
Freescale Semiconductor
Application Note

Document Number: AN2497
Rev. 1, 08/2006

Contents
Introduction . 1

Differences Between HC08 Monitor Mode
and HCS08/RS08 BDM . 2

Background Debug Mode Interface. 5

HCS08 Background Debug Controller (BDC)
and Registers . 6

RS08 Background Debug Controller (BDC)
and Registers . 7

BDC Commands — Active Background Mode
and Non-Intrusive . 7
6.1 HCS08 Active Background Mode Commands. 8
6.2 HCS08 Non-Intrusive Commands 8
6.3 RS08 Active Background Mode Commands 9
6.4 RS08 Non-Intrusive Commands 10
6.5 RS08 Any CPU Mode Commands 11

Background Mode Entry . 11

Development Tools . 11

Summary . 13

HCS08/RS08 Background Debug
Mode versus HC08 Monitor Mode
By Kazue Kikuchi and John Suchyta

8/16 Bit Microcontroller Applications Engineering
Austin, Texas

Update to include RS08 7/2006
By Inga Harris

Microcontroller Division Applications Engineering
East Kilbride, Scotland
1 Introduction
Freescale’s 8-bit HCS08 and RS08 Family
microcontrollers (MCUs) are upwardly compatible with
the M68HC08 (HC08) Family. The HCS08 and RS08
Families have an enhanced CPU core that preserves the
HC08 CPU registers and offers additional improvements
for efficiency, compiler support, and development
support.

Regarding microcontroller application development, a
good development tool environment is important to
reduce total development time and cost. Users want to
debug their application program under conditions that
imitate the actual setup of their system. Because of that,
the capability to debug a user program in an actual target
system is required. This is known as in-circuit
debugging. Furthermore, most new MCUs have
nonvolatile memory such as Flash so that programming
code on the target system is also required. This is known
as in-circuit programming.

1

2

3

4

5

6

7

8

9

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Differences Between HC08 Monitor Mode and HCS08/RS08 BDM
To support in-circuit debugging and programming requirements, the HC08 Family has the monitor mode
and the HCS08 and RS08 utilize a background debug mode (BDM). The background debug hardware on
the HCS08 consists of a background debug controller (BDC) and debug module (DBG). The background
debug hardware on the RS08 consists of the background debug controller (BDC) only.

This application note has three purposes.
1. To describe the differences between the HC08 monitor mode and the HCS08 and RS08 BDM.
2. To introduce the new BDC feature available in the HCS08 and RS08 Families.
3. To describe the differences between the S08 and RS08 BDM interfaces.

2 Differences Between HC08 Monitor Mode
and HCS08/RS08 BDM

The HC08 Family has firmware embedded in ROM to support the monitor mode, which is a privileged
non-user mode. To enter the monitor mode, specific general-purpose I/O pins must satisfy certain
conditions out of reset. A high voltage may also be required on the IRQ pin at the same time. Once the
conditions are satisfied, the monitor ROM code is executed instead of running the user application
program. A host computer can then communicate with the MCU through a single I/O pin that “bit-bangs”
a standard NRZ serial protocol.

The monitor ROM supports six commands; four of them are used for reading/writing memory locations
(READ, WRITE, IREAD, and IWRITE commands), the fifth is used for running the user program (RUN
command), and the sixth is used for reading the stack pointer (READSP command). Just before the MCU
enters the monitor mode, an SWI instruction is executed in the monitor code. To run the user program, the
RUN command executes an RTI instruction. While an MCU is in the monitor mode the CPU is used for
running the monitor code, so the user program cannot be run at the same time.

The HC08 Family has additional modes for testing a device other than user and monitor modes. These
modes are not open to the public. In one of the test modes, data and address buses, and other signals such
as a read/write signal, replace I/O signals on the MCU pins. In addition to being able to test a device, this
mode enables building high-end emulator tools such as the Freescale FSICE emulator. Since the internal
buses can be observed through the MCU pins, an emulator uses this mode to support a bus state analyzer
function. However since many I/O pins become unavailable to support those signals, the lost MCU pin
functions must be re-built outside the MCU. Therefore, the re-built pin functions may not be exactly the
same as the actual MCU. Furthermore, some small pin count MCUs do not have enough pins to support
the buses, so it is more difficult to build an emulator.

