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1  Introduction

 

The C programming language is a powerful, flexible and potentially 
portable high-level programming language. These and other features, 
such as support for low-level operations, make this a useful language for 
programming embedded applications. Many embedded applications use 
low-cost microcontrollers with an 8-bit data bus. Such microcontrollers 
often have limited on-chip resources, such as few CPU registers and 
limited amounts of RAM and ROM. Compared to other 8-bit 
microcontrollers, the HC08 architecture is well suited to the C 
programming language. It has an effective instruction set with 
addressing modes which enable efficient implementation of C 
instructions. The instruction set includes instructions for manipulating 
the stack pointer. The addressing modes include indexed addressing 
modes with the index contained in the index register or the stack pointer 
register. These features allow efficient access to local variables. The C 
language may be used successfully to create the program for the HC08 
microcontroller, but to produce the most efficient machine code, the 
programmer must carefully construct the C language program. In this 
context, “efficient code” means compact code size and fast execution 
time. The programmer must not only create an efficient high level 
design, but also pay attention to the detailed implementation. Principally, 
efficiency improvements may be obtained by appropriate design of data 
structures and use of data types. Programmers accustomed to coding in 
assembly language will be familiar with these issues and C 
programmers should remember that their C code is converted into 
assembly language by the compiler. In actual fact, the compiler will 
recognise certain constructs in C and replace them with functions or 
in-line code which have often been hand coded in assembly. Thus a 
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compiler is no more efficient that a good assembly programmer. It is 
however, much easier to write good code in C which can be converted 
into efficient assembly code than it is to write efficient assembly code by 
hand. The potential drawback is that it is very easy to create C code 
which no compiler, no matter how good, can convert into efficient 
assembly code.

Some hints and tips are presented in this paper to aid the programmer 
to write their code in C in a way in which a compiler can convert into 
efficient machine code. Some of these tips will also improve the 
portability of the code. Examples are given based on real compiler 
output generated by the Hiware HC08 compiler from Metrowerks Europe 
(formerly Hiware AG), a Freescale company.

 

2  CPU08 Register Model

 

Figure 1  CPU08 Register Model

 

An overview of the CPU08 register model is given here for 
completeness. The CPU08 has five registers which are not part of the 
memory map. These registers are briefly described.

 

Accumulator

 

The accumulator is a general purpose 8-bit register. The CPU uses the 
accumulator to hold the operands and results of operations.

 

Index Register

 

The 16-bit index register is called H:X and is used by indexed addressing 
modes to determine the effective address of an operand. The index 
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Addressing Modes

 

register can access a 64K byte address space in this mode. The lower 
byte X is used to hold the operand for the MUL and DIV instructions. H:X 
can also serve as a temporary data storage location.

 

Stack Pointer

 

The 16-bit stack pointer is used to hold the address of the next available 
location on the stack. The CPU uses the contents of the stack pointer 
register as an index to access operands on the stack in stack pointer 
offset addressing modes. The stack can be located anywhere where 
there is RAM in the 64K byte address space.

 

Program Counter

 

The 16-bit program counter contains the address of the next instruction 
or operand to be fetched. The program counter can access a 64K byte 
address space.

 

Condition Code
Register

 

The 8-bit condition code register contains the global interrupt mask bit 
and five flags that indicate the results of the instruction just executed. 
Bits 5 and 6 are permanently set to logic 1.

 

3  Addressing Modes

 

The CPU08 has 16 different addressing modes. A brief overview is given 
here.

 

Inherent

 

Inherent instructions have no operand to fetch and require no operand 
address. Most are one byte long.

 

Immediate

 

The operand for immediate instructions is contained in the bytes 
immediately following the opcode. Immediate instructions therefore 
have constant operands.

 

Direct

 

Direct instructions are used to access operands in the direct page, i.e. in 
the address range $0000 to $00FF. The high-order byte of the address 
is not included in the instruction, thus saving one byte and one execution 
cycle compared to extended addressing.

 

Extended

 

Extended instructions can access operands at any address in a 
64K byte memory map. All extended instructions are three bytes long.

 

Indexed

 

Indexed instructions use the contents of the 16-bit index register to 
access operands with variable addresses, such as variables accessed 
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through a pointer. There are five modes of indexed addressing: indexed, 
no offset, with or without a post-increment of the index register; indexed, 
8-bit offset, with or without a post-increment of the index register; and 
indexed with a 16-bit offset.

