probe of the analyzer to the 19th pin on the J1801 expansion
connector. The evaluation board features an FPC socket, so plug an FPC to 60x0.5 extension board into the receptacle. This
ensures easy access to the required pins.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 9 / 56

Figure 4. Measurement setup on the i.MX 8MQ EVK board

After checking that both probes are referenced to the board’s ground, start the logic analyzer software, where you can set up the
probe parameters and the time frame.

Configure the board to start in the internal development mode, boot from the desired storage space, and then power it on. After
the psplash screen disappears, press the reset button on the board and start the recording on the logic analyzer software.

You should see a rising edge on the nRST pin, followed by three pulses on the chosen pin. At this moment, stop the recording
and place the measurement flags to find out the time for each phase. The boot time of the board in this configuration results from
the sum of the elapsed time for each stage.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 10 / 56

Figure 5. Measurements on the boot-time for i.MX 8MQ EVK board

3.2 i.MX 8M Plus
Choosing the pins

The chosen pin is the 24th pin on the J21 expansion connector on the specified board. In the schematics for the baseboard, the
pin is used for the ECSPI 2 peripheral with the ECSPI2_SS0 function. Searching the specified signal in the reference manual for
the associated pin returns an alternate function of GPIO5_IO[13].

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 11 / 56

Figure 6. Schematic view of the expansion connector for the i.MX 8MP EVK board

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 12 / 56

Figure 7. Associated mux control register for the chosen pad (ECSPI2_SS0)

Updating the U-Boot device tree

Issue the following command to get the necessary files:

$ bitbake -f -c unpack imx-boot

To update the device tree, find out the macro associated to the desired functionality. This information is
in the <yocto_build_dir>/tmp/work/imx8mpevk-poky-linux/u-boot-imx/<specified_git_folder>/git/arch/arm/dts/

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 13 / 56

imx8mp-pinfunc.h file. However, the use of this macro is not enough for an adequate pin mux setup, because it requires a sixth
value, which represents the pad configuration.

#define MX8MP_IOMUXC_ECSPI2_SS0__ECSPI2_SS0 0x1FC 0x45C 0x574 0x0 0x1
#define MX8MP_IOMUXC_ECSPI2_SS0__UART4_DCE_RTS 0x1FC 0x45C 0x5FC 0x1 0x3
#define MX8MP_IOMUXC_ECSPI2_SS0__UART4_DTE_CTS 0x1FC 0x45C 0x000 0x1 0x0
#define MX8MP_IOMUXC_ECSPI2_SS0__I2C4_SDA 0x1FC 0x45C 0x5C0 0x2 0x4
#define MX8MP_IOMUXC_ECSPI2_SS0__CCM_CLKO2 0x1FC 0x45C 0x000 0x4 0x0
#define MX8MP_IOMUXC_ECSPI2_SS0__GPIO5_IO13 0x1FC 0x45C 0x000 0x5 0x0

The associated DTS file for the i.MX 8MP EVK board (<yocto_build_dir>/tmp/work/imx8mpevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/arch/arm/dts/imx8mp-evk.dts) shows that the pin is not used, because there is nothing to
disable. To use the pin with the GPIO functionality, add the following pin muxing in iomuxc:

pinctrl_hog: hoggrp {
 fsl,pins = <
 MX8MP_IOMUXC_ECSPI2_SS0__GPIO5_IO1 0x16
 >; };

The 0x16 configuration is based on the following pad settings in the IOMUXC_SW_PAD_CTL_PAD_ECSPI2_SS0 register:

• Drive Strength Field: DSE_X6

• Slew Rate Field: Fast

• Open Drain Enable field: Disabled

• Pull Up/Down Config Field: Weak pull-down

• Input Select Field: CMOS

• Pull Select Field: Pull Disabled

Updating the Linux device tree

To update the device tree, find out the macro associated to the desired functionality. This information is in the
<yocto_build_dir>/tmp/work-shared/imx8mpevk/kernel_source/arch/arm64/boot/dts/freescale/imx8mp-pinfunc.h
file. However, the use of this macro is not enough for an adequate pin mux setup, because it requires a sixth value, which
represents the pad configuration.

#define MX8MP_IOMUXC_ECSPI2_SS0__ECSPI2_SS0 0x1FC 0x45C 0x574 0x0 0x1
#define MX8MP_IOMUXC_ECSPI2_SS0__UART4_DCE_RTS 0x1FC 0x45C 0x5FC 0x1 0x3
#define MX8MP_IOMUXC_ECSPI2_SS0__UART4_DTE_CTS 0x1FC 0x45C 0x000 0x1 0x0
#define MX8MP_IOMUXC_ECSPI2_SS0__I2C4_SDA 0x1FC 0x45C 0x5C0 0x2 0x4
#define MX8MP_IOMUXC_ECSPI2_SS0__CCM_CLKO2 0x1FC 0x45C 0x000 0x4 0x0
#define MX8MP_IOMUXC_ECSPI2_SS0__GPIO5_IO13 0x1FC 0x45C 0x000 0x5 0x0

The associated DTS file for the i.MX 8MP EVK (<yocto_build_dir>/tmp/work-shared/imx8mpevk/kernel_source/arch/
arm64/boot/dts/freescale/imx8mp-evk.dts) shows that the pin is already used with the ECSPI2 functionality. Change the
status property for the ECSPI2 from “okay” to “disabled”.

&ecspi2 {
 #address-cells = <1>;
 #size-cells = <0>;
 fsl,spi-num-chipselects = <1>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi2 &pinctrl_ecspi2_cs>;
 cs-gpios = <&gpio5 13 GPIO_ACTIVE_LOW>;
 status = "disabled";
 spidev1: spi@0 {
 reg = <0>;

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 14 / 56

 compatible = "rohm,dh2228fv";
 spi-max-frequency = <500000>; }; };

To use the pin with the GPIO functionality, add the following pin muxing to iomuxc. If the chosen pad has another pin mux
configuration, replace the respective pin muxing with the following to successfully generate the pulse in Linux:

pinctrl_hog: hoggrp {
 fsl,pins = <
 MX8MP_IOMUXC_HDMI_DDC_SCL__HDMIMIX_HDMI_SCL 0x400001c3
 MX8MP_IOMUXC_HDMI_DDC_SDA__HDMIMIX_HDMI_SDA 0x400001c3
 MX8MP_IOMUXC_HDMI_HPD__HDMIMIX_HDMI_HPD 0x40000019
 MX8MP_IOMUXC_HDMI_CEC__HDMIMIX_HDMI_CEC 0x40000019
 MX8MP_IOMUXC_ECSPI2_SS0__GPIO5_IO13 0x16
 >;
 };

Adding the first pulse generator in <yocto_build_dir>/tmp/work/imx8mpevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/board/freescale/imx8mp_evk/spl.c

Firstly, declare a macro containing the pair of GPIO group and GPIO pin in the file:

#define TIMED_GPIO IMX_GPIO_NR(5, 13)

Secondly, create a macro to use a pad as a GPIO. The macro is already created in this case:

#define USDHC_GPIO_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_DSE1)

Add the pulse generation code in the board_init_f function, after the BSS clearing part.

void board_init_f(ulong dummy) {
 int ret;
 /* Clear the BSS. */
 memset(__bss_start, 0, __bss_end - __bss_start);
 gpio_request(TIMED_GPIO, "timed_gpio");
 gpio_direction_output(TIMED_GPIO, 1);
 gpio_direction_output(TIMED_GPIO, 0);
 arch_cpu_init();

Adding the second pulse generator in <yocto_build_dir>/tmp/work/imx8mpevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/include/configs/imx8mp_evk.h

Add the commands responsible for pin toggling into the environment variables for the bootloader at the load image property. The
pin is set before image loading and reset afterwards:

“loadimage=gpio set GPIO5_13;fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${image};gpio clear
GPIO5_13\0” \

To automate the process, create a patch that contains the U-Boot modifications in the spl.c, imx8mp-evk.dts, and imx8mp_evk.h
files. Add the details after the last commands describing the nature of the patch:

$ git add board/freescale/imx8mp_evk/spl.c
$ git add arch/arm/dts/imx8mp-evk.dts
$ git add include/configs/imx8mp_evk.h
$ git commit -s
$ git format-patch HEAD~1

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 15 / 56

Copy the resulting patch to the following location: <yocto_dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/
u-boot/u-boot-imx. Add the name of the patch into the source location identifier in the Yocto recipe for u-boot (<yocto_dir>/
imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx_2020.04.bb).

