
Freescale Semiconductor
Application Note

Document Number: AN2205
Rev. 2, 01/2007

Contents

Introduction . 1
Mirror keys. 2
Window keys . 3
Hardware . 5
Software . 6
References . 9

ppendix ASoftware Listing. 10

Car Door Keypad Using LIN
by: Peter Topping

East Kilbride, Scotland
1 Introduction
Car door keypads have traditionally comprised of
micro-switches that directly carry the motor currents
used to operate windows and mirrors. Although this type
of circuit has to handle currents of over an amp, the
requirement to drive multiple motors in both directions
from more than one switch makes them quite complex
(e.g. the control of the front passenger window from both
front doors). This included versatility will restrict the
possibility of causing a short if two keys are operated at
the same time in different directions. In the case of
electrically operated folding mirrors, a single multiple
contact switch unit controls six motors in both directions.
This complexity combined with the high currents
resultes in a heavy, expensive, and difficult to install
wiring harness, especially in the driver’s door. The
amount of copper at the hinge where the harness
interfaces with the main body wiring can also pose a
difficult design compromise between durability and ease
of use.

1
2
3
4
5
6
A

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Mirror keys
Using a serial multiplex bus like CAN or LIN can resolve these problems. The LIN (Local Interconnect
Network, reference 1) bus is lower in cost and ideally suited to use within a door. There are many
approaches to designing a LIN based door. CAN or LIN can communicate between the door and the car
body. In the latter case, this could use the LIN bus employed within the door or a completely separate bus.
If the information comes into the door on a LIN bus, only a single LIN node resides within the door. This
minimizes the electronics, but still requires wiring to the mirror, window, lock and keypad modules.
Incorporating four separate LIN nodes with only three wires interconnecting them reduces the wiring to a
minimum. There is only one LIN data line, the other two connections are the positive and negative
supplies. This application note considers the design of the keypad module required to facilitate this type
of design. It has window, mirror, and child-lock functionality and communicates directly (or via a
controller in the car) with the window and mirror modules. Lock control is not included as it would
normally come directly from the body controller, but a main lock key could be incorporated if required.

The described implementation of the keypad is a LIN slave node so it cannot initiate communications with
other nodes. This is the responsibility of the LIN master, in this case the body controller. On a regular basis,
say every 100ms, the master issues the appropriate message to the keypad. It responds with a four-byte
response formatted as shown in table 1. Depending on the firmware in the other nodes, they can directly
read this information (slave to slave communication) or read by the master and retransmit to the individual
nodes.

2 Mirror keys
A car door differs from a calculator or a phone in that it makes sense to press more than one key at a time.
This renders the traditional approach to keypad design, an X-Y matrix, of limited use in automotive
applications. Without additional components, a matrix has only a limited capability to decode multiple key
presses. If two keys are pressed on the same row or the same column, two lines are shorted together and
the determination of the unique identity of a third pressed key lessens. The recognition of only one up,
down, left, and right allows an acceptable employment of a matrix of mirror keys. The design presented
here uses this arrangement for the eight mirror functions required by two mirrors. The folding key adds a
ninth (ten if a separate un-fold key were required) and the resultant matrix becomes 5x2. This facilitates

Table 1. Format of Keypad Output Data

ID
$20

Front Windows
(byte 0)

Rear Windows
(byte 1)

Mirrors
(byte 2)

Miscellaneous.
(byte 3)

bit 0 Driver, Express UP D. side, Express UP Driver, UP LIN – bit error

bit 1 Driver, Express DOWN D. side, Express DOWN Driver, DOWN LIN – checksum error

bit 2 Driver, Manual UP D. side, Manual UP Driver, LEFT LIN – identifier parity error

bit 3 Driver, Manual DOWN D. side, Manual DOWN Driver, RIGHT LIN – slave not responding error

bit 4 Pass., Express UP P. side, Express UP Passenger, UP LIN – inconsistent sync. error

bit 5 Pass., Express DOWN P. side, Express DOWN Passenger, DOWN LIN – no bus activity error

bit 6 Pass., Manual UP P. side, Manual UP Passenger, LEFT Mirror fold

bit 7 Pass., Manual DOWN P. side, Manual DOWN Passenger, RIGHT Disable rear funct. (child lock)
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor2

Window keys
nine (or 10) functions using seven I/O lines, a small but perhaps significant saving over using separate lines
for each function.