The HCS08 and RS08 Family has hardware that supports the background debug mode. Specifically, the
background debug controller (BDC) was designed to support the background mode. Since the BDC
consists of hardware logic, firmware like the HC08 monitor ROM is not embedded inside the MCU.
Therefore, the BDC does not need to use the CPU or its instructions. The benefit of this is the BDC can
access internal memory even while the user program is running.

In the HC08 Family, the break module, which is independent of the monitor mode, is implemented in the
MCU to support the breakpoint and trace functions for the debugger. When the CPU address matches the
value written in the break address register, this module generates a software interrupt instruction (SWI).
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor2

Differences Between HC08 Monitor Mode and HCS08/RS08 BDM
The HCS08 and RS08 Family does not have this module. Instead, the BDC includes hardware logic to
support these functions. Therefore, when the break address matches the value written in the BDC
breakpoint register, the mode is switched to the active background mode instead of executing the SWI
instruction. The HCS08 BDC also allows access to the on-chip debug module (DBG) that includes more
16-bit comparators for more flexible debugging.

The single-wire background interface pin (BKGD) on HCS08 and RS08 devices is designated as the mode
entry and serial communication pin. Since no other pins are used for active background mode entry, none
of the MCU pin functions have any limitations.

The HCS08 BDC has a total of 30 background commands. The RS08 BDC has a total of 21 background
commands. The CPU registers can be directly accessed by the commands. Some commands can be
performed not only in the active background mode but also while the user program is running. Since the
BDC uses hardware logic and has a variety of commands it provide a more flexible debugging
environment and the HCS08 debugger can support real-time debugging.

In HCS08 and RS08 devices, the BDC is also used for device tests. To support the bus state analyzer
function in an emulator, most HCS08 Family members have an on-chip debug system (DBG) in addition
to the BDC. This system can capture address or data bus information by setting one of nine trigger modes.
In effect, a small bus state analyzer function is built into the MCU, so none of the I/O pins are lost to this
function. The details of the DBG function will not be discussed in this note. For more details, refer to the
HCS08 Family Reference Manual (HCS08RMv1).

Table 1 shows the major differences between HC08 monitor, HCS08 BDM, and RS08 BDM.

Table 1. Differences Between HC08 Monitor Mode
and HCS08/RS08 Background Debug Mode

HC08 Monitor Mode
HCS08 Background

Debug Mode
RS08 Background

Debug Mode

Mode Entry

 • At least four I/O pins
required

 • High voltage required on
IRQ pin

 • Only BKGD pin required
 • No high voltage required

 • Only BKGD pin required
 • No high voltage required

Firmware/Hardware
 • Firmware embedded in

ROM
 • Hardware module
 • BDC registers not in user

map

 • Hardware module
 • BDC registers not in user

map

Communication Pin • General-purpose I/O pin • Dedicated pin (BKGD pin) • Dedicated pin (BKGD pin)

Communication
Protocol

 • RS232 type serial (NRZ)
 • Standard PC

communication rates

 • Custom serial protocol
 • Faster
 • Hardware handshake

protocol supported

 • Custom serial protocol
 • Faster
 • Hardware handshake

protocol supported
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor 3

Differences Between HC08 Monitor Mode and HCS08/RS08 BDM
The following sections introduce the background debug mode and provide more details about the
background debug controller.

Commands

Total 5 commands
 • User program can be

executed from the monitor
(RUN)

 • CPU registers can be
accessed indirectly

 • Memory can be accessed in
monitor mode but not while
user program is running

Total 30 commands:

17 active background mode
commands
13 non-intrusive commands

 • User program can be
executed from the active
background mode

 • Active background
commands can access CPU
registers directly

 • Non-intrusive commands
can access memory not only
in active background mode
but also while user program
is running

Total 21 commands:

10 active background mode
commands
10 non-intrusive commands
1 any CPU mode command

 • User program can be
executed from the active
background mode

 • Active background
commands can access CPU
registers directly

 • Non-intrusive commands
can access memory not only
in active background mode
but also while user program
is running