SRC_URI = " ...\
file://<patch_name>.patch \
 "

Apply the following commands to check that the patch works after the modifications, after which the files should contain the
following changes:

$ bitbake -f -c clean u-boot-imx
$ bitbake u-boot-imx
$ bitbake imx-boot

Adding the third pulse generator

For this stage, modify the Yocto recipe extension for psplash so that it can fetch the additional libgpiod library necessary to
toggle the GPIO (<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash_git.bbappend):

DEPENDS = "libgpiod"
RDEPENDS_${PN} = "libgpiod"
RDEPENDS_${PN}-dev = "libgpiod"

Issue the following command to get the necessary psplash files:

$ bitbake -f -c unpack psplash

After fetching the necessary files, modify the makefile (<yocto_build_dir>/tmp/work/aarch64-poky-linux/psplash/
<specified_git_folder>/git/Makefile.am) to include the lgpiod.

AM_CFLAGS = $(GCC_FLAGS) -D_GNU_SOURCE -lgpiod
GCC_FLAGS := $(GCC_FLAGS) -Lusr/lib -Iusr/include -lgpiod
LD_FLAGS = $(LD_FLAGS) -lgpiod

Modify the source code (<yocto_build_dir>/tmp/work/aarch64-poky-linux/psplash/<specified_git_folder>/git/
psplash.c). The first step is including the library:

#include "gpiod.h"

Declare some additional variables in the main function, responsible for selecting the bank and the line for the GPIO. The banks
are zero-indexed, so the number of the GPIO bank must be decremented by one:

struct gpiod_chip *chip;
struct gpiod_line *line;
int gpio_line = 13;
char dev[] = "/dev/gpiochip4";

The program should acquire control of the pin, toggle it, and release it before sending the first command to the frame buffer
(clearing the background).

chip = gpiod_chip_open(dev); if (!chip) return -1;
 line = gpiod_chip_get_line(chip, gpio_line); if (!line) {
 gpiod_chip_close(chip); return -1; }
 req = gpiod_line_request_output(line, "SIGNAL", 2); if (req) {
 gpiod_chip_close(chip); return -1; } if (gpiod_line_set_value(line, 1) != 0){
 printf("Impossible to change line %d value to %d \n", gpio_line, 1);
 gpiod_chip_close(chip); return -1; } if (gpiod_line_set_value(line, 0) != 0){

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 16 / 56

 printf("Impossible to change line %d value to %d \n", gpio_line, 0);
 gpiod_chip_close(chip); return -1; }
 gpiod_line_release(line);
 gpiod_chip_close(chip);

After applying all the modifications, you can build the psplash and the image using the following commands:

$ bitbake psplash
$ bitbake imx-image-core

To automate this process, create a patch that contains the modifications in the Makefile.am and psplash.c files. Add the details
after the last commands describing the nature of the patch:

$ git add Makefile.am
$ git add psplash.c
$ git commit -s
$ git format-patch HEAD~1

The resulting patch is then copied to the following location: <yocto_dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/
recipes-core/psplash/files. The name of the patch is then added in the source location identifier in the Yocto Recipe
extension for psplash (<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash_git.bbappend).

SRC_URI += " \
 file://psplash-start.service \
 file://psplash-basic.service \
 file://psplash-network.service \
 file://psplash-quit.service \
 file://<patch_name>.patch \
 "

Apply the following commands to check that the patch works after the modifications, after which the psplash.c and Makefile.am
should contain the following changes:

$ bitbake -f -c clean psplash
$ bitbake psplash
$ bitbake imx-image-core

Measuring the total time with the logic analyzer

This part starts by setting up all the preliminary connections, such as the power supply, debug port, download port, and HDMI
connections. If the HDMI display is not connected and functional, the psplash pulse generation does not work, because there are
no frame buffers.

Build both the bootloader and Linux images using bitbake. After that, write them to the board using the UUU program, in which
you can choose between writing to the on-board eMMC or the SD card.

Set up the measuring stand by connecting the logic analyzer to the board. The JTAG_RESET signal is used as a starting reference
and it is on the JTAG connector at pin 10.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 17 / 56

Figure 8. Schematic view of the JTAG connector available on the i.MX 8MP EVK board

To capture the rising edges of the chosen pin, connect the second probe of the analyzer to the 24th pin on the J21
expansion connector.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 18 / 56

Figure 9. Measurement setup on the i.MX 8MP EVK board

After checking that both probes are referenced to the board’s ground, start the logic analyzer software, where the probe
parameters and the time frame is set up.

Configure the board to start in the internal development mode, boot from the desired storage space, and then power it on. After
the psplash screen disappears, press the reset button on the board and start the recording on the logic analyzer software.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 19 / 56

You shall see a rising edge on the JTAG_RESET pin, followed by three pulses on the chosen pin. Stop the recording and place
the measurement flags to find out the time for each phase. The boot time of the board in this configuration results from the sum
of the elapsed time for each stage.

Figure 10. Measurements on the boot-time for i.MX 8MP EVK board

3.3 i.MX 8M Mini
Choosing the pins

The chosen pin is the 24th pin on the J1003 expansion connector on the specified board. In the schematics for the baseboard, the
pin is used for the ECSPI 2 peripheral with the ECSPI2_SS0 function. Searching for the specified signal in the reference manual
for the associated pin returns an alternate function of GPIO5_IO[13].

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 20 / 56

Figure 11. Schematic view of the expansion connector for the i.MX 8MM EVK board

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 21 / 56

Figure 12. Associated mux control register for the chosen pad (ECSPI2_SS0)

Updating the U-Boot Device tree

Issue the following command to get the necessary files:

$ bitbake -f -c unpack imx-boot

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 22 / 56

To update the device tree, find out the macro associated to the desired functionality. This information is
in the <yocto_build_dir>/tmp/work/imx8mmevk-poky-linux/u-boot-imx/<specified_git_folder>/git/arch/arm/dts/
imx8mm-pinfunc.h file. However, the use of this macro is not enough for an adequate pin mux setup, because it requires a sixth
value, which represents the pad configuration.

