
AN2545/D
Rev. 1, 6/2004

Using MC68HC908GR/GZ
On-Chip FLASH
Programming Routines

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 By Kazue Kikuchi
8/16 Bit MCU Applications Engineering
Austin, Texas

Introduction

The MC68HC908GZ16 (GZ16), MC68HC908GR16 (GR16), and
MC68HC908GZ8 (GZ8) microcontroller units (MCUs) have FLASH memory
(16 Kbytes for GZ16 and GR16; 8 Kbytes for GZ8). To program, erase, and
verify FLASH, the MCUs have on-chip FLASH support routines residing in
ROM (read-only memory). These routines may be accessed in either user
mode or monitor mode and eliminate the need to develop separate FLASH
routines for applications.

This application note describes how to call each of the routines in the user
software and what is performed and returned as confirmation of routine
execution.

NOTE: With the exception of mask set errata documents, if any other Motorola
document contains information that conflicts with the information in the device
data sheet, the data sheet should be considered to have the most current and
correct data.

FLASH Overview The FLASH cell used on the GZ8/16 and GR16 is an industry-proven split-gate
cell available from Silicon Storage Technology (SST) in 0.5-micron geometry.
The cell uses channel hot electron injection for programming and Fowler-
Nordheim tunnelling for erasing. All programming voltages are generated
internally by a charge pump from a single connection to VDD. More information
on the FLASH cell is available at the SST website: http://www.ssti.com.

With the quick byte programming time and the organization of the FLASH array
into 32-byte rows, the entire 16-Kbyte memory can be programmed in less than
one second. This type of FLASH is specified to withstand at least 10,000
program/erase cycles and has enhanced reliability over previous technology.
This product incorporates SuperFlash technology licensed from SST.

© Motorola, Inc., 2004

For More Information On This Product,
 Go to: www.freescale.com

 Semiconductor, Inc., 2004. All rights reserved.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

page basis. Also, an entire specified array can be mass erased. For the GZ8/16
and GR16, rows are 32 bytes and pages are 64 bytes (two rows of 32 bytes
each).

Routines Supported in ROM

In the GZ8/16 and GR16 ROM, five routines are supported. This section
introduces each routine briefly. Details are discussed in later sections.

GetByte This routine is used to receive a byte serially on the general-purpose I/O port A,
bit 0 (PTA0). The receiving baud rate is the same as the baud rate used in
monitor mode.

RDVRRNG This routine is used to read FLASH locations and to verify the FLASH data
against data in specific RAM locations, which are referred to as DATA arrays.

PRGRNGE This routine is used to program a contiguous range of FLASH locations.
Programming data is first loaded into the DATA array. PRGRNGE can be used
when the internal operating frequency (fop) is between 2.0 MHz and 8.4 MHz.

ERARNGE This routine is used to erase either a page (64 bytes) or the whole array of
FLASH. It can be used when the internal operating frequency (fop) is between
2.0 MHz and 8.4 MHz.

DELNUS This routine can generate a specified delay based on the values of register X
and accumulator (A) as parameters. DELNUS is used in PRGRNGE and
ERARNGE routines.

NOTE: Because the ROM has a jump table, the user does not call the routines with
direct addresses. Therefore, the calling addresses will not change even when
the ROM code is updated in the future.
2 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
Variables Used in the Routines

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Variables Used in the Routines

The RDVRRNG, PRGRNGE, and ERARNGE routines require certain registers
and/or RAM locations to be initialized before calling the routines in user
software. Table 1 shows variables used in the routines and their locations.

CTRLBYT The control byte (CTRLBYT) is located at RAM address $48 and is used for the
ERARNGE routine. Bit 6 in this location is used to specify either MASS (1) or
PAGE (0) erase.

CPUSPD To set up proper delays used in the PRGRNGE and ERARNGE routines, a
value indicating the internal operating frequency (fop) must be stored at
CPUSPD, which is located at RAM address $49. The value is fop (in MHz) times
2 then rounded up to the next integer. For example, if fop is 4.2 MHz, the
CPUSPD value is 9. If fop is 2.5 MHz, the CPUSPD value is 5. Setting a correct
CPUSPD value is very important to program or erase the FLASH successfully.

LADDR A range specifies the FLASH locations to be read, verified, or programmed.
The 16-bit value in RAM addresses $4A and $4B holds the last address of a
range. The addresses $4A and $4B are the high and low bytes of the last
address, respectively. LADDR is used for RDVRRNG and PRGRNGE routines.