Breakpoint
Function

 • One breakpoint function
supported by break module

 • One hardware breakpoint
and one user instruction
trace supported by BDC

 • Two additional flexible
breakpoints supported by
DBG module

 • One hardware breakpoint
and one user instruction
trace supported by BDC

Timer Counter
 • Active in monitor mode • Inactive in active

background mode
 • Inactive in active

background mode

Stop and Wait
Modes

 • Monitor mode not available
in stop or wait mode

 • Background access
available in stop3 or wait
mode if BDM enabled
(ENBDM = 1)

 • Background access
available in stop3 or wait
mode if BDM enabled
(ENBDM = 1)

Standard Tool
Connector

 • 16-pin MON08 connector • 6-pin BDM connector • 6-pin BDM connector

Table 1. Differences Between HC08 Monitor Mode
and HCS08/RS08 Background Debug Mode (continued)

HC08 Monitor Mode
HCS08 Background

Debug Mode
RS08 Background

Debug Mode
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor4

Background Debug Mode Interface
3 Background Debug Mode Interface
Freescale has defined a standard 6-pin connector that allows an interface pod to be connected to any target
HCS08 or RS08 Family MCU. This connector definition is also used in the HC12 and HCS12 Family
MCUs and was derived from the 10-pin interface found on Freescale's high performance 16-bit and 32-bit
MCUs. The 6-pin interface has connections for the BKGD pin, RESET, VDD, and ground (GND). The
BKGD pin does not require an external pullup resistor since it has an on-chip pullup. The connector
includes an optional reset signal so that a development system can remotely force a target system reset. A
VDD connection is optional and allows the BDM interface pod to get power from or to the target system.

Figure 1 shows the standard BDM connector. This is typically a 2 by 3 pin header with 0.025" square posts
on 0.1" centers. Figure 2 shows the BDM implementation in a typical HCS08 target system.

Figure 1. BDM Connector

Figure 2. Typical HCS08/RS08 System with BDM Access

The BKGD pin is used for bidirectional communication between an external host, such as a PC or
development tool, and the target MCU. To keep this to a single pin, a custom serial protocol was devised.
(This protocol is also used as the HC12 and HCS12 Family background communication protocol.) The
HCS08 BDC communication clock has two options, the CPU bus clock or a special BDM clock that is
defined for each HCS08 derivative. This option allows a host to choose a faster FLL-based bus speed after
the FLL has stabilized. For more details, refer to the HCS08 Family Reference Manual and the data book
for the specific MCU.

There are two main methods to communicate with the target MCU through the BDC. In the reset method,
the RESET pin is released after the BKGD and RESET pins are pulled low, and then the BKGD pin is
released. In this method, the MCU enters the active background mode instead of the normal user mode.
The hot sync method does not require a reset of the MCU. By sending non-intrusive commands to the
MCU, the user can communicate with the MCU without disturbing the running application program.
Background entry methods will be discussed later.

Brief details of BDC commands are discussed in a later section.

2

4

6NO CONNECT 5

 NO CONNECT 3

1

RESET (/VPP on RS08)

BKGD GND

VDD

HOST PC

INTERFACE POD
BDM

TARGET SYSTEM

PARALLEL
CABLE BDM MULTILINK

6-PIN BDM CONNECTOR
SEE FIGURE 1
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor 5

HCS08 Background Debug Controller (BDC) and Registers
4 HCS08 Background Debug Controller (BDC)
and Registers

The major benefit of the BDC is that it does not interfere with normal application resources. It does not
share any on-chip peripherals. The single BKGD interface pin is a separate dedicated pin that is not
typically accessible to user programs. Background mode does not require high voltage for entry.

The BDC can access internal memory while the user program is running because its hardware is
independent of the CPU. The BDC steals a cycle as soon as it can to access the memory. This has little
impact on real-time operation of the user’s program because a single bus cycle is stolen for each memory
access command which requires more than 500 BDC clock cycles. In the HCS08, stealing a cycle means
the CPU is suspended for a cycle so the BDC can use the address and data buses to access the requested
memory location. However, the CPU suspension does not affect peripheral clocks, such as the timer and
serial clocks.

