
AN14210
Learning VGLite API Programming on i.MX RT Series
Rev. 1 — 26 February 2024 Application note

Document information
Information Content

Keywords AN14210, VGLite, i.MX RT, GPU2D

Abstract This document introduces how to use VGLite API for graphic programming with several examples.

https://www.nxp.com

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

1 Introduction

The VGLite API is a platform-independent API that supports 2D vector and raster rendering. It can be used as
the interface for 2D GPU drivers in i.MX RT500, RT1160, and RT1170 series chips.

This document introduces how to use VGLite API for graphic programming with several examples. These
examples can be found on https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170, which are based
on MCUX SDK 2.14.0. For references when programming, see the i.MX RT VGLite API Reference Manual
(document IMXRTVGLITEAPIRM).

2 Architecture of VGLite examples

Figure 1 shows the architecture of VGLite examples. VGLite is in the /middleware/vglite/ folder under SDK
installation root, mainly including:

• VGLite API: A set of functions, types, structures, and enumerations for 2D vector/raster rendering, which is
defined in vg_lite.h.

• VGLite Hardware Abstract Layer (HAL): Abstract the GPU hardware-related common operations for the kernel
driver.

• Kernel Driver: Receive the request from VGLite API to manipulate the GPU hardware, expected to execute in
the kernel space.

• Elementary API: Wrap the VGLite API but provide a simple and intuitive method to load up and manipulate the
graphic resources, not covered in this note.

Files involving board-level initialization and operations are in each example folder. All examples are in the /
boards/evkbmimxrt1170/vglite_examples/ folder under SDK installation root, including:

• VGLite_Support: Support the initialization of GPU and VGLite memory.
• VGLite_Window: Provide a frame buffer to be blit or drawn by the VGLite API.
• Display_Support: Achieve the initialization and configuration of the display panel.

Other files related to display are in the /components/video/display/ folder under SDK installation root. They are
used to drive display controller, display panel, and so on.

Application

VGLite_Support VGLite_Window Display_Support
VGLite Rendering Utilities

VGLite HAL
Kernel Driver

Elementary API
MIPI_DSI Driver

DC_FB Display
Abstract Layer FBDEV MIPI_DSI_CMD

LCDIFv2/LCDIF
Driver

VGLite API

Board with MCU
GPU2D Memory LCDIF(v2) MIPI_DSI DisplayMU

Software

Hardware

Figure 1. Architecture of VGLite Examples

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
2 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170
https://www.nxp.com.cn/docs/en/reference-manual/IMXRTVGLITEAPIRM.pdf

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

3 Initialization/Deinitialization

No matter vector drawing or raster blitting, the vg_lite_init() function is essential for every task/thread to
allocate memory for the command buffer and a tessellation buffer. Conversely, vg_lite_close() is used to
deallocate the memory previously initialized.

vg_lite_init() includes two parameters specifying tessellation buffer size, tessellation_width and
tessellation_height, which must be a multiple of 16. It's recommended to set the tessellation buffer
size to cover the most common path size. If the tessellation buffer size is (0, 0), vector drawing APIs such as
vg_lite_draw() cannot be used.

The command buffer size is set to 64 kB by default by vg_lite_init(), which can be changed by
vg_lite_set_command_buffer_size() if necessary.

The vg_lite_allocate() is used to allocate the render buffer before either drawing or blitting functions. The
only input parameter of this function is a pointer to the structure vg_lite_buffer_t, whose width, height
and format must be initialized in advance. The stride of this buffer is filled by this function automatically.
Conversely, vg_lite_free() deallocates the render buffer previously allocated.

Taking 01_SimplePath as an example, the above initialization functions are called before drawing:

error = vg_lite_init(OFFSCREEN_BUFFER_WIDTH, OFFSCREEN_BUFFER_HEIGHT);
error = vg_lite_set_command_buffer_size(VGLITE_COMMAND_BUFFER_SZ);
error = vg_lite_allocate(&renderTarget);

Once an error happens, the corresponding deinitialization work is executed by the below code:

vg_lite_free(&renderTarget);
vg_lite_close();

4 Clear

vg_lite_clear() clears/fills the entire buffer or partial rectangle of the buffer with a given color.

Before vector drawing or raster blitting, this function is called to prepare the background. Most of the examples
apply this function to fill the rendered area with 0xFFFFFFFF (white):

vg_lite_clear(&renderTarget, NULL, 0xFFFFFFFF);

And fill the full screen with 0xFFFF0000 (blue):

vg_lite_clear(rt, NULL, 0xFFFF0000);

5 Color type

For the above vg_lite_clear() function, its input color type is 32-bit structure vg_lite_color_t. As
shown in Figure 2, its format is RGBA8888. This format includes red, green, blue, and alpha channels. Each
channel has 8 bits. Red channel is in the least significant bits and alpha channel is in the most significant bits,
as described in Section 10.

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
3 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_01_SimplePath

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

0xFFFFFFFF
Alpha

Channel
Red

Channel
Blue

Channel
Green

Channel

08162432

RGBA8888

Figure 2. RGBA8888 format

Most VGLite APIs use this structure to define line or paint color, such as vg_lite_blit(),
vg_lite_blit_rect(), vg_lite_draw(), vg_lite_set_stroke(), vg_lite_draw_pattern(),
vg_lite_draw_linear_gradient(), and vg_lite_draw_radial_gradient(), which will be described
later.

But some other VGLite functions have different color types:

• vg_lite_set_grad() (Section 17) configures colors of linear gradient in an array. These colors are
uint32_t type with BGRA8888 format, as shown in Figure 3, instead of structure vg_lite_color_t with
RGBA8888 format.

0xFFFFFFFF
Alpha

Channel
Blue

Channel
Red

Channel
Green

Channel

08162432

BGRA8888

Figure 3. BGRA8888 format
• vg_lite_set_rad_grad() (Section 18) and vg_lite_set_linear_grad() (Section 19) configure

colors of gradient with four float values corresponding to red, green, blue, and alpha channels. These values
are in the range of [0, 1.0], which are mapped to an 8-bit pixel value [0, 255] actually.

6 Raster blitting

Blitting is applied to copy the contents of a source buffer to a destination buffer.

Call the function vg_lite_blit() to achieve this part, with input source and destination buffer addresses
target, transformation matrix matrix, color, blend mode blend, and filter. These input parameters are
introduced in details later.

In addition, examples usually obtain the target buffer by the function VGLITE_GetRenderTarget().
After blitting the contents to it, this target buffer will be switched to display when calling the function
VGLITE_SwapBuffers(). These two functions are from the vglite_window.c file, instead of the core VGLite
API.

Most examples show the contents on the displayer following the code snippet below:

vg_lite_buffer_t *rt = VGLITE_GetRenderTarget(&window);
......
vg_lite_blit(&renderTarget, &dropper, &matrix, VG_LITE_BLEND_SRC_OVER,
 0xFF000000, mainFilter);
VGLITE_SwapBuffers(&window);

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
4 / 28

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

7 Transformation

Transformation is based on a 3 x 3 matrix (structure vg_lite_matrix_t), which achieves translation, rotation
and scaling by vg_lite_translate(), vg_lite_rotate(), and vg_lite_scale(). Before calling these
functions, vg_lite_identity() is needed to reset the input transformation matrix. All transformations are
combined until the next time calling vg_lite_identity() to reset this transformation matrix.

