AN13400

i.MX 8M Low Power Design By M Core Running In System
Suspend

Rev. 1 — 22 September 2022

Application note

Document information
Information Content

Keywords i.MX 8M, M core, low-power applications

Abstract This application note aims to help to deploy low-power applications with the M
core alive on the NXP i.MX 8M series SoCs.

NXP Semiconductors

AN13400

1 Introduction

i.MX 8M Low Power Design By M Core Running In System Suspend

The i.MX 8M family of applications processors, based on Arm Cortex-A53, and Cortex-
M cores, provide industry-leading audio, voice, and video processing for applications that
scale from consumer home audio to industrial building automation and mobile computers.

As more users intend to use the Cortex-M core in their products for low-power purposes,
this application note aims to help you to deploy low-power applications with the M core
alive on the NXP i.MX 8M series SoCs.

It demonstrates how to minimize power consumption with changes on the kernel, the M
core application, ATF, and U-Boot when the main system is set into Suspend mode.

The target audiences of the document are those users who want:

* Low-power requirement on i.MX 8M.
* To run both the Linux kernel and the M core application.
¢ To run the M core application only in TCM without DDR when the kernel is suspended.

¢ SoC IP peripherals’ ownership shared/switched between cores.

¢ To become familiar with the expected processor power consumption in various

scenarios.

The data presented in this application note is based on empirical measurements taken on
a small sample; the presented results are not guaranteed.

2 Definitions, acronyms, and abbreviations

AN13400

Table 1. Acronyms and meanings

Acronyms Meanings

AMP Asymmetric Multiprocessing

ATF Arm Trusted Firmware

DTB Device Tree Blob

DTS Device Tree Source

DSM Deep Sleep Mode

DVFS Dynamic voltage and frequency scaling
GIP & GIPn General Interrupt Request n Pending
GIR & GIRn General Purpose Interrupt Request n
GPC General Power Management

HMP Heterogeneous Multicore Processing
LPA Low-Power Audio

MU Message Unit

RPMsg Remote Processor Messaging

RTOS Real-Time Operating System

SoC System on Chip

TCM Tightly Coupled Memory

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022

2/33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

3 Overview of i.MX 8M Low Power

This section gives general information about i.MX 8M Low Power.

3.1 Voltage supplies

The i.MX 8M series processors have several power supply domains (voltage supply rails)
and internal power domains. The figure below shows the connectivity of these supply
rails and the distribution of the internal power domains on i.MX 8MP.

PMIC Cortex A53 Platform

085/095/1.0V VDD_ARM cru#t |[cruwo
Digtal 1 Cache)| |[L1 Cache

CPU #3 CPU #2

L1 Cache L1 Cache

L2 Controller & BCU
o L2 Cache Memory

[

VDD_ARM_PLL_0P8

VDD_ARM_PLL_1P8 | ARM PLL |
o Shared Logic
GPU
~—{ acsanL ¥
o~ acrooouL
| Shared Logic
VPU
— Gibecoder | 0
[G2 Decoder
~——{ VCB00OE Encoder

0.850.95V VbD_soc
Digtal SUPERMIX, ANAMIX, |

CCMS RC GP CMIX

SoC Top-level
" NOC Wrapper
MEDIAMUX

o~
o ISP, Dewarp

MILMUX
el VIP Nano-SI
AUDIOMUX
" Audio peripherals

HDMMUX

HDM -relate logic
4' LCD, HDMI Controller

HSIOMUX

4' PCls, USB Controllers
DDRMUX

4' DRAM Controller

LB PVCC_XXX 3.3V GPIO PAD
NVCC_XXX
18VIO PVCC_1P8 PVCC_XXX 1.8 V GPIO PAD |7

EFUSE_VDD18

T Optional 1 EFUSE_VOPS eFUSE
' _Fiter_ ! VDD_ANA_0P8 VDDO_0P8_PLL
"""" VDDA_1P8_PLL PLL
Po———— -
VDD_ANAs_1P8 VI
| A DA1P TSENSE. ™o perature Sensor
L,

_____ 4
VDD_DRAM_PLL_0P8
DRAM PLL '7
VDD_DRAM_PLL_1P8
111.2135V NVCC_DRAM DRAM PHY |7
DRAM 10

VDD_HDMI_OP8

VDD_HDMI_1P8 HDMI PHY
VDD_LVDS_1P8
LVDS PHYs
1R§g \{jl'j;? VDD_MIPI_1P2
VDD_MIPI_1P8
VDD_MIPI_0P8 MIPI PHYs
VDD_USB_1P8
VDD_USB_3P3
VDD_USB_0P8. USB PHYs
------ VDD_PCIE_1P8
| Cry VDD_PCIE 0P8 PCle PHY
! Battery !
i
b, 08VLDO| VoD SNVs oPs S L oo
1 Optional 1 Regulator

LRegulator} PVCC_SNVS
1.8V SNVS i NVCC_SNVS_1P8 NVCC_SNVS SNvS 10

Figure 1. i.MX 8MP power rails

Note: For the recommended operating conditions of each supply rail and for a detailed
description of the groups of pins that are powered by each I/O voltage supply, see

AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 1 — 22 September 2022

3/33

NXP Semiconductors AN13400

AN13400

3.2

3.21

i.MX 8M Low Power Design By M Core Running In System Suspend

the SoC data sheet. For more information about the power rails, see Chapter “Power
Management Unit (PMU)” in the Reference Manual.

Low-power modes on i.MX 8M

This section describes the specifics of low-power modes on i.MX 8M and the difference
between Suspend mode and DSM (Deep Sleep mode).

SoC low-power modes introduction

There are two platform low-power modes, Wait and Stop, and one system low-power
mode, DSM.

Wait and Stop modes are supported by both CPU platforms (each representing a CPU
domain): the Quad-core Cortex A53 platform and the Cortex M7 platform.

In our standard release, only Stop mode is supported.

Note: There are two types of Wait and Stop modes, Fast-Wake-up and Non-Fast-Wake-
up. The default is Non-Fast-Wake-up. You can only use one of them. The difference is
that during Fast-Wake-up, the clock, and PLL (Phase-locked loop) management are
handled by software.

Non-Fast-Wake-up, Wait, and Stop are configured in GPC_LPCR_A53 BSC,
GPC _LPCR A53 BSC2, and GPC LPCR M7 registers. Fast-Wake-up, Wait, and Stop
are configured in the GPC _SLPCR register.

DSM is a system low-power mode. When entering DSM, hardware can help to switch the
voltage of VDD_SOC from Run to DSM and shutdown all PLLs and clocks.

For other low-power modes, you must optimize the clocks and PLLs using software.

System DSM

Figure 2. Low-power modes’ relationship

The system goes into DSM under the following conditions:

* Both A53 and M7 are in Stop mode (Non-Fast-Wake-up Stop).

* Both GPC SLPCR[EN A53 FASTWUP STOP MODE] and
GPC SLPCR[EN M7 FASTWUP STOP MODE] are not set.

* GPC_SLPCR[EN DSM] is set.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
4/33

NXP Semiconductors AN1 3400

3.2.2

i.MX 8M Low Power Design By M Core Running In System Suspend

¢ All PLLs are closed from CCM configuration, otherwise the system is not able to wake
up.

Note: The system can enter DSM either from the A core side or the M core side. See the

note in RM:

If GPC_LPCR M7 [MASK DSM TRIGGER] s set, the system goes into DSM when
Ab53 goes into Stop mode and GPC_SLPCR[EN A53 FASTWUP_STOP MODE] is not
set. If GPC_LPCR A53 BSC[MASK DSM TRIGGER] Is set, the system goes into DSM
when M7 goes into Stop mode and GPC_SLPCR[EN M7 FASTWUP STOP MODE]

is not set. GPC_LPCR M7 [MASK DSM TRIGGER] and

GPC LPCR A53 BSC[MASK DSM TRIGGER] cannot be set at the same time.

