
1 Introduction

1.1 Purpose
The Error Correcting Code (ECC) is a feature available on several i.MX 8
application processors to further enhance the data integrity of the data stored
in the DRAM. This document provides information on the ECC functionality to
help readers develop applications enabling the available ECC features.

The ECC features are only available on selected devices, such as:

• i.MX 8M Plus

• i.MX 8QuadXPlus / i.MX 8DualXPlus

• i.MX 8XLite (* PRE-PRODUCTION)

Other NXP processor families also have support for ECC, but they are not
described in this document. Most DRAM chips include "internal" on-chip
error-correction circuits and they are not described in this document.

1.2 Audience
This document is targeted for selected devices in the i.MX 8 family and intended for users who understand:

• ECC functionality available on the SoC

• Specific requirements and impacts of enabling the ECC

• How to start developing an application that utilizes ECC

The audience should understand basic memory architecture concepts and DRAM functionality.

1.3 Acronyms and abbreviations
Table 1. Acronyms and abbreviations

Acronym Definition

DRAM Dynamic Random Access Memory

DDRC DDR (DRAM) Controller

DFI DDR PHY Interface

ECC Error Correcting Code

CAM Content Addressable Memory

Table continues on the next page...

Contents

1 Introduction......................................1
1.1 Purpose..1
1.2 Audience......................................1
1.3 Acronyms and abbreviations....... 1
2 Overview... 2
2.1 Data corruption............................ 2
2.2 Error correction............................ 3
3 ECC...3
3.1 ECC schemes..............................3
3.2 Inline ECC....................................4
3.3 Sideband ECC........................... 14
4 ECC application considerations.... 15
4.1 What to protect...........................15
4.2 Error reporting and actions........ 15
4.3 Performance.............................. 16
4.4 Boot time latency....................... 16
4.5 Memory......................................17
5 References....................................19
6 Revision history.............................19

AN13566
ECC on i.MX 8 Series
Rev. 0 — 01 April 2022 Application Note

Table 1. Acronyms and abbreviations (continued)

Acronym Definition

EDAC Error Detection And Correction

FIT Failures In Time

MTBF Mean Time Between Failures

RPA Register Programming Aid

RMW Read Modify Write

DM Data Mask

HD Hamming Distance

ISI Inter-Symbol Interference

SBR ECC Scrubber

SCU System Controller Unit

SCFW System Controller Unit Firmware

SER Soft Error Rate

SECDED Single-Error Correction and Double-Error Detection

V2X Vehicle to everything

2 Overview

2.1 Data corruption
In modern SoC designs using external DRAM, several mechanisms can lead to incorrect data being received by the processor:

• Alpha/cosmic particles/radiation

• Signal integrity/ISI/noise

• Retention or coupling faults

• Row hammering

Cosmic rays and other external events can cause corruption in DRAM cells by changing the charge levels in the capacitors. To
address this problem, the ECC memory stores extra parity bits next to the data bits to correct these errors.

The DRAM memory may provide increased protection against soft errors by relying on error-correcting code. Such error-correcting
memory (ECC) is desirable for systems requiring functional safety compliance (ISO26262), high fault-tolerant applications, and
aviation/space applications due to increased radiation.

Because DRAM memories adopt smaller technology nodes, the probability of the Soft Error Rate (SER) increases. SER is the
rate at which a device or system encounters (or is predicted to encounter) soft errors. It is typically expressed as the number of
Failures In Time (FIT) or the Mean Time Between Failures (MTBF).

Applications requiring higher temperature operation must refresh the DRAM more often to ensure that the charge in the DRAM
cell is maintained to prevent data corruption.

NXP Semiconductors
Overview

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 2 / 20

2.2 Error correction
Most DRAM chips include "internal" on-chip error-correction circuits, which allow systems with non-ECC memory controllers to
still gain most of the benefits of ECC memory. An ECC-capable DDR memory controller can detect and correct errors using an
"external" circuit between the CPU and the memory. The ECC data errors can be stored inside additional memory or inside the
main DRAM memory array.

The i.MX 8 DDR/DRAM Controller (DDRC) supports Error Detection And Correction (EDAC) with a single-bit Single Error
Correction/Double Error Detection Error Correction Code (SEC/DED ECC) for configurations where the DRAM data width is
configured to 16 or 32 bits.

ECC can correct "n" bit errors (with n ≥ 1) and detect cases where more than "n" bits have flipped. For this purpose, ECC adds
redundant ECC bits to every data word that “checks” the other bits. The combination of the data bits and the ECC bits is called a
code word. ECC ensures that if any bit in a valid code word changes, it is no longer a valid code word.

• The Hamming Distance (HD) between any code word is at least 3, meaning that it can detect up to 2-bit errors and correct
a single detectable error. However, distinguishing between a word that has a corruption of one bit and a message that
has a corruption of two bits is not possible. To remedy this, hamming code can be extended by an extra parity bit. This
way it is possible to increase the minimum distance of the hamming code to 4, which allows the decoder to distinguish
between 1-bit errors and 2-bit errors. The decoder can detect and correct a single error and at the same time detect (but
not correct) a double error.