For all transformation functions, only one coordinate system exists, that is the final plane/surface coordinate
system. The (0, 0) is the upper-left corner, the positive x-axis is the right direction, and the positive y-axis is the
downward direction. The transformation center of every object is always its upper-left corner point.

Taking 08_BlitColor for example, vg_lite_translate() is called three times to set a matrix, to place the
source buffer storing image to specified locations, and vg_lite_rotate() is called in a loop. Figure 4
describes the following four steps:

PANEL
X

Y

After identity, translate to:
(DEMO_PANEL_WIDTH/2.0,
DEMO_PANEL_HEIGHT/2.0)

③

PANEL
X

Y

(0, 0)

Rotate 0.3°
per frame④

Next frame

Loop

Translate to:
(2, 2)

Translate to:
(2+260, 2+0)

① ②

(0, 0)

Figure 4. Translation and rotation

1. The first time the translation parameter is set to (2, 2), to blit the upper left corner of the source buffer
dropper to the (2, 2) position of the target buffer renderTarget.

vg_lite_identity(&matrix);
vg_lite_translate(2, 2, &matrix);
vg_lite_blit(&renderTarget, &dropper, &matrix, VG_LITE_BLEND_SRC_OVER,
 0xFF000000, mainFilter);

2. The second time the translation parameter is set to (260, 0), which is added to the previous value of the
matrix, (2+260, 2+0). Then this source buffer is blit to this location of the target buffer.

vg_lite_translate(260, 0, &matrix);
vg_lite_blit(&renderTarget, &dropper, &matrix, VG_LITE_BLEND_SRC_OVER,
 0xFF00FF00, mainFilter);

3. Then vg_lite_identity() is used to clear the previous value of the transformation matrix.
So, in the third step, copy the buffer renderTarget to rt at (DEMO_PANEL_WIDTH/2.0,
DEMO_PANEL_HEIGHT/2.0), which is the center of the displayer.

vg_lite_identity(&matrix);

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
5 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_08_BlitColor

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

vg_lite_translate(DEMO_PANEL_WIDTH/2.0, DEMO_PANEL_HEIGHT/2.0, &matrix);
vg_lite_blit(rt, &renderTarget, &matrix, VG_LITE_BLEND_SRC_OVER, 0,
 mainFilter);

4. vg_lite_rotate() is called in a loop to rotate contents of the source buffer when blitting it to target
buffer. Its input rAngle increments by 0.3 degree each time.

vg_lite_rotate(rAngle, &matrix);
rAngle += 0.3;

In addition, the vg_lite_scale() function is called in 10_Glyphs to scale a glyph % up four times, the code
snippet is:

vg_lite_scale(4.0, 4.0, &matrix);
/* Blit the buffer to the framebuffer so we can see something on the screen */
error = vg_lite_blit(rt, &bufferToBlit, &matrix, VG_LITE_BLEND_SRC_OVER,
 0xFF00FF00, mainFilter);

8 Rectangle blitting

VGLite also supports blitting a rectangular area of the source buffer with vg_lite_blit_rect() function,
instead of blitting a whole source buffer with regular vg_lite_blit(). This function needs an additional array
rect. rect[0] and rect[1] are x, y coordinates of the upper left corner of the rectangular area, rect[0]
and rect[1] are width and height of this rectangular area.

12_BlitRect uses it to render four numbers in four times, from the source image that completely contains
numbers 0-9. The array rect is configured four times, to select corresponding rectangular areas of four
numbers, as shown in Figure 5.

Source Buffer: Target Buffer:

Rect Blit
1 2 3 4

[32,0,32,46]

[0,46,32,46] [96,46,32,46]
[64,46,32,46]

1

4 2
3

Figure 5. Rectangle blitting

1. Blit the 2 in the sub-rectangle area defined by [32, 0, 32, 46] in the source buffer to the target buffer at (0, 0).

vg_lite_identity(&matrix);
rect[0] = 32; rect[1] = 0; rect[2] = 32; rect[3] = 46;
vg_lite_blit_rect(rt, &glyphBuffer, rect, &matrix, VG_LITE_BLEND_SRC_OVER, 0,
 mainFilter);

2. Blit the 9 in the sub-rectangle area defined by [96, 46, 32, 46] in the source buffer to the target buffer at (34,
0).

vg_lite_translate(34,0,&matrix);
rect[0] = 96; rect[1] = 46; rect[2] = 32; rect[3] = 46;
vg_lite_blit_rect(rt, &glyphBuffer, rect, &matrix, VG_LITE_BLEND_SRC_OVER, 0,
 mainFilter);

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
6 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_10_Glyphs
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_12_BlitRect

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

3. Blit the 8 in the sub-rectangle area defined by [64, 46, 32, 46] in the source buffer to the target buffer at
(34+34, 0).

vg_lite_translate(34,0,&matrix);
rect[0] = 64; rect[1] = 46; rect[2] = 32; rect[3] = 46;
vg_lite_blit_rect(rt, &glyphBuffer, rect, &matrix, VG_LITE_BLEND_SRC_OVER, 0,
 mainFilter);

4. Blit the 6 in the sub-rectangle area defined by [0, 46, 32, 46] in the source buffer to the target buffer at
(34+34+34, 0).

vg_lite_translate(34,0,&matrix);
rect[0] = 0; rect[1] = 46; rect[2] = 32; rect[3] = 46;
vg_lite_blit_rect(rt, &glyphBuffer, rect, &matrix, VG_LITE_BLEND_SRC_OVER, 0,
 mainFilter);

A transformation matrix matrix also works when blitting numbers to specified locations of the target buffer.

9 Pixel buffer

Above operations such as blitting, transformation, clear, are all based on the pixel buffer. No matter the source
buffer storing an image or the target buffer to be rendered, the buffer features are defined by the structure
vg_lite_buffer_t, mainly including:

• width: The width of the buffer in pixels.
• height: The height of the buffer in pixels.
• stride: The stride in bytes. It means the address difference of adjacent pixels in the upper and lower rows. It is

related to buffer width, color format, and alignment.
• tiled: The buffer data layout in memory, with two choices:

– VG_LITE_LINEAR: Linear (scanline) layout, which is more intuitive.
– VG_LITE_TILED: Data is organized in 4x4 pixel tiles (the buffer address and stride must be 64 bytes

aligned for it). This layout has a good rendering performance for the source buffer in the rotation.
• format: The color format of the buffer. It defines color channels and corresponding bit widths, which is

described in detail later.
• memory: Pointer to the start address of the memory.
• address: GPU address.
• image_mode: The blitting image mode, described in details later.