For more details, refer to the GPC chapter in SoC RM.

Suspend and DSM (Deep Sleep mode)

This section describes the difference between Suspend mode and DSM.
General introduction:

* DSM is a system low-power mode supported by SoC.

¢ In Linux, you can put the kernel into Suspend mode using the command “echo mem
> /sys/power/state’. Oni.MX 8M, it puts core A53 into Stop mode. When A53
is in stop and the M core is not running, the system will enter DSM directly. It is the
standard behavior supported in the standard release.

4 Application design

AN13400

41

4.2

4.3

This section describes the specifics of the application used.

Why use the M core for low-power cases

You can use the M core in your applications for:

* Lower power consumption comparing to the A core.
 Faster wake-up from IRQ. It is very useful in monitoring tasks.
 Faster interrupt handler.

Application scenario

This application scenario is:

1. The Linux Kernel runs on Cortex®-A53, and M core applications (no matter with
BareMetal or RTOS) can work separately.

2. In low-power mode, the kernel enters Suspend-to-Ram mode. It is in the clock-gating,
low-voltage mode while the Cortex-M subsystem performs low-power, real-time
system monitoring tasks.

3. The M core application can wake up the Linux OS running on the Cortex-A53 core.

4. The M core application only runs in TCM with DDR in Retention mode when the
kernel is suspended.

Make the M core alive when the A core is in Suspend mode

There are two ways to keep the M core alive when the A core is suspended:

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
5/33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

¢ Change the clock source of UART used by the M core to 24 MHz OSC.
* Define LPA Flags (see Enable low-power audio flags) in the M
core application that puts the A core into Fast-Wake-up-Stop mode
(GPC_SLPCR[EN A53 FASTWUP_ STOP MODE] is set).

4.3.1 Method 1: Change clock source of UART used by the M core to 24 MHz
osC

It is the simplest way to keep the M core alive when the A core is suspended.
In this scenario:

¢ All PLLs are bypassed and therefore all PLLs used by the M core are changed to 24
MHz.

* The M core source clock is changed to 24 MHz.
* DRAM is in Retention mode.

As all PLLs are OFF, optimization is not needed.

4.3.2 Method 2: Define LPA flags in the M core application

When LPA flags are defined, the ATF code puts the A core into Fast-Wake-up-Stop
mode.

In this scenario:

¢ The frequency of all PLLs is kept.

¢ The clocks of all modules are kept.

* The frequency of the M core is kept.

* DRAM can be defined as retention or not.

So, when LPA flags are defined to put the A core into Fast-Wake-up-Stop mode, you
have more performance on the M core. But as all PLLs and clocks are kept, the power is
very high.

Some optimizations are needed here.

4.3.3 Define the scenario to know how to use the M core

In practical applications, you must define their low-power scenario first.

Method 1 is easier, but it has more limitations. Method 1 uses 24 MHz as the core and
peripherals’ clock source. In case your applications do not need high performance and 24
MHz is enough for the core and peripherals, use method 1.

Method 2 is more flexible, but requires software optimization to shut down unused PLLs
and clocks.

AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 1 — 22 September 2022

6/33

NXP Semiconductors

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend

N
Need high core
frequency or not?
~_ 7
7N
24MHz is enough or
not?
NS
|
/l ™ N
Need high core 24MHz is enough for
frequency core
/l\ RN
Method 2 Neec_l PLLs for 24Mhz or Iom_'ver is
peripherals enough for peripherals
~_
"‘\ "‘\
Method 2 Method 1

Figure 3. Select the method for an M core low-power application

4.4 Diagram of use case scenarios

This section shows the difference in use case scenarios when the A core is in Run and in

Suspend modes.

4.41 The A core in Run mode

Notify on suspend

RUN or STOP Mode RUN Mode
Cortex M Cortex AS3
RTOS Linux

Suspend
Function

Figure 4. Cortex-A53 Run and Enter suspend

When the A core is running, the M core can be in Run or Stop mode.

AN13400

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022

7/33

NXP Semiconductors

AN13400

AN13400

4.4.2

4.5

i.MX 8M Low Power Design By M Core Running In System Suspend

In this state, the kernel can enter Suspend mode using the following command:

“S$: echo mem > /sys/power/state”

In this application, when the kernel enters Suspend mode, ATF sends a notification to the

M core.

The A core in Suspend mode

When the M core image receives a notification of the kernel Suspend mode, it enters low-

power mode.

As shown above, the application might do some low power monitoring tasks.

Cortex M

RTOS

Wakeup signal

Figure 5. Cortex-M wakes up Cortex-A53

Suspend Mode

Cortex AS3

Linux

When the wake-up condition matches, the Cortex-M core triggers GIRn to send a wake-
up interrupt to the Cortex-A core. The A core exits from Suspend mode then.

Peripheral control in Cortex-M

On i.MX 8M, peripherals are shared between the Cortex-A core and the Cortex-M core,

such as GPIO, I°C, and UART.

In HMP applications, there are three cases of inter-core peripheral control.

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022

8/33

NXP Semiconductors

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend

4.5.1 Peripherals are owned exclusively by one core

Dedicated Apps
Peripherals and Memory

No shared
Peripherals

Cortex-A53

Application
Core

Figure 6. Exclusive modules in each core side

Dedicated Real Time
Peripherals and Memory

Cortex-M

Real Time
Core

In this case, the Cortex-A core releases its control over
core can fully manage them.

4.5.2 Some peripherals are shared

these IPs, so that the Cortex-M

Shared
Peripherals and
Memory

Dedicated Apps
& Peripherals and
Memory

Cortex-A53

Dedicated Real
Time Peripherals
and Memory

Cortex-M4

Real Time
Core

Application
Resource Domain

Figure 7. HMP application with shared peripherals

Resource Domain

Real Time

For those shared peripherals, there are two ways when both the A core and the M core

need to access them.

* The use of RPMsg.
» The use of practical drivers and time-division access.

AN13400 All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. Al rights reserved.

Application note Rev. 1 — 22 September 2022

9/33

NXP Semiconductors AN1 3400

4.5.21

4.5.2.2

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend

The use of RPMsg

In the standard GA release and SDK package, RPMsg is used for inter-core
communication.

The M core uses a practical driver to control the peripheral and the A core uses an
RPMsg-based virtual driver, for example, the RPMsg >c driver, which sends control
messages to the M core to control the hardware.

Remoteproc

Linux

Remateprac + REMSE

Pl P2

Figure 8. Use RPMsg to control the M core peripherals

In this way, the Cortex-A core also releases control over these IPs in its dts file and lets
the Cortex-M core fully manage them.

See RPMsg Messaging Protocol for details.

It is the most recommended way but very slow in implementing a virtual driver.

If you do not have the experience or time to write the virtual RPMsg driver in the kernel,
you can use another way. It is the use of drivers in the time-division way on both cores.

The use of practical drivers and time-division access on both cores

In this case, the time-division access means:

» There are practical control drivers in both the A core and the M core sides. Each driver
controls the peripheral in different period, that is, Cortex-A controls the peripheral in
Run mode and Cortex-M does it when the A core is suspended.

* |t is an exclusive access for both drivers to the peripheral. The control of the peripheral
switches between the Cortex-A and the Cortex-M sides.

Suggestions for implementing such cases are:

* Reinitialize modules when module control switches.

¢ Reinitialize module clocks’ frequencies. It is optional if modules’ clocks are kept ON in
ATF changes.

