
AN2509/D
11/2003

I2C Slave on the
HC908QT/QY Family MCU

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 By Stanislav Arendarik
Freescale Czech System Application Laboratory
Roznov pod Radhostem, Czech Republic

Introduction

The I2C (inter-integrated circuit) protocol is a 2-wire serial communication
interface implemented in numerous microcontrollers and peripheral devices.
Many microcontroller units (MCUs) do not have an I2C module, yet they must
communicate with 2-wire or I2C devices. These MCUs are usually “master on
I2C.”

This application note describes a method of communicating on an I2C bus by
digital input/output (I/O) pins when the MCUs are “slave on I2C.” This method
can be implemented on any Freescale MCU through the standard digital I/O
pins. This document uses the HC908QT/QY Family as an example.

I2C Overview I2C is a 2-wire communications link requiring a clock line (SCL) and a data line
(SDA) to communicate. The frequency of the I2C clock can go up to 100 kHz
for standard mode, and up to 400 kHz for fast mode.

An I2C bus has both a master device and a slave device attached to it. A master
is defined as a device which initiates a transfer, generates a clock signal (SCL),
and terminates the transfer. A slave device is addressed by the master device.
I2C provides a solution for multiple masters on the same bus. This bus also
provides some error checking by using acknowledgment bits during byte
transfer.

I2C Slave
Application

The application presented in this document illustrates a basic example of the
I2C specification. It is not intended to implement all the features of an I2C bus,
but to provide the basic functionality required to receive data as a slave device
from a master device through a 2-wire interface.
© Motorola, Inc., 2003

For More Information On This Product,
 Go to: www.freescale.com

© Freescale Semiconductor, Inc., 2004. All rights reserved.

AN2509/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This application provides the following functionality:

• 7-bit addressing mode of I2C slave device

• Single master transmitter

• Serial clock frequency reaching up to 75 kHz (SCL) with MCU bus
frequency 3.2 MHz

• 16-bit address mode for destination register

• 8-bit data (transmit and receive) for destination register

• “Byte write” function (write one data byte to the one MCU register
determined by the two-byte address)

• “Random read” function (read one data byte from the MCU register
determined by the two-byte address)

NOTE: The “byte write” and “random read” terms are explained in the following text.

By controlling two digital pins, it is possible to simulate an I2C transfer. These
I/O pins should be open drain. When the I/O pins are high-density
complementary metal oxide semiconductor (CMOS) and not open drain, some
safeguards must be implemented. A series resistor should be connected
between the CMOS output pin and receiver’s input pin. This will provide some
current limiting, should the two devices attempt to output conflicting logic levels.

Another consideration is supporting a logic high level for any open-drain
receiver pins. A pullup resistor can be used at the receiver’s open drain pin to
passively pull up to the supply voltage when the pin is not being actively driven
low. This pullup resistor should be carefully chosen so that when the master pin
drives low, a valid VIL level is presented to the I2C receiver pin.

Figure 1 illustrates how to connect digital I/O pins between I2C master and
slave devices.

Figure 1. The I2C Bus Connect

SLAVE

SCL

SDA

VCC

R1

22 kΩ

VCC

R4
22 kΩ

MASTER

SCL

SDA R2

1 kΩ

1 kΩ

R3
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D
Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When the SCL and SDA I/O ports of the master and slave devices are open
drain, the resistors R1 and R2 can be omitted.

An I2C transfer is composed of specific stages defined by the states of the SCL
and SDA wires. The inactive state of the I2C bus is when both SCL and SDA
lines are in the high logic level. Figure 2 shows the timing between the clock
(SCL) and data (SDA) lines under the START and STOP conditions; Figure 3
shows the timing between SCL and SDA lines during the data transfer, and
Figure 4 shows the timing of the acknowledge impulse, which is sent by the
slave device after it receives all eight bits of the transferred byte.

Basic States Characteristics of the basic states:

– START condition is indicated by the falling edge on SDA line while
the SCL is held in the high logic level

– STOP condition is indicated by the rising edge on SDA line while the
SCL is held in the high logic level

– Data on the SDA line can change only if the SCL line is in the low
logic level

– Data on the SDA line is valid and is transferred through the I2C bus
between devices when the SCL line is in the high logic level

– Acknowledge bit (ACK) is indicated by the low logic level on the SDA
line, while on the SCL line is the ninth pulse from the byte transfer.
The ACK bit is usually generated by the slave device. The master
produces the ACK bit only if the “multiple read function” occurred.