• SEC/DED: The most common error-correcting code (SEC/DED hamming code) allows a 1-bit error to be corrected and
(with an extra parity bit) 2-bit errors to be detected.

3 ECC

3.1 ECC schemes
There are two generally used ECC schemes (Inline ECC and Sideband ECC), which are mutually exclusive on the i.MX
processors (see Figure 1).

Figure 1. ECC architecture

The Inline ECC is an alternative to the Sideband ECC and it is supported on the following devices:

• i.MX 8XLite – LPDDR4, DDR3L – 16-bit

• i.MX 8M Plus – LPDDR4, DDR4 – 32-bit

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 3 / 20

The Sideband ECC is supported on the following device and specific memory configuration:

• i.MX 8QuadXPlus and i.MX 8DualXPlus – DDR3L – 40-bit

The Sideband ECC is not supported on the i.MX 8DualX processor, because it only supports a 16-bit DDR
interface. The 17 x 17 mm 0.8 mm FCPBGA package options do not support the ECC due to the 16-bit
DDR interface.

 NOTE

Table 2. Comparing Inline ECC and Sideband ECC

Sideband ECC Inline ECC

Supported devices i.MX 8QuadXPlus DDR3L

40-bit (32 + 8 ECC)

i.MX 8DualXPlus DDR3L

40-bit (32 +8 ECC)

i.MX 8XLite (16-bit)

LPDDR4, DDR3L

i.MX 8M Plus (32-bit)

LPDDR4, DDR4

ECC data Stored in separate DRAM 1/8th density reserved for ECC data on single DRAM

Extra DRAM required Yes No

Data-to-ECC ratio 8/1 8/1

Hamming code 64/8 SECDED 64/8 SECDED

Performance impact Yes

(lower impact than Inline ECC)

Yes

Data mask Optional Required

In the Inline ECC correction case, extra memory cycles are used to store the ECC data to the existing memory devices. For the
Sideband ECC (used on i.MX 8QuadXPlus/i.MX 8DualXPlus DDR3L), the data is stored using separate pins to additional DRAM
devices. In both cases, the storage ratio is 8 bits of ECC for every 64 bits of data using a SECDED (Single Error Correct Dual Error
Detect) hamming code.

The Sideband ECC support is mutually exclusive with the Inline ECC support. i.MX 8 devices that support the Inline
ECC do not support the Sideband ECC and vice-versa.

 NOTE

3.2 Inline ECC
The Inline ECC does not require an additional data bus for ECC so the actual DRAM data width is equal to
"DRAM_DATA_WIDTH". The ECC parity is stored with the data without using a dedicated sideband memory device.

The "DRAM_DATA_WIDTH" term will be used to refer to the bus width used to store actual data (not ECC) in the
DRAM memory.

 NOTE

When the Inline ECC is enabled, the 3 highest column bits must be programmed to be mapped to the highest address map position
possible. The controller’s flexible address-mapping scheme is constrained so that the highest system address space is reserved
for the ECC parity and waste as a single region. For the normal data in all remaining regions, the system address is linear and
continuous. The valid data is not the full size of the DRAM.

The following are the features of the Inline ECC:

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 4 / 20

• ECC parity (code) is stored together with the data without using a dedicated sideband memory device.

• Supported with LPDDR4, DDR4, and DDR3L protocols.

— The supported memory data widths are 16 and 32.

• 64/8 SECDED hamming code is used:

— The data-to-ECC ratio is 8/1.

• It requires the Data Mask (DM) to be enabled.

• The RMW command is required when a write access cannot fill one hamming code (64 bits).

• It is suited for LPDDR4 due to device characteristics and device topology (sideband is not practical).

3.2.1 Enabling Inline ECC
Like the whole ECC functionality, this feature is optional and must be specifically enabled by the user. If a user wants to use
the Inline ECC feature, they must enable it via the "Register Configuration" tab (Figure 2) of the respective i.MX 8 Register
Programming Aid (RPA) tool available from the NXP community pages.

Figure 2. Enabling Inline ECC

When the ECC functionality feature is enabled, it cannot be dynamically disabled by the user. If any of the ECC configuration
settings must be modified, a new register programming aid script must be regenerated.

3.2.2 Selecting the ECC regions
When the ECC featured is enabled, further ECC configuration is performed in the "ECC_Config" tab of the respective i.MX 8
Register Programming Aid (RPA) tool.

The ECC can be selected for the critical areas of the memory and deselected for others. The ECC sections are mapped to the
top 1/8 of the system address, while the remaining space can be mapped into 7 selectable regions and an “other region” if the
selected region size does not cover the whole space. See ECC application considerations to select which regions to protect and
for other application-specific optimizations.

For each bank, the lower 7/8 of each row address is data and the upper 1/8 (differentiated by column address) is the ECC space.
The data is stored in the lower 7/8 of the memory and the related ECC (1/8 the size) is stored in the equivalent section of the upper
1/8. There is a small region (1/8 of 1/8 - 1/64) of the memory which is wasted (the address range for the memory is allocated to the
ECC space).

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 5 / 20

Figure 3. ECC regions

Each region can be 1/8, 1/16, 1/32, or 1/64 of the total memory map. The remaining memory area that is not covered by the 7
regions is referred to as the “other” region, with the exception of the 1/8 granularity, because there is no remaining memory area
for this granularity setting. The user has the option to configure the “other” region with or without ECC protection.