Figure 1 shows the simplest, and reasonably I/O efficient, arrangement. This employs six lines whereby
four provide up, down, left, and right, with the two additional lines used for fold and driver/passenger
mirror selection. In this case, a simple slide switch with a dedicated I/O line for the mirror selection makes
a 3x2 matrix unnecessary. There is no advantage using such a small matrix (2+2=2x2) for the four
movement keys, and it would have the disadvantage mentioned above. Other approaches could reduce the
I/O requirement further. Coding on four lines would give 16 possibilities, more than the 10 actually
required (4 directions on 2 mirrors, fold and nothing). Simpler coding could employ five lines to provide
mirror select, move, fold, and two binary lines for direction. In the extreme case, the use of an
analog-to-digital input and a few resistors would allow control of the mirrors by a single line into the
keypad MCU.

The actual solution presented here used an existing joystick which dictated the use of a 5x2 matrix (and
hence seven I/O lines). The two columns could constitute driver/passenger mirror selection, but the
particular joystick used provided the different arrangement shown in figure 2. Functionality like mirror
position store was not incorporated in this application and may, depending on implementation, require
additional keys.

Figure 1. Simple Mirror Key Implementation.

3 Window keys
The keypad requirements for window control are different from those of the mirror in that the driver door
may have keys for all four windows, and it is possible, and not unreasonable, to expect two or more to
operate simultaneously. For this reason, although there is a possible requirement of eight or even six keys,
a conventional key matrix is not necessary. Even though up and down for four windows requires eight
keys, further travel on a key causes an “express” movement of the window whereby it travels fully up (or
down) even with the key’s release. The simplest way to implement this is to have 16 switches. As a 4x4
matrix is not appropriate without many additional components this would use 16 I/O lines from the
controlling MCU. This number may require a more expensive device due to its availability or forcing the
use of a higher pin-count. Table 2 shows some approaches to this problem.

Left Right

Up Down

Select

Fold
Select

Fold

Left

Right

Up

Down

or
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor 3

Window keys
The second method would employ four contacts per window and use resistors to provide five different
output voltages corresponding to “Express up”, “Up”, no action, “Down” and “Express down”. As even
an 8-bit analog-to-digital with a ±2 bit accuracy could distinguish between 64 levels, this requires little
voltage accuracy and possible use of low precision resistors. As with the first method, implementation in
software is not difficult and these two methods are not considered further in this application note.

The next often used method has no standard as to whether it is a long or a short press that results in an
express movement. While it would seem more logical to have the long press cause an express movement,
moving the window to an intermediate position requires at least two presses (one long press to start an
express movement and a second short one to stop it) making it the poorer choice. If the less intuitive choice
is made and a short press initiates an express movement, then the window moves to an intermediate
position by holding the key down until the desired position is reached. The time method is now less popular
presumably because of the confusion caused by the lack of consistency among manufacturers when
making this choice.

The fourth method is the solution presented here. Figure 2 illustrates one design for the type of switch that
has separate contacts for up and down, but no additional contacts for express up and express down. When
either of the extreme positions (express up or express down) is selected, the floating bar in the switch
causes the second micro-switch to activates. In both cases, micro-switches are pressed and the only method
of distinguishing between express up and express down is to determine which switch was activated first.

Figure 2. 2-Contact Window Switch.

Table 2. . Possible Window Key Arrangements

Method Advantages Disadvantages

Direct interface to 16 switches Simple software Uses 16 I/O lines

Use analog-to-digital inputs Uses only 4 I/O lines Requires an MCU with
analog-to-digital and some

external components

8 switches where the duration of press distinguishes
between a normal and an express action.

Uses only 8 I/O lines Poorly defined and confusing user
interface

8 switches where an “Express UP” is requested by also
closing the DOWN contact etc.