 

Stack Pointer

 

Stack pointer instructions are similar to indexed instructions only they 
use the contents of the stack pointer as an address of the operand 
instead of the index register. There are two modes of stack pointer 
addressing: stack pointer with an 8-bit offset and with a 16-bit offset. 
Stack pointer instructions require one extra byte and one extra execution 
cycle compared to the equivalent indexed instruction.

 

Relative

 

All conditional branch instructions use relative addressing evaluate the 
effective address. If the branch condition is true, the CPU evaluates the 
branch destination by adding the signed byte following the opcode to the 
program counter. The branch range is –128 to +127 bytes from the 
address after the branch instruction.

 

Memory to
Memory

 

Memory to memory instructions copy data from one location to another. 
One of the locations is always in the direct page. There are four modes 
of memory to memory instructions: move immediate data to direct 
location; move direct location to direct location; move indexed location 
to direct location with post-increment of the index register; and move 
direct location to indexed location with post-increment of the index 
register.

 

4  Basic Data Types 

 

Easily the greatest savings in code size and execution time can be made 
by choosing the most appropriate data type for variables. This is 
particularly true for 8-bit microcontrollers where the natural internal data 
size is 8-bits (one byte) whereas the C preferred data type is ‘int’. The 
ANSI standard does not precisely define the size of its native types, but 

 

Table 1  Basic Data Types

 

Data Type Size Range (unsigned) Range (signed)

 

char 8 bits 0 to 255 –128 to 127
short int 16 bits 0 to 65535 –32768 to 32767
int 16 bits 0 to 65535 –32768 to 32767
long int 32 bits 0 to 4294967295 –2147483648 to 2147483647
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Basic Data Types

 

compilers for 8-bit microcontroller’s usually implement ‘int’ as a signed 
16-bit value. As 8-bit microcontrollers can process 8-bit data types more 
efficiently than 16-bit types, ‘int’ and larger data types should only be 
used where required by the size of data to be represented. Double 
precision and floating point operations are particularly inefficient and 
should be avoided wherever efficiency is important. This may seem 
obvious, but it is often overlooked and has a huge impact on code size 
and execution time.

As well as the magnitude of the required data type, the signedness must 
also be specified. The ANSI standard for C specifies ‘int’ to be signed by 
default, but the of ‘char’ is not defined and may vary between compilers. 
Thus to create portable code, the data type ‘char’ should not be used at 
all. Instead the signedness should be defined explicitly: ‘unsigned char’ 
or ‘signed char’. It is good practice to create type definitions for these 
data types in a header file which is then included in every other file. It is 
also worthwhile to create type definitions for all the other data types 
which are used as well, for consistency, and to allow for portability 
between compilers. Something like the following may be used:

 

typedef unsigned char UINT8;
typedef   signed char SINT8;
typedef unsigned int  UINT16;
typedef          int  SINT16;
typedef unsigned long int UINT32;
typedef          long int SINT32;

 

A variable is typically used in more than one expression, but some of 
those expressions may not require the full data size or signedness of the 
variable. In this case, savings can be made by casting the variable, or 
part of the expression containing the variable, to the most appropriate 
data size.

Summary:

• Create type definitions for all data types used. 

• Use the smallest data type appropriate to each variable.

• Use signed data types only when required.

• Use casts within expressions to reduce data types to the minimum 
required.
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5  Local versus Global Variables

 

Variables can be classified by their scope. Global variables are 
accessible by any part of the program and are allocated permanent 
storage in RAM. Local variables are accessible only by the function 
within which they are declared and are allocated storage on the stack. 
Local variables therefore only occupy RAM while the function to which 
they belong is running. Their absolute address cannot be determined 
when the code is compiled and linked so they are allocated memory 
relative to the stack pointer. To access local variables the compiler may 
use the stack pointer addressing mode. This addressing mode requires 
one extra byte and one extra cycle to access a variable compared to the 
same instruction in indexed addressing mode. If the code requires 
several consecutive accesses to local variables, the compiler will usually 
transfer the stack pointer to the 16-bit index register and use indexed 
addressing instead. The 'static' access modifier may be used with local 
variables. This causes the local variable to be permanently allocated 
storage in memory, like a global variable, so the variable's value is 
preserved between function calls. However the static local is still only 
accessible by the function within which it is declared.