Table 1. Variables and Their Locations

Location Variable Name Size
(Bytes) Description

$40 – $47 Reserved 8 Reserved for future use

$48 CTRLBYT 1 Control byte including MASS erase bit (bit 6)

$49 CPUSPD 1
CPU speed — fop (in MHz) × 2 then rounded

up to the next integer; for example,
if fop = 2.4576 MHz, CPUSPD = 5

$4A, $4B LADDR 2 Last address of a 16-bit range

$4C DATA Varies
First location of DATA array;
DATA array size must match a programming

or verifying range

RegistersH:X — 2 Beginning address of a 16-bit range
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

$4C. The array is used for loading program or verify data. The DATA array
must be in the zero page and its size must match the size of the range to be
programmed or verified.

Registers H:X In the RDVRRNG and PRGRNGE routines, registers H and X are initialized
with a 16-bit value representing the first address of a range. High and low bytes
of the address are stored to registers H and X, respectively. In the ERARNGE
routine, registers H and X are initialized with an address which is within the
page or entire array to be erased.

How to Use the Routines

This section describes the details of each routine. Table 5 summarizes the five
routines.

GetByte GetByte is a routine that receives a byte on the general-purpose I/O PTA0, and
the received value is passed back to the calling routine in the accumulator (A).
This routine expects the same non-return-to-zero (NRZ) communication
protocol and baud rate that is used in monitor mode. A similar routine that is
used by the monitor echoes each received byte before attempting to receive a
new byte. It is more efficient to use this GetByte routine when user software or
data is downloaded to RAM because it eliminates the time overhead in echoing
back every byte that is received. If user software already has a built-in error
detection scheme such as checksum, data echoing back is not necessary.

This routine detects a framing error when a STOP bit is not detected. If the
carry (C) bit of the condition control register (CCR) is cleared after returning
from this routine, a framing error occurred during the data receiving process.
Therefore, the data in A is not reliable. User software is responsible for
handling such errors.

To use this routine, some hardware setup is required. The general-purpose I/O
PTA0 must be pulled up. For more information, refer to the monitor ROM
section in the device data sheet.

The GZ8/16 and GR16 support different baud rates. The GZ8/16 baud rate is
defined by fop divided by 278; the GR16 baud rate is defined by fop divided by
256. Table 2 and Table 3 show typical PC baud rates used for these MCUs.
4 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
How to Use the Routines

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE: Interrupts are not masked (the I bit is not set) and the COP is not serviced in
the GetByte routine. User software should ensure that interrupts are blocked
during character reception.

Entry Condition In hardware, PTA0 must be pulled up.

In the user software, PTA0 must be configured as an input.

Exit Condition A — Contains data received from PTA0.

C bit — Normally the C bit is set, indicating proper reception of the STOP bit.
However, if the C bit is clear, a framing error occurred. Therefore, the received
byte in A is not reliable.

Example 1:
Receiving a Byte
Serially

Example 1 shows how to receive a byte serially on PTA0:

GETBYTE equ $1C00

 bclr 0,DDRA0 ;Configure Port A bit 0 as an input

 jsr GETBYTE ;Call GETBYTE routine
 bcc FrameError ;If C bit is clear, framing error
 ; occurred. Take a proper action

NOTE: As soon as GetByte is called, the program will remain in this routine until a
START bit (0) is detected and a complete character is received.

Table 2. Typical Baud Rates for GZ8 and GZ16

Operation Bus Freq. (fop) Calculated Baud
Rate Closest PC Baud Rate

2.0 MHz 7,194 bps 7,200 bps

4.0 MHz 14,388 bps 14,400 bps

8.0 MHz 28,777 bps 28,800 bps

Table 3. Typical Baud Rates for GR16

Operation Bus Freq. (fop) Calculated Baud
Rate Closest PC Baud Rate

2.4576 MHz 9,600 bps 9,600 bps

4.9152 MHz 19,200 bps 19,200 bps
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

function options:

• Send-out option — Used to read a range of FLASH locations and send
the read data to a host through communication PTA0.

• Verify option — Used to read a range of FLASH locations and to verify
the read data against the DATA array.

Send-Out Option If the accumulator (A) is initialized with $00 at the routine entry, the read data
will be sent out serially through communication PTA0 (send-out option). The
communication baud rate is the same as the baud rate described in the
GetByte routine. When this option is selected, the PTA0 must be pulled up and
configured as an input and the PTA0 data bit must be initialized to 0.