Uses only 8 I/O lines More complex
sequence-dependent software

Down

Up

UpDown

Up Down

* *

*

*

* *

Contact

Express up
Up
Off

Down
Express downSw

itc
h

po
si

tio
n

floating bar

pivot

micro switches
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor4

Hardware
Although not a complex application, you must take care to independently interpret the sequence of key
presses of the four windows while incorporating a reasonable immunity to spurious noise and contact
bounce. As a double closure caused by contact bounce would not necessarily cause a problem in this
application, a possibility still exists to omit any kind of contact debounce filtering. However, this leaves
the keyboard open to responding incorrectly in the presence of noise and 15ms of debounce was
incorporated. The double contact nature of the operation dictates quite short debounce time because if the
second contact were closed before the first one had been fully debounced, then the first press would not
be recognized. This would end up with the controlling MCU knowing about a required express action, but
not knowing which direction to go as it is unaware of the first pressed key.

4 Hardware
The target MCU for the keypad module is the MC68HC908EY16. As this MCU is not available at the time
of writing this application note it currently uses an MC68HC908AZ60A. Implementation on an
MC68HC908EY16 or EY8 would significantly reduce the cost. Not only is the MC68HC908EY16 a lower
pin-count lower cost device, but it will include an on-chip ICG (internal clock generator) module obviating
the need for a crystal or ceramic resonator.

Figure 3 shows the circuit diagram used in the keyboard application. Apart from the MCU itself, two chips
are required to implement a simple LIN node. These are the LIN interface, in this case the Freescale
MC33399 (or MC33661) and a 5 volt regulator. A single chip, the MC33689 (LIN SBC), replaces these
two chips. The regulator used was the 8-pin LT1121 which has the capability of shutting down into a low
power sleep mode under the control of the MCU. In the arrangement, the MCU or the MC33399 (or
MC33661) can wake it.

The MC33399 (or MC33661) includes the 30kohm LIN pull-up so this does not need to be included on
the PCB. The only discrete components required are pull-up resistors for IRQ, Reset and the port pins used
for the window keys, decoupling capacitors and a crystal, and its associated components.

This type of application typically includes a child-lock key which inhibits the operation of the rear
windows using their local keys. A pull-up for the I/O line used for this purpose and an LED to indicate that
this function is activated are also included. A driver for keypad illumination was also incorporated onto
the PCB so that the LIN bus could control it. PortC pull-ups and an IRQ jumper to 9 volts were also added
to facilitate entry into monitor mode using an external serial interface. This facilitated in-circuit
programming of the on-chip flash memory. The software was developed on the prototype PCB fitted with
a target header for the MMDS development system rather than with an actual MC68HC908AZ60A.
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor 5

Software
Figure 3. Keypad Module Circuit Diagram

5 Software
The keypad module uses the Freescale/Metrowerks LIN driver software so the I/O activity is handled
without the application code which simply uses a “LIN_PutMsg()” call to update the buffer used by the
drivers. Similarly, a “LIN_GetMsg()” is used for receiving data. The main purpose of the keypad module
is to supply data for the window and mirror modules and the only feature of the module controlled by
“LIN_GetMsg()” is the keypad illumination. The use of the LIN drivers leaves the programmer free to
think about the application without having to worry about the communications protocol.

The main loop uses the programmable interrupt counter to poll the keys at 200Hz. The eight lines from the
window keys are read from portD. The mirror keys must read the two columns of the matrix separately
using portG and portH. As there is no need to recognise a multiple keypress, this is done by checking the
first column and, only if no key is pressed, addressing (using portB, bit3) and checking the second column.
Although the MC68HC908AZ60A’s keyboard interrupt feature is not used, the I/O lines with this
capability employ it to allow a keypress initiated wake-up without changing the hardware. This dictates
that portH and portG are read. If a key is pressed, its column adds to the result to form a mirror byte that
returns the overall state of the mirror keys. Once read, the state of the child lock switch adds to the “mirror”
byte resulting in a 2-byte keypad status as shown in table 3.