* Do not disable the module’s CCGR in CCM. Disabling the module’s CCGR on the M
core side can cause the kernel to crash or the module not to work after the A core
wake-up.

* Use a hardware semaphore to avoid concurrent access.

Another issue is that the SDK packages only provide limited drivers, for example, i2c, spi,
gpio, and so on. For other drivers, you may need to port it from other SoCs’ SDK drivers,

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
10/33

https://github.com/OpenAMP/open-amp/wiki/RPMsg-Messaging-Protocol

NXP Semiconductors AN1 3400

45.23

4524

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend
for example, i.MXRT, i.MX8, and so on. For example, enet drivers in the example code
are ported from the i.MXRT SDK package.

Comparison of RPMsg and time-division drivers
The advantages and disadvantages of both approaches are obvious.

Table 2. Comparison of RPMsg and time-division drivers

RPMsg Time-division drivers
Advantages * Fewer potential concurrent access |* DDR is not needed. The whole program
issues. can be in TCM.
» Simple mechanism. One practical | Direct control. Each driver can control
driver, one virtual driver. the module directly.

* No need for a kernel virtual driver.

Disadvantages|* A bit slower as control messages * More effort in debugging concurrent
are sent via RPMsg. access issues.

* Need DDR. DDR cannot be in
retention in Suspend mode.

* Need an additional virtual RPMsg
driver in the kernel.

Note:

1. Applications that do not need to use DDR when the A core enters Suspend mode can
still use RPMsg and DDR when both cores are running.

2. The system can get stuck if the M core application tries to access DDR when it is in
retention.

Debugging tips for time-division drivers

Debugging time-division drivers on both cores requires more effort to handle two cases:

1. Concurrent access. When both drivers in each core side attempt to access the same
module at the same time, the module driver might crash. For example, if both the
Linux I2C driver and the M core 1°C driver attempt to access 1°CO at the same time,
the I°C driver (either in the kernel or in the M core) might crash.

2. Control switch after wake-up. When the kernel is suspended and awakened, control
of the module is switched to the other core. The module may not work after switching.

For such cases, there are several suggestions and tips:

1. Check the suspend and resume function in the kernel module driver. You can re-
initialize modules when module control switches, the suspend function must disable
the module and clocks and the resume function must reset the module. Check if
suspend/resume logic is correct.

2. While debugging, disabling the module’s CCGR on the M core side can cause the
kernel to crash or the module not to work after the A core wake-up. So, if the module
does not work properly after wake-up, try to keep CCGR on when switching control
switches.

3. Check clocks. Make sure that module clocks are correct before and after wake-up. In
the kernel, check the clock summary using the “cat /sys/kernel/debug/clk/
clk summary” command.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
11/33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

5 Power optimization

AN13400

5.1

5.2

The power optimization is for cases where a higher core frequency is required, and the M
core must keep any PLLs for peripherals.

To optimize the power consumption of these use cases, use the items below:

Table 3. Power optimization

Item General description

Kernel (optional) Optional change for i.MX8 MQ and if the kernel RPMsg doorbell mechanism
is used.

U-Boot Reduce VDD_SOC RUN voltage.

ATF (Arm Trusted |Disable or bypass PLLs, root clocks, CCGRs on VDD_SOC.
Firmware)

M core application |Choose proper clocks and LPA flags for the convenience of optimization.

Kernel optimization

The kernel optimization is optional as the Linux code in GA release can reach the lowest
power if only the Linux kernel is needed.

Note:

For i.MX 8MQ), when the kernel enters Suspend mode and the M core is running,
VDD_SOC might be very high as the clock of DCSS is still ON. In this case, disable the
clock when the A core enters Suspend mode.

For the code change and other details, see How to Reduce SoC Power when Running
M4 with A53 on i.MX8M (document: AN12225).

The M core application optimization

The M core application must define its functionality either when the kernel is running or
the kernel is suspended. The paper focuses on the items that must be considered in the
M core application when the kernel is suspended.

Regarding low power, there are three things to consider:

App optimization
for low power

Clock source Enable low-power- Wakeup A53 core
audio flag without DDR

Figure 9. The M core application optimization items

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
12/33

https://www.nxp.com.cn/docs/en/application-note/AN12225.pdf

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

5.2.1 Clock source

Since it is a low-power application, there are several rules for the M core application
clock selection.

1. Consider using a 24 MHz crystal as a clock source.
* If the system load is not high, use a 24 MHz crystal as the M core clock.
* Use a 24 MHz crystal as the UART clock source.

2. Use PLLs as little as possible. You can disable PLLs in this way:
In default SDK release’s demos, several PLLs are used, for example, SYSPLL1 for
the M core, SYSPLL2 for UART, audio PLLs are enabled. In a low-power application,
to use fewer PLLs, use SYSPLL1 for the M core, UART, and disable other PLLs. In
the low-power demo of this paper, a 24 MHz crystal is used as the clock source for
the M core and UART. In this way, all PLLs can be disabled in the ATF code.

5.2.2 Enable low-power audio flags

Low-power audio flags are defined in the ATF code for the low-power audio demo in the
SDK release.

When ATF detects these flags, all PLLs are not disabled, and the system enters Fast-
Wake-up-Stop mode. Setting these flags does not impact any audio-related (sai port, sai
clock, and so on) settings, but does affect PLLs, low-power mode, and so on.

In this way, the M core application can be in Run mode when the kernel enters Suspend
mode.

In the low-power application, these flags are used to keep the M core alive when the A
core is in DSM.

Examples of code and comparison of differences:

1. The M core application changes and the ATF code. On iMX8MP, the LPA flag register
is SRC-GPR10 but on other iMX8M SoCs, it is SRC->GPRO.

Table 4. The M core application changes and the ATF code

The M core application ATF

#define ServiceFlagAddr SRC- |#define M4 LPA ACTIVE 0x5555

>GPRY #define DSP LPA ACTIVE 0OxD

#define ServiceBusy (0xDU) #define DSP_LPA DRAM ACTIVE 0x1D
#define ServiceIdle (0x0U) #define M4 LPA IDLE 0x0

void app task (void *param) bool imx m4 Ipa active(void)

{ {

ServiceFlagAddr = Service uint32 t lpa status;

Busy; lpa status = mmio read 32 (IMX SRC BASE

+
LPA STATUS) ;

return (lpa status == M4 LPA ACTIVE ||
lpa status == DSP LPA ACTIVE || lpa
status

DSP LPA DRAM ACTIVE) ;
b

AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 1 — 22 September 2022

13/33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

2. Low-power-audio flag descriptions. Currently, ATF supports 3 low-power audio flags,
M4 LPA ACTIVE, DSP_LPA ACTIVE, ,and DSP LPA DRAM ACTIVE . The
descriptions in the GA release are listed below:

Table 5. The descriptions in the GA release

RAM status | Low-power mode PLLs status | MU wake-
up status
M4_LPA_ACTIVE DSP_ ON Fast-Wake-up-Stop |ON ON
LPA_DRAM_ACTIVE
DSP_LPA_ACTIVE Retention |Fast-Wake-up-Stop |ON ON

All three flags can keep the M core running, while the A core enters Suspend mode. One
difference is that DSP_LPA ACTIVE puts DRAM into Retention mode. For low-power
purposes, we set the LPA flag to DSP_LPA ACTIVE.