Figure 2. START and STOP Conditions on I2C Bus

SDA

SCL

START STOP
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3. SCL Versus SDA Timing on I2C Bus

Figure 4. Acknowledge Bit Timing on I2C Bus

I2C Bus Transfer The data transfer through the I2C bus is initiated by the START condition
(START bit) produced by the master device. The start bit is followed by the
device address byte with its most significant bit (MSB) first. The least significant
bit (LSB) in the device address byte can be high or low, depending on whether
it is a “read” or “write” operation.

With all bytes transferred on the I2C bus, a ninth clock cycle is used as an
acknowledgment. The SDA line is read during this ninth clock cycle by the
master and signifies whether or not the byte is acknowledged.

SDA

DATA
STABLE

DATA
STABLE

DATA
CHANGE

SCL

SCL

DATA IN

DATA OUT

START ACKNOWLEDGE

1 8 9
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D
Introduction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The device address byte is followed by two address bytes of the destination
register. The high order byte is transferred first, the low order byte is transferred
second. The 16-bit address is written to the slave device. At this point, there
are two possible ways to continue:

– WRITE data to the destination register, determined by the 16-bit
address previously written

– READ data from the destination register determined by the 16-bit
address previously written

WRITE If we write data to the register, the 16-bit address transferred on the I2C bus is
followed by the data byte intended to be written. After an acknowledge bit is
signalled, a STOP condition is imposed on the I2C bus to end the transfer. The
graphical representation of this “byte write” transfer is shown in Figure 5.

Figure 5. The “Byte Write” Transfer

READ If we read data from the desired register, the 16-bit address transferred on the
I2C bus is followed by the START condition and the device address byte with
LSB bit in the high logic level (READ function). After this byte is transferred, the
slave produces the acknowledge bit, followed by the data from the desired
register. The graphical representation of this “random read” transfer is shown
in Figure 6.

Figure 6. The “Random Read” Transfer

ST
AR

T
M

SB

DEVICE
ADDRESS

LS
B

R
/W

M
SB

M
SB

M
SB

ST
O

P

LS
B

LS
B

LS
B

W
R

IT
E

WORD ADDRESS
HIGH

WORD ADDRESS
LOW

DATA BYTE

AC
K

AC
K

AC
K

AC
K

ST
AR

T
M

SB

DEVICE
ADDRESS

LS
B

R
/W

M
SB

M
SB

ST
O

P

LS
B

LS
B

LS
B

W
R

IT
E

1st, 2nd WORD
ADDRESS

DATA BYTE

AC
K

AC
K

AC
K

N
O

 A
C

K

DEVICE
ADDRESS READ

M
SB

ST
AR

T

R
EA

D
R

/W
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Program
Description

The implemented software makes it possible to use the MCU as an I2C slave
device in various applications. This software routine is applicable on every
MCU which can provide two I/O pins for I2C bus connection. The MCU used
can manage any of its own other tasks when the master terminates transfer.
After its own tasks are completed, the slave MCU can then go back to receiving
other data through the I2C bus.

Every I2C slave device must have a unique own device address. The value is
set to A0 at address $FDE0 and can be individually changed.

In this software example, a simple write to the destination register function is
used. The subroutine doing this is called write_func. A read function is
achieved by the immediate read from the destination register.

If we must read data from the analog-to-digital converter (ADC) data register,
the fresh data is available by starting the analog-to-digital conversion
simultaneously with the I2C bus transfer. This is possible because the
analog-to-digital conversion needs only 17 MCU bus clock cycles, and it is
completed before one byte is received through the I2C bus.

Assembler Code

The assembler code that follows is available as a zip file, AN2509SW, from the
Freescale website, http:www.freescale.com.

NOTE: The software is not using the interrupt handling procedure because this would
make the software relatively slow. The software is constructed as for as
possible from consecutive queues of code, and the I2C transfer speed reaches
75 kHz with the bus frequency of MCU equal to 3.2 MHz.