For vector drawing, call vg_lite_allocate() to allocate the memory for vg_lite_buffer_t after
setting its width, height, and format. The memory and address of buffer are the address of memory
allocated by vg_lite_allocate(). And this function calculates and sets stride automatically. Most vector
drawing examples use the following code snippet to achieve the above process, such as 01_SimplePath,
02_QuadraticCurves, and 03_Stroked_CubicCurves, and so on.

buffer.width = OFFSCREEN_WIDTH;
buffer.height = OFFSCREEN_HEIGHT;
buffer.format = VG_LITE_RGBA8888;
vg_lite_allocate(&buffer);

This method also applies to raster blitting example, which sets the three parameters of the buffer and then calls
vg_lite_allocate(). Original image data must be copied to the allocated memory of buffer manually. The
code snippet of 08_BlitColor follows this process:

/* Load the image data to a vg_lite_buffer */
dropper.width = IMG_WIDTH;

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
7 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_01_SimplePath
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_02_QuadraticCurves
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_03_Stroked_CubicCurves
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_08_BlitColor

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

dropper.height = IMG_HEIGHT;
dropper.format = IMG_FORMAT;
vg_lite_allocate(&dropper);
uint8_t * buffer_memory = (uint8_t *) dropper.memory;
uint8_t *pdata = (uint8_t *) BGRA8888_Data;
for (j = 0; j < dropper.height; j++)
{
 memcpy(buffer_memory, pdata, dropper.stride);
 buffer_memory += dropper.stride;
 pdata += dropper.stride;
}

But there are two memory blocks storing the same image: original data, and another copy in the allocated
memory of buffer. There is another method to avoid memory waste, in which the memory pointer of the buffer
directly points to the original image data, instead of calling vg_lite_allocate() to allocate new memory.
In this way, the stride of buffer must be set manually. The code snippet of 13_PatternFill and 14_UI applies this
method:

buffer->width = width;
buffer->height = height;
buffer->stride = stride;
buffer->format = format;
/* "Copy" image data in the buffer */
buffer->handle = NULL;
buffer->memory = imm_array;
buffer->address = (uint32_t)imm_array;

10 Color format

VGLite includes but not limits to the following color formats, which are applied to both source image and render
target.

• VG_LITE_RGBA8888
• VG_LITE_RGBA5551
• VG_LITE_RGBA4444
• VG_LITE_RGBA2222
• VG_LITE_RGB565
• VG_LITE_YUYV
• VG_LITE_A8
• VG_LITE_A4
• VG_LITE_L8

R, G, B, and A mean red, green, blue, and alpha channels respectively. The numbers such as 8, 5, 4, 2
indicates the bit width of channel at the corresponding position. For instance, RGBA5551 means the color with
5-bit red, 5-bit green, 5-bit blue, and 1-bit alpha channels. A8 or A4 means only 8-bit or 4-bit alpha channel
describing transparency, without RGB channels. L8 means 8-bit luminance, discarding color information.

There are other color formats such as VG_LITE_ABGR8888, VG_LITE_ARGB8888, VG_LITE_BGRA8888.
Similar to VG_LITE_RGBA8888, they have the same bit widths, but channels are arranged differently. In
addition, there is VG_LITE_RGBX8888 format. X means that the alpha channel is all 0xFF (opaque).

Figure 6 shows the bit width and arrangement of the channels of these color formats.

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
8 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_13_PatternFill
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_14_UI

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

VG_LITE_RGBA8888

A

B

G

R

A
B
G
R

A
A L

B

G

R

A
B

G

R
Y0

U0

Y1

V0A

B

G

R

VG_LITE_RGBA5551

VG_LITE_RGBA4444

VG_LITE_RGBA2222

VG_LITE_RGB565

VG_LITE_YUYV

VG_LITE_A8

VG_LITE_A4

VG_LITE_L8

2
4
5
6
8

10
12

15
16

24

32

0

Color
Format

Bit

Figure 6. Bit width and arrangement of color formats

Different color formats have different bit widths, strides, and pixel alignment requirements. 08_BlitColor displays
the same image with above-mentioned different color formats, switched through the macro DROPPER_FORMAT
and then blit to the displayer, there is the code snippet:

#if(DROPPER_FORMAT==DROPPER565)
uint8_t *pdata = (uint8_t *) BGR565_Data;
#elif (DROPPER_FORMAT==DROPPER4444)
uint8_t *pdata = (uint8_t *) BGRA4444_Data;
#elif (DROPPER_FORMAT==DROPPER8888)
uint8_t *pdata = (uint8_t *) BGRA8888_Data;
......
dropper.stride = IMG_STRIDE;
dropper.format = IMG_FORMAT;
......
vg_lite_blit(&renderTarget, &dropper, &matrix, VG_LITE_BLEND_SRC_OVER,
 0xFF000000, mainFilter);

Figure 7 shows the display effects of these color formats.

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
9 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_08_BlitColor

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

RGBA8888 RGBA5551 RGBA4444

RGBA2222
(only support

RT500)
RGB565 L8

A4 A8 YUYV
Figure 7. Different color format display effects

As shown in Figure 7, there are some features of various color formats:

• Channels with lower bit width occupy less memory, but also degrade the image quality, resulting in obvious
color bandings (especially comparing VG_LITE_BGRA8888 and VG_LITE_BGRA2222).

• BGR565, L8, and YUYV have no alpha channel to mask the background. So that the original background
defined by RGB channels appears, instead of being transparent. In this example, the background is black.

• A8 and A4 only have alpha data that is invisible without RGB channels, so that this example sets their
image_mode to VG_LITE_MULTIPLY_IMAGE_MODE to paint it black. The image mode is described in details
later.

• BGRA5551 does not support semi-transparency since the alpha value is only 0 (transparent) or 1 (opaque).

11 Image mode

One of three image modes is involved in each buffer to be blit:

• VG_LITE_NORMAL_IMAGE_MODE: Image drawn with blending mode (introduced later). This is the most used
option.

• VG_LITE_NONE_IMAGE_MODE: Image input is ignored.
• VG_LITE_MULTIPLY_IMAGE_MODE: Image is multiplied with paint color. The paint color is specified in the

function vg_lite_blit().

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
10 / 28

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

In 08_BlitColor, two image modes are applied in two images. As shown in Figure 8, the first one shows
normal image with VG_LITE_NORMAL_IMAGE_MODE, the second one shows painted image with
VG_LITE_MULTIPLY_IMAGE_MODE. For the second image, the paint color is 0xFF00FF00 (green), then the
new image only reserves the green channel, because the values of the other channels are multiplied by 0x00.

VG_LITE_NORMAL_IMAGE_MODE VG_LITE_MULTIPLY_IMAGE_MODE
(Paint Color: 0xFF00FF00)

Figure 8. Different image mode

VG_LITE_MULTIPLY_IMAGE_MODE is also helpful to make invisible color formats visible, such as A4 and A8.
In addition, alpha data + VG_LITE_MULTIPLY_IMAGE_MODE is a good combination for displaying glyphs, as
alpha data occupies less memory, and this image mode makes it easy to change the color of glyphs.

In 10_Glyphs, the alpha data of glyph % is painted to 0xFF00FF00 (green), and blit by the following code
snippet:

bufferToBlit.format = VG_LITE_A8;
bufferToBlit.image_mode = VG_LITE_MULTIPLY_IMAGE_MODE;
vg_lite_blit(rt, &bufferToBlit, &matrix, VG_LITE_BLEND_SRC_OVER, 0xFF00FF00,
 mainFilter);

If a red glyph % is needed now, change 0xFF00FF00 (green) in vg_lite_blit() to 0xFF0000FF (red)
simply, as shown in Figure 9.

Alpha Data

VG_LITE_MULTIPLY_IMAGE_MODE

Memory:

Image_mode:

Format:
A8

...

Blit

Source Buffer

0xFF00FF00 Target Buffer

vg_lite_buffer_t

Target Buffer

Blit
0xFF0000FF

Figure 9. Different glyph color

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
11 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_08_BlitColor
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_10_Glyphs

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

12 Blending mode

When blitting the source (src) image to the destination (dst) image, there are different blending modes defining
the final effect: (S and D mean the source and destination color channels, Sa and Da mean the source and
destination alpha channels).