5.2.3 Wake-up
The M core application can wake up the A core when needed.

Table 6. The M core application changes and the ATF code

The M core application code to wake up The ATF code to enable MU wake-up
the A core

MU TriggerInterrupts (MUB, kMU

* *
GenIntOInterruptTrigger) ; /* enable the MU wakeup */

if (imx is m4 enabled())
mmio clrbits 32 (IMX GPC
BASE +
gpc_imr offset[last core] +
0x8, BIT(24));

5.3 GIR mechanism

GIR stands for General Purpose Interrupt Request feature in MU. It is a bit field in the MU
module.

TR (Transmit Register) and RR (Receive Register) registers can also be used for wake-
up and notification. But we choose GIR as a wake-up and notification source for three
reasons:

« Align with the kernel. The kernel uses GIR bits as Doorbell in mailbox driver. Using GIR
has a better expansibility.

» Data requirement. In this demo, there is no data transfer. One-bit signal is enough.

* TR and RR are used in the kernel. TR registers are used to transfer data in the kernel.
Using TR might lead to unnecessary issues.

The main diagram is shown below.

AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 1 — 22 September 2022

14/33

NXP Semiconductors

AN13400

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend

Cortex M

RTOS

Figure 10. Cortex-M wakes up Cortex-A53

Deep Sleep Mode

Cortex AS3

Linux

RUN or STOP Mode

Cortex M

RTOS

RUN Mode

Cortex AS3

Linux

Figure 11. Cortex-A53 notifies that Cortex-M is in Suspend mode

5.3.1 GIR descriptions

In the registers of the MU module, three fields are related to GIR, SR[GIPn], CR[GIEn],

and CR[GIRn].
1. CR[GIRn]

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022

15/33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

Table 7. CR[GIRn]

CR[GIRnN] Description
19-16 Forn ={0, 1, 2, 3} Processor B General Purpose Interrupt Request n.
GIRn (Read-Write)

» Writing "1" to the GIRn bit sets the GIPn bit in the ASR register on the
Processor A-side. If the GIEn bit in the ACR register is set to "1" on the
Processor a-side, a General Purpose Interrupt n request is triggered.

* The GIRn bit is cleared if the GIPn bit (in the ASR register on the
Processor A-side) is cleared by writing it (GIPn bit) as "1", thereby
signaling the Processor B that the interrupt was accepted (cleared by
the software). The GIPn bit cannot be written as "0" on the Processor B-
side.

» To ensure proper operations, you must verify that the GIRn bit is cleared
(meaning that there is no pending interrupt) before setting it (GIRn bit).

* GIRn bit is cleared when the MU resets.

0 Processor B General Interrupt n is not requested to the Processor A
(default).
1 Processor B General Interrupt n is requested to the Processor A.

With these GIR bits, you can send a one-bit signal to MU from the other side. When a
GIR bit is set, a GIP bit is set accordingly.

2. CR[GIEN]
Table 8. CR[GIEn]
CR[GIEn] Description
31-28 Forn={0, 1, 2, 3} Processor B General Purpose Interrupt Enable n.
GIEn (Read-Write)

¢ GIEn bit enables Processor B General Interrupt n.

* If GIEn bit is set to "1" (enabled), then a General Interrupt n request is
issued when the GIPn bit in the BSR register is set to "1".

* If GIEn is cleared (disabled), then the value of the GIPn bit is ignored and
no General Interrupt n request is issued

* GIEn bit is cleared when the MU resets.
0 Disables Processor B General Interrupt n. (default)
1 Enables Processor B General Interrupt n.

It is related to an interrupt on the other side. Also, you must set it for wake-up
purposes. To wake up, besides enabling GIE, enable MU in the GPC module.
Normally, the MU wake-up is enabled in ATF when LPA is detected. The code is in
plat/imx/imx8m/<soc>/gpc.c:

void imx set sys wakeup (unsigned int last core, bool pdn)

/* enable the MU wakeup */
if (imx m4 lpa active())

mmio clrbits 32 (gpc_imr offset[last core] + 0x8, BIT(24));
}

But if an LPA flag is not set in the M core application, enable MU wake-up in the GPC
module in the M core application code.
3. SR[GIPn]

AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 1 — 22 September 2022

16/33

NXP Semiconductors

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend

Table 9. 3. SR[GIPn]

SR[GIPn]

Description

31-28
GIPn

(Read-Write)

Forn ={0, 1, 2, 3} Processor B General Interrupt Request n Pending

* GIPn bit signals the Processor B that the GIRn bit in the ACR register on
the Processor A-side was set from "0" to "1". If the GIEn bit in the BCR
register is set to "1", a General Interrupt n request is issued.

* The GIPn bit is cleared by writing it back as "1". Writing ""0" or writing ""1"
when the GIPn bit is cleared is ignored. Use this feature in the interrupt
routine, where the GIPn bit is cleared to de-assert the interrupt request
source at the interrupt controller.

* GIPn bit is cleared when the MU is reset.
0 Processor B general-purpose interrupt n is not pending. (default)
1 Processor B general-purpose interrupt n is pending.

SR[GIPn] is set when the remote writes CR[GIRnN]. This bit must be read in time to
de-assert interrupt.

5.3.2 GIR changes

There are two approaches to using GIR as a notification and wake-up source between

cores.

Table 10. Approaches to using GIR as a notification and wake-up source between cores

Write and clear GIR bit in ATF
(Recommended)

Use mailbox driver in the kernel (Optional)

Code location

ATF

Linux Kernel

Advantages |

Direct. Access the GIR
register directly

Easier. Do not need to follow
kernel API rules.

Independent of versions.
Can be added to every ATF
version.

Flexible. Use DTS to control the GIR bit
index is easy.

Can be integrated with the module driver
suspend function. For example, enet
suspend function.

Faster. As it can be integrated into the
module driver, the M core application can
receive a suspend signal when the kernel is
executing module suspend functions.

Disadvantages *

Not flexible. If the GIR bit
index is changed, must modify
ATF.

Must implement the GIR
functions.

Slower. The M core
application receives a
suspend signal before WFI.

Must study mailbox subsystem and follow the
mailbox APIs.

Depends on the kernel version. The i.MX
kernel supports mailbox driver since the 5.x
kernel. For the 4.x kernel, an additional patch
for GIR is needed.

AN13400

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022

171/33

NXP Semiconductors AN1 3400

AN13400

5.4

i.MX 8M Low Power Design By M Core Running In System Suspend

Table 10. Approaches to using GIR as a notification and wake-up source between cores
...continued

Write and clear GIR bit in ATF |Use mailbox driver in the kernel (Optional)

(Recommended)
Code See Use GIR for wake-up DTS change (take FEC as example):
changes and notification for detailed

changes. +/* request mailbox: rxdb,

channel 0,
txdb, channel 0, rxdb for
receive
interrupts, txdb for send
notifications */

+&fec {

+ fsl,switch-mcore-ctrl;

+ mbox—-names = "rxdb",
"thb n,.

+ mboxes = <&mu 3 0

+ &mu 2
0>,

+ status = "okay'";

+};

Driver changes, see patch 0001-Switch-
enet-control-between-A-core-and-M-
core-for-cu.patch inthe attachment.

This example uses the GIR record bit in the ATF code.

U-Boot optimization

The voltage of VDD_SOC and VDD_ARM is configured in U-Boot.

From the data sheet, VDD_SOC can be nominal or overdrive voltage, VDD_ARM can be
nominal, overdrive, or super-overdrive.

In the release, VDD_ARM is adjusted by DVFS in the kernel. So, you can only change
the voltage of VDD_SOC.

In board/freescale/<board> /spl.c , both Run, and DSM voltage of VDD _SOC
are configured.

The Fast-Wake-up-Stop mode (not DSM) is used in this case. In this mode, the Run
voltage is applied.

Thus, to reduce the power, you must adjust the Run voltage of VDD_SOC from 0.95 V
(Overdrive Voltage) to 0.85 V (Nominal Voltage) in U-Boot.