LT1121

MC33399

MC68HC908AZ60A
P Mir.

Up
P Mir.
Down

Mirror
Fold

Vbat

LIN

Wake

LIN

Wake

Vsup INH EN

Rx

Tx

Gnd

Supply/ref: 7
Oscillator: 3
I/O: 19
Monitor: 4
SCI: 2
IRQ: 1
Reset: 1

CAN unused: 2
I/O unused: 25

64

IRQ

SC
I

Vdd (5 volts)

Child lock

A0

C3

C1

C0

E2

A2

H0

H1

G0

G1

G2

Vss, Vssa,
Avss/Vrefl

Vdd, Vdda,
Vddaref, Vrefh

Osc2Osc1Reset

E0

E1

F4

Vdd

P Mir.
Right

P Mir.
Left

D Mir.
Left

D Mir.
Right

D Mir.
Up

D Mir.
Down

D3

D2

D1

D0 Driver window up

Driver window down

Front passenger window
(as for D0 & D1)

D5

D4 Rear passenger window
(as for D0 & D1)

D7

D6 Rear passenger window
(as for D0 & D1)

B3

B2

CGMXFC

2

22
55
44
54 3 59 58

15

42

43

46

47

50

51

52

53

13

14

57

22nF

26

63

61

60

29

21
56
45

23

24

25

37

36

8

49

48

8

5 3

1

7 8

2

4

1

6

3

5
100k

100k

100k

10k x 8

10M

22pF 22pF

Vdd

LAMP

Vbat

100k x 3

Monitor mode

F04

1k jumper

9.1volt
zener

1k

Child lock

0.1uF

MC33399
MC33661
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor6

Software
Comparing these two bytes with their status the previous time around the loop carries the keyboard
debounce. If they appear the same on three consecutive reads, then it uses the status to determine the data
sent by the keypad module. Figure 3 shows the flow diagram for this part of the code. In the flow diagram,
the keypad “status” refers to the result of a single read of all the keys and the keypad “set-up” to a
confirmed reading of the keys, i.e. the same result of the status on three consecutive reads.

Select the key debounce time by changing the number the variable count is compared with. In this
application the value of one corresponds to the requirement for three consecutive identical reads before
any change is recognised. If two consecutive reads are different, then count is cleared and the new status
is saved. A second read 5ms later which gives the same result increments count to one. A third identical
read sees that count is one and transfers the confirmed status into a valid key set-up. Before this is done,
the previous set-up saves for a possible correct interpretation of the window keys. At this point, count
increments again and its value of two used to prevent any further increments as the loop contents
repeatedly execute. Without this locking of the value of count, it would wrap around causing unnecessary
updates of the LIN buffer.

Figure 4. Flow Chart of Main Software Loop

Table 3. Format of Keypad Status Bytes

Window byte D7 D6 D5 D4 D3 D2 D1 D0

Mirror byte Child lock - Column G2 (fold) G1 G0 H1 H0

P O F s e t ?

Y

N

c l e a r P O F
r e a d w i n d o w , m i r r o r & c h i l d - l o c k k e y s

s a m e a s
p r e v i o u s ?

N

N

Y

Y

c o u n t = 0
p r e v i o u s s t a t u s = c u r r e n t s t a t u s

c o u n t = 1 ?

Y

p r e v i o u s k e y s e t - u p = c u r r e n t k e y s e t - u p
c u r r e n t k e y s e t - u p = c u r r e n t s t a t u s

L I N b u f f e r = c u r r e n t k e y s e t - u p

c o u n t < 1 ?

c o u n t = c o u n t + 1

N

Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor 7

Software
The other four functions in the code (see appendix for a listing of the code) are called if the decision
updates the LIN buffer. “Save_history()” executes first out of these functions. This function updates the
variable window_old with the previous set-up to allow a comparison when a new key set-up becomes
valid. The requirement that the previous state of the keys for a window remain because something has
changed on another window complicates this operation. For this reason, update the two bits corresponding
to the two keys for each window only if a change occurs in either of these bits after the previous time
around the loop. This is performed separately for each window to retain their four, completely independent
“histories”.