Figure 4. Selecting ECC granularity

The 7 regions (the address is based on the number of regions starting from the lowest address) may be configured to have or not to
have the ECC protection. Without ECC protection, the performance overhead is not encountered. No memory space is recovered,
it is simply not used. In the example shown in Figure 5, region 0 is configured to be ECC-protected at the beginning of the DRAM
address range.

Figure 5. Selecting ECC regions

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 6 / 20

The corresponding protected ECC parity sections for this example memory (as used on the i.MX8 DualXLite EVK) are as follows:

Figure 6. Corresponding ECC parity sections

Each ECC parity section memory may be user-accessible, depending on the corresponding region's ECC protection scheme. The
inaccessible ECC parity section 0 is always at the top of the DRAM memory map, as shown in Figure 6. This configuration has
the advantage of only reserving the topmost memory, leaving the rest accessible to other applications in a contiguous manner.

The user software must ensure that no applications access the regions mapped as inaccessible. Attempting to
access an inaccessible section results in a data abort.

 NOTE

3.2.3 Region locks
When the ECC is enabled, the data parity regions (up to 1/8 of the total DRAM density) are inaccessible to user software. The ECC
region is locked by programming the "ECC_REGION_PARITY_LOCK" register bit. This bit defaults to a locked position when the
ECC is enabled. When set, it locks the parity section of the ECC region (hole), which is the highest system-address part of the
memory (ECC parity protected region).

The waste region can also be locked to ensure that waste regions are not user-accessible. The "ECC_REGION_WASTE_LOCK"
register bit locks the remaining waste parts of the ECC region (hole) that are not locked by "ECC_REGION_PARITY_LOCK".

The ECC regions are normally locked and protected by the controller to avoid accesses. However, if it is necessary to inject errors
(to test the mechanism) it may be done by unlocking and then writing the ECC region directly.

The recommended LOCK configurations are as follows:

ECC_REGION_PARITY_LOCK = 1 - to prevent access to the ECC parity region

ECC_REGION_WASTE_LOCK = 0 - to allow access to the ECC waste region

To maximize memory usage when the ECC is enabled, users may access the waste region by unlocking it.
However, users will be responsible for their software applications to not access the reserved (inaccessible) regions.
By default, the RPA enables access to the waste region (this waste region is unlocked by default).

 NOTE

3.2.4 Non-binary density
A non-binary memory is a memory with densities of 6, 12, 24, or 48 Gb. When such densities are used, a special address-mapping
register must be programmed in the DDRC. For ECC, when using a DRAM memory with a density of 6, 12, 24, or 48 Gb, special
considerations are required and a separate "ECC config" tab must be selected by the user.

ADDRMAP6.LPDDR4_6gb_12gb_24gb = 0 - use binary-aligned worksheet

ADDRMAP6.LPDDR4_6gb_12gb_24gb = 1,2,3 - use non-binary-aligned worksheet

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 7 / 20

The RPA asserts a warning if an incorrect worksheet is used, based on the ADDRMAP6.LPDDR4_6gb_12gb_24gb
setting. See Binary/non-binary density for more details and recommendations on this topic.

 NOTE

3.2.5 Operation flow
The ECC generation and checking are handled automatically by the controller, generating separate commands to store and read
the ECC value and data.

For the "read" operations, the ECC is read and stored internally. The address is calculated from the main read data. If the relevant
ECC data is already loaded, no read is required. The read data is scheduled after the read ECC operation so that the read data
can be corrected using the already present ECC data before being returned to the requestor.

For writes, the ECC is calculated when it is written to the memory. After the write occurs, the write ECC data (at the calculated
address) is written. For cases where less than a full write for ECC is required, the ECC is written via a masked write (which must
be enabled) rather than a read/modify/write operation on the ECC data. If partial writes on the data are required (if only part of a
double word is written), then a read/modify/write operation is required on the data to ensure that full double words are written for
the calculated ECC to be correct.

3.2.6 Scrubber
The i.MX DDR Controller (DDRC) provides a comprehensive solution to automatically correct 1-bit errors in the DRAM. The ECC
Scrubber (SBR) is a block that initializes the ECC values of the protected DRAM regions and then initiates periodic background
read commands to the DDRC. The scrub command is a read of 1 memory burst (for example, BL8), which is sent to the DDRC
periodically with the lowest priority.

ECC Scrubber (SBR) is different from the ECC Scrub feature, which is supported only in the Sideband
ECC configurations.

 NOTE

The scrubber's function is to ensure that a single ECC error does not accumulate by correcting the data and writing back to the
memory. There is a difference in the mechanism for the Inline and Sideband ECC mechanisms.

In the Inline ECC configurations, the ECC Scrub feature of the controller is not supported and it cannot scrub for each correctable
read error. For this reason, the Read/Modify/Write (RMW) command is initiated by the scrubber itself for every single bit of the
ECC error detected.