• VG_LITE_BLEND_SRC_OVER: Show src over dst, and dst can only be shown in the area where Sa is not 1.
The formula is S + (1 - Sa) * D.

• VG_LITE_BLEND_DST_OVER: Contrary to VG_LITE_BLEND_SRC_OVER mode, show dst over src, so src can
only be seen in the area where Da is not 1. The formula is (1 – Da) * S + D.

• VG_LITE_BLEND_SRC_IN: Show src where src and dst overlap, and Da is also applied to src image, whose
formula is Da * S.

• VG_LITE_BLEND_DST_IN: Contrary to VG_LITE_BLEND_SRC_OVER mode, show dst where src and dst
overlap, and Sa is also applied to dst image, whose formula is Sa * D.

• VG_LITE_BLEND_SCREEN: Show both src and dst images, and the result color is at least as light as either of
S or D, whose effect is similar to projecting multiple photographic slides simultaneously onto a single screen.
The formula is 1 - [(1 - S) * (1 - S)] = S + D – S * D.

• VG_LITE_BLEND_MULTIPLY: Shows both src and dst images. Thesrc image is multiplied by dst image,
which then replaces the area where src and dst overlap. The formula is S * (1 – Da) + D * (1 – Sa)
+ S * D.

• VG_LITE_BLEND_ADDITIVE: Simply add images of src and dst, and the formula is S + D.
• VG_LITE_BLEND_SUBTRACT: Contrary to VG_LITE_BLEND_ADDITIVE mode, subtract src from dst, with the

formula of D * (1 - Sa).

For the source buffer in 09_AlphaBehavior, the upper left quarter is opaque blue, and the other area is in black
with transparency 0x7F, set by the following code:

buffer_memory = (uint32_t *) bufferToBlit.memory;
/* Alpha value is 0x7f, color value is 0 */
for (i = 0; i < TEST_RASTER_BUF_WIDTH * TEST_RASTER_BUF_HEIGHT; i++)
buffer_memory[i] = 0x5f000000;
/* Blue color */
for (i = 0; i < TEST_SMALL_SIZE; i++)
for (j = 0; j < TEST_SMALL_SIZE; j++)
buffer_memory[i * TEST_RASTER_BUF_WIDTH + j] = 0xFF0000FF;

And the destination buffer is cleared in opaque red:

vg_lite_clear(rt, NULL, 0xFF0000FF);

Then, this source buffer is blit to the destination buffer eight times side by side, with these different blending
modes.

vg_lite_identity(&matrix);
/*Blit with VG_LITE_BLEND_SRC_OVER blending */
vg_lite_blit(rt, &bufferToBlit, &matrix, VG_LITE_BLEND_SRC_OVER, 0, mainFilter);
vg_lite_translate(TEST_RASTER_BUF_WIDTH, 0, &matrix);
/*Blit with VG_LITE_BLEND_DST_OVER blending */
vg_lite_blit(rt, &bufferToBlit, &matrix, VG_LITE_BLEND_DST_OVER, 0, mainFilter);
vg_lite_translate(-TEST_RASTER_BUF_WIDTH, TEST_RASTER_BUF_HEIGHT, &matrix);
/*Blit with VG_LITE_BLEND_SRC_IN blending */
vg_lite_blit(rt, &bufferToBlit, &matrix, VG_LITE_BLEND_SRC_IN, 0, mainFilter);
......

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
12 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_09_AlphaBehavior

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

The source image, destination image, and the result image after blitting are shown in Figure 10. The color
range in Figure 10 is shown as [0, 1.0] for the convenience of calculation, the real range in this example is
still [0, 255]. The color sequence in Figure 10 is (R, G, B) for intuitive display, and the real color format is
VG_LITE_BGRA8888.

VG_LITE_BLEND_SRC_OVER:

1

3

5

7 8

6

1

2

3

4

5

7

8

6

VG_LITE_BLEND_DST_OVER:

VG_LITE_BLEND_SRC_IN:

VG_LITE_BLEND_DST_IN:

VG_LITE_BLEND_SCREEN:

VG_LITE_BLEND_MULTIPLY:

VG_LITE_BLEND_ADDITIVE:

VG_LITE_BLEND_SUBTRACT:

S:

D:

S = (0,0,0)
Sa = 0.37

S = (0,0,1)
Sa = 1

D = (1,0,0)
Da = 1

S+(1-Sa)*D

(1-Da)*S+D

Da*S

Sa*D

S+D-S*D

S*(1-Da)+D*(1-Sa)+S*D

S+D

D*(1-Sa)

upper left: (0,0,1)
other area: (0.63,0,0)

upper left: (1,0,0)
other area: (1,0,0)

upper left: (0,0,1)
other area: (0,0,0)

upper left: (1,0,0)
other area: (0.37,0,0)

upper left: (1,0,1)
other area: (1,0,0)

upper left: (0,0,0)
other area: (0.63,0,0)

upper left: (1,0,1)
other area: (1,0,0)

upper left: (0,0,0)
other area: (0.63,0,0)

4

2

Blit

Figure 10. Different blending mode display effects

13 Path control

VGLite provides a series of opcodes for path drawing, such as line, quadratic curve, cubic curve, arc. Both
absolute and relative points are supported. There are some common opcodes in Table 1. Different opcodes
have different arguments:

Opcode Arguments Description

0x00 None End. Close any open path.

0x02 x, y Move to the given vertex (x, y). Close any open path.

0x03 Δx, Δy Move to (startx + Δx, starty + Δy) by the given relative point (Δx, Δy). Close any open path.

0x04 x, y Draw a line to the given point (x, y).

0x05 Δx, Δy Draw a line to (startx + Δx, starty + Δy) by the given relative point (Δx, Δy).

0x06 cx, cy, x, y Draw a quadratic curve to the given endpoint (x, y) using one control point (cx, cy).

0x07 Δcx, Δcy, Δx, Δy
Draw a quadratic curve to (startx + Δx, starty + Δy) by the given relative endpoint (Δx, Δy),
using one control point (startx + Δcx, starty + Δcy), calculated by the given relative point
(Δcx, Δcy).

0x08
cx1, cy1, cx2,
cy2, x, y

Draw a cubic curve to the given endpoint (x, y) using two control points: (cx1, cy1) and (cx2,
cy2).

0x09
Δcx1, Δcy1,
Δcx2, Δcy2, Δx,
Δy

Draw a cubic curve to (startx + Δx, starty + Δy) by the given relative endpoint (Δx, Δy),
using two control points, (startx + Δcx1, starty + Δcy1) and (startx + Δcx2, starty + Δcy2),
calculated by given relative points (Δcx1, Δcy1) and (Δcx2, Δcy2).