#define MX8MM_IOMUXC_ECSPI2_SS0_ECSPI2_SS0 0x210 0x478 0x000 0x0 0x0
#define MX8MM_IOMUXC_ECSPI2_SS0_UART4_DCE_RTS_B 0x210 0x478 0x508 0x1 0x1
#define MX8MM_IOMUXC_ECSPI2_SS0_UART4_DTE_CTS_B 0x210 0x478 0x000 0x1 0x0
#define MX8MM_IOMUXC_ECSPI2_SS0_GPIO5_IO13 0x210 0x478 0x000 0x5 0x0
#define MX8MM_IOMUXC_ECSPI2_SS0_TPSMP_HDATA15 0x210 0x478 0x000 0x7 0x0

The associated DTS file for the i.MX 8MM EVK board (<yocto_build_dir>/tmp/work/imx8mmevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/arch/arm/dts/imx8mm-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin muxing into iomuxc.

pinctrl_hog_1: hoggrp-1 {
fsl,pins = <
MX8MM_IOMUXC_ECSPI2_SS0_GPIO5_IO13 0x16
>;
};

The 0x16 configuration is based on the following pad settings in the IOMUXC_SW_PAD_CTL_PAD_ECSPI2_SS0 register:

• Drive Strength Field: X6

• Slew Rate Field: Fast

• Open Drain Enable field: Disabled

• Control IO ports PS: Pull-down resistors

• Hysteresis Enable Field: CMOS

• Pull Resistors Enable Field: Pull Disabled

Updating the Linux device tree

To update the device tree, find out the macro associated to the desired functionality. This information is in the
<yocto_build_dir>/tmp/work-shared/imx8mmevk/kernel_source/arch/arm64/boot/dts/freescale/imx8mm-pinfunc.h
file. However, the use of this macro is not enough for an adequate pin mux setup, because it requires a sixth value, which
represents the pad configuration.

#define MX8MM_IOMUXC_ECSPI2_SS0_ECSPI2_SS0 0x210 0x478 0x000 0x0 0x0
#define MX8MM_IOMUXC_ECSPI2_SS0_UART4_DCE_RTS_B 0x210 0x478 0x508 0x1 0x1
#define MX8MM_IOMUXC_ECSPI2_SS0_UART4_DTE_CTS_B 0x210 0x478 0x000 0x1 0x0
#define MX8MM_IOMUXC_ECSPI2_SS0_GPIO5_IO13 0x210 0x478 0x000 0x5 0x0
#define MX8MM_IOMUXC_ECSPI2_SS0_TPSMP_HDATA15 0x210 0x478 0x000 0x7 0x0

The associated DTS file for the i.MX 8MM EVK (<yocto_build_dir>/tmp/work-shared/imx8mmevk/kernel_source/arch/
arm64/boot/dts/freescale/imx8mm-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin muxing into iomuxc. If the chosen pad has another pin mux
configuration, replace the respective pin muxing with the following to successfully generate the pulse in Linux:

pinctrl_hog: hoggrp {
fsl,pins = <
MX8MM_IOMUXC_ECSPI2_SS0_GPIO5_IO13 0x16
>;
};

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 23 / 56

Add the first pulse generator into <yocto_build_dir>/tmp/work/imx8mmevk-poky-linux/u-boot-imx/
<specified_git_folder>/git /board/freescale/imx8mm_evk/spl.c.

Firstly, declare a macro containing the pair of GPIO group and GPIO pin in the file:

#define TIMED_GPIO IMX_GPIO_NR(5, 13)

Secondly, there must be a macro to use a pad as a GPIO. In this case, the macro already exists:

#define USDHC_GPIO_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_DSE1)

Add the pulse generation code into the board_init_f function, after the BSS clearing part.

void board_init_f(ulong dummy) {
 int ret;
 /* Clear the BSS. */
 memset(__bss_start, 0, __bss_end - __bss_start);
 gpio_request(TIMED_GPIO, "timed_gpio");
 gpio_direction_output(TIMED_GPIO, 1);
 gpio_direction_output(TIMED_GPIO, 0);
 arch_cpu_init();

Adding the second pulse generator in <yocto_build_dir>/tmp/work/imx8mmevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/include/configs/imx8mm_evk.h

The commands to toggle the pin are added in the environment variables for the bootloader, at the load image property. Set the
pin before loading the image and reset it afterwards:

“loadimage=gpio set GPIO5_13;fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${image};gpio clear
GPIO5_13\0” \

To automate the process, create a patch, which contains the U-Boot modifications in the spl.c, imx8mm-evk.dts, and
imx8mm_evk.h files. Add the details after the last commands describing the nature of the patch:

$ git add board/freescale/imx8mm_evk/spl.c
$ git add arch/arm/dts/imx8mm-evk.dts
$ git add include/configs/imx8mm_evk.h
$ git commit -s
$ git format-patch HEAD~1

Copy the resulting patch to the following location: <yocto_dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/
u-boot/u-boot-imx. Add the name of the patch into the source location identifier in the Yocto recipe for U-Boot (<yocto_dir>/
imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx_2020.04.bb):

SRC_URI = " ...\
file://<patch_name>.patch \
 "

Apply the following commands to check that the patch works after the modifications, after which the files should contain the
following changes:

$ bitbake -f -c clean u-boot-imx
$ bitbake u-boot-imx
$ bitbake imx-boot

Adding the third pulse generator

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 24 / 56

For this stage, modify the Yocto recipe extension for psplash so that it can fetch the additional libgpiod library necessary to
toggle the GPIO (<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash_git.bbappend):

DEPENDS = "libgpiod"
RDEPENDS_${PN} = "libgpiod"
RDEPENDS_${PN}-dev = "libgpiod"

Issue the following command to get the necessary psplash files:

$ bitbake -f -c unpack psplash

After fetching the necessary files, modify the makefile (<yocto_build_dir>/tmp/work/aarch64-poky-linux/psplash/
<specified_git_folder>/git/Makefile.am) to include the lgpiod:

AM_CFLAGS = $(GCC_FLAGS) -D_GNU_SOURCE -lgpiod
GCC_FLAGS := $(GCC_FLAGS) -Lusr/lib -Iusr/include -lgpiod
LD_FLAGS = $(LD_FLAGS) -lgpiod

Modify the source code (<yocto_build_dir>/tmp/work/aarch64-poky-linux/psplash/<specified_git_folder>/git/
psplash.c). The first step is to include the library:

#include "gpiod.h"

Declare some additional variables in the main function, responsible for selecting the bank and the line for the GPIO. The banks
are zero-indexed, so the number of the GPIO bank must be decremented by one:

struct gpiod_chip *chip;
struct gpiod_line *line;
int gpio_line = 13;
char dev[] = "/dev/gpiochip4";

Before sending the first command to the frame buffer (clearing the background), the program should acquire control of the pin,
toggle it, and release it.

chip = gpiod_chip_open(dev); if (!chip) return -1;
 line = gpiod_chip_get_line(chip, gpio_line); if (!line) {
 gpiod_chip_close(chip); return -1; }
 req = gpiod_line_request_output(line, "SIGNAL", 2); if (req) {
 gpiod_chip_close(chip); return -1; } if (gpiod_line_set_value(line, 1) != 0){
 printf("Impossible to change line %d value to %d \n", gpio_line, 1);
 gpiod_chip_close(chip); return -1; } if (gpiod_line_set_value(line, 0) != 0){
 printf("Impossible to change line %d value to %d \n", gpio_line, 0);
 gpiod_chip_close(chip); return -1; }
 gpiod_line_release(line);
 gpiod_chip_close(chip);

After applying all the modifications, build the psplash and the image using the following commands:

$ bitbake psplash
$ bitbake imx-image-core

To automate this process, create a patch that contains the modifications in the Makefile.am and psplash.c files. Add the details
after the last commands describing the nature of the patch:

$ git add Makefile.am
$ git add psplash.c

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 25 / 56

$ git commit -s
$ git format-patch HEAD~1

The resulting patch is then copied to the following location: <yocto_dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/
recipes-core/psplash/files. The name of the patch is then added into the source location identifier in the Yocto Recipe
extension for psplash (<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash_git.bbappend).

SRC_URI += " \
 file://psplash-start.service \
 file://psplash-basic.service \
 file://psplash-network.service \
 file://psplash-quit.service \
 file://<patch_name>.patch \
 "

Apply the following commands to check that the patch works after the modifications, after which the psplash.c and Makefile.am
should contain the following changes:

$ bitbake -f -c clean psplash
$ bitbake psplash
$ bitbake imx-image-core

Measuring the total time with the logic analyzer

This part starts by setting up all the preliminary connections, such as the power supply, debug port, download port, and MIPI-DSI
to HDMI connections. If the HDMI display is not connected and functional, the psplash pulse generation does not work, because
there are no frame buffers.