HEADER_START
 Name: I2C-ADC.ASM
 Project: I2C slave implementation on HC908QT4/QY4
 Description: QT1/4 parameter file
 Platform: HC08
 Date: Apr 2003
 Author: Stanislav Arendarik
 Company: Freescale
 Security: General Business
===
 Copyright (c): 2003, All rights reserved.
===
THIS SOFTWARE IS PROVIDED BY FREESCALE "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL FREESCALE OR ITS CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D
Assembler Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
===
 HEADER_END
**

I2C Slave ADC + PORT R/W for QT, QY.
 SDA = PORTA.3, SCL = PORTA.2
**
 DESCRIPTION :
This routine allows the use of the QT, QY MCU (Nitron) as a Slave I2C device. The HC908QT4
function is similar to a four channel AD converter and I/O port. Required function is ensured
by correct setting of the relevant registers.
For correct communication, the following byte format on I2C is required:
Write function: /Standard "Byte write" function/
 1. - START bit condition
 2. - Valid device address - with R/W bit = 0
 this value is set in the program at address $FED0 with value "A0"
 3. - High byte of address of the destination register
 4. - Low byte of address of the destination register
 5. - Data byte desired to write to the destination register
 6. - STOP bit condition

Read function: /Standard "Random read" function/
- START bit condition
- Valid device address - with R/W bit = 0 - Write function
 this value is set in the program at address $FED0 with value "A0"
 3. - High byte of address of the destination register
 4. - START bit condition
 5. - Valid device address - with R/W bit = 1 - Read function
 6. - At this point, I2C Slave sents the actual data value of desired register
 7. - STOP bit condition
**
 XDEF Entry,main,

 Include 'qtqy_registers.inc'
; For the QT2, QT4, QY2, QY4
**
 Macros define I/O pins, which are designated for SCL and SDA of I2C
**
sda: MACRO
 brclr 2,PORTA,\1
 brclr 3,PORTA,\2 ; SDA = PTA.3
 ENDM
wscl1: MACRO
 brclr 2,PORTA,\1 ; SCL = PTA.2
 ENDM ; wait for SCL=1
wscl0: MACRO
 brset 2,PORTA,\1 ; wait for SCL=0
 ENDM
tx0: MACRO
 bset 3,DDRA ; PTA3 as output
 bclr 3,PORTA ; PTA3 = 0
 ENDM
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

slack: MACRO
 bclr 3,PORTA ; PTA3 = 0
 bset 3,DDRA ; PTA3 as output
 ENDM
**
 org $FDE0
own_addr: DC.B $A0 ; here the internal "Device Address" is set to value
 ; $A0. The value can be changed.

DEFAULT_RAM SECTION SHORT
r_w equ $80 ; R/W flag on I2C (bit 0)
dev_addr equ $81 ; internal device address
wr_byte1 equ $82 ; high address byte for data to be written
wr_byte2 equ $83 ; low address byte for data to be written
wr_byte3 equ $84 ; data to be written
rd_byteCA equ $8B ; data from current address
reg1 equ $8C ; auxiliary register
num_bit equ $8D ; number of received bits
count1 equ $8E ; counter register 1
count2 equ $8F ; counter register 2

DEFAULT_ROM SECTION

 Org $FDFD ; setting user RESET vector
DC.B $CC
DC.W $EE00
 Org $EE00
**
main - This is the point where code starts executing after RESET.

**
Entry:
main: clr r_w
 clr dev_addr
 clr wr_byte1
 clr wr_byte2
 clr wr_byte3
 clr num_bit
 clr reg1
 mov #$80,CONFIG2 ; IRQ pullup disconnected,
 ; RESET pin and IRQ pin are inactive
 mov #$09,CONFIG1 ; LVI in 5V operating mode, COP module disable
 lda $FFC0 ; load the TRIM value stored in FLASH
 cmp #$FF
 beq no_trim
 sta OSCTRIM ; if the TRIM value has been calibrated and stored
 ; previously, use this stored value.
no_trim: rsp
 clra
 clrx
 mov #$40,ADICLK ; set ADC clock
main_loop:
 bsr rec_all_b ; receive all four bytes !!
 bra main_loop
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D
Assembler Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

**
rec_all_b - this subr receives all four bytes together
 Wait for START condition, then receive :
 1.byte: dev addr + R/W command, send slave acknowledge impulse
 2.byte: high address byte, send slave acknowledge impulse
 3.byte: low address byte, send slave acknowledge impulse
 4.byte: data byte for writing
 Wait for STOP condition
**
************ Wait for START condition ***************
rec_all_b: ldhx #$FDE0
 clra
 bclr 2,DDRA ; set PORTA.2 as input = SCL
 bclr 3,DDRA ; set PORTA.3 as input = SDA
w_start: sta COPCTL ; service cop control register to prevent reset
 lda PORTA
 and #$0C
 cmp #$0C
 bne w_start ; wait for SDA and SCL = high
wait_sta: sta COPCTL ; service cop control register to prevent reset
 ; this instruction is used to avoid being
 lda PORTA ; held in the wrong state on I2C bus.
 and #$0C
 cmp #$04 ; SCL = high, SDA = low - START condition occurred
 bne wait_sta
 sei ; disable interrupts while MCU is receiving through I2C