Verify Option If A is initialized with a non-zero value, the read data is verified against the
DATA array (verify option) for each byte of FLASH data that does not match the
corresponding value in the DATA array. The value in the DATA array is
replaced by the data read from FLASH. All data in the DATA array must be in
the zero page and its size must match the size of a specified verify range.

Carry (C) Bit The beginning and last addresses of the range to be read and/or verified are
specified as parameters in registers H:X and LADDR, respectively. In the verify
option, the carry (C) bit of the condition code register (CCR) is set if the data in
the specified range is verified successfully against the data in the DATA array.
However when the send-out option is selected, the status of the C bit is
meaningless because this function does not include the verify operation. Both
options calculate a checksum on data read in the range. This checksum, which
is the LSB of the sum of all bytes in the entire data collection, is stored in the A
upon return from the function.

Interrupts are masked (the I bit is set) when the send-out option is selected.
The COP is serviced in RDVRRNG. However, the COP timeout might still occur
in the send-out option if the COP is configured for a short timeout period.

Entry Condition H:X — Contains the beginning address in a range.

LADDR — Contains the last address in a range.

A — When A contains $00, read data is sent out via PTA0 (send-out option is
selected). When A contains a non-zero value, read data is verified against the
DATA array (verify option is selected).

DATA array — contains data to be verified against FLASH data. For the
send-out option, the DATA array is not used.

PTA0 — When the send-out option is selected, this pin must be configured as
an input and pulled up in hardware and PTA0 must be initialized to 0.
6 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
How to Use the Routines

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Exit Condition A — Contains a checksum value.

H:X — Contains the address of the next byte just after the range read.

C bit — Indicates the verify result (only applies to the verify option).

 When the C bit is set, the verify succeeded.

 When the C bit is cleared, the verify failed.

DATA array — Replaced with data read from FLASH when the verify option is
selected.

Example 2:
Verify Option

Example 2 shows how to use the verify option:

RDVRRNG equ $1C03

 ldhx #$0000 ;Index offset into DATA array
 lda #$AA ;Initial data value to store in array
Data_load:
 coma
 sta DATA,x ;Fill DATA array, 32 bytes data,
 ; to verify against programmed FLASH
 aix #$1 ; data (In this example verifying data
 cphx #$20 ; is $55, $AA, $55, $AA....)
 bne Data_load

 ldhx #$C01F ;Load last address of range to
 sthx LADDR ; LADDR
 ldhx #$C000 ;Load beginning address of range
 ; to H:X
 lda #$55 ;Write non-zero value to A to select
 ; the verify option
 jsr RDVRRNG ;Call RDVRRNG routine
 bcc Error ;If bit C is cleared, verify failed
 ; Take a proper action
 ;A contains a checksum value

Example 3:
Send-Out Option

Example 3 shows how to use the send-out option:

RDVRRNG equ $1C03

 bclr 0,DDRA ;Configure Port A bit 0 as an input
 bclr 0,PTA ;Initialize data bit to zero PTA0=0
 ldhx #$C025 ;Load last address of range to
 sthx LADDR ; LADDR
 ldhx #$C010 ;Load beginning address of range
 ; to H:X
 clra ;A=0 to select send-out option
 jsr RDVRRNG ;Call RDVRRNG routine
 ;A contains a checksum value
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

into the DATA array. All data in the DATA array must be in the zero page, but
the range size is not limited to the 32-byte row size. Programming data is
passed to PRGRNGE in the DATA array. The size of the DATA array must
match the size of a specified programming range. This routine supports an
internal operating frequency between 2.0 MHz and 8.4 MHz.

For this split-gate FLASH, the programming algorithm requires a programming
time (tprog) between 30 µs and 40 µs. (Refer to the FLASH memory section in
the device data sheet.) Table 4 shows how tprog is adjusted by a CPUSPD
value in this routine. The CPUSPD value is fop (in MHz) multiplied by 2 then
rounded up to the next integer. For example, if fop is 2.4576 MHz, the CPUSPD
value is 5. If fop is 8.0 MHz, the CPUSPD value is 16 ($10).

In PRGRNGE, the high programming voltage time is enabled for less than
125 µs when programming a single byte at any operation bus frequency
between 2.0 MHz and 8.4 MHz. Therefore even when a row is programmed by
32 separate single-byte programming operations, the cumulative high voltage
programming time is less than the maximum tHV (4 ms). The tHV is defined as
the cumulative high voltage programming time to the same row before next
erase. For more information, refer to memory characteristics in the electrical
specifications section of the device data sheet.