Both the bootloader and the Linux image must be built using bitbake. After that, write them to the board using the UUU program,
in which you can choose between writing to the on-board eMMC or the SD card.

The measuring stand is set up by connecting the logic analyzer to the board. The nRST signal is used as a starting reference,
which can be found on the JTAG connector at pin 10.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 26 / 56

Figure 13. Schematic view of the JTAG connector available on the i.MX 8MM EVK board

To capture the rising edges of the chosen pin, connect the second probe of the analyzer to the 24th pin on the J1003
expansion connector.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 27 / 56

Figure 14. Measurement setup on the i.MX 8MM EVK board

After checking that both probes are referenced to the board’s ground, start the logic analyzer software, where you can set up the
probe parameters and the time frame.

Configure the board to start in the internal development mode, boot from the desired storage space, and then power it on. After
the psplash screen disappears, press the reset button on the board and start the recording on the logic analyzer software.

You should see a rising edge on the nRST pin, followed by three pulses on the chosen pin. Stop the recording and place the
measurement flags to find out the time for each phase. The boot time of the board in this configuration results from the sum of the
elapsed time for each stage.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 28 / 56

Figure 15. Measurement setup on the i.MX 8MM EVK board

3.4 i.MX 8M Nano
Choosing the pins

The chosen pin is the 24th pin on the J1003 expansion connector on the specified board. In the schematics for the baseboard, the
pin is used for the ECSPI 2 peripheral with the ECSPI2_SS0 function. Searching the specified signal in the reference manual for
the associated pin returns an alternate function of GPIO5_IO[13].

Figure 16. Schematic view of the expansion connector for the i.MX 8MN EVK board

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 29 / 56

Figure 17. Associated mux control register for the chosen pad (ECSPI2_SS0)

Updating the U-Boot device tree

Issue the following command to get the necessary files:

$ bitbake -f -c unpack imx-boot

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 30 / 56

To update the device tree, find out the macro associated to the desired functionality. This information is
in the <yocto_build_dir>/tmp/work/imx8mnevk-poky-linux/u-boot-imx/<specified_git_folder>/git/arch/arm/dts/
imx8mn-pinfunc.h file. The use of this macro is not enough for an adequate pin mux setup, because it requires a sixth value,
which represents the pad configuration.

#define MX8MN_IOMUXC_ECSPI2_SS0_ECSPI2_SS0 0x0210 0x0478 0x0570 0x0 0x0
#define MX8MN_IOMUXC_ECSPI2_SS0_UART4_DCE_RTS_B 0x0210 0x0478 0x0508 0x1 0x1
#define MX8MN_IOMUXC_ECSPI2_SS0_UART4_DTE_CTS_B 0x0210 0x0478 0x0000 0x1 0x0
#define MX8MN_IOMUXC_ECSPI2_SS0_I2C4_SDA 0x0210 0x0478 0x058C 0x2 0x5
#define MX8MN_IOMUXC_ECSPI2_SS0_GPIO5_IO13 0x0210 0x0478 0x0000 0x5 0x0

The associated DTS file for the i.MX 8MN EVK board (<yocto_build_dir>/tmp/work/imx8mnevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/arch/arm/dts/imx8mn-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin muxing into iomuxc:

pinctrl_hog_1: hoggrp-1 {
fsl,pins = <
MX8MN_IOMUXC_ECSPI2_SS0_GPIO5_IO13 0x16
>;
};

The 0x16 configuration is based on the following pad settings in the IOMUXC_SW_PAD_CTL_PAD_ECSPI2_SS0 register:

• Drive Strength Field: X6

• Slew Rate Field: Fast

• Open Drain Enable field: Disabled

• Control IO ports PS: Pull-down resistors

• Hysteresis Enable Field: CMOS

• Pull Resistors Enable Field: Pull Disabled

Updating the Linux device tree

To update the device tree, find out the macro associated to the desired functionality. This information is in the
<yocto_build_dir>/tmp/work-shared/imx8mnevk/kernel_source/arch/arm64/boot/dts/freescale/imx8mn-pinfunc.h
file. The use of this macro is not enough for an adequate pin mux setup, because it requires a sixth value, which represents the
pad configuration.

#define MX8MN_IOMUXC_ECSPI2_SS0_ECSPI2_SS0 0x210 0x478 0x570 0x0 0x0
#define MX8MN_IOMUXC_ECSPI2_SS0_UART4_DCE_RTS_B 0x210 0x478 0x508 0x1 0x1
#define MX8MN_IOMUXC_ECSPI2_SS0_UART4_DTE_CTS_B 0x210 0x478 0x000 0x1 0x0
#define MX8MN_IOMUXC_ECSPI2_SS0_I2C4_SDA 0x210 0x478 0x58C 0x2 0x5
#define MX8MN_IOMUXC_ECSPI2_SS0_GPIO5_IO13 0x210 0x478 0x000 0x5 0x0

The associated DTS file for the i.MX 8MN EVK (<yocto_build_dir>/tmp/work-shared/imx8mnevk/kernel_source/arch/
arm64/boot/dts/freescale/imx8mn-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin muxing into iomuxc. If the chosen pad has another pin mux
configuration, the respective pin muxing must be replaced with the following to successfully generate the pulse in Linux:

pinctrl_hog: hoggrp {
fsl,pins = <
MX8MN_IOMUXC_ECSPI2_SS0_GPIO5_IO13 0x16
>;
};

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 31 / 56

Adding the first pulse generator in <yocto_build_dir>/tmp/work/imx8mnevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/board/freescale/imx8mn_evk/spl.c

Firstly, declare a macro containing the pair of GPIO group and GPIO pin in the file:

#define TIMED_GPIO IMX_GPIO_NR(5, 13)

There must be a macro for using a pad as a GPIO. In this case, it already exists.

#define USDHC_GPIO_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_DSE1)

Add the pulse generation code into the board_init_f function, after the BSS clearing part:

void board_init_f(ulong dummy) {
 int ret;
 /* Clear the BSS. */
 memset(__bss_start, 0, __bss_end - __bss_start);
 gpio_request(TIMED_GPIO, "timed_gpio");
 gpio_direction_output(TIMED_GPIO, 1);
 gpio_direction_output(TIMED_GPIO, 0);
 arch_cpu_init();

Adding the second pulse generator in <yocto_build_dir>/tmp/work/imx8mnevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/include/configs/imx8mn_evk.h

Add the commands to toggle the pin into the environment variables for the bootloader, at the load image property. Set the pin
before loading the image and reset it afterwards:

“loadimage=gpio set GPIO5_13;fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${image};gpio clear
GPIO5_13\0” \

To automate the process, create a patch that contains the U-Boot modifications in the spl.c , imx8mn-evk.dts and
imx8mn_evk.h files. Add the details after the last commands, describing the nature of the patch:

$ git add board/freescale/imx8mn_evk/spl.c
$ git add arch/arm/dts/imx8mn-evk.dts
$ git add include/configs/imx8mn_evk.h
$ git commit -s
$ git format-patch HEAD~1

Copy the resulting patch to the following location: <yocto_dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/
u-boot/u-boot-imx. Add the name of the patch into the source location identifier in the Yocto recipe for U-Boot (<yocto_dir>/
imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx_2020.04.bb):

SRC_URI = " ...\
file://<patch_name>.patch \
 "

To check that the patch works after the modifications, apply the following commands, after which the files should contain the
following changes:

