
AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips
Rev. 1 — 8 March 2024 Application note

Document information
Information Content

Keywords AN14169, USB, User-Defined Class

Abstract This application note describes how to build a user-defined class USB device.

https://www.nxp.com

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

1 Introduction

This application note describes how to build a user-defined class USB device.

This application note is based on the usb_device_cdc_vcom demo. It describes in detail how to modify
this demo to implement a user-defined class device that only contains two bidirectional Bulk endpoints. It also
describes how to create a computer-side host application to communicate with the USB device.

2 USB user-defined class device overview

USB defines class code information that is used to identify the functionality of a device and used to nominally
load a device driver based on that functionality. When developing a USB device, the engineer commonly
chooses to use a class that the USB-IF defined depending on the function. Whether it is a Windows or Linux-
based system, most of the host class drivers have been implemented according to the definitions of the USB-IF.
Therefore, for most USB applications, basic functions can be achieved according to the definition, and most of
them can be used directly on the personal computer.

The existing class definitions cover most of USB applications, but in the embedded system, besides these
functions, the developers have more data transfer tasks to perform through high-speed interfaces such as
USB. While defining the class code, the USB-IF also defines an option for a custom class. Developers can
select 0xFF as the value of the class field in the interface descriptor, and then define each field in the interface
descriptor according to their own needs.

This application note takes a simple custom class that only contains two Bulk bidirectional transmission
endpoints as an example to introduce the implementation of the custom class and the related host application.
Based on actual application requirements, developers can add multiple interfaces containing different types of
endpoints to achieve more complex data transmission requirements.

3 Implement a user-defined class device

This application note uses the usb_device_cdc_vcom demo in the 2.14.0 RT1170-EVKB SDK package as an
example. This demo implements two interfaces, the CDC Control interface for transmitting control information
and the CDC Data interface for data transmission. In scenarios where only bi-direction data communication is
required, the CDC Control interface can be completely removed. So, we can implement a user-defined class
device which only contains four descriptors, one device Configure descriptor, one Interface descriptor, and two
Endpoint descriptors.

To implement a user-defined device, perform the following steps:

1. Modify the descriptor part.
In the original code of the demo, a macro USB_DEVICE_CONFIG_CDC_CIC_EP_DISABLE is defined. After
opening this macro, the endpoints in the CDC Control Interface are disabled. Enable this macro and modify
the elements in the array of g_UsbDeviceConfigurationDescriptor. Modify the length item according
to Figure 1.

AN14169 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 8 March 2024
2 / 12

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

Figure 1. Modify the length
2. In the second half of the array, delete all six descriptors related to the Control Interface and only reserve four

descriptors. Then change the Class part of the CDC Data Interface descriptor to a user-defined class, as
shown in Figure 2.

Figure 2. Modify interface descriptor
3. After modifying the Interface descriptor part, delete the first group of elements in the

g_UsbDeviceCdcVcomInterfaces array, which is used to initialize the class driver and change the class
definition in this array.

Figure 3. Modify interface array
4. Change the value of the macro USB_CDC_VCOM_INTERFACE_COUNT in usb_device_descriptor.h to 1and

the value of USB_DEVICE_CLASS to 0x00.
Besides the descriptor part, change the CDC ACM class driver to adapt the user-defined class. The
USB_DeviceCdcAcmEndpointsInit() in the CDC ACM class driver first gets the Control Interface
and initializes the endpoint belongs to this interface. Since the Control interface has been deleted
in the descriptor, delete this part too. The deleted part of the code is from line 217 to line 266 of
usb_device_cdc_acm.c.
After that, the function initializes the Data Interface endpoints. Before initializing the endpoints, it checks the
class code in the Interface descriptor. Modify this part of the code as shown in Figure 4.

Figure 4. Modify class driver
This device just contains the bulk transfer and the API call is basically the same as the data transmission
part of CDC ACM, so the class drivers of CDC ACM can be reused. For more complex applications,
developers must reconstruct their own class drivers. It is convenient to implement custom class drivers
referring to the basics of various existing class drivers.

5. Modify the application layer.
At the application level, the original settings of the demo set up a flag startTransactions to start the
transmission, and this flag is only set after the host obtains all relevant CDC ACM requests. Therefore, in
the virtual_com.c file, remove all the judges related to the flag startTransactions. And then the function
of receiving data and writing back can be used directly.

AN14169 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 8 March 2024
3 / 12

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

Figure 5. Modify application code

After completing all the above modifications, a user-defined device containing only two Bulk data endpoints is
implemented. Compiling and downloading the project, and connecting the device to the personal computer, the
device is displayed as other devices in the device manager.