**
; now begin receiving 4 bytes through I2C
************* Receive1.byte *************
read_funcRR:
 clra
 mov ADSCR,reg1 ; read ADSCR reg
 bclr 7,reg1 ; clear COCO bit in ADSCR
bit17: wscl0 bit17 ; wait for SCL falling edge
 mov reg1,ADSCR ; write ADSCR to start AD conversion
bit17a: wscl1 bit17a ; wait for SCL rising edge
 brclr 3,PORTA,jmp17 ; read byte1/bit7
 add #$01 ; read SDA = 1
jmp17: lsla ; read SDA = 0
 ; byte1/bit7 = MSB was received
w17: wscl0 w17 ; wait for SCL = 0
bit16: sda bit16,jmp16 ; wait for SCL = 1
 ; read byte1/bit6
 add #$01 ; read SDA = 1
jmp16: lsla ; read SDA = 0
w16: wscl0 w16 ; wait for SCL = 0
bit15: sda bit15,jmp15 ; wait for SCL = 1
 ; read byte1/bit5
 add #$01 ; read SDA = 1
jmp15: lsla ; read SDA = 0
w15: wscl0 w15 ; wait for SCL = 0
bit14: sda bit14,jmp14 ; wait for SCL = 1
 ; read byte1/bit4
 add #$01 ; read SDA = 1
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

jmp14: lsla ; read SDA = 0
w14: wscl0 w14 ; wait for SCL = 0
bit13: sda bit13,jmp13 ; wait for SCL = 1
 ; read byte1/bit3
 add #$01 ; read SDA = 1
jmp13: lsla ; read SDA = 0
w13: wscl0 w13 ; wait for SCL = 0
bit12: sda bit12,jmp12 ; wait for SCL = 1
 ; read byte1/bit2
 add #$01 ; read SDA = 1
jmp12: lsla ; read SDA = 0
w12: wscl0 w12 ; wait for SCL = 0
bit11: sda bit11,jmp11 ; wait for SCL = 1
 ; read byte1/bit1
 add #$01 ; read SDA = 1
jmp11: lsla ; read SDA = 0
w11: wscl0 w11 ; wait for SCL = 0
 ; device address was received, now save data from ACC
 sta dev_addr ; save "dev address" to RAM
 mov ADR,rd_byteCA ; read ADC data to RAM
bit10: sda bit10,jmp10 ; wait for SCL = 1
 ; read byte1/bit0
 bset 0,r_w ; read SDA = 1 = RD function
jmp10: ; read SDA = 0 = WR function
 cmp ,x ; compare "ACC" with own address
 beq go ; go to next
 jmp rec_all_b ; go back to receive all four bytes
 ; only if received "dev.addr" NOT match
 ; with internal predefined "dev.address"
go:
w10: wscl0 w10 ; wait for SCL = 0,then make sl_ack
 brclr 0,r_w,go1 ; if R/W = 0, then continue
 jmp read_funcCA ; if R/W = 1, then make READ FUNCTION CA !
go1:
************* Make Slave acknowledge *************
 slack ; begin the slave ACK
sl_ack_1a: wscl1 sl_ack_1a ; wait for SCL = 1
sl_ack_1b: wscl0 sl_ack_1b ; wait for SCL = 0
 bclr 3,DDRA ; PTA3 as input
************* Receive 2. byte *************
 clra
bit27a: brclr 2,PORTA,bit27a ; wait for SCL rising edge
 brclr 3,PORTA,jmp27 ; read byte2/bit7
 add #$01 ; read SDA = 1
jmp27: lsla ; read SDA = 0
 ; byte2/bit7 = MSB was received
w27: wscl0 w27 ; wait for SCL = 0
bit26: sda bit26,jmp26 ; wait for SCL = 1
 ; read byte2/bit6
 add #$01 ; read SDA = 1
jmp26: lsla ; read SDA = 0
w26: wscl0 w26 ; wait for SCL = 0
bit25: sda bit25,jmp25 ; wait for SCL = 1
 ; read byte2/bit5
 add #$01 ; read SDA = 1
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D
Assembler Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