Global variables are allocated permanent storage in memory at an 
absolute address determined when the code is linked. The memory 
occupied by a global variable cannot be reused by any other variable. 
Global variables are not protected in any way, so any part of the program 
can access a global variable at any time. This gives rise to the issue of 
data consistency for global variables of more than a single byte in size. 
This means that the variable data could be corrupted if part of the 
variable is derived from one value and the rest of the variable is derived 
from another value. Inconsistent data arises when a global variable is 
accessed (read or written) by one part of the program and before every 
byte of the variable has been accessed the program is interrupted. This 
may be due to a hardware interrupt for example, or an operating system, 
if one is used. If the global variable is then accessed by the interrupting 
routine then inconsistent data may result. This must be avoided if 
reliable program execution is desired and this is often achieved by 
disabling interrupts while accessing global variables. 

The 'static' access modifier may also be used with global variables. This 
gives some degree of protection to the variable as it restricts access to 
the variable to those functions in the file in which the variable is declared. 

The compiler will generally use the extended addressing mode to access 
global variables or indexed addressing mode if they are accessed 
though a pointer. The use of global variables does not generally result in 
significantly more efficient code than local variables. There are some 
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limited exceptions to this generalisation, one being when the global 
variable is located in the direct page.

However, use of global variables prevents a function from being 
recursive or reentrant, and often does not make the most efficient use of 
RAM, which is a limited resource on most microcontrollers. The 
programmer must therefore make a careful choice in deciding which 
variables, if any, to make global in scope. Worthwhile gains in efficiency 
can sometimes be obtained by making just a few of the most intensively 
used variables global in scope, particularly if these variables are located 
in the direct page.

Summary:

• Careful analysis is required when deciding which variables to 
make global in scope.

 

6  Direct Page Variables

 

The address range $0000 to $00FF is called the direct page, base page 
or zero page. On the M68HC08 microcontrollers, the lower part of the 
direct page always contains I/O and control registers and the upper part 
of the direct page always contains RAM. After a reset, the stack pointer 
always contains the address $00FF. The direct page is important 
because most CPU08 instructions have a direct addressing mode 
whereby they can access operands in the direct page in one clock cycle 
less than in extended addressing mode. Furthermore the direct 
addressing mode instruction requires one less byte of code. A few highly 
efficient instructions will only work with direct page operands. These are: 
BSET, BCLR, BRSET and BRCLR. The MOV instruction requires one of 
the operands to be in the direct page.

A compiler cannot take advantage of the efficient direct addressing 
mode unless variables are explicitly declared to be in the direct page. 
There is no ANSI standard way of doing this and compilers generally 
offer different solutions. The Hiware compiler uses a #pragma 
statement:

 

#pragma DATA_SEG SHORT myDirectPageVars
UINT16 myDirectPageVar1; /* unsigned int in direct page */
#pragma DATA_SEG DEFAULT

 

This declares the direct page segment myDirectPageVars which 
contains the variable myDirectPageVar1 which may be accessed using 
the direct addressing mode. The programmer must remember to make 
the linker place the myDirectPageVars segment at an address in the 
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direct page. The amount of RAM in the direct page is always limited, so 
only the most intensively used variables should be located in the direct 
page. To release more of the direct page RAM for global variables, the 
stack can be relocated to RAM outwith the direct page, if available. This 
will not affect the stack pointer addressing modes.

Many I/O and control registers are located in the direct page and they 
should be declared as such so the compiler can use the direct 
addressing mode where possible. Two possible ways to do this are:

Define the register name and its address together:

 

#define PortA (*((volatile UINT8 *)(0x0000)))  
#define PortB (*((volatile UINT8 *)(0x0001)))  

 

or define the register names in a direct page segment and define the 
segment address at link time:

 

#pragma DATA_SEG SHORT myDirectPagePortRegisters
volatile UINT8 PortA;
volatile UINT8 PortB;
#pragma DATA_SEG DEFAULT

 

Summary:

• Declare all direct page registers to the compiler.

• Put only the most frequently used variables in the direct page.

• Release more direct page RAM for variables by relocating the 
stack.

 

7  Loops

 

If a loop is to be executed less than 255 times, use 'unsigned char' for 
the loop counter type. If the loop is to be executed more than 255 times, 
use 'unsigned int' for the loop counter. This is because 8-bit arithmetic is 
more efficient than 16-bit and unsigned arithmetic is more efficient than 
signed.