The HCS08 has two registers related to the BDC. One is called the BDC status and control register
(BDCSCR). (See Figure 3.) This register contains the enable BDM (ENBDM) bit which permits the active
background mode, the communication clock option bit (CLKSW), and several BDC status bits
(BDMACT, WS, WSF, and DVF bits). The WS bit indicates whether the target CPU is in wait or stop
mode. The WSF bit indicates whether a memory access command failed due to the target CPU executing
WAIT or STOP instruction. The DVF bit indicates whether accessed data is valid. The BDCSCR register
is not in the user memory map. Since this register can only be accessed by the debugger and not by the
user program, it avoids the possibility of enabling the BDM unintentionally while the user program is
running. To enable BDM (ENBDM = 1), a BDC WRITE_CONTROL command has to be used.

Figure 3. BDC Status and Control Register

The other register is called the BDC breakpoint register (BDCBKPT). This 16-bit register contains the
address for the BDC hardware breakpoint. Although it can be read and written by the debugger while a
user program is running, it is normally only written while in active background mode.

In addition to the above registers, there are two device identification registers that contain a part
identification code and mask set version number. These registers are called the system device
identification registers (SDIDH:SDIDL) and consist of 2 bytes. This identification code allows the
debugger or programmer to select a proper setup associated to a particular target MCU, such as memory
map, size, registers, etc. These two registers are accessible to the user program and the debugger.

A special control register called the system background debug force reset register (SBDFR) is also
available to the debugger. This register contains a single control bit (BDFR) the debugger can use to force
an MCU reset without having to access the RESET pin. This register is accessible only from the active
background mode so the bit is protected from unintentional writing in the user program.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
ENBDM

BDMACT
BKPTEN FTS CLKSW

WS WSF DVF

Write:

Normal Reset: 0 0 0 0 0 0 0 0

Reset in Active BDM: 1 1 0 0 1 0 0 0

= Unimplemented or Reserved
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor6

RS08 Background Debug Controller (BDC) and Registers
5 RS08 Background Debug Controller (BDC)
and Registers

The benefits and operation of the RS08 BDC are the same as the HCS08.

The RS08 has two registers related to the BDC. One is called the BDC status and control register
(BDCSCR). (See Figure 4.) This register contains the enable BDM (ENBDM) bit which permits the active
background mode and several BDC status bits (BDMACT, WS, and WSF bits). The WS bit indicates
whether the target CPU is in wait or stop mode. The WSF bit indicates whether a memory access command
failed due to the target CPU executing WAIT or STOP instruction. The DVF bit indicates whether accessed
data is valid. The BDCSCR register is not in the user memory map. Since this register can only be accessed
by the debugger and not by the user program, it avoids the possibility of enabling the BDM unintentionally
while the user program is running. To enable BDM (ENBDM = 1), a BDC WRITE_CONTROL command
has to be used.

Figure 4. BDC Status and Control Register

The system background debug force register (SBDRF) is currently not available on RS08 devices.

6 BDC Commands — Active Background Mode
and Non-Intrusive

In HCS08 and RS08 MCUs, many flexible operations are included in the background commands. The
BDC commands are divided into two distinct groups called “active background mode” and
“non-intrusive.” The active background mode commands can only be used when the MCU is not running
a user program. On the other hand, the non-intrusive commands can be used when the MCU is in normal
user mode or active background mode. These commands do not affect the real-time operation of the user
program even when the user program is running.

The RS08 BDC is enhanced with a BDC_RESET command which works in any CPU mode. This
command is described in a later section.