jmp25: lsla ; read SDA = 0
w25: wscl0 w25 ; wait for SCL = 0
bit24: sda bit24,jmp24 ; wait for SCL = 1
 ; read byte2/bit4
 add #$01 ; read SDA = 1
jmp24: lsla ; read SDA = 0
w24: wscl0 w24 ; wait for SCL = 0
bit23: sda bit23,jmp23 ; wait for SCL = 1
 ; read byte2/bit3
 add #$01 ; read SDA = 1
jmp23: lsla ; read SDA = 0
w23: wscl0 w23 ; wait for SCL = 0
bit22: sda bit22,jmp22 ; wait for SCL = 1
 ; read byte2/bit2
 add #$01 ; read SDA = 1
jmp22: lsla ; read SDA = 0
w22: wscl0 w22 ; wait for SCL = 0
bit21: sda bit21,jmp21 ; wait for SCL = 1
 ; read byte2/bit1
 add #$01 ; read SDA = 1
jmp21: lsla ; read SDA = 0
w21: wscl0 w21 ; wait for SCL = 0
bit20: sda bit20,jmp20 ; wait for SCL = 1
 ; read byte2/bit0
 add #$01 ; read SDA = 1
jmp20: ; read SDA = 0
 ; byte2/bit0 = LSB was received, now save data from ACC
 sta wr_byte1 ; save "wr_byte1" to RAM
w20: wscl0 w20 ; wait for SCL = 0, then make sl_ack
************* Make Slave acknowledge *************
 slack ; begin the slave ACK
sl_ack_2a: wscl1 sl_ack_2a ; wait for SCL = 1
sl_ack_2b: wscl0 sl_ack_2b ; wait for SCL = 0
 bclr 3,DDRA ; PTA3 as input
************* Receive 3.byte *************
 clra
bit37a: brclr 2,PORTA,bit37a ; wait for SCL rising edge
 brclr 3,PORTA,jmp37 ; read byte3/bit7
 add #$01 ; read SDA = 1
jmp37: lsla ; read SDA = 0
 ; byte3/bit7 = MSB was received
w37: wscl0 w37 ; wait for SCL = 0
bit36: sda bit36,jmp36 ; wait for SCL = 1
 ; read byte3/bit6
 add #$01 ; read SDA = 1
jmp36: lsla ; read SDA = 0
w36: wscl0 w36 ; wait for SCL = 0
bit35: sda bit35,jmp35 ; wait for SCL = 1
 ; read byte3/bit5
 add #$01 ; read SDA = 1
jmp35: lsla ; read SDA = 0
w35: wscl0 w35 ; wait for SCL = 0
bit34: sda bit34,jmp34 ; wait for SCL = 1
 ; read byte3/bit4
 add #$01 ; read SDA = 1
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

jmp34: lsla ; read SDA = 0
w34: wscl0 w34 ; wait for SCL = 0
bit33: sda bit33,jmp33 ; wait for SCL = 1
 ; read byte3/bit3
 add #$01 ; read SDA = 1
jmp33: lsla ; read SDA = 0
w33: wscl0 w33 ; wait for SCL = 0
bit32: sda bit32,jmp32 ; wait for SCL = 1
 ; read byte3/bit2
 add #$01 ; read SDA = 1
jmp32: lsla ; read SDA = 0
w32: wscl0 w32 ; wait for SCL = 0
bit31: sda bit31,jmp31 ; wait for SCL = 1
 ; read byte3/bit1
 add #$01 ; read SDA = 1
jmp31: lsla ; read SDA = 0
w31: wscl0 w31 ; wait for SCL = 0
bit30: sda bit30,jmp30 ; wait for SCL = 1
 ; read byte3/bit0
 add #$01 ; read SDA = 1
jmp30: ; read SDA = 0
 ; byte3/bit0 = LSB was received, now save data from A
 sta wr_byte2 ; save "wr_byte2" to RAM
w30: wscl0 w30 ; wait for SCL = 0, then make sl_ack
************* Make Slave acknowledge *************
 slack ; begin the slave ACK
sl_ack_3a: wscl1 sl_ack_3a ; wait for SCL = 1
sl_ack_3b: wscl0 sl_ack_3b ; wait for SCL = 0
 bclr 3,DDRA ; PTA3 as input
 clra
sl_ack_3c: wscl1 sl_ack_3c ; wait for SCL = 1
************* Receive 4.byte or START *************
 brclr 3,PORTA,jmp47 ; read byte4/bit7
 add #$01 ; read SDA = 1
start3: brset 3,PORTA,start3a ; test START condition
 jmp read_funcRR ; jump if START occurred
 ; make READ FUNCTION RandomRead
start3a: wscl0 start3 ; wait for SCL = 0
jmp47: lsla ; read SDA = 0
 ; byte4/bit7 = MSB was received
w47: wscl0 w47 ; wait for SCL = 0
bit46: sda bit46,jmp46 ; wait for SCL = 1
 ; read byte4/bit6
 add #$01 ; read SDA = 1
jmp46: lsla ; read SDA = 0
w46: wscl0 w46 ; wait for SCL = 0
bit45: sda bit45,jmp45 ; wait for SCL = 1
 ; read byte4/bit5
 add #$01 ; read SDA = 1
jmp45: lsla ; read SDA = 0
w45: wscl0 w45 ; wait for SCL = 0
bit44: sda bit44,jmp44 ; wait for SCL = 1
 ; read byte4/bit4
 add #$01 ; read SDA = 1
jmp44: lsla ; read SDA = 0
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D
Assembler Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