Once the history is saved, the current key set-up updates with the newly confirmed status and the function
“Prepare_new_data()” is called. For each window in turn, this function extracts the current and previous
up and down bits and, using function “Get_window_bits()”, converts the data into the format required for
the LIN message buffer. “Get_window_bits()” uses case statements to convert the bits as shown in table 4.

The simplest case is when both of the Up and Down bits are zero: no bits are set in the LIN buffer
regardless of the values of the previous bits. When only the Down bit is set, the corresponding bit in the
LIN buffer is set except when the previous bits are both one. This happens with an Express Down request
when the key releases half way to the Down position. As sending a Down command stops the express
movement in the window module, this condition continues to set the Express Down bit (clearing all the
bits in this circumstance would be a satisfactory alternative as this would also allow the express movement
to continue). The treatment of the bits when Up is set and Down clear is similar.

Figure 2 explains the request of an express movement when both the Up and Down bits are set. The
appropriate bit is set in the LIN message according to which of the previous up and down bits is set. If,

Table 4. Window Bit Conversion

Up Down
Previous

Up
Previous

Down
Move
 Up

Express
Up

Move
Down

Express
Down

0 0 X X 0 0 0 0

0 1 0 0 0 0 1 0

0 1 0 1 0 0 1 0

0 1 1 0 0 0 1 0

0 1 1 1 0 0 0 1

1 0 0 0 1 0 0 0

1 0 0 1 1 0 0 0

1 0 1 0 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 0 1

1 1 1 0 0 1 0 0

1 1 1 1 0 0 0 0
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor8

References
however, neither or both of the previous bits are set, then it requests no movement as no sufficient
information exists to indicate whether an express Up or an express Down is required. These are error
conditions which shouldn’t occur in practice.

Once the window bits have been interpreted and the decisions placed in bytes 0 & 1 of the LIN buffer (see
table 1), the function “Prepare_new_data()” does the same for the mirror using the function
“Get_mirror_bits()”. After checking that the mirrors are not folded, this function comprises a single case
statement which converts the column bit and the four mirror movement bits into the format required by the
LIN buffer (byte 2, table 1). No bits are set if there are no input bits set or if there is an illegal combination
of input bits (i.e. more than one movement bit set).

Finally, “Prepare_new_data()” checks the mirror fold and child lock bits and, if required, sets them in byte
3 of the buffer. The status of the child-lock bit does not affect the functionality of the keypad module,
assuming that the body controller or the window lift modules will read this bit and, if appropriate, inhibit
window operation.

The last task of the main loop is to use the LIN driver function “LIN_GetMsg()” to read the 4-byte message
available from the body controller LIN master (see table 5). Bit 6 of byte 2 is the only relevant bit used to
control keypad illumination. The state of this bit is read and the keypad lamps controlled using a buffer
connected to portF bit 0.

6 References
1. LIN Protocol Specification, Version 1.2, 17 November 2000.

2. MC68HC908AZ60A Technical Data.

3. MC68HC908EY16 Advance Information.

Table 5. Format of Body Controller Output Data

ID
$21

Locking
(byte 0)

Mirrors
(byte 1)

Miscellaneous
(byte 2)

Miscellaneous
(byte 3)

bit 0 Driver, superlock Store Mirror, MEM 0 Mirror, defrost LIN – bit error

bit 1 Driver, lock Store Mirror, MEM 1 Mirror, functionality LIN – checksum error

bit 2 Passenger, superlock Store Mirror, MEM 2 Window, front enabled LIN – identifier parity error

bit 3 Passenger, lock Store Mirror, MEM 3 Window, rear enabled LIN – slave not resp. error

bit 4 Rear D. side, superlock Recall Mirror, MEM 0 Window, central opening LIN – inconsistent sync. error

bit 5 Rear D. side, lock Recall Mirror, MEM 1 Window, central closing LIN – no bus activity error

bit 6 Rear P. side, superlock Recall Mirror, MEM 2 Front switches, lights Door flasher, lights

bit 7 Rear P. side, lock Recall Mirror, MEM 3 Rear switches, lights Door position, lights
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor 9