As mentioned in the previous section, the BDCSCR register contains the BDC status bits. Some of BDC
commands report the contents of the BDCSCR register when they are executed. The status report is very
helpful to understand not only the current condition of the CPU (the CPU is in stop or wait mode) but also
the validity of the read/write data.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
ENBDM

BDMACT
BKPTEN FTS

0 WS WSF 0

Write:

Normal Reset: 0 0 0 0 0 0 0 0

Reset in Active BDM: 1 1 0 0 0 0 0 0

= Unimplemented or Reserved
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor 7

BDC Commands — Active Background Mode and Non-Intrusive
6.1 HCS08 Active Background Mode Commands

6.1.1 READ_CCR, WRITE_CCR, READ_A, WRITE_A, READ_HX,
WRITE_HX, READ_SP, WRITE_SP, READ_PC, and WRITE_PC

CPU registers such as accumulator (A), stack pointer (SP), H and X register pair (H:X), program counter
(PC), and condition code register (CCR) can be directly read or written by the active background
commands. The non-intrusive commands cannot access these registers.

6.1.2 TRACE1

This command is used for tracing one user instruction. (For the HC08, this function is performed by using
the break module or SWI instruction.)

6.1.3 GO and TAGGO
These commands are used for executing the user application program and are the same as the HC08
monitor RUN command.

6.1.4 READ_NEXT and WRITE_NEXT

These commands are used in the active background mode for reading and writing data to an address
specified in the H:X registers.

6.1.5 READ_NEXT_WS and WRITE_NEXT_WS

These commands are used in the active background mode for reading and writing data to an address
specified in the H:X registers. These commands report the contents of the BDCSCR register when they are
executed.

6.2 HCS08 Non-Intrusive Commands

6.2.1 WRITE_CONTROL

This command is used for writing the BDCSCR register. This is the only command that allows the user to
write the ENBDM bit in the BDCSCR register since BDCSCR is not in the user memory map.

6.2.2 READ_STATUS

This command is used for reading the contents of the BDCSCR register.

6.2.3 BACKGROUND

This command is used for switching from the normal user mode to the active background mode. However
if the ENBDM bit is cleared, this command is ignored. When the target CPU is in wait or stop mode, most
BDC commands cannot function. However, the BACKGROUND command can be used to force the target
CPU out of wait or stop mode and into the active background mode if the BDM is enabled (ENBDM = 1).
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor8

BDC Commands — Active Background Mode and Non-Intrusive
6.2.4 SYNC

This command is performed by driving the BKGD pin low for at least 128 cycles of the slowest possible
BDC clock. This command is used for detecting a BDC communication speed by receiving a
128-BDM-cycle low pulse on the BKGD pin from the target MCU.

6.2.5 READ_LAST, READ_BYTE, and WRITE_BYTE

Memory access commands can read or write memory not only in the active background mode but also
while the user application code is running.

6.2.6 READ_BYTE_WS and WRITE_BYTE_WS

These commands are used for reading and writing data to an address specified by the user. These
commands report the contents of the BDCSCR register when they are executed.

6.2.7 READ_BKPT and WRITE_BKPT

These commands are used for reading and writing the BDC breakpoint register. This register is not in the
user memory map. One hardware breakpoint is placed in the user program when the BDC breakpoint
enable bit (BKPTEN) in BDCSCR is enabled. When a break occurs, the mode is switched from the user
mode to the active background mode. Note the MCU does not need to be in the active background mode
when the breakpoint is set and enabled. The breakpoint function is available even while the user program
is running.

6.2.8 ACK_ENABLE and ACK_DISABLE

These commands can provide an option for a handshake protocol in the BDC communication. When the
handshake protocol is enabled, an acknowledge (ACK) pulse is issued when a command is executed.

6.3 RS08 Active Background Mode Commands

6.3.1 READ_CCR_PC, WRITE_CCR_PC, READ_A, WRITE_A,
READ_BLOCK, WRITE_BLOCK, READ_SPC, WRITE_SPC

CPU registers such as accumulator (A), shadow program counter (SPC), program counter (PC) and
condition code register (CCR) or blocks of data from target memory can be directly read or written by the
active background commands. The non-intrusive commands cannot access these registers.

6.3.2 TRACE1

This command is used for tracing one user instruction. (For the HC08, this function is performed by using
the break module or SWI instruction.)
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor 9

BDC Commands — Active Background Mode and Non-Intrusive
6.3.3 GO

This command is used for executing the user application program and are the same as the HC08 monitor
RUN command.

6.4 RS08 Non-Intrusive Commands

6.4.1 WRITE_CONTROL

This command is used for writing the BDCSCR register. This is the only command that allows the user to
write the ENBDM bit in the BDCSCR register since BDCSCR is not in the user memory map.