In the Inline ECC mode, ECC Scrubber (SBR) generates addresses only within protected regions. It automatically skips the
unprotected and ECC regions. The ECC Scrubber (SBR) does not send transactions to invalid addresses, but it skips to the next
valid address in the next cycle. In hardware-controlled low-power modes, the SBR continues to operate automatically without any
software intervention. When using the Inline ECC mode, the RPA ensures that the SBR is configured to cover all protected regions.

For our purposes, when an ECC single-bit error is detected, the supplied data is corrected and sent to the requestor. However,
this data is not written back to the memory. Because the SBR is constantly running over the entire protected space, reading the
data and ECC and performing a check, it will eventually come across the erroneous data word. When the scrubber detects a
correctable error, then a single RMW operation is scheduled with no valid data. It reads the memory checks, corrects the data,
and performs a write back to the memory with the data corrected. This runs periodically with a programmable time between the
reads and covers a specified address range. When "Scrub_Burst" is programmed, the SBR automatically ensures these "back to
back" transactions followed by a long waiting time. It performs "n" transactions and waits for "n" intervals. This is helpful so that
SBR does not constantly interrupt the system traffic.

SBR programming

The scrubber range, SBR burst interval, and other parameters are pre-configured in the RPA tool for optimal operation. Details
of these programmable registers will be included in the respective SoC reference manuals.

SBRCTL - Scrubber Control Register – used to program the scrub interval, scrub burst count, and to enable the scrub function in
different modes.

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 8 / 20

SBRSTAT - Scrubber Status Register - used to check on the status of scrub commands and reports busy and done on the initiated
scrub functions.

SBRWDATA0 - the ECC Scrubber writes the data pattern for the ECC initialization of the data bus[31:0].

SBRWDATA1 - the ECC Scrubber writes the data pattern for the ECC initialization of the data bus[63:32].

Additional scrub start and range functions are only for debugging purposes and not required for normal operation.

 NOTE

The scrubbing mechanism occurs during the DDR initialization and periodically, as described below.

Scrubber performed during DDR initialization

When the ECC is enabled, the scrubber is performed during DDR initialization to initialize protected regions of the DDR with valid
data and ECC. The scrubber is performed only on ECC-protected regions. This is automatically configured based on the DDR RPA
tools for a particular SoC.

• In the case of i.MX 8XLite and i.MX 8QuadXPlus/i.MX 8DualXPlus, the Register Programming Aid (RPA) tool
automatically populates scrubber register writes based on which regions are protected.

• In the case of i.MX 8MPlus, the DDR Stress Test tool generates a "*.c" file that contains the function calls to scrub the
protected regions.

In either case, no user interaction is needed as these mechanisms are configured automatically, based on the DRAM parameters
and ECC-protected region configuration in the respective RPA tool.

Scrubber performed periodically

When the ECC is enabled, the scrubber periodically performs background read commands, but only on the ECC-protected
regions. This mechanism is enabled by default (in the RPA tool) when the ECC option is enabled. In addition, other fields such
as the scrub interval are also pre-configured for optimal operation. No further user configuration is required.

3.2.7 Reporting ECC errors
The DDR controller provides an ECC error-reporting mechanism using interrupts. There are several errors related to the Inline
ECC mechanism that are mapped:

• ECC_NCORRECT_INT: An uncorrectable error is detected.

• ECC_CORRECT_INT: A correctable error is detected.

• ECC_AP_ERR_INT: An uncorrectable error leading to an address-protection fault is detected.

This is distinguished from the previous uncorrectable error because the number of errors is larger (greater than
ECCCFG0.ecc_ap_err_threshold) indicating a data mismatch.

The ECC interrupts are mapped and can be configured through the SoC Global Interrupt Controller (GIC).

The application software in the respective interrupt-handling routines must decide the specific actions to be taken on the ECC
interrupts being set. See Error reporting and actions. The example interrupt mapping is shown below for the i.MX 8XLite and i.MX
8MPlus SoCs.

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 9 / 20

Figure 7. i.MX 8XLite ECC Interrupt Map

Figure 8. i.MX 8M Plus ECC Interrupt Map

The assignment of the interrupts varies by SoC and users should see the respective reference manual for
further information.

 NOTE

Error mapping:

The 64/8 SECDED hamming code can detect/correct 1-bit errors and detect 2-bit errors within a 64-bit word (8 bytes). The
following conditions generate the following Inline ECC error generation:

• Access a 64-bit word with a single erroneous bit – correctable error

— ECCSTAT.ecc_corrected_err will be set to 1

— ECCERRCNT.ecc_corr_err_cnt will indicate the number of correctable ECC errors detected

• Access a 64-bit word with 2 erroneous bits – uncorrectable error and bus fault

— ECCSTAT.ecc_uncorrected_err will be set to 1

— ECCERRCNT.ecc_uncorr_err_cnt will indicate the number of uncorrectable ECC errors detected

• Access a 64-bit word with more than two erroneous bits. In this case, the number of errors exceeds the 64/8 SECDED
hamming code and the result is indeterministic. Any of the following may be reported: correctable error, uncorrectable
error, or no error.

• Access a 64-bit word with two erroneous bits and there are more than ECCCFG0.ecc_ap_err_threshold uncorrectable
errors for the corresponding burst – AP error, uncorrectable error, and bus fault.