This routine does not confirm that all bytes in the specified range are erased
prior to programming. Nor does this routine do a verification after programming,
so there is no return confirmation that programming was successful. To
program data successfully, the user software is responsible for these checking
operations. The RDVRRNG routine can be used to verify a programmed
FLASH range against the DATA array.

Interrupts are masked (the I bit is set) and the COP is serviced in this routine.

Table 4. tprog vs. Bus Frequency

Operating Bus Freq. (fop) CPUSPD tprog (Cycles) tprog

Case 1 2.0 MHz ≤ fBus ≤ 2.5 MHz 4, 5 75 30.00 µs ≤ tprog ≤ 37.50 µs

Case 2 2.5 MHz < fBus ≤ 3.0 MHz 6 90 30.00 µs ≤ tprog < 36.00 µs

Case 3 3.0 MHz < fBus ≤ 4.0 MHz 7, 8 CPUSPD × 3 + 99 30.75 µs ≤ tprog < 40.00 µs

Case 4 4.0 MHz < fBus ≤ 5.5 MHz 9, 10, 11 CPUSPD × 6 + 104 30.90 µs ≤ tprog < 39.50 µs

Case 5 5.5 MHz < fBus ≤ 8.4 MHz
12, 13, 14,
15, 16, 17

CPUSPD × 9 + 101 30.62 µs ≤ tprog < 38.18 µs
8 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
How to Use the Routines

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Entry Condition H:X — Contains the beginning address in a range.

LADDR — Contains the last address in a range.

CPUSPD — Contains an integer value equal to fop (in MHz) times 2 and
rounded up to the next integer.

DATA array — Contains the data values to be programmed into FLASH.

Exit Condition H:X — Contains the address of the next byte after the range just programmed.

Example 4:
Programming a Row

Example 4 shows how to program one full 32-byte row:

PRGRNGE equ $1C09

 ldhx #$0000 ;Index offset into DATA array
 lda #$AA ;Initial data value (inverted)
Data_load:
 coma ;Alternate between $55 and $AA
 sta DATA,x ;Fill DATA array, 32 bytes data,
 ; values to program into FLASH
 aix #$1 ; (ie. 55, AA, 55, AA....)
 cphx #$20
 bne Data_load

 mov #$5,CPUSPD ;fop = 2.4576MHz in this example
 ldhx #$C01F ;Load last address of the row
 sthx LADDR ; to LADDR
 ldhx #$C000 ;Load beginning address of the
 ; row to H:X
 jsr PRGRNGE ;Call PRGRNGE routine

Example 5:
Programming a Page

Example 5 shows how to program one full 64-byte page:

PRGRNGE equ $1C09

 ldhx #$0000 ;Index offset into DATA array
 clra ;Initial data value (-1)
Data_load:
 inca
 sta DATA,x ;Fill DATA array, 64 bytes data,
 ; values to program into FLASH
 aix #$1 ; (ie. 01,02,03,04,...,63,64)
 cphx #$40
 bne Data_load

 mov #$4,CPUSPD ;fop = 2.0MHz in this example
 ldhx #$C03F ;Load last address of the page
 sthx LADDR ; to LADDR
 ldhx #$C000 ;Load beginning address of the
 ; page to H:X
 jsr PRGRNGE ;Call PRGRNGE routine
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Programming a Range
Smaller than a Row

shows how to program $55 and $AA at locations $E004 and $E005,
respectively.

PRGRNGE equ $1C09

 mov #$55,DATA
 mov #$AA,DATA+1

 mov #$0C,CPUSPD ;fop = 6.0MHz in this example
 ldhx #$E005 ;Load last address to LADDR
 sthx LADDR
 ldhx #$E004 ;Load beginning address to H:X
 jsr PRGRNGE ;Call PRGRNGE routine

ERARNGE ERARNGE can be called to erase a page (64 bytes) or a whole array of FLASH.
Registers H and X can be any address within the page or array to be erased.
To select erase size, the MASS bit (bit 6) in the CTRLBYT is used. Setting the
MASS bit selects the entire array erase. Clearing the MASS bit selects the
page erase. This routine supports an internal operating frequency between
2.0 MHz and 8.4 MHz.

