
1 Introduction
eIQ portal provides a friendly and customizable interface to handle image
classification and bounding boxes detection problems.

The model instances constitute the more important piece of the process. They
can be selected according to the problem you want to solve. eIQ provides
some public models with pre-trained weights for public datasets. To solve
classification and detection task, user can retrain/tune. However, in some
cases, customer prefers to use their own models for performance or accuracy
considerations. eIQ portal can handle this requirement: customer could use
plug-in to build and train their own models. This documentation introduces:

• how to bring your own code into eIQ to define your model

• how to use the eIQ Portal to train and evaluate them

• how to reuse the eIQ model tools to quantize and convert for deploying to target platforms with different architectures

2 eIQ portal plug-in
eIQ portal brings a plug-in system that define common interfaces and let plug-ins implement different models. eIQ portal is shipped
with some built-in plug-ins, called as base plug-ins. These plug-ins are what the model wizard selects. On the other hand, user
plug-ins provide their own models from the installation location outside the tool.

There are two places to store the user define plug-in:

• DEEPVIEW_BASE_PLUGINS: %APPDATA%\eIQ Portal\Plugins

• DEEPVIEW_USER_PLUGINS: Points out to any location chosen by the user for experimental or development purposes.

The base plug-ins are shipped with the tool and this plug-in is what the wizard selects. On the other hand, user plug-ins provide
their own models from the installation location outside the tool. When creating a model, the first task or problem type to solve is
image classification or object detection. The following sections explain how to create shipped plug-ins.

Take CIFAR10 (project importer: CIFAR10_uploader.py shipped with eIQ) as example for building a classification model.
We must implement the model class in a python script under classification folder in the DEEPVIEW_BASE_PLUGINS (defaults to
<eIQ_root>\plugins). In our case, the script is placed in DEEPVIEW_BASE_PLUGINS, as shown in Figure 1 (cifar10.py is shipped
in attachments).

Figure 1. Python script

Contents

1 Introduction......................................1
2 eIQ portal plug-in.............................1
3 Building custom model class...........2
4 Training and validating model......... 5
5 Deploying model on MIMXRT1060

EVK... 6
6 Reference..8
7 Revision history...............................8
Legal information...................................... 9

AN13590
Training Custom Model on eIQ Portal
Rev. 0 — 15 March 2022 Application Note

3 Building custom model class
Classification models inherit from the following class:

• deepview.trainer.extensions.interfaces.ImageClassificationInterface

eIQ portal software defines this interface and invokes methods in it to coordinate with any plug-in that implements it.

The ImageClassificationInterface class describes the model and provides additional information. It is used in run time to
configure the GUI and options the model can handle. Also, this class is used as an interface to handle the plug-in structure and
organize the models according to the problem type. The interface handles mandatory functionalities provided by each model.
Mandatory function is as below:

def get_plugin():
 return cifar10

This function is very important because the trainer uses it to retrieve the main class. In this example, it returns the cifar10 class
which handles the classification model.

The model object is implemented in cifar10 class (interfaces.ImageClassificationInterface) which includes some
mandatory functions.

• def get_name (self):

This function returns the model name. It is shown in eIQ portal.

Below is the code snippet of implementation of our example:

def get_name(self):
 return cifar10

• def is_base (self):

This function returns True or False if the model belongs to the base plug-ins or not. In the example, the function returns True.
The code snippet is as below:

def is_base(self):
 return True`

• def get_model (self, input_shape, num_classes, weights, named_params={}):

This function defines the model object. We received the parameters that help us to build the classification model. We can build
a model object or load a pre-trained model. This function returns the model object. The code snippet is as below:

def get_model(self, input_shape, num_classes, weights, named_params={}):
 alpha = float(named_params.get('alpha', "0.35"))
 layer = 0
 drop = 0.25
 lstOCs = [32, 32, 64]
 model = tf.keras.Sequential()
 ….
 return model

• def get_task (self):

This function returns the resolved model task. The code snippet is as below:

def get_task(self):
 return "classification"

• def get_preprocess_function (self):

NXP Semiconductors
Building custom model class

Training Custom Model on eIQ Portal, Rev. 0, 15 March 2022
Application Note 2 / 11