w44: wscl0 w44 ; wait for SCL = 0
bit43: sda bit43,jmp43 ; wait for SCL = 1
 ; read byte4/bit3
 add #$01 ; read SDA = 1
jmp43: lsla ; read SDA = 0
w43: wscl0 w43 ; wait for SCL = 0
bit42: sda bit42,jmp42 ; wait for SCL = 1
 ; read byte4/bit2
 add #$01 ; read SDA = 1
jmp42: lsla ; read SDA = 0
w42: wscl0 w42 ; wait for SCL = 0
bit41: sda bit41,jmp41 ; wait for SCL = 1
 ; read byte4/bit1
 add #$01 ; read SDA = 1
jmp41: lsla ; read SDA = 0
w41: wscl0 w41 ; wait for SCL = 0
bit40: sda bit40,jmp40 ; wait for SCL = 1
 ; read byte4/bit0
 add #$01 ; read SDA = 1
jmp40: ; read SDA = 0
 ; byte4/bit0 = LSB was received, now save data from A
 sta wr_byte3 ; save "wr_byte3" to RAM
w40: wscl0 w40 ; wait for SCL = 0, then make sl_ack
************* Make Slave acknowledge *************
 slack ; begin the slave ACK
sl_ack_4a: wscl1 sl_ack_4a ; wait for SCL = 1
sl_ack_4b: wscl0 sl_ack_4b ; wait for SCL = 0
 bclr 3,DDRA ; PTA3 as input
************* Wait for STOP condition *************
w_stop: sta COPCTL ; service cop control register to prevent reset
 bclr 3,DDRA ; set PORTA.3 as input
 bclr 2,DDRA ; set PORTA.2 as input
 lda PORTA ; test for SDA = 0, SCL = 1
 and #$0C
 cmp #$04
 bne w_stop ; wait for SDA and SCL = high
wait_sto: sta COPCTL ; service cop control register to prevent reset
 lda PORTA ; test for SDA=1, SCL=1 = STOP condition
 and #$0C
 cmp #$0C
 bne wait_sto ; STOP condition occurred
 brset 0,r_w,endw ; WRITE function only if R/W-bit = 0.
 jsr write_func
endw: rts

**
; write_func - write byte to address: data from wr_byte3 will be written to
; address pointed to by wr_byte2 (low byte) and wr_byte1 high byte)
**
write_func: ldhx wr_byte1 ; load wr_byte1 and wr_byte2 to H:X reg
 lda wr_byte2 ; load low address byte
 cmp #$04 ; test for address of DDRA register
 beq wr_func1 ; mask write to the DDRA register
 cmp #$0 ; test for address of PORTA
 beq wr_func2 ; mask write to the PORTA
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 lda wr_byte3 ; load data to ACC
 sta ,x ; write data to H:X address
 rts
wr_func1: lda DDRA ; load data from DDRA to A
 and #$0C ; mask SCL and SDA bits
 sta reg1 ; save SCL and SDA value of DDRA
 lda wr_byte3 ; load data to write
 and #$F3 ; cut SCL and SDA bits
 ora reg1 ; OR original value of SCL & SDA DDRA bits
 sta DDRA ; set new value of DDRA register
 rts
wr_func2: lda PORTA ; load data from PORTA to A
 and #$0C ; mask SCL and SDA bits
 sta reg1 ; save SCL and SDA value of PORTA
 lda wr_byte3 ; load data to write
 and #$F3 ; cut SCL and SDA bits
 ora reg1 ; OR original value of SCL and SDA bits
 sta PORTA ; set new value of PORTA
 rts