Table 1. Common opcodes for path drawing

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
13 / 28

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

The opcode and arguments must have the same alignment. When the argument type is integer type, the type of
opcode is set to be the same as the argument type. But if the argument type is float, the opcode type is set to
be uint32_t to maintain the same alignment. The following code snippet uses a union to achieve this method:

union opcode_coord {
float coord;
uint32_t opcode;
};
static int32_t pathData[] = {
{.opcode=2}, 0.5f, 50.5f, // Move to (0.5, 50.5)
{.opcode=4}, 50.5f, 50.5f, // Line from (0.5, 50.5) to (50.5, 50.5)
{.opcode=4}, 25.5f, 0.5f, // Line from (50.5, 50.5) to (25.5, 0.5)
{.opcode=4}, 0.5f, 50.5f, // Line from (25.5, 0.5) to (0.5, 50.5)
{.opcode=0},
};

The example 01_SimplePath draws a triangle simply, using the structure vg_lite_path_t to describe path
data, bounding box, quality, and so on.

static vg_lite_path_t path = {
 {0, 0, // left,top
 400, 400}, // right,bottom
 VG_LITE_HIGH, // quality
 VG_LITE_S32,
 {0}, // uploaded
 sizeof(pathData), // path length
 pathData, // path data
 1 // path changed
};

The path data array pathData consists of drawing opcodes and following arguments:

static int32_t pathData[] = {
 2, 0, 400, // Move to (0, 400)
 4, 400, 400, // Line from (0,400) to (400, 400)
 4, 200, 0, // Line from (400, 400) to (200, 0)
 4, 0, 400, // Line from (200, 0) to (0, 400)
 0,
};

In 01_SimplePath, pathData includes three opcodes:

• 2: Move to the point specified by the following two coordinates (x and y).
• 4: Draw a line from the previous point to the new point defined by the following two coordinates.
• 0: Finish the path defined above, and close any open path.

02_QuadraticCurves is the same as 01_SimplePath except for the drawing opcode, whose array pathData is:

static int32_t pathData[] = {
 2, 0, 400, //Move to (0, 400)
 4, 400, 400, //Line from (0,400) , to (400, 400)
 6, 400, 200, 200, 0, //Quadratic Curve from (400, 400) to (200, 0) with
 control point in (400, 200)
 6, 0,200, 0, 400, //Quadratic Curve from (200, 0) to (0, 400) with
 control point in (0, 200)
 0,
};

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
14 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_01_SimplePath
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_01_SimplePath
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_02_QuadraticCurves
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_01_SimplePath

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

The new opcode 6 is used to draw the quadratic curve, requiring a control point and an end point.

Figure 11 shows the different results between 01_SimplePath and 02_QuadraticCurves. The second triangle
owns two curved edges because of the opcode 6. As shown in Figure 11, the vertexes of path are marked with
big gray dots, and the control points of the quadratic curves are marked with small gray dots and dashed lines.

Move to:
(0, 400)

Line to:
(400, 400)

Line to:
(200, 0)

Close
Path Move to:

(0, 400)
Line to:
(400, 400)

Quadratic Curve to:
(200, 0)
with Control Point:
(400, 200)

Close
Path

Line to:
(0, 400)

Quadratic Curve to:
(0, 400)
with Control Point:
(0, 200)

01_SimplePath 02_QuadraticCurves
Figure 11. Line path and quadratic curve path

Furthermore, 03_Stroked_CubicCurves draws the cubic curve by the opcode 8. This opcode needs six
arguments: control point 1, control point 2, and end point, such as:

static int32_t pathData[] = {

 // Cubic Curve from (300, 300) to (300, 100)
 // with control point 1 in (254, 228)
 // and control point 2 in (365, 190)
 8, 254, 228, 365, 190, 300, 100,

};

Figure 12 shows the result of 03_Stroked_CubicCurves, with the corresponding control points 1 and 2 of the
cubic curves marked by number, small gray dots, and dashed lines.

Move to:
(200, 400)

Line to:
(300, 300)

Cubic Curve to: (300, 100)
with Control Point 1: (254, 228)
and Control Point 2: (365, 190)

Cubic Curve to: (200, 0)
with Control Point 1: (300, 197)
and Control Point 2: (200, 106)

Cubic Curve to:
(100, 300)
with Control Point 1:
(0, 100)
and Control Point 2:
(200, 300)

Line to:
(200, 400)

Close
Path

1

1

1

2

2

2

2

1

Cubic Curve to:
(100, 100)
with Control Point 1:
(132, 0)
and Control Point 2:
(158, 187)

Figure 12. Cubic curve path

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
15 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_01_SimplePath
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_02_QuadraticCurves
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_03_Stroked_CubicCurves
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_03_Stroked_CubicCurves

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

14 Vector drawing

Using path array, vg_lite_draw() draws contents to specified buffer, with buffer to be drawn target,
path data path, transformation matrix matrix, blending mode blend, fill color color, and specified fill rule
fill_rule (described in detail later), and so on.

For example, the triangle in 01_SimplePath is drawn and filled with 0xFF0000FF (red) by the below code:

vg_lite_draw(&renderTarget, &path, VG_LITE_FILL_EVEN_ODD, &matrix,
 VG_LITE_BLEND_NONE, 0xFF0000FF);

15 Fill rule

Two fill rules are involved in vg_lite_draw(), judging whether one point is inside the path area, which is
drawn:

• VG_LITE_FILL_NON_ZERO: Non-zero fill rule. Suppose that there is a ray from one point to infinity in any
direction. When starting with a count of zero, add one when the path crosses the ray from left to right and
subtract one when the path crosses it from right to left. This point is inside the path area only if the result is not
zero.

• VG_LITE_FILL_EVEN_ODD: Even-odd fill rule. Suppose that there is a ray from one point to infinity in any
direction. When starting with a count of zero, add one when the path crosses the ray from any side. This point
is inside the path area only if the result is odd.

07_FillRules draws one path twice with the above two fill rules separately by the following code:

vg_lite_draw(&renderTarget, &path, VG_LITE_FILL_NON_ZERO, &matrix,
 VG_LITE_BLEND_NONE, 0xFF0000FF);
vg_lite_draw(&renderTarget, &path, VG_LITE_FILL_EVEN_ODD, &matrix,
 VG_LITE_BLEND_NONE, 0xFF0000FF);

Figure 13 shows the two different effects. For VG_LITE_FILL_NON_ZERO mode, the inner diamond area is
filled because both two path segments cross the ray from left to right, so the count is greater than 0, which
means that this point is inside the path area. However, when using VG_LITE_FILL_EVEN_ODD mode, an even
number of segments crosses this ray, the count is even, which means that this point is outside the path area, so
this diamond area is not filled.

+1
+1

VG_LITE_FILL_NON_ZERO VG_LITE_FILL_EVEN_ODD

+1
+1
=2 > 0 =2 is even

OutsideInside

Figure 13. Two fill rules

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
16 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_01_SimplePath
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_07_FillRules

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

16 Stroke

The path stroke is configured by function vg_lite_set_stroke(), including end cap style, line join style,
width, dash pattern, miter limit, dash phase, color, and so on.

03_Stroked_CubicCurves shows nine strokes with different combinations of end cap styles and line join styles
in a loop:

for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 vg_lite_set_stroke(&paths[index], capStyles[i], joinStyles[j],
 10.0f, 5, stroke_dash_pattern, sizeof(stroke_dash_pattern) /
 sizeof(stroke_dash_pattern[0]), 4.0f, 0xff000000);

The end cap style includes:

• VG_LITE_CAP_BUTT: Each segment with a line is perpendicular to the tangent at each endpoint.
• VG_LITE_CAP_ROUND: Append a semicircle with a diameter equal to the line width centered around each

endpoint.
• VG_LITE_CAP_SQUARE: Append a rectangle at each endpoint, whose vertical length is equal to the line

width, and the parallel length is equal to half the line width.

As shown in Figure 14, the red lines mean the real path data, the black and the gray are the drawn strokes
where the gray is added by end cap styles (the gray color is just for highlight, and these areas have the same
color as the line actually, same as below).