6.4.2 READ_STATUS

This command is used for reading the contents of the BDCSCR register.

6.4.3 BACKGROUND

This command is used for switching from the normal user mode to the active background mode. However
if the ENBDM bit is cleared, this command is ignored. When the target CPU is in wait or stop mode, most
BDC commands cannot function. However, the BACKGROUND command can be used to force the target
CPU out of wait or stop mode and into the active background mode if the BDM is enabled (ENBDM = 1).

6.4.4 SYNC

This command is performed by driving the BKGD pin low for at least 128 cycles of the slowest possible
BDC clock. This command is used for detecting a BDC communication speed by receiving a
128-BDM-cycle low pulse on the BKGD pin from the target MCU.

6.4.5 READ_BYTE, and WRITE_BYTE

Memory access commands can read or write memory not only in the active background mode but also
while the user application code is running.

6.4.6 READ_BYTE_WS and WRITE_BYTE_WS

These commands are used for reading and writing data to an address specified by the user. These
commands report the contents of the BDCSCR register when they are executed.

6.4.7 READ_BKPT and WRITE_BKPT

These commands are used for reading and writing the BDC breakpoint register. This register is not in the
user memory map. One hardware breakpoint is placed in the user program when the BDC breakpoint
enable bit (BKPTEN) in BDCSCR is enabled. When a break occurs, the mode is switched from the user
mode to the active background mode. Note the MCU does not need to be in the active background mode
when the breakpoint is set and enabled. The breakpoint function is available even while the user program
is running.
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor10

Background Mode Entry
6.5 RS08 Any CPU Mode Commands

6.5.1 BDC_RESET

This command can be used in any CPU mode to request an MCU reset without using a reset pin.

7 Background Mode Entry
As mentioned in an earlier section, the background debug mode can be entered in several ways. In all
cases, a BDM pod of some sort is connected to the BKGD pin. The reset entry method would generally be
used when the MCU's memory is not programmed, such that it cannot execute a user program. External
hardware or the BDM pod releases the RESET pin after the BKGD and RESET pins are pulled low, and
then pulls the BKGD pin high. In this method, the MCU enters the active background mode instead of the
normal user mode. A Flash memory programming or erase function can be accomplished at this time. This
sequence is typically used to in-circuit program a blank MCU.

The hot sync entry methods are more typically used in a debug session. In these cases the MCU is
operating in the normal user mode and an MCU reset is not required. The BDM pod simply sends
non-intrusive commands to the MCU through the BKGD pin. The user can communicate with the MCU
without disturbing the running application program. Debug operations such as reading or writing a RAM
variable can be performed while the program is running. Erasing and programming Flash memory is not
performed with these non-intrusive commands.

For more in-depth debugging sessions, the host can command the BDC to enable background mode
(ENBDM = 1) and then switch from the running user program to active background mode (program
operation stops). This is generally the case when the user wants to debug code by tracing instructions and
setting breakpoints. The following three methods are used to enter active background mode.

With background mode enabled (ENBDM = 1), the host can send the BACKGROUND command to the
BDC and change the operating mode from user program to active background mode. At this point, all of
the active background mode and non-intrusive BDC commands can be used by the debugger.

Alternatively, the MCU can switch from the user program to active background mode by executing the
BGND instruction after the host enables background mode. If the background mode is not enabled
(ENBDM = 0) when the CPU comes to a BGND instruction, it will be treated as a NOP and program
execution will continue.

Finally, the MCU can switch from the user program to active background mode after the host enables both
background mode and breakpoints (BKPTEN = 1) and then the CPU encounters a breakpoint set in the
BDC breakpoint register (BDCBKPT). As above, all active background mode and non-intrusive BDC
commands can then be used by the debugger.

8 Development Tools
HCS08 and RS08 development tools using the BDC are currently available. P&E Microcomputer
Systems, Inc. (P&E) developed a BDM interface pod and cable called USB MULTILINK, which supports
multiple voltages and frequencies. This pod communicates to an MCU through a standard 6-pin BDM
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor 11

Development Tools
connector. A standard USB port is used for communication between the host and interface pod. The USB
MULTILINK supports the HCS08, RS08 and the HCS12 Families. For more information, please refer to
P&E’s web site http://www.pemicro.com.