If the value of the loop counter is immaterial, it is more efficient to 
decrement the counter and compare with zero than to increment and 
compare with a non-zero value. This optimisation is not effective if the 
loop must be executed with the loop counter equal to zero, such as when 
the loop counter is used to index an array element and the first element 
must be accessed.
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If the loop counter is used in expressions within the loop, remember to 
cast it to the most appropriate data type each time it is used.

When a loop is performed a fixed number of times and that number is 
small, such as three or four, it is often more efficient not to have a loop 
at all. Instead, write the code explicitly as many times as required. This 
will result in more lines of C code but will often generate less assembly 
code and may execute much faster than a loop. The actual savings will 
vary, depending on the code to be executed.

In summary

• Use the smallest appropriate unsigned type for the loop counter. 

• Decrement the loop counter and compare with zero where 
possible.

• If the loop counter is used within the loop, cast it to the most 
appropriate data type. 

• Do not use a loop if code is to be executed a small, fixed number 
of times.

 

8  Data Structures

 

When programming in C it is easy to create complex data structures, for 
example an array of structures with each structure containing a number 
of different data types. This will produce complex and slow code on a 
8-bit microcontroller which has a limited number of CPU registers to use 
for indexing. Each level of de-referencing will result in a multiplication of 
the element number by the element size, with the result probably pushed 
onto the stack in order to do the next calculation. Structures should be 
avoided where possible and the data structures kept simple. This can be 
done by organising data into simple one-dimensional arrays of a simple 
data type. This will result in a greater number of arrays, but the program 
will be able to access the data much more quickly. If structures are 
unavoidable, they should not be passed as a function argument or a 
function return value, they should be passed by reference instead. 

Summary

• Do not use complex data structures.
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9  Examples

 

Examples of assembly code generated by the Hiware HC08 compiler 
are described in this section, based on the following type definitions:

 

typedef unsigned char UINT8;
typedef   signed char SINT8;
typedef unsigned int  UINT16;
typedef          int  SINT16;

 

9.1  Register1

 

This example illustrates bit manipulation for a register in the direct page 
(PORTA) and for one not in the direct page (CMCR0). Setting or clearing 
one or more bits in a register not in the direct page requires 7 bytes of 
ROM and 9 CPU cycles. Setting or clearing multiple bits in a register in 
the direct page requires 6 bytes of ROM and 8 CPU cycles. Setting or 
clearing a single bit of a register in the direct page requires 2 bytes of 
ROM and 4 CPU cycles.

 

C Code Assembly Code Bytes Cycles

 

#define PORTA   (*((volatile UINT8 *)(0x0000)))
#define CMCR0   (*((volatile UINT8 *)(0x0500)))

void
register1(void) LDHX   #0x0500

 

3 3

 

{ LDA    ,X

 

1 2

 

CMCR0 &= ~0x01;  /* clr bit1 */ AND    #0xFE

 

2 2

 

PORTA |=  0x03;  /* set b1,2 */ STA    ,X

 

1 2

 

PORTA &= ~0x02;  /* clr bit2 */ LDA    0x00

 

2 3

 

} ORA    #0x03

 

2 2

 

STA    0x00

 

2 3

 

BSET   0,0x00

 

2 4

 

RTS

 

1 4
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Datacopy1

 

9.2  Datacopy1

 

This is an example of the inappropriate use of ‘int’ for variable ‘i’ which 
is used as both the loop counter and the array index. The compiler is 
forced to use signed 16-bit arithmetic to calculate the address of each 
element of dataPtr[]. This routine requires 50 bytes of ROM and with 4 
iterations of the loop, executes in 283 CPU cycles.

 

C Code Assembly Code Bytes Cycles

 

UINT8 buffer[4];

void

 

PSHA   1 2

 

datacopy1(UINT8 * dataPtr)

 

PSHX   1 2

 

{

 

AIS    #-2 2 2

 

    int i;

 

TSX    1 2
CLR    1,X 2 3

 

    for (i = 0; i < 4; i++)

 

CLR    ,X 1 2

 

    {

 

TSX    1 2

 

        buffer[i] = dataPtr[i];   

 

LDA    3,X 2 3

 

    }

 

ADD    1,X 2 3

 

}

 