This function pre-processes the input images. It is passed to a tf.DataSet instance to internally handle the pre-fetch
preprocessed images. The code snippet is as below:

def get_preprocess_function(self):
 return imagenet_utils.preprocess_input(x, data_format=data_format, mode='tf')

• def get_metadata (self, base_path):

This function takes the base_path parameter which stores the model path (checkpoint) and returns some additional
metadata. This function is used as constants while quantizing or converting the model. In this case, we only return the
normalization as signed. This result tells the converter that the model needs a signed normalization during samples calibration
in the quantization process. The code snippet is as below:

def get_metadata(self, base_path):
 response = {
 "constants": {},
 "params": {
 "normalization": "signed"
 }
 }
 return response

• def get_exposed_parameters (self):

This method allows the GUI to be configured dynamically by using the returned object list. Notice how each object has
the same keys and only the values are changing. In this case, we only introduce two parameters, alpha and optimizer. In
your case, you can include anything as required to configure the model. Our GUI is prepared to read that properties and
auto-configure it. Remember to parse this parameter inside the get_model method. The code snippet is as below:

def get_exposed_parameters(self):
 return [
 {
 "name": "Alpha",
 "key": "alpha",
 "default": "0.35",
 "values": ["0.35", "0.50", "0.75", "1.00", "1.30"],
 "description": "Controls the width of the network"
 },
 {
 "name": "Optimizer",
 "key": "optimizer",
 "default": "Adam",
 "values": ["SGD", "Adam", "RMSprop", "Nadam", "Adadelta", "Adagrad",
"Adamax"],
 "description": "Model optimizer"
 }
]

• def get_losses (self):

Our dataset iterator returns classes in a categorical way so the loss function that we must use is CategoricalCrossentropy.
Also, you can create loss functions and expose them. This documentation is introduced in further guides. The code snippet
is as below:

def get_losses(self):
 return ["CategoricalCrossentropy"]

• def get_optimizers (self):

NXP Semiconductors
Building custom model class

Training Custom Model on eIQ Portal, Rev. 0, 15 March 2022
Application Note 3 / 11

This function is a helper method that returns the default optimizer. In classification task, we use Adam. The code snippet is
as below:

def get_optimizers(self):
 return ["Adam"]

• def get_allowed_dimensions (self):

This function tells the GUI that our model supports any input dimension larger than or equal to 32. The code snippet is
as below:

def get_allowed_dimensions(self):
 return ["32", '32']

• def get_pretrained_dimensions (self):

This function introduces the set of dimensions with pre-trained weights and the source of the weights. In our case, we are
only setting imagenet as pre-trained weights, but you can set anything there. Remember what you set here can be a possible
option in the weights parameter of the get_model method. Handle properly inside it. The code snippet is as below:

def get_pretrained_dimensions(self):
 return [["32", 'cifar10']]

• def get_qat_support (self):

This function tells the GUI whether our model supports Quantization Aware Training or not. If the model supports QAT, we
provide the input/output type and the framework where the per-channel or per-tensor quantization is provided. TensorFlow
only provides per-channel quantization. Our converter can add this feature and create very accurate approximations for
per-tensor quantization. The code snippet is as below:

def get_qat_support(self):
 return [{
 # Per-Channel Quantization
 "supported": "true",
 "types": ['uint8', 'int8', 'float32'],
 "frameworks": ['Tensorflow', 'Converter']
 }, {
 # Per-Tensor Quantization
 "supported": "true",
 "types": ['uint8', 'int8', 'float32'],
 "frameworks": ["Converter"]
 }]

• def get_ptq_support (self):

This function tells the GUI whether our model supports Post Training Quantization or not. If the model supports PTQ, we can
provide the input/output type and the framework where the per-channel or per-tensor quantization is provided. Tensorflow
only provides per-channel quantization. Our converter can add this feature and create very accurate approximations for
per-tensor quantization. The code snippet is as below:

def get_ptq_support(self):
 return [{
 # Per-Channel Quantization
 "supported": "true",
 "types": ['uint8', 'int8', 'float32'],
 "frameworks": ['Tensorflow', 'Converter']
 }, {
 # Per-Tensor Quantization
 "supported": "true",
 "types": ['uint8', 'int8', 'float32'],

NXP Semiconductors
Building custom model class

Training Custom Model on eIQ Portal, Rev. 0, 15 March 2022
Application Note 4 / 11

 "frameworks": ["Converter"]
 }]

4 Training and validating model
Open eIQ portal and select cifar10 project. In the model selection window, select base models (cifar10 plug-in placed in
DEEPVIEW_BASE_PLUGINS). cifar10 model is shown in the list, as shown in Figure 2.