References
Appendix A Software Listing
/**
*
* "DNA" door project - Keyboard module
* ==
*
* Originator: P. Topping
* Date: 22nd June 2001
* Modified: 13th July 2001
* Comment: Changed PIT divide ratio for 200Hz @ 8MHz (for 9600baud).
* Changed UP & DOWN to EXPRESS if previous was EXPRESS.
* Reduced debounce to 3 (10-15ms).
* Added keypad illumination control.
*
**/

/**
*
* Header file includes
*
**/

#include <hc08az60.h>
#include <linapi.h>

/**
*
* Function prototypes
*
**/

unsigned char Get_window_bits (unsigned char, unsigned char);
unsigned char Get_mirror_bits (void);
void Prepare_new_data (void);
void Save_history (void);

/**
*
* Globals
*
**/

unsigned char window;
unsigned char mirror;
unsigned char window_cur;
unsigned char mirror_cur;
unsigned char window_old;

unsigned char Kpm_data[4];
unsigned char Master_data[4];
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor10

References
/**
* Function: LIN_Command
*
* Description: User call-back.
* Called by the driver after successful transmission or receiving
* of the Master Request Command Frame (ID Field value '0x3C').
*
* Returns: never returns
*
**/

void LIN_Command()
{
 while(1)
 {
 }
}

/**
*
* Function name: Main
* Originator: P. Topping
* Date: 5th June 2001
*
**/

void main (void)
{

unsigned char count = 0;

unsigned char window_last;
unsigned char mirror_last;

CONFIG1 = 0x71;
CONFIG2 = 0x19;

DDRA = 0xF0;
DDRB = 0xFF;
DDRC = 0x34;
DDRD = 0x00;
DDRE = 0xDD;
DDRF = 0x7F;
DDRG = 0x00;
DDRH = 0x00;

PTA = 0x00;
PTB = 0x00;
PTC = 0x00;
PTE = 0x04; /* MC33399 enable high */
PTF = 0x00;

Kpm_data[0] = 0;
Kpm_data[1] = 0;
Kpm_data[2] = 0;
Kpm_data[3] = 0;

asm CLI;

LIN_Init();
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor 11

References
LIN_PutMsg (0x20, Kpm_data);

PITSC = 0x10; /* start PIT at /1 */

PMODH = 0x27; /* /10000 for a repetition */
PMODL = 0x10; /* rate of 200Hz @ 8MHz. */

while (1)
{
 if (PITSC & 0x80) /* is PIT overflow set? */
 {
 PITSC &= ~(0x80); /* yes, clear it */

 window = ~PTD; /* read window port */

 PTB = 0x04; /* mirror, column 1 */
 mirror = ((~PTH & 0x03) | (0x04*(~PTG & 0x07))); /* read rows */
 if (mirror == 0) /* key pressed? */
 {
 PTB = 0x08; /* no, try column 2 */
 mirror = ((~PTH & 0x03) | (0x04*(~PTG & 0x07))); /* read rows */
 if (mirror) /* key pressed? */
 {
 mirror = mirror |= 0x20; /* yes, set 2nd column bit */
 }
 }

 if ((0x04 & PTA) == 0x04) /* child lock active? */
 {
 mirror = mirror |= 0x80; /* yes, add MSbit */
 }

 if ((mirror == mirror_last) && (window == window_last)) /* same ? */
 {
 if (count == 1) /* yes, third time ? */
 {
 Save_history(); /* yes, save prev. window */
 mirror_cur = mirror; /* set-up and xfer new */
 window_cur = window /* status into current */;
 Prepare_new_data (); /* xfer data to LIN buffer */
 count ++; /* count=2 stops re-entry */
 }
 else if (count < 1) /* count=2 stops increment */
 {
 count ++;
 }
 }
 else
 {
 count = 0; /* no, different, so reset */
 mirror_last = mirror; /* count and save current */
 window_last = window; /* status as last status */
 }