— ECCAPSTAT.ecc_ap_err = 1

— ECCSTAT.ecc_uncorrected_err = 1

Burst granularity:

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 10 / 20

The ECC engine checks all words in a burst. If the DRC client accesses a correct 64-bit word but there is an incorrect 64-bit word
in the same burst, an error will be reported for the incorrect word, even though this is not the word being read.

If the error is uncorrectable, no bus fault will be reported because the actual data being read is not corrupted. If more than
ECCCFG0.ecc_ap_err_threshold uncorrectable errors are found in a burst but those errors do not affect the 64-bit word being
accessed, an AP error and an uncorrectable error will be generated, but no bus fault.

Figure 9. Example mapping shown for an ECC AP error

The following section provides more details on the ECC AP errors.

3.2.7.1 Reporting ECC AP errors

In addition to reporting ECC correctable and uncorrectable errors, the i.MX 8 DDR controller supports a third error-reporting
mechanism (ECC AP error). In this condition, if the number of 64-bit words with 1-bit or 2-bit errors exceeds the value programmed
in ECCCFG0.ecc_ap_err_threshold within a burst, then the ECCAPSTAT.ecc_ap_err flag will set. To determine how to configure
ECCCFG0.ecc_ap_err_threshold, the users must first ascertain the number of 64-bit words within a burst (total number of ECC
checks within 1 burst). There are two parameters needed to determine this:

• DRAM data width: 16-bit or 32-bit

• DRAM Burst Length (DRAM BL)

— LPDDR4 uses a burst length of 16

— DDR3L uses a burst length of 8

The equation to determine the total number of ECC checks within one burst:

• The total number of ECC checks within one burst = (DRAM Data width x DRAM BL)/64.

The following table shows the “Total number of ECC checks within one burst” for each supported memory and DRAM Data width:

Table 3. Total number of ECC checks within one burst based on memory type and DRAM data bus width

Memory type and burst length 16-bit data bus width 32-bit data bus width

LPDDR4 (BL16) 4 8

DDR3L (BL8) 2 4

To detect an ECC AP error, it is recommended to set ECCCFG0.ecc_ap_err_threshold as the total number of ECC checks within
one burst – 1. The following table shows the recommended setting for ECCCFG0.ecc_ap_err_threshold based on memory type
and DRAM data width:

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 11 / 20

Table 4. Recommended setting for ECCCFG0.ecc_ap_err_threshold based on memory type and DRAM data bus width

Memory type and burst length 16-bit data bus width 32-bit data bus width

LPDDR4 (BL16) 3 7

DDR3L (BL8) 1 3

The SoC-specific RPA tool preconfigures the ECCCFG0.ecc_ap_err_threshold field to the recommended
values, so no further user interaction is required.

 NOTE

3.2.7.2 ECC error reporting examples

This section provides illustrative examples of the various ECC error-reporting mechanisms.

The following examples are based on the following system conditions:

• DRAM type: LPDDR4

• DRAM data width: 16 bits

• DRAM Burst Length (BL): 16

— LPDDR4 burst length = 16

• Total number of ECC checks within 1 burst: 4

— (DRAM data width x DRAM BL)/64 = (16 x 16)/64 = 4

• Recommended ECCCFG0.ecc_ap_err_threshold setting: 3

— Total number of ECC checks within 1 burst: 1

Example 1: ECC correctable error detected (1-bit error)

The following ECC status bits will be set:

• ECCSTAT.ecc_corrected_err = 1

Figure 10. ECC correctable error detected (1-bit error)

Example 2: ECC uncorrectable error detected (2-bit error)

The following ECC status bits will be set:

• ECCSTAT.ecc_uncorrected_err = 1

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 12 / 20

Figure 11. ECC uncorrectable error detected (2-bit error)

Example 3: ECC correctable and uncorrectable errors detected

The following ECC status bits will be set:

• ECCSTAT.ecc_corrected_err = 1

• ECCSTAT.ecc_uncorrected_err = 1

Figure 12. ECC correctable and uncorrectable errors detected

Example 4: ECC AP error detected

The following ECC status bits will be set:

• ECCSTAT.ecc_corrected_err = 1

• ECCSTAT.ecc_uncorrected_err = 1

• ECCAPSTAT.ecc_ap_err = 1 (exceeds ECCCFG0.ecc_ap_err_threshold setting: 3)

Figure 13. ECC AP error detected

3.2.8 ECC error interrupt configuration
The previous section describes the various ECC errors and their ability to generate interrupts. This section describes how to
enable and clear these interrupts within the i.MX 8 DDR controller. This section does not describe how to enable and handle
interrupts at the SoC level via the Global Interrupt Controller (GIC).