Note: The Nominal and Overdrive voltage may vary for i.MX 8M family SoCs. Refer to
data sheet for details.

Example for i.MX 8MP which uses PCA9450:

diff --git a/board/freescale/imx8mp evk/spl.c b/board/

freescale/imx8mp evk/spl.c

index b26f5321bb..2c0081081d 100644

--- a/board/freescale/imx8mp evk/spl.c

+++ b/board/freescale/imx8mp evk/spl.c

@@ -193,7 +193,7 @Q@ int power init board(void)
* Enable DVS control through PMIC STBY REQ and
* set Bl ENMODE=1 (ON by PMIC ON_ REQ=H)

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
18/33

NXP Semiconductors AN1 3400

AN13400

5.5

5.5.1

i.MX 8M Low Power Design By M Core Running In System Suspend

*/
= pmic reg write(p, PCA9450 BUCKIOUT DVSO, 0xI1C);
pmic reg write(p, PCA9450 BUCKIOUT DVSO, 0x14);
pmic reg write(p, PCA9450 BUCK1OUT DVS1l, 0x14);
pmic reg write(p, PCA9450 BUCKICTRL, 0x59);

As for bd71837, the voltage levels are the same.

In power measurement, it can save about 20 mW power of VDD_SOC on i.MX 8MP.

ATF optimization

On i.MX 8M, ATF puts the system into low-power mode. So, ATF is the most important
part of the optimization.

Perform PLL-related optimization at this step.

Overview

The digital logic inside the chip is supplied with two supplies: VDD_ARM and VDD_SOC.

» VDD_ARM is for the Cortex®-A53 platform.
¢ VDD_SOC is for the rest of the modules in SoC.

In board design, VDD_SOC provides power for all peripheral modules.

VDD AP PLL_ (P8 g
VOD_DRAM PLL_OPE
WDD_ADMI oPa
VDD SAl PLL oPE
wOD_Rm_oPs
VDO_MIP_0P8
WOO_PCI_ 0Py |-
VDO_USH_oPa

T | -4~ \VDD_SOC
= __]_csu

Figure 12. VDD_SOC

As the aim is to reduce modules’ power consumption, the power optimizations are mainly
for VDD_SOC.

All optimization points are listed below. The GIR change below is for the applications.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
19/33

NXP Semiconductors AN1 3400

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend

Disable
DRAM PLL

GIR wakeup
and
notification

Disable ARM
PLL

ATF
optimizations

Disable SYSPLLx

Disable Audio
PLLs

1. Bypass module
root clocks on sysplix.
2. Disable modules’

root clocks on sysplix.

Figure 13. ATF optimization items

5.5.2 Use GIR for wake-up and notification

The drawback of RPMsg in low power is that the RPMsg needs DDR to be active to store
the virtual queue structure. To keep it functioning at a low frequency to save power, the
solution described in this document directly uses a GIR signal in MU triggered from the M
core side, which bypasses the DDR.

In this case, GIR bits in MU can be used for below purposes:

1. Wake-up. When the A core enters the Fast-Wake-up-Stop mode, the M core can
write a GIR bit to wake up the A core.

2. Notifications. The A core or the M core can write a GIR bit to send a notification to a
remote core. The notification definition is defined by the user.

The code to wake up the A core and notify the M core in Suspend mode are added in
ATF.

Example:

+static void imx notify m4 set db(void)

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
20/33

NXP Semiconductors AN1 3400

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend

+{
+ /* Use GIR[0] and enable interrupt */

+ mmio setbits 32 (IMX MU BASE + 0x24, BIT(19) | BIT(31));
+}

+

+static void imx notify m4 clear db(void)

+

+ /* Clear GIP[0] */

+ mmio setbits 32 (IMX MU BASE + 0x20, BIT(31));

+1

+

+ NOTICE ("notify m4 by setting db! \n");

+ imx notify m4 set db();

+ NOTICE ("clear db! \n");

+ imx notify m4 clear db();

5.5.3 Disable DRAM PLL

DDR consumes most power on VDD_SOC. The ATF code puts DDR into Retention
before entering Suspend mode. But in the current implementation, DRAM PLL is kept on.

In testing on i.MX 8MP, disabling DRAM PLL can save about 400-600 mW power on
VDD_SOC.

Check if DRAM PLL is disabled when DDR enters Retain mode in the ATF code.

Note: In a standard release, as the system enters DSM, hardware helps to shut down
PLLs (including DRAM PLL) and other clocks. But when the system enters Fast-Wake-
up-Stop, it must be done by software.

The patch below shows how to disable DRAM PLL:

diff --git a/plat/imx/imx8m/ddr/dram retention.c b/plat/imx/
imx8m/ddr/dram retention.c
index 685526f4b..260cacc7a 100644
--- a/plat/imx/imx8m/ddr/dram retention.c
+++ b/plat/imx/imx8m/ddr/dram retention.c
@@ -108,6 +108,10 @@ void dram enter retention(void)
mmio setbits 32 (IMX GPC BASE + DDRMIX PGC, 1);
mmio setbits 32 (IMX GPC_BASE + PU_PGC_DN_TRG,
DDRMIX PWR REQ) ;

+ ~/* disable the DRAM PLL */

+ /* disabling DRAM PLL will save about 437mW, 667 => 230
w4

4 mmio clrbits 32 (IMX ANAMIX BASE + 0x50, BIT(9));

+

VERBOSE ("dram enter retention\n");
}
@@ -134,6 +138,9 @@ void dram exit retention(void)
mmio setbits 32 (IMX GPC BASE + PU PGC UP TRG,
DDRMIX PWR REQ) ;
mmio write 32 (SRC DDR1 RCR, 0x8F000006) ;

+ /* enable the DRAM PLL */
+ mmio setbits 32 (IMX ANAMIX BASE + 0x50, BIT(9));
+

/* wait dram pll locked */
while (! (mmio read 32 (DRAM PLL CTRL) & BIT(31)))

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
21/33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

5.5.4 Disable Arm PLL

You can disable Arm PLL in ATF to save power.

AHB_ROOT and the M core must use the same clock root, for example, a 24 MHz crystal
or syspll1; otherwise, the system cannot wake up.

Code example:
Disable Arm PLL in ATF.

NOTICE ("bypass ARM \n")

; /* set the ab3 clk root 30388000 as 0x10000000, clk from 24M
*
/

mmio write 32 (IMX CCM BASE + 0x8000, 0x10000000) ;

/* set the ab53 clk change to a53 clk root from ARM PLL */

mmio write 32 (IMX CCM BASE + 0x9880, 0x00000000) ;

NOTICE ("disable arm pll\n");

/* disable the ARM PLL, bypass first, then disable */

mmio setbits 32 (IMX ANAMIX BASE + 0x84, BIT (4));

mmio clrbits 32 (IMX ANAMIX BASE + Ox84, BIT(9));Disable SYSPLL1

Resume Arm PLL back in ATF.