$ bitbake -f -c clean u-boot-imx
$ bitbake u-boot-imx
$ bitbake imx-boot

Adding the third pulse generator

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 32 / 56

For this stage, modify the Yocto recipe extension for psplash so that it can fetch the additional libgpiod library to toggle the GPIO
(<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash_git.bbappend):

DEPENDS = "libgpiod"
RDEPENDS_${PN} = "libgpiod"
RDEPENDS_${PN}-dev = "libgpiod"

Issue the following command to get the necessary psplash files:

$ bitbake -f -c unpack psplash

After fetching the necessary files, modify the makefile (<yocto_build_dir>/tmp/work/aarch64-poky-linux/psplash/
<specified_git_folder>/git/Makefile.am) to include the lgpiod:

AM_CFLAGS = $(GCC_FLAGS) -D_GNU_SOURCE -lgpiod
GCC_FLAGS := $(GCC_FLAGS) -Lusr/lib -Iusr/include -lgpiod
LD_FLAGS = $(LD_FLAGS) -lgpiod

Modify the source code (<yocto_build_dir>/tmp/work/aarch64-poky-linux/psplash/<specified_git_folder>/git/
psplash.c). The first step is to include the library:

#include "gpiod.h"

Declare some additional variables in the main function to select the bank and the line for the GPIO. The banks are zero-indexed,
so the number of the GPIO bank must be decremented by one.

struct gpiod_chip *chip;
struct gpiod_line *line;
int gpio_line = 13;
char dev[] = "/dev/gpiochip4";

The program should acquire control of the pin, toggle it, and release it before sending the first command to the frame buffer
(clearing the background):

chip = gpiod_chip_open(dev); if (!chip) return -1;
 line = gpiod_chip_get_line(chip, gpio_line); if (!line) {
 gpiod_chip_close(chip); return -1; }
 req = gpiod_line_request_output(line, "SIGNAL", 2); if (req) {
 gpiod_chip_close(chip); return -1; } if (gpiod_line_set_value(line, 1) != 0){
 printf("Impossible to change line %d value to %d \n", gpio_line, 1);
 gpiod_chip_close(chip); return -1; } if (gpiod_line_set_value(line, 0) != 0){
 printf("Impossible to change line %d value to %d \n", gpio_line, 0);
 gpiod_chip_close(chip); return -1; }
 gpiod_line_release(line);
 gpiod_chip_close(chip);

After applying all the modifications, build the psplash and the image using the following commands:

$ bitbake psplash
$ bitbake imx-image-core

To automate this process, create a patch that contains the modifications in the Makefile.am and psplash.c files. Add the details
after the last commands, describing the nature of the patch:

$ git add Makefile.am
$ git add psplash.c

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 33 / 56

$ git commit -s
$ git format-patch HEAD~1

The resulting patch is then copied to the following location: <yocto_dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/
recipes-core/psplash/files. The name of the patch is then added in the source location identifier in the Yocto Recipe
extension for psplash (<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash_git.bbappend).

SRC_URI += " \
 file://psplash-start.service \
 file://psplash-basic.service \
 file://psplash-network.service \
 file://psplash-quit.service \
 file://<patch_name>.patch \
 "

To check that the patch works after the modifications, apply the following commands, after which the psplash.c and Makefile.am
should contain the following changes:

$ bitbake -f -c clean psplash
$ bitbake psplash
$ bitbake imx-image-core

Measuring the total time with the logic analyzer

This part starts by setting up all the preliminary connections, such as the power supply, debug port, download port, and MIPI-DSI
to HDMI connections. If the HDMI display is not connected and functional, the psplash pulse generation does not work, because
there are no frame buffers.

Both the bootloader and Linux image must be built using bitbake. After that, write them to the board using the UUU program, in
which you can choose between writing to the on-board eMMC or the SD card.

Set up the measuring stand by connecting the logic analyzer to the board. The nRST signal is used as a starting reference and
it is on the JTAG connector at pin 10.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 34 / 56

Figure 18. Schematic view of the JTAG connector available on the i.MX 8MN EVK board

To capture the rising edges of the chosen pin, connect the second probe of the analyzer to the 24th pin on the J1003
expansion connector.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 35 / 56

Figure 19. Measurement setup on the i.MX 8MN EVK board

After checking that both probes are referenced to the board’s ground, start the logic analyzer software, where you can set the
probe parameters and the time frame.

Configure the board to start in the internal development mode, boot from the desired storage space, and then power it on. After
the psplash screen disappears, press the reset button on the board and start the recording on the logic analyzer software.

You should see a rising edge on the nRST pin, followed by three pulses on the chosen pin. Stop the recording and place the
measurement flags to find out the time for each phase. The boot time of the board in this configuration results from the sum of the
elapsed time for each stage.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 36 / 56

Figure 20. Measurements on the boot time for i.MX 8MN EVK board

3.5 i.MX 8ULP
Choosing the pins

The chosen pin is the 1st pin on the J20 Arduino headers on the specified board. In the schematics for the baseboard, the pin
is used for the LPI2C 6 peripheral with the LPI2C6_SCL function. Searching the specified signal in the reference manual for the
associated pin returns an alternate function of PTF0.

Figure 21. Schematic view of the Arduino headers for the i.MX 8ULP EVK board

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 37 / 56

Figure 22. Pad control register for the chosen pad (PTF0)

Updating the U-Boot device tree

Use the following command to get the necessary files:

$ bitbake -f -c unpack imx-boot

To update the device tree, find out the macro associated to the desired functionality. This information is

in the <yocto_build_dir>/tmp/work/imx8ulpevk-poky-linux/u-boot-imx/<specified_git_folder>/git/arch/arm/dts/
imx8ulp-pinfunc.h file. The use of this macro is not enough for an adequate pin MUX setup, because it requires a 6th value,
which represents the pad configuration.

#define MX8ULP_PAD_PTF0__PTF0 0x0100 0x0000 0x1 0x0
#define MX8ULP_PAD_PTF0__FXIO1_D0 0x0100 0x083C 0x2 0x2
#define MX8ULP_PAD_PTF0__LPUART6_CTS_B 0x0100 0x09CC 0x4 0x2
#define MX8ULP_PAD_PTF0__LPI2C6_SCL 0x0100 0x09B8 0x5 0x2
#define MX8ULP_PAD_PTF0__I2S7_RX_BCLK 0x0100 0x0B64 0x7 0x2
#define MX8ULP_PAD_PTF0__SDHC1_D1 0x0100 0x0A68 0x8 0x2
#define MX8ULP_PAD_PTF0__ENET0_RXD1 0x0100 0x0AFC 0x9 0x2
#define MX8ULP_PAD_PTF0__USB1_ID 0x0100 0x0ACC 0xa 0x3
#define MX8ULP_PAD_PTF0__EPDC0_SDOE 0x0100 0x0000 0xb 0x0
#define MX8ULP_PAD_PTF0__DPI0_D23 0x0100 0x0000 0xc 0x0
#define MX8ULP_PAD_PTF0__WUU1_P8 0x0100 0x0000 0xd 0x0

The associated DTS file for the i.MX 8ULP EVK board (<yocto_build_dir>/tmp/work/imx8ulpevk-poky-linux/u-boot-imx/
<specified_git_folder>/git/arch/arm/dts/imx8ulp-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin MUXing into iomuxc:

pinctrl_hog_1: hoggrp-1 {
fsl,pins = <
MX8ULP_PAD_PTF0__PTF0 0x42
>;
};

The 0x42 configuration is based on the following pad settings in the IOMUX PCR1_PTF0 register:

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 38 / 56

• Drive strength enable: high drive strength

• Slew rate enable: standard slew rate

• Open drain enable: push-pull output

• Pull select: pull-down selected

• Pull-up enable: pull enabled

Updating the Linux device tree

To update the device tree, find the macro associated to the desired functionality. This information is
in the <yocto_build_dir>/tmp/work-shared/imx8ulpevk/kernel_source/arch/arm64/boot/dts/freescale/imx8ulp-
pinfunc.h file. The use of this macro is not enough for an adequate pin mux setup, because it requires a 6th value, which
represents the pad configuration.