The ECC Clear Register (ECCCTL) is where the user can:

• Enable the ECC error-reporting interrupts

• Clear the ECC errors and the currently stored ECC error count

• Force an ECC error to test the interrupt-handling mechanism

The following bullets describe how to enable the various ECC error interrupts in the ECCCTL register. For each of the following
bullets, set the corresponding bit to enable the desired interrupt and clear the bit to disable the desired interrupt:

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 13 / 20

• ecc_ap_err_intr_en (bit[10]): interrupt-enable bit for ecc_ap_err_intr

• ecc_uncorrected_err_intr_en (bit[9]): interrupt-enable bit for ecc_uncorrected_err_intr

• ecc_corrected_err_intr_en (bit[8]): interrupt-enable bit for ecc_corrected_err_intr

The following bullets describe how to clear the various ECC interrupts and status mechanisms in the ECCCTL register. For each
of the following, set the corresponding bit to clear the desired ECC status:

• ecc_ap_err_intr_clr (bit[4]): interrupt-clear bit for ecc_ap_err

— When set, ECCAPSTAT.ecc_ap_err is cleared

• ecc_uncorrected_err_clr (bit[1]): interrupt-clear bit for ecc_uncorrected_err

— When set, ECCSTAT.ecc_uncorrected_err is cleared

• ecc_uncorr_err_cnt_clr (bit[3]): clears the currently stored uncorrected ECC error count

— When set, ECCERRCNT.ecc_uncorr_err_cnt is cleared

• ecc_corrected_err_clr (bit[0]): interrupt-clear bit for ecc_corrected_err

— When set, ECCSTAT.ecc_corrected_err is cleared

• ecc_corr_err_cnt_clr (bit[2]): clears the currently stored corrected ECC error count

— When set, ECCERRCNT.ecc_corr_err_cnt is cleared

There is an optional feature that allows users to force an interrupt to test the interrupt-handling capabilities of their system software.
For each of the following bullets, set the corresponding bit in the ECCCTL register to force the desired ECC error interrupt:

• ecc_ap_err_intr_force (bit[18])

• ecc_uncorrected_err_intr_force (bit[17])

• ecc_corrected_err_intr_force (bit[16])

3.2.9 ECC error injection through software
The ECC error injection is a useful optional feature for system-level software validation. Unlike the Sideband ECC, there is no
dedicated hardware support for it. However, errors can be injected through the software by unlocking the ECC region through
the "ECC_REGION_PARITY_LOCK" register and overriding ECC parity bits. When the corresponding addresses are read from a
protected memory region, ECC errors are generated as correctable or uncorrectable, depending on the type of error introduced.
Further information on this feature is available on request.

ECC data poisoning is not supported by the DDR controller. The reference manual will be updated to remove
this functionality.

 NOTE

3.3 Sideband ECC
The Sideband ECC is only supported on a 40-bit (32 + 8) i.MX 8QuadXPlus/8DualXPlus with DDR3L.

When the Sideband ECC is enabled, an additional data bus is used for the ECC. The actual DRAM data width is greater than the
current "DRAM_DATA_WIDTH". When enabled, it widens the DDR PHY Interface (DFI) data width to accommodate the extra ECC
bytes. 1 ECC byte is added per 1 ECC lane.

The Sideband ECC is mutually exclusive with the Inline ECC.

 NOTE

Adding the Sideband ECC to LPDDR4-based systems is difficult, because the JEDEC standard calls for 16-bit LPDDR4 memory
devices. In such configuration, more than half of the memory is unused in the Sideband ECC configuration. The ECC byte does
not use the full width of the uppermost device.

NXP Semiconductors
ECC

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 14 / 20

Adding the Sideband ECC to DDR3L is not so difficult, because 8-bit memory devices are readily available. In the Sideband ECC
configurations, the DDR controller can issue RMW commands if 1-bit ECC errors are detected with the "read" commands.

If ECCCFG0.ecc_mode is “100”, the 1-bit SECDED ECC is enabled. In this mode, the DDR controller performs the
following functions:

• On writes, the ECC is calculated across each ECC lane and the resulting ECC code is written as an additional byte along
with the data in the ECC lane. This additional ECC byte is always written to the uppermost byte of the DRAM.

• On reads, the ECC lane (including the ECC byte) is read from the DRAM. This is then decoded. A check is performed to
verify that the ECC byte is as expected, based on the data in the ECC lane. If it is correct, the data is sent to the SoC as
normal.

3.3.1 ECC Scrub
The ECC Scrub feature is supported only in the Sideband ECC configurations (i.MX 8QuadXPlus and i.MX 8DualXPlus – DDR3L
– 40 (32 + 8) bit). It can be enabled by setting ECCCFG0.dis_scrub to 0. The same register bit can be used to disable this feature.
When this feature is enabled, the DDR controller schedules the ECC Scrub operation when a single-bit error is detected. The scrub
is executed as a new RMW operation to the location that resulted in a single-bit error.

When a single-bit error is detected, an RMW operation is scheduled by allocating the entries reserved in the write and read Content
Addressable Memory (CAM) with the address that resulted in the single-bit error. Like the regular RMW requests, the "write" part
of the scrub RMW is enabled only after the "read" part of the scrub RMW is scheduled and the read data is returned, corrected
by the ECC decoder, and written to the appropriate location in the write data buffer.

At any time, only one outstanding ECC Scrub operation is allowed. While a scrub operation is pending, a new single-bit error
detected by the read decoder engine does not cause the ECC Scrub operation to be initiated. The controller cannot handle more
than one scrub operation at any time. The ECC Scrub RMW operation is initiated by the controller. There is no read response sent
out for the scrub RMW operation (because this is not initiated by the SoC core).