NOTICE ("restore armpll\n");

/* enable the ARM PLL, enable first, then unbypass */

mmio setbits 32 (IMX ANAMIX BASE + 0x84, BIT(9));

while (! (mmio read 32 (IMX ANAMIX BASE + 0x84) & BIT(31)))

mmio clrbits 32 (IMX ANAMIX BASE + 0x84, BIT(4));

/* set the ab53 clk root 30388000 as 0x10000000, clk from
sysplll 800M */

mmio write 32 (IMX CCM BASE + 0x8000, 0x14000000);

/* set the a53 clk change to ARM PLL from a53 clk root */

mmio write 32 (IMX CCM BASE + 0x9880, 0x01000000) ;

NOTICE ("ARM changed to ARM PLL \n");

5.5.5 Disable System PLLs
On i.MX 8M, there are three system PLLs, SYSPLL1, SYSPLL2, and SYSPLL3.

To disable system PLLs to save power, see the instructions below:

AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 1 — 22 September 2022

22/33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

L Steps to disable a SYSPLL]

' ™
Bypass common BUS and peripherals’ root
clocks to 24MHz crystal

L vy

s ~

Disable peripherals’ root clocks

-~ ™
Disable a SYSPLL
\ vy

Figure 14. Steps to disable a SYSPLL

Before disabling SYSPLL, no modules’ root clock must be using this SYSPLL,; otherwise,
the attempt to disable the SYSPLL leads to a system crash.

Common bus clocks in this case stand for main AXI, AHB, NOC.

5.5.5.1 Check modules’ root clocks in the kernel

On i.MX 8M, modules’ root clock can be configured in CCM_TARGET_ROOTn. You can
learn modules’ clock tree diagram from the kernel command.

cat /sys/kernel/debug/clk/clk summary
On i.MX 8M, SYSPLLA1 is the most widely used as modules’ root clock. So pay attention
to disabling SYSPLLA1.

5.5.5.2 Bypass modules’ root clocks on the SYSPLL to 24 MHz crystal

Those modules that must be bypassed are those clocks that must remain ON in low-
power mode, and peripherals’ clocks that are needed for the system, for example, GIC,
and the M core application, for example, UART.

AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 1 — 22 September 2022

23/33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

[Composition of Bypassed Clocks J

[Common BUS clocks A

E.g., Main AXI, AHB, NOC

Peripherals’ clocks that system needed
E.g., GIC.

Peripherals’ clocks that M core needed
E.g., UART, ENET, efc.

Figure 15. Composition of bypassed clocks

AHB_ROOT and the M core must use the same clock root, for example, a 24 MHz crystal
or a syspll. Otherwise, the system may not be able to wake up.

DRoll back the change if the bypass of one clock root causes issues.

For example, on i.MX 8MP enet demo, bypassed root clocks are composed of common
bus clocks (main AXI, AHB, NOC, and so on), GIC (system needed peripherals), ENET,
and UART peripheral clocks (the M core application is needed).

Code example (for the enet low-power demo and system pll1 and pll2):

static save root regs sysplll clk root bus to 24m registers[] =
{
{16, 0}, /*MAIN AXI*/
{17, 0}, /*ENET AXI*/
{26, 0}, /*NOC*/
{27, 0}, /*NOC_IO*/ /*can't be touched! */
{32, 0}, /*AHB ROOT */ /* when disabling ARM PLL (bypass ARM
PLL to 24MHz), this need to be bypassed to 24MHz crystal also.
*/
{83, 0}, /*ENETREF*/
{85, 0}, /*ENETPHY*/
{94, 0}, /*UART1*/
}i
static save root regs syspll2 clk root bus to 24m registers[] =
{
{100,0}, /*GIC*/
}i

5.5.5.3 Disable modules’ root clocks on the SYSPLL

Generally, unused modules’ root clocks must be disabled to save power.

However, some peripherals’ clocks might be hard to disable.

AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 1 — 22 September 2022

2433

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

In that case, pay attention to the parent clocks of the peripheral clock. Check if the clock
can be disabled with its parent clocks enabled or disabled.

Code example (for system plli1):

static root clk regs save sysplll clk root disable registers[]
= {

{2, 0}, /*ML */

{3, 0}, /*GPU3d*/

{4, 0}, /*GPU SHADER*/

{5, 0}, /*GPU 2D*/

{6, 0}, /* AUDIO AXI */

(7, Qb /-ESIHQ =/

{121, 0}, /*USDHC3*/
{122, 0}, /*MEDIA CAMI1*/
{125, 0}, /*MEDIA CAM2*/
{130, 0}, /*MEDIA MIPI TEST*/
{131, 0}, /*ESPI3*/
{134, 0}, /* SAIT*/
}i
static root clk regs save syspll2 clk root disable registers(]
= {
}i

5.5.5.4 Disable the SYSPLL

If all root clocks that use the SYSPLL are bypassed or disabled, you can disable this
SYSPLL.

Code example:
Disable SYSPLL2 in ATF.

+ syspll2 save = mmio read 32 (IMX ANAMIX BASE +
0x104) ;

+ NOTICE ("disable syspll2\n");

+ /* disable the SYSTEM PLL2, bypass first, then
disable */

i mmio setbits 32 (IMX ANAMIX BASE + 0x104, BIT(4));

+ mmio clrbits 32 (IMX ANAMIX BASE + 0x104, BIT(9));

Restore SYSPLL2.

+ NOTICE ("restore syspll2\n");

1 if (syspll2 save & BIT(9)) {

+ /* enable the SYSTEM PLL2, enable first,

then unbypass */

4F mmioisetbitsi32(IMXiANAMlxiBASE + 0x104,

BIT(9));

+ while (!(mmio_read_32(IMX_ANAMIX_BASE +

0x104) & (BIT(31))))

+ ;

+ mmio_clrbits_32(IMX_ANAMIX_BASE + 0x104,

BIT(4));

+ NOTICE ("enabled SYSPLL2 \n");

+ }
AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.
Application note Rev. 1 — 22 September 2022

25/33

NXP Semiconductors AN1 3400

5.5.5.5

5.5.6

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend

Debugging
In case you failed to disable a system PLL, use these debugging tips.

1. Roll back the change and enable all bypassed clocks and disabled clocks. Check if
the system can restore working.

2. Check if the clocks of some peripheral devices that use this SYSPLL are missed.

3. Add bypassed disabled clocks half by half and check if a clock operation causes the
issue.

Disable unused CCGRs

The default value of the register in CCM_CCGR is 0x2. It means that for Domain 0 (A53
Domain), domain clocks are needed when in Run and Wait mode.

Keeping clocks ON in Wait mode consumes power. Change the value to 1, which means
that domain clocks are only needed in Run mode.

It saves about 10 mW of power.
In this optimization, define CCGRs that must be reserved in low-power mode.

The CCGRs that must be reserved are the ones needed by the system and the
application.

Composition of CCGR Reserved Clocks

s ™

System needed CCGRs, e.g., MU, SNVS,
PLL, etc.
" Y,

v ™\

Peripherals’ clocks that M core needed,
e.g., UART, ENET, etc.
- J

Figure 16. Composition of CCGR reserved clocks

Code example:

static ccgr regs save ccgr disabled registers[103];
static uint8 t ccgr reserved registers[] = {

10, /* ENET1 */

22, [* HES¥/

33, /* MU */

36, /* OCRAM S */

64, /* SIM ENET */

71, /* SNVS */

97, /* PLL */

NOTICE ("Disable CCGR \n");
for (uint32 t index = 0; index <
ARRAY SIZE (ccgr reserved registers); index++) {

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
26/33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

ccgr disabled registers[ccgr reserved registers[index]].reserved

= 1;
}
for (uint32 t index = 0; index <
ARRAY SIZE (ccgr disabled registers); index++) {
if (ccgr disabled registers[index].reserved != 1) {

ccgr disabled registers[index].value = mmio
read 32 (IMX CCM BASE + 0x4000 +
16 * index) & OXFF;
if ((ccgr disabled registers[index].value !=
1) &&
(ccgr disabled registers[index].value != 0)) {
NOTICE ("CCGR %d not 0 and 1\n", index);
}
mmio write 32 (IMX CCM BASE + 0x4000 + 16 *
index, 1);

5.5.7 Disable Audio PLL

If Audio PLLs are not used, you can disable them in ATF to save power.