#define MX8ULP_PAD_PTF0__PTF0 0x0100 0x0000 0x1 0x0
#define MX8ULP_PAD_PTF0__FXIO1_D0 0x0100 0x083C 0x2 0x2
#define MX8ULP_PAD_PTF0__LPUART6_CTS_B 0x0100 0x09CC 0x4 0x2
#define MX8ULP_PAD_PTF0__LPI2C6_SCL 0x0100 0x09B8 0x5 0x2
#define MX8ULP_PAD_PTF0__I2S7_RX_BCLK 0x0100 0x0B64 0x7 0x2
#define MX8ULP_PAD_PTF0__SDHC1_D1 0x0100 0x0A68 0x8 0x2
#define MX8ULP_PAD_PTF0__ENET0_RXD1 0x0100 0x0AFC 0x9 0x2
#define MX8ULP_PAD_PTF0__USB1_ID 0x0100 0x0ACC 0xa 0x3
#define MX8ULP_PAD_PTF0__EPDC0_SDOE 0x0100 0x0000 0xb 0x0
#define MX8ULP_PAD_PTF0__DPI0_D23 0x0100 0x0000 0xc 0x0
#define MX8ULP_PAD_PTF0__WUU1_P8 0x0100 0x0000 0xd 0x0

The associated DTS file for the i.MX 8ULP EVK (<yocto_build_dir>/tmp/work-shared/imx8ulpevk/kernel_source/arch/
arm64/boot/dts/freescale/imx8ulp-evk.dts) shows that the pin is not used, so there is nothing to disable.

To use the pin with the GPIO functionality, add the following pin MUXing into iomuxc. If the chosen pad has another pin MUX
configuration, the respective pin MUXing must be replaced with the following to successfully generate the pulse in Linux:

pinctrl-names = "default";
pinctrl-0 = <&pinctrl_hog>;
pinctrl_hog: hoggrp {
fsl,pins = <MX8ULP_PAD_PTF0__PTF0 0x42
>;
};

Adding the 1st pulse generator in <yocto_build_dir>/tmp/work/imx8ulpevk-poky-linux/u-boot-imx/<specified_git_folder>/git/board/
freescale/imx8ulp_evk/spl.c

Add the pulse generation code into the board_init_f function, after the BSS clearing part:

void board_init_f(ulong dummy)
{
 /* Clear the BSS. */
 memset(__bss_start, 0, __bss_end - __bss_start);
 __raw_writel(0x142, 0x298c0100);
 __raw_writel(0xc0000000, 0x2980007c);
 int val;
 val = __raw_readl(0x2d010044);
 val |= 0x1;
 __raw_writel(val, 0x2d010044);
 val = __raw_readl(0x2d010054);
 val |= 0x1;
 __raw_writel(val, 0x2d010054);
 val = __raw_readl(0x2d010048);
 val |= 0x1;

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 39 / 56

 __raw_writel(val, 0x2d010048);
 val = __raw_readl(0x2d010054);
 val |= 0x1;
 __raw_writel(val, 0x2d010054);
 timer_init();
 arch_cpu_init();

Adding the 2nd pulse generator in <yocto_build_dir>/tmp/work/imx8ulpevk-poky-linux/u-boot-imx/<specified_git_folder>/git/
include/configs/imx8ulp_evk.h

Add the commands to toggle the pin into the environment variables for the bootloader, at the load-image property. Set the pin
before loading the image and reset it afterwards:

“loadimage=gpio set GPIO3_0;fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} ${image};gpio clear
GPIO3_0\0” \

To automate the process, create a patch that contains the U-Boot modifications in the spl.c, imx8ulp-evk.dts, and
imx8ulp_evk.h files. Add the details after the last commands, describing the nature of the patch:

$ git add board/freescale/imx8ulp_evk/spl.c
$ git add arch/arm/dts/imx8ulp-evk.dts
$ git add include/configs/imx8ulp_evk.h
$ git commit -s
$ git format-patch HEAD~1

Copy the resulting patch to the following location: <yocto_dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/
u-boot/u-boot-imx. Add the name of the patch into the source location identifier in the Yocto recipe for U-Boot (<yocto_dir>/
imx-yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx_2021.04.bb):

SRC_URI = " ...\
file://<patch_name>.patch \
"
To check that the patch works after the modifications, apply the following commands, after which the
files should contain the following changes:
$ bitbake -f -c clean u-boot-imx
$ bitbake u-boot-imx
$ bitbake imx-boot

Adding the 3rd pulse generator

For this stage, modify the Yocto recipe extension for psplash so that it can fetch the additional libgpiod library to toggle the GPIO
(<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash_git.bbappend):

DEPENDS = "libgpiod"
RDEPENDS_${PN} = "libgpiod"
RDEPENDS_${PN}-dev = "libgpiod"

Use the following command to get the necessary psplash files:

$ bitbake -f -c unpack psplash

After fetching the necessary files, modify the make file (<yocto_build_dir>/tmp/work/cortexa35-poky-linux /psplash/
<specified_git_folder>/git/Makefile.am) to include lgpiod:

AM_CFLAGS = $(GCC_FLAGS) $(EXTRA_GCC_FLAGS) -D_GNU_SOURCE -lgpiod -DFONT_HEADER=\"$(FONT_NAME)-
font.h\" -DFONT_DEF=$(FONT_NAME)_font
GCC_FLAGS := $(GCC_FLAGS) -Lusr/lib -Iusr/include -lgpiod
LD_FLAGS = $(LD_FLAGS) -lgpiod

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 40 / 56

Modify the source code (<yocto_build_dir>/tmp/work/aarch64-poky-linux/psplash/<specified_git_folder>/git/
psplash.c). The first step is to include the library:

#include "gpiod.h"

Declare some additional variables in the main function to select the bank and the line for the GPIO.

struct gpiod_chip *chip;
struct gpiod_line *line;
int gpio_line = 0;
int req;
char dev[] = "/dev/gpiochip6";

The program should acquire control of the pin, toggle it, and release it before sending the 1st command to the frame buffer (clearing
the background):

chip = gpiod_chip_open(dev); if (!chip) return -1;
line = gpiod_chip_get_line(chip, gpio_line); if (!line) {
gpiod_chip_close(chip); return -1; }
req = gpiod_line_request_output(line, "SIGNAL", 2); if (req) {
gpiod_chip_close(chip); return -1; } if (gpiod_line_set_value(line, 1) != 0){
printf("Impossible to change line %d value to %d \n", gpio_line, 1);
gpiod_chip_close(chip); return -1; } if (gpiod_line_set_value(line, 0) != 0){
printf("Impossible to change line %d value to %d \n", gpio_line, 0);
gpiod_chip_close(chip); return -1; }
gpiod_line_release(line);
gpiod_chip_close(chip);

In BSP 5.10.72_2.2.0, the following modification is required to build imx-image-core:

In sources/meta-virtualization/recipes-containers/runc/runc-opencontainers_git.bb:

- git://github.com/opencontainers/runc;branch=master \
+ git://github.com/opencontainers/runc;branch=main \

After applying all the modifications, build the psplash and the image using the following commands:

$ bitbake psplash
$ bitbake imx-image-core

To automate this process, create a patch that contains the modifications in the Makefile.am and psplash.c files. Add the details
after the last commands, describing the nature of the patch:

$ git add Makefile.am
$ git add psplash.c
$ git commit -s
$ git format-patch HEAD~1

The resulting patch is then copied to the following location: <yocto_dir>/imx-yocto-bsp/sources/meta-imx/meta-bsp/
recipes-core/psplash/files. The name of the patch is then added in the source location identifier in the Yocto Recipe
extension for psplash (<yocto_dir>/sources/meta-imx/meta-bsp/recipes-core/psplash/psplash_git.bbappend).