 LIN_GetMsg (0x21, Master_data);
 if ((Master_data[2] & 0x40) == 0x40)
 {
 PTF |= 0x01; /* lights on */
 }
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor12

References
 else
 {
 PTF &= ~(0x01); /* lights off */
 }
 }
}
}

/**
*
* Function name: Prepare_new_data
* Originator: P. Topping
* Date: 14th June 2001
* Modified:
* Purpose: Put new mirror and window status into buffer.
* Parameters: input: none
* output: none
* Comment:
*
**/

void Prepare_new_data (void)
{

 unsigned char bits;
 unsigned char up_down;
 unsigned char up_down_old;

 up_down = (0x03 & (window_cur >> 6)); /* Driver's window */
 up_down_old = (0x03 & (window_old >> 6));
 Kpm_data[0] = Get_window_bits(up_down, up_down_old);

 up_down = (0x03 & (window_cur >> 4)); /* Front pass. window */
 up_down_old = (0x03 & (window_old >> 4));
 bits = Get_window_bits(up_down, up_down_old);
 Kpm_data[0] |= bits << 4; /* top nibble */

 up_down = (0x03 & (window_cur >> 2)); /* Rear window (driver) */
 up_down_old = (0x03 & (window_old >> 2));
 Kpm_data[1] = Get_window_bits(up_down, up_down_old);

 up_down = (0x03 & window_cur); /* Rear window (pass.) */
 up_down_old = (0x03 & window_old);
 bits = Get_window_bits(up_down, up_down_old);
 Kpm_data[1] |= bits << 4; /* top nibble */

 Kpm_data[2] = Get_mirror_bits(); /* mirror byte */

 bits = 0; /* bits 0-6 not used */
 if (mirror_cur & 0x10)
 {
 bits = 0x40; /* fold mirrors */
 PTF &= ~(0x02); /* fold LED on (debug) */
 }
 else
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor 13

References
 {
 PTF |= 0x02; /* fold LED off (debug) */
 }
 if (mirror_cur & 0x80)
 {
 bits |= 0x80; /* disable rear functions */
 PTF &= ~(0x10); /* child-lock LED on */
 }
 else
 {
 PTF |= 0x10; /* child-lock LED off */
 }
 Kpm_data[3] = bits; /* misc. byte */

 LIN_PutMsg (0x20, Kpm_data); /* update LIN buffer */
}

Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor14

References
/**
*
* Function name: Save_history
* Originator: P. Topping
* Date: 12th June 2001
* Modified:
* Purpose: Check each window for a change. If either bit has changed
* then both bits are saved, otherwise neither is saved.
* Parameters: input: none
* output: none
* Comment:
*
**/

void Save_history (void)
{
 if (((window_cur & 0x01) != (window & 0x01)) |
 ((window_cur & 0x02) != (window & 0x02)))
 {
 window_old = (window_old & ~0x03) | (window_cur & 0x03);
 }

 if (((window_cur & 0x04) != (window & 0x04)) |
 ((window_cur & 0x08) != (window & 0x08)))
 {
 window_old = (window_old & ~0x0C) | (window_cur & 0x0C);
 }

 if (((window_cur & 0x10) != (window & 0x10)) |
 ((window_cur & 0x20) != (window & 0x20)))
 {
 window_old = (window_old & ~0x30) | (window_cur & 0x30);
 }

 if (((window_cur & 0x40) != (window & 0x40)) |
 ((window_cur & 0x80) != (window & 0x80)))
 {
 window_old = (window_old & ~0xC0) | (window_cur & 0xC0);
 }
}

/***
 hc08az60.h
 Register definitions for the 908AZ60
**

#define PTA *((volatile unsigned char *)0x0000)
#define PTB *((volatile unsigned char *)0x0001)
#define PTC *((volatile unsigned char *)0x0002)
#define PTD *((volatile unsigned char *)0x0003)
#define PTE *((volatile unsigned char *)0x0008)
#define PTF *((volatile unsigned char *)0x0009)
#define PTG *((volatile unsigned char *)0x000A)
#define PTH *((volatile unsigned char *)0x000B)