An upgraded version of P&E’s popular MON08 CYCLONE tool is available to support the HCS08 (and
soon available for RS08). The CYCLONE PRO has the capability to perform standalone programming in
addition to the debugging and programming functions of the MULTILINK. The CYCLONE PRO
connects to a PC or host through a serial port, a USB port, or an Ethernet port.

Softec Microsystems have an In-System Programmer and Debugger tool which supports HC08, HCS08,
RS08, S12, and S12X Families. Softec Microsystems web site is http://www.softecmicro.com

HCS08 and RS08 integrated development software is also available. Freescale’s CodeWarrior (Figure 5)
and P&E’s WinIDE provide complete development environments that support debugging and Flash
programming in the combination with the USB MULTILINK. The Codewarrior web site is
http://www.codewarrior.com.

Please visit http://www.freescale.com regularly for the latest tools news.

Figure 5. CodeWarrior Debugger
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor12

http://www.pemicro.com
http://www.softecmicro.com
http://www.codewarrior.com
http://www.freescale.com

Summary
9 Summary
The HC08 monitor mode and the HCS08/RS08 background debug mode support in-circuit debugging and
programming. The HCS08 and RS08 background debug controller (BDC) provides more advanced level
of the development environment because:

1. Non-intrusive debug access.
2. No MCU pin function limitations.
3. Breakpoint and trace functions are built into the BDC.
4. Custom serial protocol is faster and more speed tolerant.
5. BDC can be active in stop or wait mode.
6. Background mode interface is small and simple.

The above benefits reduce the total development complexity, time, and cost. Furthermore, MCU
application developers can build their code in the actual application setup.
HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, Rev. 1

Freescale Semiconductor 13

Document Number: AN2497
Rev. 1
08/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Differences Between HC08 Monitor Mode and HCS08/RS08 BDM
	3 Background Debug Mode Interface
	4 HCS08 Background Debug Controller (BDC) and Registers
	5 RS08 Background Debug Controller (BDC) and Registers
	6 BDC Commands - Active Background Mode and Non-Intrusive
	6.1 HCS08 Active Background Mode Commands
	6.1.1 READ_CCR, WRITE_CCR, READ_A, WRITE_A, READ_HX, WRITE_HX, READ_SP, WRITE_SP, READ_PC, and WRITE_PC
	6.1.2 TRACE1
	6.1.3 GO and TAGGO
	6.1.4 READ_NEXT and WRITE_NEXT
	6.1.5 READ_NEXT_WS and WRITE_NEXT_WS

	6.2 HCS08 Non-Intrusive Commands
	6.2.1 WRITE_CONTROL
	6.2.2 READ_STATUS
	6.2.3 BACKGROUND
	6.2.4 SYNC
	6.2.5 READ_LAST, READ_BYTE, and WRITE_BYTE
	6.2.6 READ_BYTE_WS and WRITE_BYTE_WS
	6.2.7 READ_BKPT and WRITE_BKPT
	6.2.8 ACK_ENABLE and ACK_DISABLE

	6.3 RS08 Active Background Mode Commands
	6.3.1 READ_CCR_PC, WRITE_CCR_PC, READ_A, WRITE_A, READ_BLOCK, WRITE_BLOCK, READ_SPC, WRITE_SPC
	6.3.2 TRACE1
	6.3.3 GO

	6.4 RS08 Non-Intrusive Commands
	6.4.1 WRITE_CONTROL
	6.4.2 READ_STATUS
	6.4.3 BACKGROUND
	6.4.4 SYNC
	6.4.5 READ_BYTE, and WRITE_BYTE
	6.4.6 READ_BYTE_WS and WRITE_BYTE_WS
	6.4.7 READ_BKPT and WRITE_BKPT

	6.5 RS08 Any CPU Mode Commands
	6.5.1 BDC_RESET

	7 Background Mode Entry
	8 Development Tools
	9 Summary