SRC_URI += " \
file://psplash-start.service \
file://psplash-basic.service \
file://psplash-network.service \
file://psplash-quit.service \

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 41 / 56

file://<patch_name>.patch \
"

To check that the patch works after the modifications, apply the following commands, after which the psplash.c and Makefile.am
files should contain the following changes:

$ bitbake -f -c clean psplash
$ bitbake psplash
$ bitbake imx-image-core

Measuring the total time using the logic analyzer

This part starts by setting up all the preliminary connections, such as the power supply, debug port, download port, and HDMI
connections. If the HDMI display is not connected and functional, the psplash pulse generation does not work, because there are
no frame buffers.

Both the bootloader and the Linux image must be built using bitbake. After that, write them to the board using the UUU program.

Set up the measuring stand by connecting the logic analyzer to the board. In the i.MX 8ULP boot-time measurement, Agilent
16902A Logic Analyzer was used. The JTAG_RESET signal is used as a starting reference and it is on the JTAG connector at pin
10. Connect this pin to the first probe of the logic analyzer.

Figure 23. Schematic view of the JTAG connector available on the i.MX 8ULP EVK board

To capture the rising edges of the chosen pin, connect the second probe of the analyzer to the 1st pin on the J20 Arduino
headers connector.

After checking that both probes are referenced to the board’s ground, start the logic analyzer software, where you can set the
probe parameters and the time frame.

Configure the board to boot from eMMC and power it on. After the psplash screen disappears, press the reset button on the board
and start the recording on the logic analyzer software.

You should see a rising edge on the JTAG_RESET pin, followed by three pulses on the chosen pin. Stop the recording and find out
the time for each phase. The boot time of the board in this configuration results from the sum of the elapsed time for each stage.

NXP Semiconductors
Examples

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 42 / 56

Figure 24. Measurements on the boot time for i.MX 8ULP EVK board

4 Further optimizations

4.1 No delay in kernel loading
Before the U-Boot Kernel image loads according to the autoboot sequence, there is a delay during which you can stop the process.
This delay is defined in the u-boot environment variables as bootdelay and it may vary between the boards.

To achieve shorter boot times, configure the bootdelay to 0 after interrupting the autoboot sequence during the delay:

u-boot=> setenv bootdelay 0
u-boot=> saveenv
Saving Environment to MMC... Writing to MMC(1)... OK

After measuring the boot times, the total time shall decrease by the default bootdelay period.

NXP Semiconductors
Further optimizations

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 43 / 56

4.2 Quiet operation
During the Linux start-up sequence, different messages are sent through the debug port, which has a limited speed (serial
console). To achieve shorter boot times, suppress some of these messages using the quiet parameter in the mmcargs
environment variable.

u-boot=> edit mmcargs
edit: setenv bootargs ${jh_clk} console=${console} root=${mmcroot} quiet
u-boot=> saveenv
Saving Environment to MMC... Writing to MMC(1)... OK

4.3 Enabling fast boot and using higher speeds for the storage
For the SD and eMMC storage, you can set higher speeds in the ROM stage of booting, depending on the available configuration.
For eMMC, you can activate the fast boot mode. You can set these modifications using the boot fuses. In some cases, there is
also the option to bypass the fuses using a predefined GPIO.

The following examples are applicable for the eMMC storage, because no notable decreases in boot time have been observed
for the SD.

Case I : Changes can be applied externally by GPIO pins

The prerequisite for this mode is that the BT_FUSE_SEL fuse must be intact (0), so that the GPIO boot overrides can work. The board
must also boot from the MicroSD card.

• i.MX 8M Quad

The GPIO pins that override the fuses are in the i.MX 8MQ reference manual.

Figure 25. GPIO overrides for the i.MX 8MQ EVK board

NXP Semiconductors
Further optimizations

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 44 / 56

In the board configuration, the onboard eMMC supports the DDR mode, which can lead to shorter boot times. You can set the
MMC speed to high and enable the fast boot mode.

Figure 26. Fuse settings for speed and fast boot for the i.MX 8MQ EVK board

To apply the modifications mentioned above, connect the associated pins to a 3v3 power source. The J801 I2C header provides a
solution to this problem on the 5th pin. The 3v3 power source is shared on a breadboard for the desired BOOT_CFG pins (7, 6, 5, 2).

NXP Semiconductors
Further optimizations

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 45 / 56

Figure 27. I2C header schematic for the i.MX 8MQ EVK board

NXP Semiconductors
Further optimizations

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 46 / 56

Figure 28. Board setup with breadboard for the i.MX 8MQ EVK board

Before you apply any of the following commands, identify the eMMC device in both U-Boot and Linux, because the
associated id/name is used in the next steps. The storage mapping for the evaluation board is as follows: eSDHC1
for the eMMC card and eSDHC2 for the MicroSD.

 NOTE

To use fast boot, rebuild the u-boot image using the flash_evk_emmc_fastboot target. You can do this by adding the following
lines to the local.conf file in the <yocto_build_dir>/conf directory:

IMXBOOT_TARGETS_append = " flash_evk_emmc_fastboot"

NXP Semiconductors
Further optimizations

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 47 / 56

After this, rebuild the image using the following bitbake commands:

$ bitbake -f -c clean imx-boot
$ bitbake imx-boot

An additional image that contains the flash_evk_emmc_fastboot settings should be available in the <yocto_build_dir>/tmp/
deploy/images/imx8mqevk/ directory.

The majority of the MMC settings can be modified in the U-Boot using the mmc bootbus command, which sets the
BOOT_BUS_WIDTH field:

u-boot=> mmc bootbus <device_number> 2 1 2

Write the Image Vector Table (IVT) to a different offset, as per the reference manual (from 33 kB to 1 kB). You can do this
in Linux by enabling the write rights to the bootpartition, writing the new U-Boot image, disabling the rights, and setting it as
the bootpartition.

root@imx8mqevk:~# echo 0 > /sys/block/mmcblk<device_number>boot<partition_number>/force_ro
root@imx8mqek:~# dd if=<location to flash.bin>/flash.bin of=/dev/
mmcblk<device_number>boot<partition_number> seek=1 bs=1k conv=fsync
root@imx8mqek:~# echo 1 > /sys/block/mmcblk<device_number>boot<partition_number>/force_ro
root@imx8mqevk:~# mmc bootpart enable 1 0 /dev/mmcblk<device_number>
root@imx8mqevk:~# sync

• i.MX 8M Mini

The GPIO pins that override the fuses are in the i.MX 8MM reference manual.

Figure 29. GPIO overrides for the i.MX 8MM EVK board

In the board configuration, the on-board eMMC supports the DDR mode, which can lead to shorter boot times. You can set the
MMC speed to high and enable the fast boot mode.

NXP Semiconductors
Further optimizations

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 48 / 56

Figure 30. Fuse settings for speed and fast boot for the i.MX 8MM EVK board

To apply the modifications mentioned above, connect the associated pins to a 3v3 power source. The evaluation board has two
sets of ten switches through which the pins can be set or reset: SW1101 and SW1102.