In testing, disabling aplls might not have a benefit on VDD_SOC, but can reduce power
on PLL_ANA_0VS.

Make sure that no module in root clocks uses APLLs, otherwise the attempt to disable
leads to a crash.

Code example:
Disable APLLs in ATF.

+static uint8 t aplllenabled, apll2enabled;

+ /* Disabling aplll and apll2 seems increase 15mW,
230 => 245 */

+ aplllenabled = !! (mmio read 32 (IMX ANAMIX BASE) &
BIT(31));

+ apll2enabled = !! (mmio read 32 (IMX ANAMIX BASE +

0x14) & BIT(31));

+ if (aplllenabled) {
AF mmio setbits 32 (IMX ANAMIX BASE, BIT(4));
+ mmio clrbits 32 (IMX ANAMIX BASE, BIT(9));
+ }
+ if (apll2enabled) {
+ mmio setbits 32 (IMX ANAMIX BASE + 0xl14,
BIT (4));
+ mmio clrbits 32 (IMX ANAMIX BASE + 0x14,
BIT(9));
+ }
Restore APLLs.
+ NOTICE ("restore audiopll\n");
1 if (aplllenabled) {
+ mmio setbits 32 (IMX ANAMIX BASE, BIT(9));
+ while (! (mmio read 32 (IMX ANAMIX BASE) &
(uint32 t)BIT(31)))
AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.
Application note Rev. 1 — 22 September 2022

27133

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

+ ;

4F mmio_clrbits_32(IMX_ANAMIX_BASE, BIT (4));

+ }

+ if (apll2enabled) {

+ mmio setbits 32 (IMX ANAMIX BASE + 0x14,
BIT(9));

+ while (! (mmio read 32 (IMX ANAMIX BASE +
0x14) & (uint32 t)BIT(31)))

+ ;

+ mmio clrbits 32 (IMX ANAMIX BASE + 0x14,
BIT (4));

+ }

6 Debugging methods

Low-power applications need much effort in debugging, you can find several approaches
here.

6.1 Enabling log prints in the kernel and ATF
Enable log prints in the kernel and ATF.

Table 11. Enabling log prints in the kernel and ATF

Item Description

Kernel echo N > /sys/module/printk/parameters/console_suspend

ATF 1. Find function bl31_early platform_setup2 in <soc_name>_bl31_setup.c, for
example, imx8mn_bl31_setup.c.

2. Change console set scope (&console.console,CONSOLE FLAG BOOT) ;
to console set scope(&console.console,CONSOLE FLAG RUNTIME) ;

6.2 The system cannot wake up

1. Enable log to find out whether the system really cannot wake up or it crashes when
entering Suspend mode.

2. Restore to a state that can wake up and add code changes one by one to see the
root cause.

3. Check if SLPCR_A53 FASTWUP STOP MODE bitis setin SLPCR of GPC module.
Generally, it should be done in function imx set sys lpm() of plat/imx/
imx8m/gpc_common.c in ATF code:

vold imx set sys lpm(unsigned int last core, bool retention)
{
if (retention)
mmio clrsetbits 32 (IMX GPC BASE + SLPCR, SLPCR
A53 FASTWUP STOP MODE,
SLPCR EN DSM | SLPCR VSTBY | SLPCR SBYOS | SLPCR BYPASS PMIC
READY) ;
else
mmio clrsetbits 32 (IMX GPC BASE + SLPCR,
SLPCR EN DSM | SLPCR VSTBY |
SLPCR SBYOS | SLPCR BYPASS PMIC READY, SLPCR A53 FASTWUP STOP

MODE) ;
/* mask M4 DSM trigger if M4 is NOT enabled */
if (!imx is m4 enabled())
AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.
Application note Rev. 1 — 22 September 2022

28 /33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

mmio setbits 32 (IMX GPC BASE + LPCR M4, BIT(31));

4. Check if AHB ROOT and the M core are not using the same clock root, for example,
a 24 MHz crystal or syspli1.

7 Power measurement results

This section gives a brief overview of the power measurement results.

7.1 Power measurement tool
This paper uses a power board to do the measurements. Two tools are shown below.

Table 12. Tools to do the measurements

Name GITHUB URL Usage
BCU | https://github.com/NXPm |Command:
icro/bcu >> ./bcu monitor -board=<board name>

Example on imx8mp:
>> . /bcu monitor -board=imx8mpevkpwral
For detail usage, check BCU.pdf in the BCU release package.

PMT | https://github.com/NXPm | Command:
icro/pmt >> python main.py eeprom -m write -f docs/EEP
ROM Programmer Tool.yaml

>> python main.py monitor -m gui
For details, see AN13119
on nxp.com.

7.2 Power test results

The data presented in this application note is based on empirical measurements taken on
a small sample, so the presented results are not guaranteed.

7.2.1 Power results for the A core in Stop mode

Tested with low-power demo on i.MX 8MP power board with the M core in three modes,
Run, Stop, and Wait.

7.2.1.1 Put the A core into Suspend mode and the M core into Run

In this test, the A core is suspended and the M core is running at 24 MHz. No
optimization code in this case.

The power of VDD_SOC is 29.5 mW.

|Current(mA

Figure 17. The A core is in Suspend mode and the M core is in Run

AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 1 — 22 September 2022

29/33

https://www.nxp.com/webapp/Download?colCode=AN13119&location=null

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

7.2.1.2 Put the A core into Suspend mode and the M core into Stop

7.21.3

7.2.2

In this test, the A core is suspended and the M core is put into Stop mode. The system is
in DSM when the M core enters Stop mode. No optimization code in this case.

The power of VDD_SOC is 10.7 mW.

|Current(ma)/(uA)
max min | now avg min

Figure 18. The A core is in Suspend mode and the M core is in Stop

Put the A core into Suspend mode and the M core into Wait

In this test, the A core is suspended and the M core is put into Wait mode. The system is
not in DSM as the M core enters Wait mode. No modification code in this case.

The power of VDD_SOC is 16.9 mW.

Figure 19. The A core is in Suspend mode and the M core is in Wait

Power optimization results with the A core in Fast-Wake-up-Stop mode

On i.MX 8MP power board, the result for enet demo case is below (A53 suspend while
M7 is monitoring for syncing Ethernet packets).

Before optimization, the power of VDD_SOC is 897 mW:

Current(m

Figure 20. Results before optimization

After optimization, the power of VDD_SOC is 43.5 mW:

|Current(ma)/
| now El min

Figure 21. Results after optimization

Our optimization can largely improve the power on i.MX 8MP.

8 Example software

AN13400

Software examples are low-power demo for standard release and Ethernet demo to
demonstrate the optimization changes for ATF.

The demo code is based on the L5.4.47_2.2.0 kernel release.

Check the patch for details.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022
30/33

NXP Semiconductors AN1 3400

i.MX 8M Low Power Design By M Core Running In System Suspend

9 References

i.MX 8M Mini Heterogenous Low Power Voice Control Solution (document: AN13201)
i.MX 8M Mini Power Consumption Measurement (document: AN12410)

¢ i.MX Power Measurement Tool (document: AN13119)

¢ How fo Reduce SoC Power when Running M4 with A53on i.MX 8M (document:

AN12225)
10
Table 13. Revision history
Revision number Date Substantive changes
0 04 October 2021 Initial release
Sections 5.5.7 and

1 22 September 2022 8 are modified
AN13400 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.
Application note Rev. 1 — 22 September 2022

31/33

https://www.nxp.com/docs/en/application-note/AN13201.pdf
https://www.nxp.com.cn/docs/en/application-note/AN12410.pdf
https://www.nxp.com/webapp/Download?colCode=AN13119&location=null
https://www.nxp.com.cn/docs/en/application-note/AN12225.pdf

NXP Semiconductors

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend

11 Legal information

11.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

11.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

AN13400

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

11.3 Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamiQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,
ULINKpro, pVision, Versatile — are trademarks or registered trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs
and trade secrets. All rights reserved.