In the Inline ECC configurations (i.MX 8MPlus), the ECC Scrub functionality is disabled and does not scrub
automatically for each correctable read error. (ECCCFG0.dis_scrub should be set to 1).

 NOTE

4 ECC application considerations
Although the ECC protection may seem like a win-win proposition to improve data integrity, there are several important
considerations when using ECC features. This section briefly describes some important system-level design considerations which
may have a varying impact, depending on the end-user application and product goals.

4.1 What to protect
The code and data that need integrity protection are the primary candidates for ECC protection. As the next sections describe,
an ECC protecting large sections of DRAM has an impact on boot time and performance. It is highly recommended that users
optimize the data to be protected and limit it to the smallest memory footprint possible. A functional safety assessment should be
used to identify which code should be protected via the ECC. For such applications, it is also important to ensure that the entire
data path is protected.

ECC only guarantees data integrity and should not be used as a mechanism to secure code or achieve data authenticity. ECC
can be used to ensure that no data corruption in code is used for security applications, such as Arm Trusted Firmware or other
encrypted data. ECC should not be used to protect against other side-channel attacks. ECC and/or increased refresh rates may
make some side-channel techniques more difficult to use.

4.2 Error reporting and actions
The DDR controller provides an ECC reporting mechanism using interrupts. Several interrupts can be enabled to indicate when
ECC errors are discovered. The end user may develop actions that map to these errors. The actions required depend on the type
of ECC error and how the ECC feature is used in the end application.

NXP Semiconductors
ECC application considerations

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 15 / 20

4.3 Performance
ECC blocks are mapped so that the ECC for data is always mapped to the same page (bank and row) for DDR efficiency (because
each data access may have a separate ECC access). ECC accesses are generally optimized along with the bank accesses they
are related to. If you have multiple accesses to consecutive data, the ECC operations are merged.

Even with these optimizations, the use of inline ECC will have a performance impact of up to 25 % which will vary depending on
the different types of accesses and types of DDR used. It varies depending on single reads vs. burst reads, partial writes vs. burst
writes, first read vs. read from a buffer, and so on. For writes we approximate a 90 % efficiency. For reads, there is a latency impact
of 4-8 DDR cycles and the data transfer efficiency drops to 90 %.

There is no associated memory performance impact for any portion of DDR which does not have ECC enabled.
The performance overhead is only associated with ECC areas. The protected regions should be minimized.

 NOTE

Users should expect a performance drop, evaluate if this is acceptable, and characterize the performance based on their specific
applications. Similar performance degradation can be expected with the Sideband ECC.

4.3.1 Power
Enabling the ECC may contribute to additional power consumption due to the error-correcting circuitry and more energy
consumption for the same workload. The power overhead can be minimized by limiting the ECC regions to be protected.

Low-power entry and exit times may also increase with the Scrubber functionality enabled. Users must have some controls
to determine the Scrubber operation in low-power modes. The default configuration uses the automatic hardware control
low-power functionality.

4.4 Boot time latency
When enabling the ECC, the ECC Scrubber must be enabled. It performs a mandatory ECC initialization that increases the boot
time. Customers with boot time latency requirements should keep in mind that extra latency is incurred when enabling this feature.

ECC protection of the entire memory map may increase the initialization time significantly. NXP recommends limiting the
ECC-protected region as much as possible to reduce the time to initialize the DDR when ECC is enabled.

Example:

• Scrubber times are based on the NXP LPDDR4 board running at 1200 MHz.

• Based on the NXP LPDDR4 EVK and 8 Gb (1 GB) configuration, tRFC is 280 ns.

Table 5. Boot time latency

ECC granularity Size of 1 region (MB) Scrubber time for 1
region (µs)

Scrubber time for 1 region calculated
per MB (µs)

1/8 128 34601 270.32

1/16 64 17301 270.33

1/32 32 8652 270.38

1/64 16 4327 270.44

NXP Semiconductors
ECC application considerations

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 16 / 20

In the above example, the approximate scrubber rate is 270 µs per 1 MB. For an ECC granularity of a 1/64 region
with all regions being ECC-protected and with other regions being protected (the protected DDR is 896 MB), the
total time is 242 ms.

Because the scrubber time depends on the memory tRFC value, a higher memory density (with a larger tRFC
value) has a longer initialization time.

 NOTE

4.5 Memory
Several memory considerations that must be evaluated when enabling the ECC are described below.

4.5.1 Binary/non-binary density
As described in ECC, enabling the ECC with a non-binary-density DDR (such as 3 GB or 6 GB) requires additional considerations.
Non-binary density requires multiple sections to be reserved and fragmenting the DDR memory space with non-contiguous
memory sections. This requires software applications to navigate around these inaccessible regions (holes). Ensure that your
specific applications do not access these regions. Otherwise, you will encounter a data abort.

Memory utilization and inaccessible regions increase, forcing a higher percentage of the DRAM memory to not be utilized. Due
to this complexity and reduced memory utilization, it is strongly recommended to use binary memory densities (such as 1 GB, 2
GB, and 4 GB only) to use the Inline ECC feature.