4 Implement host application

Since the personal computer cannot find the related driver to support the user-defined class device, the device
appears as other devices after being plugged into the personal computer. The developer must create a host
application to interact with this device. The host application introduced in this application note uses libusb, a
cross-platform library, to operate USB devices.

Firstly, download the relevant library files from https://github.com/libusb/libusb/releases. In this link, select the
binary version package, which contains library files compiled by various compilers and the libusb header file.

Before using libusb to operate USB devices, update the driver for the user-defined class device to a universal
USB driver. Zadig software can be used to update the driver to a universal driver, which supports the libusb
library. Download the latest Zadig software from https://github.com/pbatard/libwdi/releases.

Open the Zadig software, and the connected user-defined device as shown in Figure 6 is displayed in the
software. By default, the driver of this device is displayed as None.

Figure 6. Zadig software

Select WinUSB in the Driver option, click the Install Driver button, and wait for the Driver to be installed. After
the Driver installation is completed, you can see this device appear in the Universal Serial Bus Device list in
the Device Manager.

Now, the developers can start to create the host application. The host application of this application note
is developed by Visual Studio. Install the Visual Studio 2022 software and confirm that the MFC-related
components are installed in the software installation interface.

After the installation is complete, to create a blank project, perform the following steps:

1. Open the software,
2. Create an MFC App project.
3. Select Dialog based on the application type item in the project creation wizard.
4. Click Finish.

AN14169 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 8 March 2024
4 / 12

https://github.com/libusb/libusb/releases
https://github.com/pbatard/libwdi/releases

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

After the project is created, enter the control editing interface, as shown in Figure 7.

Figure 7. MFC project

To construct a form, perform the following steps:

1. Open the toolbox sidebar in this view, and select the Button tool,
2. Place two Button controls in the dialog box as the connect button and the send button.
3. Select the Edit Control tool, and place two Edit Control tools as the sending dialog box and the receiving

dialog box respectively, as shown in Figure 8

Figure 8. Form design

AN14169 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 8 March 2024
5 / 12

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

To add a member function, perform the following steps:

1. Right-click in the form box and select Class Wizard.
2. In the pop-up window, select the Connect and Send buttons you created, and choose to add the

BN_CLICKED handler, as shown in Figure 9.

Figure 9. Add a member function

After the functions are added, switch to the solution explorer view and add the libusb.h file to the header file.
Include the header to the form source code file of the project. Copy the libusb-1.0.dll and libusb-1.0.lib files in
the libusb-1.0.26-binaries\VS2015-x64\dll directory to the VS solution directory.

In the properties of the solution, select the VC++ Directories item under the Configuration Properties entry,
and add the path where libusb-1.0.lib is located to the Library Directories entry. Then in the Input item under the
Linker entry, enter libusb-1.0.lib in the Additional Dependencies option. After saving the settings, click Debug
once to generate the Debug directory. VS may report an error in this step. Ignoring the error, copy libusb-1.0.dll
to the \x64\Debug\ directory in the solution directory.

Now, you can start to add code. Add two member functions in the CUserDefinedApplicationDlg class,
which are used to connect USB devices and send data. Create the following connect_device() function.

libusb_device_handle* handle;
libusb_device* dev;
struct libusb_config_descriptor* conf_desc;

AN14169 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 8 March 2024
6 / 12