In this routine, both page erase time (tErase) and mass erase time (tMErase) are
set between 4 ms and 5.5 ms. The CPUSPD value is equal to fop (in MHz) times
2 then rounded up to the next integer. For example if fop is 3.1 MHz, the
CPUSPD is 7. If fop is 4.9152 MHz, the CPUSPD is 10 ($A).

Interrupts are masked (the I bit is set) and the COP is serviced in ERARNGE.

Entry Condition CTRLBYT — For MASS erase, set bit 6. For page erase, clear bit 6.

H:X — Contains an address within a desired erase page or an array.

CPUSPD — Contains an integer value equal to fop (in MHz) times 2 then
rounded up to the next integer.

Exit Condition None

Example 7:
Erasing an
Entire Array

 Example 7 shows how to erase an entire array:

ERARNGE equ $1C06

 mov #$4,CPUSPD ;fop = 2.0MHz in this example
 bset 6,CTRLBYT ;Select Mass erase operation
 ldhx #$E000 ;Load any Flash address to H:X
 jsr ERARNGE ;Call ERARNGE routine
10 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
How to Use the Routines

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example 8:
Erasing a Page

Example 8 shows how to erase a page from $E100 through $E13F:

ERARNGE equ $1C06
 mov #$0A,CPUSPD ;fop = 4.9152MHz in this example
 bclr 6,CTRLBYT ;Select Page erase operation
 ldhx #$E121 ;Load any address within the
 ; page to H:X
 jsr ERARNGE ;Call ERARNGE routine

NOTE: If the FLASH locations which you want to erase are protected due to the value
in the FLASH block protect register (FLBPR), the erase operation will not be
successful. However when a high voltage (Vtst) is applied to the IRQ pin, the
block protection is bypassed.

When the FLASH security check fails in the normal monitor mode, the FLASH
can be re-accessed by erasing the entire FLASH array. To override the FLASH
security mechanism and erase the FLASH array using this routine, registers H
and X must contain the address of the FLASH block protect register (FLBPR).
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

routines. It can, however, be called independently in user software. DELNUS
uses two parameters stored in the accumulator (A) and the X register (X).
Neither of these parameters is passed as an absolute value. The total delay
(cycles) resulting from this routine is:

 DELNUS = 3 × (A value) × (X value) + 8 cycles

where a value of A is 4 or greater and a value of X is 1 or greater. In the
PRGRNGE and ERARNGE routines, the CPUSPD value (which is a frequency
parameter) is loaded into A.

Because this routine is called from a jump table, three additional cycles are
included in the DELNUS equation provided above.

Interrupts are not masked (the I bit is not set) and the COP is not serviced in
DELNUS.

Initialization A — Select A value between 4 and 255

X — Select X value between 1 and 255

Exit Condition None

Example 9:
Generating a Delay

Initialized A = 8 and X = 16 to generate 100 µs delay at fop = 4 MHz

DELNUS equ $1C0C

 lda #$8 ;[2]A=8
 ldx #$10 ;[2]X=16
 jsr DELNUS ;[4]Call DELNUS routine

In this example, the total delay time is 8 + (3 × 8 × 16 + 8) cycles = 400 cycles
(100 µs).
12 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
How to Use the Routines

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 5. Summary of On-Chip Flash Support Routines

GetByte RDVRRNG PRGRNGE ERARNGE DELNUS

Routine
Description

Get a byte data
serially through

PTA0

Read and/or
verify

a FLASH range

Program a
FLASH range

Erase PAGE
or entire array

Generate delay
3 × A × X + 8

(cycles)

Call Address $1C00 $1C03 $1C09 $1C06 $1C0C

Internal
Operating
Frequency

(fop)

— — 2 MHz – 8.4 MHz 2 MHz – 8.4 MHz —

Hardware
Requirement Pullup on PTA0

For send-out
option, pullup on

PTA0
N/A N/A N/A

Entry
Conditions

PTA0: Input
 (DDRA0 = 0)

H:X: First address
of range

LADDR: Last
address of
range

A: A = $00 for
send-out option
or A ≠ $00 for
verify option

For send-out
option
PTA0: Input and
0 data bit
(DDRA0=0,
PTA0=0)

For verify option,
DATA array: Load
data to be
verified against
FLASH read
data

H:X: First address
 of range
LADDR: Last
 address of

range
CPUSPD: fop

(in MHz) times 2
then rounded up
to the next
integer

Data array:
Load data to be
programmed

H:X: Address
within a page or
an array to be
erased

CPUSPD: fop
(in MHz) times 2
then rounded up
to the next
integer

CTRLBYT (bit 6):
 1 = mass erase

0 = page erase

A: Value between
4 and 255

X: Value
between
1 and 255
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Exit
Conditions