Figure 2. Base models window

Select cifar10 model and enter the Trainer window.

Set the following parameters as shown in Figure 3:

• Set Learning Rate to 0.001.

• Enable Learning Rate Decay.

• Set Decay Rate to 0.94 and batch size to 50.

• Set Train Accuracy to 20 Epoch.

• Raise Evaluation Accuracy to 76 %.

NXP Semiconductors
Training and validating model

Training Custom Model on eIQ Portal, Rev. 0, 15 March 2022
Application Note 5 / 11

Figure 3. Trainer window

5 Deploying model on MIMXRT1060 EVK
To deploy the model, perform the following steps:

1. After validating stage, in Deploy window, export the model as rtm type with Int8 data type Quantized.

2. Open the model with the model tool, and the network is as shown in Figure 4.

NXP Semiconductors
Deploying model on MIMXRT1060 EVK

Training Custom Model on eIQ Portal, Rev. 0, 15 March 2022
Application Note 6 / 11

Figure 4. Network

3. Deploy the model on the board.

• In MCUXpresso IDE import the SDK example project deepviewrt_lableimage from eiq examples into the
workplace.

• Copy the rtm model file, cifar10-2022-02-16T09-11-01.769Z_in-int8_out-int8_channel_ptq.rtm, into the
source/models folder within the project.

• Copy a ship image into source/data/ at the same time, as shown in Figure 5.

Figure 5. Copying a ship image

4. Change the model.S file, as shown in Figure 6.

NXP Semiconductors
Deploying model on MIMXRT1060 EVK

Training Custom Model on eIQ Portal, Rev. 0, 15 March 2022
Application Note 7 / 11

Figure 6. Changing the model.s file

5. After building and downloading the project into board, boot up the EVK board. The debug information shows the custom
model inference result, as shown in Figure 7.

Figure 7. Custom model inference result

6 Reference
The code of the CIFAR10 plug-in is shipped in the attachments.

7 Revision history

Rev. Date Description

0 15 March 2022 Initial release

NXP Semiconductors
Reference

Training Custom Model on eIQ Portal, Rev. 0, 15 March 2022
Application Note 8 / 11

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical
or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,
as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement
is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization
from competent authorities.

Suitability for use in non-automotive qualified products — Unless this
data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.
It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in automotive
applications to automotive specifications and standards, customer (a) shall use
the product without NXP Semiconductors’ warranty of the product for such
automotive applications, use and specifications, and (b) whenever customer
uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and (c) customer
fully indemnifies NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of the product for
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.

NXP Semiconductors
Legal information

Training Custom Model on eIQ Portal, Rev. 0, 15 March 2022
Application Note 9 / 11

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.

ColdFire — is a trademark of NXP B.V.

ColdFire+ — is a trademark of NXP B.V.

EdgeLock — is a trademark of NXP B.V.

EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

elQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.

Freescale — is a trademark of NXP B.V.

HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

Immersiv3D — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MOBILEGT — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.

QorIQ — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright © 2021 Synopsys, Inc. Used with permission.
All rights reserved.

Tower — is a trademark of NXP B.V.

UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

NXP Semiconductors
Legal information

Training Custom Model on eIQ Portal, Rev. 0, 15 March 2022
Application Note 10 / 11

mailto:PSIRT@nxp.com
http://www.cadence.com/go/trademarks

Please be aware that important notices concerning this document and the product(s) described
herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 March 2022
Document identifier: AN13590

	Contents
	1 Introduction
	2 eIQ portal plug-in
	3 Building custom model class
	4 Training and validating model
	5 Deploying model on MIMXRT1060 EVK
	6 Reference
	7 Revision history
	Legal information