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

uint8_t endpoint_in = 0, endpoint_out = 0; // default IN and OUT endpoints
int CUserDefinedApplicationDlg::connect_device()
{
 const struct libusb_endpoint_descriptor* endpoint;
 int i, j, k, r;
 int iface, nb_ifaces, first_iface = -1;
 struct libusb_device_descriptor dev_desc;
 libusb_init(NULL);
 handle = libusb_open_device_with_vid_pid(NULL, 0x1fc9, 0x0094);
 if (handle == NULL) {
 MessageBox(TEXT("Connect Failed!"), TEXT("message"), MB_OK);
 return -1;
 }
 dev = libusb_get_device(handle);
 CALL_CHECK_CLOSE(libusb_get_config_descriptor(dev, 0, &conf_desc), handle);
 nb_ifaces = conf_desc->bNumInterfaces;
 if (nb_ifaces > 0)
 first_iface = conf_desc->interface[0].altsetting[0].bInterfaceNumber;
 for (i = 0; i < nb_ifaces; i++) {
 for (j = 0; j < conf_desc->interface[i].num_altsetting; j++)
 {
 for (k = 0; k < conf_desc->interface[i].altsetting[j].bNumEndpoints;
 k++) {
 struct libusb_ss_endpoint_companion_descriptor* ep_comp = NULL;
 endpoint = &conf_desc->interface[i].altsetting[j].endpoint[k];
 if ((endpoint->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) &
 (LIBUSB_TRANSFER_TYPE_BULK | LIBUSB_TRANSFER_TYPE_INTERRUPT)) {
 if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) {
 if (!endpoint_in)
 endpoint_in = endpoint->bEndpointAddress;
 }
 else {
 if (!endpoint_out)
 endpoint_out = endpoint->bEndpointAddress;
 }
 }
 if (ep_comp) {
 libusb_free_ss_endpoint_companion_descriptor(ep_comp);
 }
 }
 }
 }
 libusb_free_config_descriptor(conf_desc);
 r = libusb_set_auto_detach_kernel_driver(handle, 1);
 for (iface = 0; iface < nb_ifaces; iface++)
 {
 r = libusb_claim_interface(handle, iface);
 if (r != LIBUSB_SUCCESS) {
 MessageBox(TEXT("Connect Failed!"), TEXT("message"), MB_OK);
 return -1;
 }
 }
 MessageBox(TEXT("Connect Successfully!"), TEXT("message"), MB_OK);
 return 0;
}

And create a send_data() function to send, receive, and display the data.

int CUserDefinedApplicationDlg::send_data()
{

AN14169 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 8 March 2024
7 / 12

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

 int r = 0;
 int size = 0;
 CString send_content;
 CString receive_content;
 CString trans;
 int len = 0;
 unsigned char data_trans[512];
 unsigned char data_recv[512];
 Send_Box.GetWindowTextW(send_content);
 len = send_content.GetLength();
 for (int j = 0; j < len; j++)
 {
 data_trans[j] = (unsigned char)send_content[j];
 }
 r = libusb_bulk_transfer(handle, endpoint_out, data_trans, len, &size, 0);
 if (r != LIBUSB_SUCCESS) {
 printf(" Failed\n");
 return -1;
 }
 int send_size = libusb_bulk_transfer(handle, endpoint_in, data_recv,
 sizeof(data_recv), &size, 2000);
 if (send_size < 0)
 {
 printf(" Failed\n");
 return -1;
 }
 for (int i = 0; i < size; i++)
 {
 trans.Format(_T("%c"), data_recv[i]);
 receive_content += trans;
 }
 Receive_Box.SetWindowTextW(receive_content);
 return 0;
}

Now, you can compile and run the project.

5 Running the demo

The user-defined class device and the host application are implemented respectively, the device and the
application can test together now.

Download the IAR project into the RT1170-EVKB board, connect the USB OTG1 port to the personal computer,
open the host application software on the personal computer, click Connect, and the connection success dialog
box pops up. Type characters in the Send dialog box and click the Send button. The host reads the contents in
the Send dialog box and sends it to the Device. When the Device receives the data, it sends them back to the
Host. After the Host receives the data, it displays the data in the Receive dialog box. Figure 10 shows the test
result.

AN14169 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 8 March 2024
8 / 12

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

Figure 10. Test result

This application note creates a simple user-defined class device, and a simple host application as reference.
For further functions, developers can add more interfaces with different types of endpoint to implement.

6 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

7 Revision history

Table 1 summarizes the revisions to this document.
AN14169 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 8 March 2024
9 / 12

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

Document ID Release date Description

AN14169 v.1 08 March 2024 Initial public release

Table 1. Revision history

AN14169 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 8 March 2024
10 / 12

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
IAR — is a trademark of IAR Systems AB.
i.MX — is a trademark of NXP B.V.

AN14169 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 8 March 2024
11 / 12

mailto:PSIRT@nxp.com

NXP Semiconductors AN14169
How to Generate a User-Defined Class USB Device based on i.MX RT Chips

Contents
1 Introduction .. 2
2 USB user-defined class device overview 2
3 Implement a user-defined class device 2
4 Implement host application 4
5 Running the demo ...8
6 Note about the source code in the

document ..9
7 Revision history ...9

Legal information ...11

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 8 March 2024
Document identifier: AN14169

	1 Introduction
	2 USB user-defined class device overview
	3 Implement a user-defined class device
	4 Implement host application
	5 Running the demo
	6 Note about the source code in the document
	7 Revision history
	Legal information
	Contents