NXP Semiconductors
Further optimizations

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 49 / 56

Figure 31. Schematic view of the GPIO override switches on the i.MX 8MM EVK board

NXP Semiconductors
Further optimizations

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 50 / 56

Before you apply any of the following commands, identify the eMMC device in both U-Boot and Linux, because
the associated id/name is used in the next steps. The storage mapping for the development board is as follows:
eSDHC2 for the MicroSD card and eSDHC3 for the eMMC.

 NOTE

To use the fast boot, rebuild the U-Boot image using the flash_evk_emmc_fastboot target. You can do this by adding the
following lines to the local.conf file in the <yocto_build_dir>/conf directory:

IMXBOOT_TARGETS_append = " flash_evk_emmc_fastboot"

After this, rebuild the image using the following bitbake commands:

$ bitbake -f -c clean imx-boot
$ bitbake imx-boot

An additional image that contains the flash_evk_emmc_fastboot settings should be available in the <yocto_build_dir>/tmp/
deploy/images/imx8mmevk/ directory.

You can modify the majority of the MMC settings in the U-Boot using the mmc bootbus command, which sets the
BOOT_BUS_WIDTH field:

u-boot=> mmc bootbus <device_number> 2 1 2

Write the Image Vector Table (IVT) to a different offset, as per the reference manual (from 33 kB to 1 kB). You can do this
in Linux by enabling the write rights to the bootpartition, writing the new U-Boot image, disabling the rights, and setting it as
the bootpartition.

root@imx8mmevk:~# echo 0 > /sys/block/mmcblk<device_number>boot<partition_number>/force_ro
root@imx8mmek:~# dd if=<location to flash.bin>/flash.bin of=/dev/
mmcblk<device_number>boot<partition_number> seek=1 bs=1k conv=fsync
root@imx8mmek:~# echo 1 > /sys/block/mmcblk<device_number>boot<partition_number>/force_ro
root@imx8mmevk:~# mmc bootpart enable 1 0 /dev/mmcblk<device_number>
root@imx8mmevk:~# sync

Case II : Changes can be applied by writing the boot fuses

• i.MX 8M Plus

In the board configuration, the onboard eMMC supports the DDR mode, which can lead to shorter boot times. You can set the
MMC speed to high and the fast boot mode can be enabled.

Figure 32. Fuse settings for speed and fast boot for the i.MX 8MP EVK board

Before you apply any of the following commands, identify the eMMC device in both U-Boot and Linux, because the
associated id/name is used in the next steps. The storage mapping for the evaluation board is as follows: eSDHC2
for the MicroSD card and eSDHC3 for the eMMC.

 NOTE

You can modify the majority of the MMC settings in the U-Boot using the mmc bootbus command, which sets the
BOOT_BUS_WIDTH field:

u-boot=> mmc bootbus <device number> 2 1 2

NXP Semiconductors
Further optimizations

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 51 / 56

To apply the modifications mentioned above at the chip level, you must blow the fuses. This process is irreversible,
so double check the values before writing the fuses according to the reference manual.

 NOTE

The fuses are written in the u-boot using the fuse prog command. This requires the bank and word in which the fuse resides,
followed by a word containing the settings for the fuses. Find out the bank and word as follows:

(0x490-0x400)/0x10= 0x9 Hexadecimal = 9 Decimal

9/4 = 2 and the remainder is 1 (Bank = 2 and Word = 1)

The fuses that you must blow are as follows:

• 0x490[6] – Fast Boot

• 0x490[5] – 8-bit DDR

• 0x490[2] – EMMC Speed High

The resulting word to write for the desired configuration is 0x64:

u-boot=> fuse prog 2 1 0x64

To use the fast boot, there is no additional modification to the U-Boot image, because there is no different offset for the Image
Vector Table (IVT).

• i.MX 8M Nano

The board configuration shows that the on-board eMMC supports the DDR mode, which can lead to shorter boot times. You can
set the MMC speed to high and enable the fast boot mode.

Figure 33. Fuse settings for speed and fast boot for the i.MX 8MN EVK board

Before applying any of the following commands, you must identify the eMMC device in both U-Boot and Linux,
because the associated id/name is used in the next steps. The storage mapping for the evaluation board is as
follows: eSDHC2 for the MicroSD card and eSDHC3 for the eMMC.

 NOTE

You can modify the majority of the MMC settings in the U-Boot using the mmc bootbus command, which sets the
BOOT_BUS_WIDTH field:

u-boot=> mmc bootbus <device number> 2 1 2

To apply the modifications mentioned above at the chip level, you must blow the fuses. This process is irreversible,
so double check the values before writing the fuses according to the reference manual.

 NOTE

NXP Semiconductors
Further optimizations

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 52 / 56

The fuses are written in the U-Boot using the fuse prog command, which requires the bank and word in which the fuse resides,
followed by a word containing the settings for the fuses. Find out the bank and word as follows:

(0x490-0x400)/0x10= 0x9 Hexadecimal = 9 Decimal

9/4 = 2 and the remainder is 1 (Bank = 2 and Word = 1)

The fuses that you must blow are as follows:

• 0x490[6] – Fast Boot

• 0x490[5] – 8-bit DDR

• 0x490[2] – EMMC Speed High

The resulting word to write for the desired configuration is 0x64:

u-boot=> fuse prog 2 1 0x64

To use the fast boot, there is no additional modification to the U-Boot image, because there is no different offset for the Image
Vector Table (IVT).

5 References
• i.MX 8M Quad Applications Processor Reference Manual (document)

• i.MX 8M Plus Applications Processor Reference Manual (document)

• i.MX 8M Mini Applications Processor Reference Manual (document)

• i.MX 8M Nano Applications Processor Reference Manual (document)

6 Revision history
Table 1. Revision history

Revision number Date Substantive changes

1 29 April 2022 Added i.MX8 ULP

0 07 September 2021 Initial release

NXP Semiconductors
References

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 53 / 56

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical
or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,
as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement
is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization
from competent authorities.

Suitability for use in non-automotive qualified products — Unless this
data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.
It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in automotive
applications to automotive specifications and standards, customer (a) shall use
the product without NXP Semiconductors’ warranty of the product for such
automotive applications, use and specifications, and (b) whenever customer
uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and (c) customer
fully indemnifies NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of the product for
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.

NXP Semiconductors
Legal information

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 54 / 56

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.

ColdFire — is a trademark of NXP B.V.

ColdFire+ — is a trademark of NXP B.V.

EdgeLock — is a trademark of NXP B.V.

EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

elQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.

Freescale — is a trademark of NXP B.V.

HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

Immersiv3D — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MOBILEGT — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.

QorIQ — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright © 2021 Synopsys, Inc. Used with permission.
All rights reserved.

Tower — is a trademark of NXP B.V.

UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

NXP Semiconductors
Legal information

i.MX 8 - Boot Time Measurements Methodology, Rev. 1, 29 April 2022
Application Note 55 / 56

mailto:PSIRT@nxp.com
http://www.cadence.com/go/trademarks

Please be aware that important notices concerning this document and the product(s) described
herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 29 April 2022
Document identifier: AN13369

	Contents
	1 Introduction
	1.1 Software environment
	1.2 Hardware setup and equipment

	2 General description
	2.1 Choosing the GPIO pin for measurement
	2.2 Updating the device tree at the bootloader and Linux level
	2.3 Adding the first pulse generator
	2.4 Adding the second pulse generator
	2.5 Adding the third pulse generator
	2.6 Measuring the total time with the logic analyzer

	3 Examples
	3.1 i.MX 8M Quad
	3.2 i.MX 8M Plus
	3.3 i.MX 8M Mini
	3.4 i.MX 8M Nano
	3.5 i.MX 8ULP

	4 Further optimizations
	4.1 No delay in kernel loading
	4.2 Quiet operation
	4.3 Enabling fast boot and using higher speeds for the storage

	5 References
	6 Revision history
	Legal information