VG_LITE_CAP_SQUAREVG_LITE_CAP_ROUNDVG_LITE_CAP_BUTT

Figure 14. Three cap styles

Even if the length of one segment is zero, VG_LITE_CAP_ROUND and VG_LITE_CAP_SQUARE styles make
this segment visible as end caps are added. But this segment is invisible when VG_LITE_CAP_BUTT style is
selected.

The line join style determines the style of the intersection point of two lines, including:

• VG_LITE_JOIN_MITER: Connect the two segments by extending their outer edges until they meet. If this
join style is selected, the input parameter stroke_miter_limit of the vg_lite_set_stroke() function
needs attention, as a small value may limit the miter length.

• VG_LITE_JOIN_ROUND: Append a wedge-shaped portion of a circle, centered at the intersection point,
whose diameter is equal to the line width.

• VG_LITE_JOIN_BEVEL: Connect two points of the outer border of two segments with a straight line.

As shown in Figure 15, the red lines mean the true path, the black and gray lines are the drawn strokes where
the gray is added by line join styles.

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
17 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_03_Stroked_CubicCurves

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

VG_LITE_JOIN_MITER VG_LITE_JOIN_ROUND VG_LITE_JOIN_BEVEL

MITER

LENGTH

Figure 15. Three join styles

vg_lite_set_stroke() function's input parameter stroke_dash_pattern is a sequence of lengths of
alternating non-blank and blank dash segments. If there are an odd number of elements, the final element is
ignored.

Dash pattern is defined by the array stroke_dash_pattern in 03_Stroked_CubicCurves, as illustrated in
Figure 16. The first element 30.0f means that the first line segment length is 30, and the second element 20.0f
means that the following part is a blank space of a length of 20. And so on, the following are a line segment with
a length of 50 and a blank space with a length of 25. Then subsequent segments keep repeating these four
elements.

float stroke_dash_pattern[4] = {30.0f, 20.0f, 50.0f, 25.0f};

30 50

20 25

···

30

20

One
Period

Repeat

Figure 16. Dash pattern

And the parameter stroke_dash_phase defines the starting point in the dash pattern.
03_Stroked_CubicCurves sets it to 4, indicating that the dash skips the first part of length 4, as shown in
Figure 17.

30 50

20 25

···

30

20

Repeat

StartPhase: 4

One
Period

Figure 17. Dash phase is 4

If input stroke_dash_phase is greater than the whole length of the dash pattern, segments in the first period
are skipped, and the remaining value continues to skip segments in the subsequent periods. For example, if the
stroke_dash_phase is 129, as shown in Figure 18, the whole part with a length of 125 in the first period is
skipped, and then the part of length 4 in the second period is skipped. In this case, the display effect is the same
as when stroke_dash_phase is 4.

One
Period

30 50

20 25

···

30

20

Repeat

Start

Phase: 129
125 4

Figure 18. Dash phase is 129

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
18 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_03_Stroked_CubicCurves
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_03_Stroked_CubicCurves

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

17 Linear gradient

Path can also be filled with a linear or radial gradient color instead of a solid color.

Features of linear gradient are described by the structure vg_lite_linear_gradient_t, including:

• colors: Color array for the gradient, uint32_t type with 32-bit ARGB format, instead of structure
vg_lite_color_t with 32-bit ABGR format.

• count: Number of colors.
• stops: Color stop offsets, from 0 to 255.
• matrix: The matrix to transform the gradient.

This structure is initialized by the function vg_lite_init_grad() with default configuration, set and updated
by functions vg_lite_set_grad() and vg_lite_update_grad().

The matrix of linear gradient is gotten by the function vg_lite_get_grad_matrix（）. General
transformation functions like vg_lite_identity(), vg_lite_translate(), vg_lite_scale() and
vg_lite_rotate() are suitable for this matrix, to transform the corresponding linear gradient.

Then vg_lite_draw_gradient() is called to draw the path filled with linear gradient color. The area of path
outside the linear gradient will be filled with the closest stop color.

In 04_LinearGradient, there is an array defining three stops, distributed at 0, 127, and 255. And another array
defines corresponding colors (pure red, green, and blue separately) with BGRA8888 format, as shown in the
following code snippet:

/* Gradient information. The ramps specify the color information at each one of
 the stops */
uint32_t ramps[] = {0xffff0000, 0xff00ff00, 0xff0000ff};

/* Stops define the offset, where in the line those color ramps will be located.
 It can go from 0 to 255 */
uint32_t stops[] = {0, 128, 255};

Then initialization, configuration, and update are executed by the following code:

vg_lite_init_grad(&grad))

/* Create the gradient using the values from the structures we defined */
vg_lite_set_grad(&grad, 3, ramps, stops);
vg_lite_update_grad(&grad);

Get the transform matrix of gradient and place it inside the path, draw it finally:

/* Locate the gradient in the gradient coordinate system */
gradientMatrix = vg_lite_get_grad_matrix(&grad);
vg_lite_identity(gradientMatrix);
vg_lite_translate(100,0,gradientMatrix);
vg_lite_scale(200.0/256,1.0f,gradientMatrix);
vg_lite_draw_gradient(&renderTarget, &path, VG_LITE_FILL_EVEN_ODD, &matrix,
 &grad, VG_LITE_BLEND_NONE);

Figure 19 shows the display result, where two gray dash lines mark the border of the linear gradient. Obviously,
the left and right sides of path are outside gradient, which is filled with pure red and pure blue separately.

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
19 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_04_LinearGradient

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

2

3

2

1 Stop 1, Offset: 0, Color: Red

Stop 2, Offset: 127, Color: Green

Stop 3, Offset: 255, Color: Blue

1 3

Figure 19. Linear gradient

The gradient drawn by this method is simulated by software, as vg_lite_draw_gradient() is achieved
by vg_lite_draw_pattern() (detailed later). i.MX RT500, RT1160, and RT1170 all support this method,
while the latter two gradient-drawing methods (Section 18 and Section 19) are not supported by RT500, which
is based on hardware.

18 Radial gradient

Features of radial gradient are defined by structure vg_lite_radial_gradient_t, mainly including:

• count: Count of colors, up to 256.
• matrix: The matrix to transform the gradient.
• radialGradient: Radial gradient parameters.
• vgColorRamp: Stops and colors for gradient.
• SpreadMode: The gradient spread mode. There are four spread modes:

– VG_LITE_RADIAL_GRADIENT_SPREAD_FILL: Fill the outside area with black color.
– VG_LITE_RADIAL_GRADIENT_SPREAD_PAD: Fill the outside area with the closest stop color.
– VG_LITE_RADIAL_GRADIENT_SPREAD_REPEAT: Fill the outside area with a repeated gradient.
– VG_LITE_RADIAL_GRADIENT_SPREAD_REFLECT: Fill the outside area with a reflected gradient.

In 05_RadialGradient, four small rectangles with different spread modes are blit side by side, filled with radial
gradient.