**
read_funcCA:
************* Slave ACK *************
 slack ; begin the slave ACK
rca1: wscl1 rca1 ; wait for SCL=1
 ldhx wr_byte1 ; load high and low address bytes for
 ; current address read
 lda ,x ; load data from current address
 sta rd_byteCA ; save data to RAM
rca0: wscl0 rca0 ; wait for SCL=0

************* End of Slave ACK *************
 brclr 7,rd_byteCA,tx07 ; data (MSB) to SDA
 bset 3,PORTA
tx07: wscl1 tx07 ; wait for SCL=1
 sta COPCTL
tx07a: wscl0 tx07a ; wait for SCL=0
 bclr 3,PORTA ; clear SDA
 brclr 6,rd_byteCA,tx06 ; data (bit6) to SDA
 bset 3,PORTA
tx06: wscl1 tx06 ; wait for SCL=1
 sta COPCTL
tx06a: wscl0 tx06a ; wait for SCL=0
 bclr 3,PORTA ; clear SDA
 brclr 5,rd_byteCA,tx05 ; data (bit5) to SDA
 bset 3,PORTA
tx05: wscl1 tx05 ; wait for SCL=1
 sta COPCTL
tx05a: wscl0 tx05a ; wait for SCL=0
 bclr 3,PORTA ; clear SDA
 brclr 4,rd_byteCA,tx04 ; data (bit4) to SDA
 bset 3,PORTA
tx04: wscl1 tx04 ; wait for SCL=1
 sta COPCTL
tx04a: wscl0 tx04a ; wait for SCL=0
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2509/D
Assembler Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 bclr 3,PORTA ; clear SDA
 brclr 3,rd_byteCA,tx03 ; data (bit3) to SDA
 bset 3,PORTA
tx03: wscl1 tx03 ; wait for SCL=1
 sta COPCTL
tx03a: wscl0 tx03a ; wait for SCL=0
 bclr 3,PORTA ; clear SDA
 brclr 2,rd_byteCA,tx02 ; data (bit2) to SDA
 bset 3,PORTA
tx02: wscl1 tx02 ; wait for SCL=1
 sta COPCTL
tx02a: wscl0 tx02a ; wait for SCL=0
 bclr 3,PORTA ; clear SDA
 brclr 1,rd_byteCA,tx01 ; data (bit1) to SDA
 bset 3,PORTA
tx01: wscl1 tx01 ; wait for SCL=1
 sta COPCTL
tx01a: wscl0 tx01a ; wait for SCL=0
 bclr 3,PORTA ; clear SDA
 brclr 0,rd_byteCA,tx00 ; data (LSB) to SDA
 bset 3,PORTA
tx00: wscl1 tx00 ; wait for SCL=1
 sta COPCTL
tx00a: wscl0 tx00a ; wait for SCL=0
 bclr 3,PORTA ; clear SDA
************ N O A C K ************
 bclr 2,DDRA ; set PORTA.2 as input
 bclr 3,DDRA ; set PORTA.3 as input
w_stop1: sta COPCTL ; service cop control register to prevent reset
 lda PORTA ; test for SDA = 0, SCL = 1
 and #$0C
 cmp #$04
 bne w_stop1 ; wait for SDA and SCL = high
wait_sto1: sta COPCTL ; service cop control register to prevent reset
 lda PORTA ; test for SDA = 1, SCL=1 = STOP condition
 and #$0C
 cmp #$0C
 bne wait_sto1
 lda ADSCR ; clear COCO bit in ADSCR to start
 and #$7F ; next conversion
 sta ADSCR
 clr r_w ; clear RD flag
 bclr 2,DDRA ; set PORTA.2 as input
 bclr 3,DDRA ; set PORTA.3 as input
 jmp main_loop ; go to start of I2C communication
**
END
I2C Slave on the HC908QT/QY Family MCU

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2509/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	I2C Overview
	I2C Slave Application
	Basic States
	I2C Bus Transfer
	WRITE
	READ

	Program Description

	Assembler Code