A: Data received
 through PTA0
C-bit: Framing

error indicator
(error: c = 0)

A: Checksum
H:X: Next FLASH

address
C-bit: Verify result

indicator
(success: c = 1)

DATA array: Data
replaced with
FLASH read
data (verify
option)

H:X: Next FLASH
address

H:X: No change —

I Bit —
I bit is set for

send-out option
I bit is set I bit is set —

COP Not Serviced Serviced Serviced Serviced Not Serviced

Subroutines
Called GetBit(1)

PutByte(1)

for send-out
option

DELNUS DELNUS —

RAM Variable —

LADDR (2 bytes),
DATA array (no
size limitation,
but all data must
be in the zero
page)

CPUSPD,LADDR
(2 bytes), DATA
array (no size
limitation, but all
data must be in
the zero page)

CTRLBYT,
CPUSPD

—

Stack Used
(Including the

Routine’s
Call)

6 bytes

9 bytes for verify
 option
11 bytes for

send-out option

11 bytes 7 bytes 3 bytes

1. This routine is located in the monitor ROM.

GetByte RDVRRNG PRGRNGE ERARNGE DELNUS
14 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
On-Chip Routines Flowcharts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

On-Chip Routines Flowcharts

Figure 1. GetByte Routine

ROTATE A RIGHT THROUGH C BIT

C C

GetByte

PTA0 = 0
?

CALL GetBit ROUTINE
TO GET START BIT

(NOTE 1)

C BIT = 1
?

A = $80

CALL GetBit ROUTINE
TO GET DATA

(NOTE 1)

C BIT = 0
?

CALL GetBit ROUTINE
TO GET STOP BIT

(NOTE 1)

RTS

A

YES

NO

YES

NO

YES

NO

GBit1:

NOTES:
1. GetBit routine resides in monitor ROM
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 15

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2. RDVRRNG Routine

RDVRRNG

CALCULATE TOTAL BYTE NUMBER
TO BE READ

STORE TOTAL BYTE NUMBER AT
RESULT AND BYTE COUNTER (STACK)

SERVICE COP

READ FLASH DATA AT H:X

INITIAL A = $00?

DECREMENT RESULT

REPLACE DATA ARRAY
WITH FLASH READ DATA

RTS

YES

NO

DATA ARRAY DATA =
FLASH READ DATA?

ACCUMULATE CHECKSUM

H:X = H:X + 1

DECREMENT BYTE
COUNTER = 0?

CALL PutByte ROUTINE
(NOTE 1)

NO

YES

NO YES

RESULT = 0
?

CLEAR C BIT SET C BIT

A = TOTAL CHECKSUM

VERIFY
PASS

VERIFY
FAIL

NO YES

ReadData:

NoDataMatch:

Checksum:

NOTES:
 1. PutByte routine resides in monitor ROM
16 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
On-Chip Routines Flowcharts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3. PRGRNGE Routine

CALCULATE TOTAL BYTE
NUMBER TO BE PROGRAMMED

AND STORE THE VALUE AT
BYTE COUNTER (STACK)

SET I BIT
(MASK INTERRUPTS)

CALCULATE BYTE NUMBER TO
BE PROGRAMMED IN THE FIRST

ROW AND STORE THE VALUE
AT ROW COUNTER (STACK)

PRGRNGE

SERVICE COP

SET COP COUNTER = 6

STEP 1: SET PGM BIT

STEP 2: READ FLBPR

STEP 3: WRITE ANY DATA TO
A FLASH ADDRESS (H:X)

STEP 4: DELAY TVNS
(NOTE 1)

STEP 5: SET HVEN BIT

STEP 6: DELAY TPGS
(NOTE 1)

READ DATA FROM DATA ARRAY

STEP 7: WRITE ANY DATA TO

STEP 8: DELAY Tprog [CYCLES]

A FLASH ADDRESS (H:X)

FOR CPUSPD = 4, 5
tprog = 75

FOR CPUSPD = 6
tprog = 90

FOR CPUSPD = 7, 8
tprog = CPUSPD x 3 + 99

FOR CPUSPD = 9 TO 11
tprog = CPUSPD x 6 + 104

FOR CPUSPD = 12 TO 17
tprog = CPUSPD x 9 + 101

(NOTE 1)

H:X = H:X + 1

DECREMENT BYTE
COUNTER = 0?