© 2022 NXP B.V. All rights reserved.

Application note

Rev. 1 — 22 September 2022

32/33

mailto:PSIRT@nxp.com

NXP Semiconductors

AN13400

i.MX 8M Low Power Design By M Core Running In System Suspend

Contents
1 Introduction ... 2 5.5.5.5 Debuggingccoecueiieiiiiiiiiae e 26
2 Definitions, acronyms, and abbreviations 2 55.6 Disable unused CCGRScceevvvevvvvvrrinnnnnnn. 26
3 Overview of i.MX 8M Low Powercccccernu.... 3 55.7 Disable Audio PLLccccooiiiiiiiiiiiereeee 27
3.1 Voltage suppliescoocceiiiiiiiiieeee e, 3 6 Debugging methodsccooooeiiiiiiieies 28
3.2 Low-power modes on i.MX 8Mc.ccceene. 4 6.1 Enabling log prints in the kernel and ATF 28
3.21 SoC low-power modes introduction 4 6.2 The system cannot wake upcccocceeeene 28
3.22 Suspend and DSM (Deep Sleep mode) 5 7 Power measurement resultsccccccceereenenns 29
4 Application design ..o 5 71 Power measurement toolcccveveeeeeeenenn. 29
41 Why use the M core for low-power cases 5 7.2 Power test results ..o 29
4.2 Application scenariocccccccciiiiiiiieiieeeeeee, 5 7.21 Power results for the A core in Stop mode 29
4.3 Make the M core alive when the A core is in 7211 Put the A core into Suspend mode and the
Suspend MOdeooooiiiiiiee e 5 M core into Runcooooiiiiiee e 29
4.31 Method 1: Change clock source of UART 7.2.1.2 Put the A core into Suspend mode and the
used by the M core to 24 MHz OSC 6 M core into StOP ...cooeiiiiiiiiii e 30
43.2 Method 2: Define LPA flags in the M core 7.2.1.3 Put the A core into Suspend mode and the
applicationcccceeeeeeiiiii e 6 M core into Waitcceevveieiiiiiiis 30
4.3.3 Define the scenario to know how to use the 722 Power optimization results with the A core
M COIE oo 6 in Fast-Wake-up-Stop modecccvvvveeeenen. 30
4.4 Diagram of use case scenarioscccccceeeuuee 7 8 Example softwareccccoooooiiiiiccieceeeeee 30
441 The A core in Run modecccceieiiiieneennee. 7 9 References ... 31
442 The A core in Suspend modeccccuueees 8 10 e 31
4.5 Peripheral control in Cortex-Mccccoeeeee. 8 1" Legal informationcccoooiiiiiiiieeees 32
451 Peripherals are owned exclusively by one
(oo] (PR RRR 9
452 Some peripherals are sharedcccccuveee 9
4521 The use of RPMSQGcccooiiiiiiiiiiiiiiieee 10
4522 The use of practical drivers and time-
division access on both corescccceee. 10
45.2.3 Comparison of RPMsg and time-division
AMIVEIS o 11
45.2.4 Debugging tips for time-division drivers 11
5 Power optimization
51 Kernel optimization
5.2 The M core application optimization 12
5.2.1 CloCk SOUICE ...ocoiiiiiiieeiiie e 13
5.2.2 Enable low-power audio flagsc.ccccoceenn. 13
5.2.3 WaKE-UP ..coooeieieeeeee e 14
53 GIR mechanismooccoiiiiiiiiie e 14
5.3.1 GIR descriptionscccccoiiiiiiieiiieeee e, 15
5.3.2 GIR changescccooiiiii e 17
54 U-Boot optimizationcccccvvveveeiieieennnnn, 18
55 ATF optimizationcccooiiiiiiie, 19
5.5.1 OVEIVIEW ...eeiiiiiiiee e 19
55.2 Use GIR for wake-up and notification 20
5.5.3 Disable DRAM PLLcccoceiiiiiieiieeieeeieeee 21
554 Disable Arm PLLcccoviiiiiiiieece e 22
5.5.5 Disable System PLLSccccoiiiiiiiiiiieee 22
5.5.5.1 Check modules’ root clocks in the kernel 23
5.5.5.2 Bypass modules’ root clocks on the
SYSPLL to 24 MHz crystalccccoeciieeinnne. 23
5.5.5.3 Disable modules’ root clocks on the
S] I 24
5554 Disable the SYSPLLcccceceoiiiviiiiiieeeee e, 25

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V.

All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 22 September 2022
Document identifier: AN13400

	1 Introduction
	2 Definitions, acronyms, and abbreviations
	3 Overview of i.MX 8M Low Power
	3.1 Voltage supplies
	3.2 Low-power modes on i.MX 8M
	3.2.1 SoC low-power modes introduction
	3.2.2 Suspend and DSM (Deep Sleep mode)

	4 Application design
	4.1 Why use the M core for low-power cases
	4.2 Application scenario
	4.3 Make the M core alive when the A core is in Suspend mode
	4.3.1 Method 1: Change clock source of UART used by the M core to 24 MHz OSC
	4.3.2 Method 2: Define LPA flags in the M core application
	4.3.3 Define the scenario to know how to use the M core

	4.4 Diagram of use case scenarios
	4.4.1 The A core in Run mode
	4.4.2 The A core in Suspend mode

	4.5 Peripheral control in Cortex-M
	4.5.1 Peripherals are owned exclusively by one core
	4.5.2 Some peripherals are shared
	4.5.2.1 The use of RPMsg
	4.5.2.2 The use of practical drivers and time-division access on both cores
	4.5.2.3 Comparison of RPMsg and time-division drivers
	4.5.2.4 Debugging tips for time-division drivers

	5 Power optimization
	5.1 Kernel optimization
	5.2 The M core application optimization
	5.2.1 Clock source
	5.2.2 Enable low-power audio flags
	5.2.3 Wake-up

	5.3 GIR mechanism
	5.3.1 GIR descriptions
	5.3.2 GIR changes

	5.4 U-Boot optimization
	5.5 ATF optimization
	5.5.1 Overview
	5.5.2 Use GIR for wake-up and notification
	5.5.3 Disable DRAM PLL
	5.5.4 Disable Arm PLL
	5.5.5 Disable System PLLs
	5.5.5.1 Check modules’ root clocks in the kernel
	5.5.5.2 Bypass modules’ root clocks on the SYSPLL to 24 MHz crystal
	5.5.5.3 Disable modules’ root clocks on the SYSPLL
	5.5.5.4 Disable the SYSPLL
	5.5.5.5 Debugging

	5.5.6 Disable unused CCGRs
	5.5.7 Disable Audio PLL

	6 Debugging methods
	6.1 Enabling log prints in the kernel and ATF
	6.2 The system cannot wake up

	7 Power measurement results
	7.1 Power measurement tool
	7.2 Power test results
	7.2.1 Power results for the A core in Stop mode
	7.2.1.1 Put the A core into Suspend mode and the M core into Run
	7.2.1.2 Put the A core into Suspend mode and the M core into Stop
	7.2.1.3 Put the A core into Suspend mode and the M core into Wait

	7.2.2 Power optimization results with the A core in Fast-Wake-up-Stop mode

	8 Example software
	9 References
	10 Revision history
	11 Legal information
	Contents