For parameter vgColorRamp, there are five members in the following code. Each member includes one stop
and a corresponding color. Five sub members in each member represent stop, red channel, green channel, blue
channel, and alpha channel separately. Though the color values are in the range of [0, 1.0], they are mapped to
an 8-bit pixel value [0, 255] actually.

static vg_lite_color_ramp_t vgColorRamp[] =
{
 {0.0f, 0.4f, 0.0f, 0.6f, 1.0f},
 {0.25f, 0.9f, 0.5f, 0.1f, 1.0f},
 {0.5f, 0.8f, 0.8f, 0.0f, 1.0f},
 {0.75f, 0.0f, 0.3f, 0.5f, 1.0f},
 {1.00f, 0.4f, 0.0f, 0.6f, 1.0f}
};

The parameter radialGradient is defined by vg_lite_radial_gradient_parameter_t, including five
numbers. The first number is the gradient radius, the next two numbers are x and y coordinates of the gradient
center, and the last two numbers are x and y coordinates of the focal point. In this example, the gradient radius

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
20 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_05_RadialGradient

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

is 256, and the coordinates of the gradient center are equal to the focal point. Both are at (256, 256). In this
case, this radial gradient is a concentric circle:

vg_lite_radial_gradient_parameter_t radialGradient = {256.0f, 256.0f, 256.0f,
 256.0f, 256.0f};

Functions vg_lite_set_rad_grad() and vg_lite_update_rad_grad() are called to configure and
update the radial gradient respectively:

vg_lite_set_rad_grad(&grad, 5, vgColorRamp, radialGradient,
 spreadmode[fcount],1);
vg_lite_update_rad_grad(&grad);

vg_lite_get_rad_grad_matrix() gets the transformation matrix of the radial gradient, and
general transformation functions, such as vg_lite_identity(), vg_lite_translate(),
are suitable for this matrix. After transforming the radial gradient to make it inside the path, the
vg_lite_draw_radial_gradient() function draws it finally:

matGrad = vg_lite_get_rad_grad_matrix(&grad);
vg_lite_identity(matGrad);
......
vg_lite_draw_radial_gradient(fb, &path, VG_LITE_FILL_EVEN_ODD, &matPath, &grad,
 0,
VG_LITE_BLEND_NONE, VG_LITE_FILTER_LINEAR);

Once an error happens, a cleaning up work of this radial gradient is executed by calling the function
vg_lite_clear_radial_grad():

vg_lite_clear_radial_grad(&grad);

Figure 20 shows the display result of this example, where four rectangles are divided by black dash lines. And
two gray dash lines mark the edge of the radial gradient. Four rectangles apply four spread modes separately,
so that four outside areas are filled with different colors or gradients.

VG_LITE_RADIAL_GRADIENT_
SPREAD_FILL

VG_LITE_RADIAL_GRADIENT_
SPREAD_PAD

VG_LITE_RADIAL_GRADIENT_
SPREAD_REPEATFill

VG_LITE_RADIAL_GRADIENT_
SPREAD_REFLECT

3

5

4

2

1

3

5

4

2

1 Stop 1, Offset: 0.00, Color:

Stop 2, Offset: 0.25, Color:

Stop 3, Offset: 0.50, Color:

Stop 4, Offset: 0.75, Color:

Stop 5, Offset: 1.00, Color:

Figure 20. Radial gradient

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
21 / 28

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

19 Extended linear gradient

Similar to the radial gradient, there is another structure for the linear gradient,
vg_lite_linear_gradient_ext_t. It defines the extended linear gradient parameters, including:

• count: Count of colors, up to 256.
• matrix: The matrix to transform the gradient.
• linearGradient: Linear gradient parameters.
• vgColorRamp: Stops and colors for gradient.
• SpreadMode: The gradient spread mode, same as the four spread modes of radial gradient.

There are some differences between the two structures involving linear gradient,
vg_lite_linear_gradient_t and vg_lite_linear_gradient_ext_t:

• vg_lite_linear_gradient_t sets colors and stops in two arrays respectively, the type of colors
is uint32_t with BGRA8888 format, such as 0xFFFF0000 (red), and the range of stops is [0, 255].
But vg_lite_linear_gradient_ext_t stores both colors and stops in an array of structure
vg_lite_color_ramp_t, in which stops and four channels (RGBA) of color are all floating point with a
range of [0, 1.0].

• vg_lite_linear_gradient_t always uses the closest stop color to fill the outside area of gradient. While
vg_lite_linear_gradient_ext_t has four different spread modes to define the gradient padding mode.

In 06_LinearExtGradient, four small rectangles are blit side by side, filled with a linear gradient with four different
spread modes. The code structures of 05_RadialGradient and 06_LinearExtGradient are similar.

For the parameter vgColorRamp, the following code sets five stops and the corresponding colors of this linear
gradient. Five sub members in each member represent stop, and R, G, B, A channels separately:

static vg_lite_color_ramp_t vgColorRamp[] =
 {
 {0.0f, 0.4f, 0.0f, 0.6f, 1.0f},
 {0.25f, 0.9f, 0.5f, 0.1f, 1.0f},
 {0.5f, 0.8f, 0.8f, 0.0f, 1.0f},
 {0.75f, 0.0f, 0.3f, 0.5f, 1.0f},
 {1.00f, 0.4f, 0.0f, 0.6f, 1.0f}
 };

The parameter linearGradient affects the radial direction for a linear gradient. It is defined by the structure
vg_lite_linear_gradient_parameter_t, including four numbers. The first two numbers are x and y
coordinates of start point, and the last two are x and y coordinates of end point. For this example, set the radial
direction of linear gradient from (160, 100) to (480, 100) with the following code:

vg_lite_linear_gradient_parameter_t radialGradient = {160.0f, 100.0f, 480.0f,
 100.0f};

Then the functions vg_lite_set_linear_grad() and vg_lite_update_linear_grad() configure and
update the linear gradient.

vg_lite_set_linear_grad(&grad, 5, vgColorRamp, radialGradient,
 spreadmode[fcount], 1);
vg_lite_update_linear_grad(&grad);

The transform matrix of this gradient is gained by the function vg_lite_get_linear_grad_matrix() to
place it inside the path. The function vg_lite_draw_linear_gradient() draws it finally:

matGrad = vg_lite_get_linear_grad_matrix(&grad);

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
22 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_06_LinearExtGradient
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_05_RadialGradient
https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_06_LinearExtGradient

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

......
vg_lite_draw_linear_gradient(fb, &path, VG_LITE_FILL_EVEN_ODD, &matPath, &grad,
 0, VG_LITE_BLEND_NONE, VG_LITE_FILTER_LINEAR);

A cleaning up work of this linear gradient is supported with the following code:

vg_lite_clear_linear_grad(&grad);

Figure 21 shows the display result of this example, two gray dash lines mark the border of the linear gradient.
Four rectangles are divided by black dash lines, four different spread modes result in that four outside areas are
filled with different colors or gradients correspondingly.

VG_LITE_RADIAL_GRADIENT_
SPREAD_FILL

VG_LITE_RADIAL_GRADIENT_
SPREAD_PAD

VG_LITE_RADIAL_GRADIENT_
SPREAD_REPEATFill

VG_LITE_RADIAL_GRADIENT_
SPREAD_REFLECT

3 5421

3

5

4

2

1 Stop 1, Offset: 0.00, Color:

Stop 2, Offset: 0.25, Color:

Stop 3, Offset: 0.50, Color:

Stop 4, Offset: 0.75, Color:

Stop 5, Offset: 1.00, Color:

Figure 21. Extended linear gradient

20 Fill pattern

In addition to solid color and gradient, a path can also be filled with an image when replacing the regular
vg_lite_draw() function with the vg_lite_draw_pattern() function.