4.5.2 Density
When enabling the Inline ECC, reserve at least 1/8 of the total available DRAM density for the parity data. The amount of memory
to reserve varies depending on the ECC-protected region. Options have been presented to minimize the reserved memory
regions. Other implications on reducing the reserved region are discussed further on in this document. For the Sideband ECC, a
separate DRAM memory is required and the memory density must be adjusted accordingly.

4.5.3 Contiguous memory map
As described in ECC, the configuration of ECC-protected memory sections can impact the DRAM memory address ranges or
regions that are inaccessible to application software. Let us consider an example where the user wants to ECC protect a single
region of 16 MB. The RPA is configured to protect region 6, starting at address 0x8600 0000.

Figure 14. RPA region

The inaccessible parity regions will be a 2 MB section of memory starting at address 0xBF20 0000.

Figure 15. Inaccessible parity regions

The inaccessible ECC parity region 6 section is in the middle of the memory map and creates a discontinuity-inaccessible memory
for the application.

NXP Semiconductors
ECC application considerations

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 17 / 20

For a contiguous memory space, we recommend that the corresponding parity sections at the end of the DRAM
memory address range are protected from region 0 and reserved.

 NOTE

In Figure 16, only region 0 is ECC-protected, which only reserves the ECC parity region 0 and leaves the remaining contiguous
region available.

Figure 16. Configuration example

4.5.4 U-Boot configuration
The users must structure their software and U-Boot configuration carefully to ensure that the application does not access the
reserved inaccessible region. If this is not implemented, a data abort happens.

The example configuration is as follows:

• Defining DRAM density

• Reserved ECC section

memory@80000000 {
 device_type = "memory";
 - reg = <0x00000000 0x80000000 0 0x40000000>;
 + reg = <0x00000000 0x80000000 0 0x20000000>;
 /* DRAM space - 1, size : 1 GB DRAM */
 };
 @@ -104,6 +104,13 @@
 no-map;
 reg = <0 0x90400000 0 0x1C00000>;
 };
+ /* top 128 MB reserved for ECC */
+ /*
+ ecc_reserved: ecc@0xb8000000 {
 + no-map;
 + reg = <0 0xb8000000 0 0x08000000>;
+ };
+ */
/*global autoconfigured region for contiguous allocations*/
linux,cma {
 compatible = "shared-dma-pool";

4.5.5 Reset vector
The i.MX 8 imposes restrictions on the start address for execution in the DDR. The startup code (usually UBOOT or ATF) must
be located at the start of the DDR. Users therefore cannot locate their application code to be ECC-protected from this start of the
DDR base address. Instead, the first free region after the UBOOT and ATF code can be used.

NXP Semiconductors
ECC application considerations

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 18 / 20

4.5.6 BOM cost
Depending on the device and ECC scheme, additional Bill of Materials (BOM) costs may be incurred.

• For the Sideband ECC, a separate DRAM device is required. Additional board-space and layout considerations must be
included in the system and manufacturing cost.

• For the Inline ECC, a DRAM with a higher density (capacity) may be needed to account for the reserved region that is not
accessible. This may require a higher DRAM density (than for non-ECC-based applications), increasing the system BOM
cost.

NXP can help users to determine the optimal memory for their specific applications to reduce system BOM costs.

5 References
• i.MX 8M Family DDR Tools Release: https://community.nxp.com/docs/DOC-340179

• i.MX 8/8X Family DDR Tools Release: https://community.nxp.com/docs/DOC-346060

• i.MX 8 Series Reference Manuals available on www.nxp.com

6 Revision history
Table 6. Revision history

Revision number Date Substantive changes

0 01 April 2022 Initial release

NXP Semiconductors
References

ECC on i.MX 8 Series, Rev. 0, 01 April 2022
Application Note 19 / 20

https://community.nxp.com/docs/DOC-340179
https://community.nxp.com/docs/DOC-346060
http://www.nxp.com

How To Reach
Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice
to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document,
including without limitation specifications and product descriptions, at any time and without notice. This document supersedes
and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the
effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open
and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any
vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select
products with security features that best meet rules, regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security
related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP
has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,
reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade
secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture
and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01 April 2022
Document identifier: AN13566

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Acronyms and abbreviations

	2 Overview
	2.1 Data corruption
	2.2 Error correction

	3 ECC
	3.1 ECC schemes
	3.2 Inline ECC
	3.2.1 Enabling Inline ECC
	3.2.2 Selecting the ECC regions
	3.2.3 Region locks
	3.2.4 Non-binary density
	3.2.5 Operation flow
	3.2.6 Scrubber
	3.2.7 Reporting ECC errors
	3.2.7.1 Reporting ECC AP errors
	3.2.7.2 ECC error reporting examples

	3.2.8 ECC error interrupt configuration
	3.2.9 ECC error injection through software

	3.3 Sideband ECC
	3.3.1 ECC Scrub

	4 ECC application considerations
	4.1 What to protect
	4.2 Error reporting and actions
	4.3 Performance
	4.3.1 Power

	4.4 Boot time latency
	4.5 Memory
	4.5.1 Binary/non-binary density
	4.5.2 Density
	4.5.3 Contiguous memory map
	4.5.4 U-Boot configuration
	4.5.5 Reset vector
	4.5.6 BOM cost

	5 References
	6 Revision history