#define DDRA *((volatile unsigned char *)0x0004)
#define DDRB *((volatile unsigned char *)0x0005)
#define DDRC *((volatile unsigned char *)0x0006)
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor 15

References
#define DDRD *((volatile unsigned char *)0x0007)
#define DDRE *((volatile unsigned char *)0x000C)
#define DDRF *((volatile unsigned char *)0x000D)
#define DDRG *((volatile unsigned char *)0x000E)
#define DDRH *((volatile unsigned char *)0x000F)

#define CONFIG1 *((volatile unsigned char *)0x001F)
#define CONFIG2 *((volatile unsigned char *)0xFE09)

#define PITSC *((volatile unsigned char *)0x004B)
#define PCNTH *((volatile unsigned char *)0x004C)
#define PCNTL *((volatile unsigned char *)0x004D)
#define PMODH *((volatile unsigned char *)0x004E)
#define PMODL *((volatile unsigned char *)0x004F)

#define VECTF (void(*const)()) */

/**
*
* Function name: Get_window_bits
* Originator: P. Topping
* Date: 7th June 2001
* Modified:
* Purpose: Converts current and previous window key data into format
* required for LIN message.
* Parameters: input: current and previous UP and DOWN bits
* output: UP, DOWN, EXPRESS UP & EXPRESS DOWN bits.
* Comment:
*
**/

unsigned char Get_window_bits (unsigned char up_down, unsigned char up_down_old)
{

 unsigned char bits;

 switch (up_down)
 {
 case 0x00: /* neither */
 bits = 0;
 break;

 case 0x01: /* down, check previous */
 switch (up_down_old)
 {
 case 0x03: /* was previous express ? */
 bits = 0x02; /* yes, keep it that way */
 break;
 default: /* no, just down */
 bits = 0x08;
 }
 break;

 case 0x02: /* up, check previous */
 switch (up_down_old)
 {
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor16

References
 case 0x03: /* was previous express ? */
 bits = 0x01; /* yes, keep it that way */
 break;
 default: /* no, just up */
 bits = 0x04;
 }
 break;

 default: /* both, check previous */
 switch (up_down_old)
 {
 case 0x00: /* neither (illegal) */
 bits = 0;
 break;
 case 0x01: /* down (express) */
 bits = 0x02;
 break;
 case 0x02: /* up (express) */
 bits = 0x01;
 break;
 default: /* both (illegal) */
 bits = 0;
 }
 }
 return bits;
}

Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor 17

References
/**
*
* Function name: Get_mirror_bits
* Originator: P. Topping
* Date: 7th June 2001
* Modified:
* Purpose: Converts current mirror key data into format required for
* LIN message.
* Parameters: input: mirror_cur (global)
* output: Driver/passenger Up, Down, Left & Right
* Comment:
*
**/

unsigned char Get_mirror_bits (void)
{

 unsigned char bits;

 if (mirror_cur & 0x10)
 {
 return 0; /* mirrors folded, clear move bits */
 }
 else
 {
 switch (mirror_cur & 0x2F)
 {
 case 0x01: /* driver mirror up */
 bits = 0x01;
 break;
 case 0x21: /* driver mirror down */
 bits = 0x02;
 break;
 case 0x02: /* passenger mirror up */
 bits = 0x10;
 break;
 case 0x22: /* passenger mirror down */
 bits = 0x20;
 break;
 case 0x04: /* driver mirror left */
 bits = 0x04;
 break;
 case 0x24: /* driver mirror right */
 bits = 0x08;
 break;
 case 0x08: /* passenger mirror left */
 bits = 0x40;
 break;
 case 0x28: /* passenger mirror right */
 bits = 0x80;
 break;
 default: /* none (or > 1 bits) set, clear all */
 bits = 0;
 }
 }
 return bits;
}

Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor18

THIS PAGE IS INTENTIONALLY BLANK
Car Door Keypad Using LIN, Rev. 2

Freescale Semiconductor 19

Document Number: AN2205
Rev. 2
01/2007

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Mirror keys
	3 Window keys
	4 Hardware
	5 Software
	6 References