There are two image fill pattern modes below, defined by the enumeration vg_lite_pattern_mode:

• VG_LITE_PATTERN_COLOR: Fill the area outside the image with a specified color.
• VG_LITE_PATTERN_PAD: Expand the color of the image border to fill the outside area.

13_PatternFill applies these two pattern modes separately, achieved by the code below:

vg_lite_draw_pattern(&renderTarget, &path, VG_LITE_FILL_EVEN_ODD, &matPath,
 &image, &matrix, VG_LITE_BLEND_NONE, VG_LITE_PATTERN_COLOR, 0xffaabbcc,
 mainFilter);
vg_lite_draw_pattern(&renderTarget, &path, VG_LITE_FILL_EVEN_ODD, &matPath,
 &image, &matrix, VG_LITE_BLEND_NONE, VG_LITE_PATTERN_PAD, 0xffaabbcc,
 mainFilter);

In the above code, a matrix matPath is used to transform path. In addition, image is the source buffer storing
image, whose transformation is controlled by another matrix matrix.

When applying VG_LITE_PATTERN_COLOR mode, the solid color is needed to fill the area outside the image,
which is set to 0xffaabbcc in this example. But it's not necessary in another mode, as the area outside is already
filled by the image border.

Figure 22 shows the result, in which gray dash lines mark the outline of the images.

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
23 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_13_PatternFill

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

VG_LITE_PATTERN_COLOR VG_LITE_PATTERN_PAD
(Paint Color: 0xFFAABBCC)

Figure 22. Two fill patterns

21 Multitask

VGLite is based on FreeRTOS that has multitask scheduling capabilities. Displaying different parts of the GUI in
various tasks is a feasible solution. And it's common in actual projects that other tasks receive and process the
data from sensors, and VGLite task displays them on the GUI.

20_Multitask creates two tasks: vglite_task and vglite_task2. The two tasks draw two rotating tigers
separately. Every task must do the initialization work of VGLite:

// vglite_task
// Initialize the draw.
vg_lite_init(TW / 2, TH / 2);
// Set GPU command buffer size for this drawing task.
vg_lite_set_command_buffer_size(VGLITE_COMMAND_BUFFER_SZ);
......
// vglite_task2
// Initialize the draw.
vg_lite_init(DEMO_BUFFER_WIDTH / 2, DEMO_BUFFER_HEIGHT / 2);
// Set GPU command buffer size for this drawing task.
vg_lite_set_command_buffer_size(VGLITE_COMMAND_BUFFER_SZ);

vglite_task gets the render target buffer by calling VGLITE_GetRenderTarget(), and draws tiger on
it. vglite_task2 clears one of three buffers in tmp_buf to blue draws on it in turn, specified by index.
Then vglite_task2 calls vg_lite_finish() to submit the command buffer to the GPU and wait
it to complete. This drawn buffer is blit to the target buffer in vglite_task. Then vglite_task calls
VGLITE_SwapBuffers() to switch the frame buffer and achieve displaying of two tigers. The code snippet is
shown in the following code:

// vglite_task
vg_lite_buffer_t *rt = VGLITE_GetRenderTarget(&window);
// Draw the path using the matrix.
vg_lite_clear(rt, NULL, 0xFFFFFFFF);
for (count = 0; count < pathCount; count++)
 vg_lite_draw(rt, &path[count], VG_LITE_FILL_EVEN_ODD, &matrix,
 VG_LITE_BLEND_NONE, color_data[count]);

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
24 / 28

https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170/tree/main/evkmimxrt1170_20_Multitask

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

vg_lite_blit(rt, &tmp_buf[(index+2) % 3], &mat,VG_LITE_BLEND_NONE, 0,
 VG_LITE_FILTER_POINT);
/* Switch the current framebuffer to be displayed */
VGLITE_SwapBuffers(&window);
......
// vglite_task2
index = index % 3;
// Draw the path using the matrix.
vg_lite_clear(&tmp_buf[index], NULL, 0xFFFF0000);
for (count = 0; count < pathCount; count++)
 error = vg_lite_draw(&tmp_buf[index], &path[count], VG_LITE_FILL_EVEN_ODD,
 &matrix2, VG_LITE_BLEND_NONE, color_data[count]);
index++;
vg_lite_finish();

Figure 23 shows the result, where the gray dash lines mark the content of buffer written by vglite_task2:

Tiger drawn by vglite_task,
keeps rotating and scaling

Tiger drawn by vglite_task2,
keeps rotating

PANEL

tmp_buf[index]

Figure 23. Multitask

22 References

• i.MX RT VGLite API Reference Manual (document IMXRTVGLITEAPIRM)
• i.MX RT1170 Heterogeneous Graphics Pipeline (document AN13075)
• Porting VGLite Driver for Bare Metal or Single Task (document AN13778)
• VGLite Driver Porting Guide (document IMXRTVGLITEPG)
• OpenVG 1.1 Lite Specification
• Compositing and Blending Level 1

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
25 / 28

https://www.nxp.com/doc/IMXRTVGLITEAPIRM
https://www.nxp.com/doc/AN13075
https://www.nxp.com/doc/AN13778
https://www.nxp.com/doc/IMXRTVGLITEPG
https://github.com/KhronosGroup/OpenVG-Docs/blob/main/Lite-Specification/openvg_lite_spec.md
https://www.w3.org/TR/compositing-1/%23blendingmultiply

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

23 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

24 Revision history

Table 2 summarizes the revisions to this document.

Document ID Release date Description

AN14210 v.1 26 February 2024 Initial public release

Table 2. Revision history

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
26 / 28

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
Amazon Web Services, AWS, the Powered by AWS logo, and FreeRTOS
— are trademarks of Amazon.com, Inc. or its affiliates.
i.MX — is a trademark of NXP B.V.
SEGGER Embedded Studio — is a trademark of SEGGER Microcontroller
GmbH.

AN14210 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 February 2024
27 / 28

mailto:PSIRT@nxp.com

NXP Semiconductors AN14210
Learning VGLite API Programming on i.MX RT Series

Contents
1 Introduction .. 2
2 Architecture of VGLite examples 2
3 Initialization/Deinitialization3
4 Clear ..3
5 Color type ...3
6 Raster blitting .. 4
7 Transformation ...5
8 Rectangle blitting ...6
9 Pixel buffer ... 7
10 Color format ... 8
11 Image mode ..10
12 Blending mode ...12
13 Path control ..13
14 Vector drawing ...16
15 Fill rule ..16
16 Stroke ..17
17 Linear gradient ...19
18 Radial gradient ...20
19 Extended linear gradient22
20 Fill pattern .. 23
21 Multitask ... 24
22 References ..25
23 Note about the source code in the

document ..26
24 Revision history ...26

Legal information ...27

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 26 February 2024
Document identifier: AN14210

	1 Introduction
	2 Architecture of VGLite examples
	3 Initialization/Deinitialization
	4 Clear
	5 Color type
	6 Raster blitting
	7 Transformation
	8 Rectangle blitting
	9 Pixel buffer
	10 Color format
	11 Image mode
	12 Blending mode
	13 Path control
	14 Vector drawing
	15 Fill rule
	16 Stroke
	17 Linear gradient
	18 Radial gradient
	19 Extended linear gradient
	20 Fill pattern
	21 Multitask
	22 References
	23 Note about the source code in the document
	24 Revision history
	Legal information
	Contents