DECREMENT ROW
COUNTER = 0?

DECREMENT COP
COUNTER = 0?

STEP 10: CLEAR PGM BIT

STEP 11: DELAY TNVH

STEP 12: CLEAR HVEN BIT

ROW COUNTER = 0?

SET ROW COUNTER = 32 FOR
PROGRAMMING NEXT ROW

(NOTE 1)

BYTE COUNTER = 0?

RTS

YES

NO

YESNO

YES

YES

NO

NO

NO

YES

NOTES:

PRGstep1:

PRGstep7:

ClrPgmHven:

1. DELNUS routine is used
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 17

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4. ERARNGE Routine

STEP 7: CLEAR ERASE BIT

STEP 8: DELAY tNVHL

STEP 9: CLEAR ALL BITS IN FLCR

CALL DELNUS ROUTINE

(NOTE 1)

DECREMENTED LOOP

ERARNGE

RTS

SET I BIT

MASS BIT SETS INYES

STEP 2: READ FLBPR

STEP 3: WRITE ANY DATA TO

STEP 4: DELAY tVNS

FLASH ADDRESS (H:X)

STEP 5: SET HVEN BIT

STEP 6: SET LOOP COUNTER = 40

SERVICE COP

(MASK INTERRUPTS)

CTRLBYT?

NO

STEP 1: SET ERASE AND
MASS BITS

STEP 1: SET ERASE BIT

MASS ERASE PAGE ERASE

(NOTE 1)

COUNTER IS ZERO?
NO YES

STEP 10: DELAY tRCV

ServiceCOP:

NOTES:
1. DELNUS routine is used
18 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
On-Chip Routines Flowcharts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Flowchart of DELNUS Routine

PUSH A VALUE TO STACK

PULL A VALUE FROM STACK
(2 CYCLES)

DECREMENTED

RTS

YES

NO

DELNUS

DECREMENT A
(1 CYCLE)

(2 CYCLES)

DECREMENT A
(1 CYCLE)

DECREMENTED A
VALUE IS $00?

(3 CYCLES)

X VALUE IS ZERO?
(3 CYCLES)

(4 CYCLES)

NO

YES

LOOP:

DECREMENT A
(1 CYCLE)
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 19

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

On-Chip Routines Source Code

.pagewidth 98t
;***
;* PURPOSE: These routines are embedded into ROM to support FLASH
;* erase, program and verify.
;*
;* TARGET DEVICE: HC908GZ8/16 and HC908GR16
;*
;* ASSEMBLER: CASM08Z
;* VERSION: 3.16
;*
;* GENERAL CODING NOTES:
;* A standard equate file "908GZ16v1r0.inc" is used to define all MCU
;* register and bit names. Bit names use all uppercase characters.
;* BCLR, BSET, BRCLR, and BRSET use the bit name alone while logical
;* instructions such as ORA use the bit name with a prefix of
;* lowercase "m" which is a bit position mask.
;***

;***
;* ASSEMBLER DIRECTIVES
;* (BASE, MACROS, SETS, CONDITIONS, ETC.)
;***
 base 10t ;Change default to decimal
;***
;* INCLUDED FILES
;***

$NOLIST
 include "908GZ16v1r0.inc"
$LIST
;***
;* EQUATES
;***

MASSBIT equ 6 ;MASS bit of CTRLBYT located in bit 6
ROWSIZE equ 32 ;Programming ROW Size (number of bytes)

 org RamStart+8 ;Leave 8-byte offset from start of RAM
 ; for future use
*FOLLOWING VARIABLES SET/ACCESSED BY USER
CTRLBYT rmb 1 ;Control byte - bit 6 used for MASSBIT
CPUSPD rmb 1 ;Used to indicate CPU bus speed
 ; bus freq (in MHz) * 2 then round up
LADDR rmb 2 ;Last address
DATA rmb ROWSIZE ;Allocation/Use of this space depends
 ; on the application
* TOTAL DATA STRUCTURE BYTES: 4+ROWSIZE

;***
20 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
On-Chip Routines Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;* EQUATES
;***
;* The below parameters represent values that are passed to the delay
;* routine to generate delays required for the FLASH algorithm.
;* DELNUS generates a delay of (3*A*X)+5 cycles where A normally
;* holds CPUSPD and X is loaded with Txxxx from below