PSHA   1 2
LDA    ,X 1 2
ADC    2,X 2 3
PSHA   1 2
PULH   1 2
PULX   1 2
LDA    ,X 1 2
TSX    1 2
LDX    ,X 1 2
PSHX   1 2
LDX    3,SP 3 4
PULH   1 2
STA    buffer,X 3 4
TSX    1 2
INC    1,X 2 4
BNE    *1       2 3
INC    ,X 1 3
LDA    ,X 1 2
PSHA   1 2
LDX    1,X 2 3
PULH   1 2
CPHX   #0x0004 3 3
BLT    *-39     2 3
AIS    #4 2 2
RTS 1 4
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9.3  Datacopy2

 

In this example, the loop counter and array index variable is optimised 
to an ‘unsigned char’. This routine now requires 33 bytes of ROM, 17 
bytes less than Datacopy1. With four iterations, Datacopy2 executes in 
180 CPU cycles, 103 cycles less than Datacopy1. In this example the 
value of the loop counter is important; the loop must execute with i = 0, 
1, 2 and 3. No significant improvement is obtained in this case by 
decrementing the loop counter instead of incrementing. Also, no 
significant improvement is obtained in this case if variable ‘buffer’ is 
place in the direct page: the instruction ‘STA buffer,X’ uses direct 
addressing instead of extended, saving one byte of code and one CPU 
cycle per iteration.

 

C Code Assembly Code Bytes Cycles

 

UINT8 buffer[4];

void
datacopy2(UINT8 * dataPtr)

 

PSHA   1 2

 

{

 

PSHX   1 2

 

    UINT8 i;

 

PSHH   1 2
TSX    1 2

 

    for (i = 0; i < 4; i++)

 

CLR    ,X 1 2

 

    {

 

LDA    ,X 1 2

 

        buffer[i] = dataPtr[i];

 

ADD    2,X 2 3

 

    }

 

PSHA   1 2

 

}

 

CLRA   1 1
ADC    1,X 2 3
PSHA   1 2
PULH   1 2
PULX   1 2
LDX    ,X 1 2
TXA    1 1
TSX    1 2
LDX    ,X 1 2
CLRH   1 1
STA    buffer,X 3 4
TSX    1 2
INC    ,X 1 3
LDA    ,X 1 2
CMP    #0x04 2 2
BCS    *-25  2 3
AIS    #3 2 2
RTS 1 4

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



 

AN2093

13

 

Examples
Datacopy3

9.4  Datacopy3 In this example, the data is copied without using a loop. This routine 
requires 23 bytes of ROM and executes in 36 CPU cycles. This is 10 
bytes less ROM and 144 fewer CPU cycles than Datacopy2. If 8 bytes 
were to be copied, this method would require 10 bytes more ROM than 
Datacopy2, but would execute in 280 fewer CPU cycles. Although there 
are potential savings to be had if the variable ‘buffer’ is located in the 
direct page, the compiler does not take full advantage of them in this 
case.

C Code Assembly Code Bytes Cycles

UINT8 buffer[4];

void
datacopy3(UINT8 * dataPtr) PSHX   1 2
{ PULH   1 2
    buffer[0] = dataPtr[0]; TAX    1 1
    buffer[1] = dataPtr[1]; LDA    ,X 1 2
    buffer[2] = dataPtr[2]; STA    buffer 3 4
    buffer[3] = dataPtr[3]; LDA    1,X 2 3
} STA    buffer:0x1 3 4

LDA    2,X 2 3
STA    buffer:0x2 3 4
LDA    3,X 2 3
STA    buffer:0x3 3 4
RTS    1 4
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9.5  Loop1 If only the number of iterations matter and not the value of the loop 
counter, it is more efficient to decrement the loop counter and compare 
it with zero. In this example the ‘for’ statement requires 7 bytes of ROM. 
and the increment and test of the loop counter take 6 CPU cycles for 
each iteration. This saves 2 bytes of ROM and 9 CPU cycles per iteration 
compared to the ‘for’ statement in Datacopy2. However this optimisation 
cannot be applied to Datacopy2 as the code within this loop is executed 
with i = 4, 3, 2 and 1. 

C Code Assembly Code Bytes Cycles

void
loop1(void)
{
    UINT8 i; PSHH   1 2

LDA    #0x04 2 2
    for(i=4; i!=0; i--) TSX    1 2
    { STA    ,X 1 2
        /* code */
    } TSX       1 2
} DBNZ   ,X,*-offset 2 4

PULH   1 2
RTS    1 4
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