ELOOPS equ 40 ;total TERASE for MASS and PAGE erase
TERASE equ 17 ; uses DELNUS w/ TERASE, ELOOPS times
 ; to allow COP service ~ every 100uS
TNVS equ 2 ;FLASH PGM/ERASE to HVEN Setup Time
TPGS equ 1 ;FLASH Program Hold Time
TNVH equ 1 ;FLASH High-Voltage Hold Time
TNVHL equ 17 ;FLASH High-Voltage Hold Time (MASS)
LoopCOP equ 6 ;Service COP after every 6th byte prog'ed

;***
;* ROUTINES
;***

 org FlashROM

;***
;* NAME: GetByte
;* PURPOSE:
;* Get one byte data through PTA0 serially. This routine supports
;* a baud rate 14,400bps @ bus frequency 4.0MHz for GZ16 and
;* a baud rate 9,600bps @ bus frequency 2.4576MHz for GR16
;* ENTRY CONDITIONS:
;* PTA0 configured as an input
;* EXIT CONDITIONS:
;* A contains a byte received when START bit is detected
;* C-bit in CCR indicates a framing error
;* If C-bit is cleared, a framing error is indicated because
;* the STOP bit was detected as a 0 instead of a one
;* PTA0 configured as an input
;* SUBROUTINES CALLED: GetBit
;* VARIABLES READ:
;* VARIABLES MODIFIED:
;* STACK USED: 6 (including the call to this routine)
;* SIZE: 20 bytes
;* DESCRIPTION: EXECUTED OUT OF ROM
;* Once called, program will remain in GetByte until a byte is
;* received. Signal to start receiving a byte is a valid
;* (low) START bit.
;* This routine does not service COP.
;* NOTE: Cycle path for each bit reception must be kept the same to
;* maintain a steady baud rate.
;* bit timing for GZ16
;* 9 + (GZ GetBit) = 9 + 269 cycles = 278 cycles @ 4.0 MHZ=69.5 us
;* =14,388 bps (closest PC baud rate 14,400 bps)
;* bit timing for GR16
;* 9 + (GR GetBit) = 9 + 247 cycles = 256 cycles @ 2.4576 MHZ
;* = 104 us = 9,600 bps
;***
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 21

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 jsr GetBit ;[5+SUB] Check sense of START bit
 bcs GetByte ;[3] C-bit should be 0, else noise
 lda #$80 ;[2] Rx byte done when 1 RORs into
GBit1: ; C top of loop to get 8 bits
 jsr GetBit ;[5+SUB] Sense level of next bit
 rora ;[1] Rotate into A from left
 bcc GBit1 ;[3] Continue 'till 1 RORs into C

 jsr GetBit ;[5+SUB] Sense level of STOP bit
 rts

;***
;***
;* NAME: RDVRRNG
;* PURPOSE: Read and/or verify a range of FLASH memory
;* ENTRY CONDITIONS:
;* H:X contains a start address of the FLASH address range
;* LADDR:LADDR+1 contains a last address of the FLASH address range
;* The contents of A decides if read data is transferred serially
;* via PTA0 (When A=0, PTA0 is used for serial transfer) or
;* the data is verified against the DATA array in RAM
;* DATA array must be in the zero page and its size must match the
;* size of the range to be verified.
;* If A=0, PTA0 is configured as an input (DDRA0=0) and
;* data bit = 0 (PTA0=0)
;* EXIT CONDITIONS:
;* A contains checksum
;* C-bit in CCR indicates verify result when entry A is NOT zero
;* If C-bit is set, the verify is successful
;* DATA array contains read FLASH data when entry A is NOT zero
;* H:X contains a next FLASH read address
;* I bit for data send out operation
;* SUBROUTINES CALLED: PutByte
;* VARIABLES READ: LADDR:LADDR+1,DATA array
;* VARIABLES MODIFIED: DATA array
;* STACK USED: (include the call to this routine)
;* 9 bytes for Verify operation (entry A is NOT zero)
;* 11 bytes for data send out operation (entry A is zero)
;* SIZE: 67 bytes
;* DESCRIPTION: Executed out of ROM
;* This routine services the COP, but there could still be a
;* COP timeout under the following conditions:
;* 1) COP is not serviced within a proper period in user software
;* 2) COP set for short timeout and Read data is sent through PTA0
;* STACK FRAME:
;* SP+1 [G] SADDR(hi) temp storage
;* SP+2 [F] SADDR(lo) temp storage
;* SP+3 SP+1 [E] ByteCount - decrements to zero
;* SP+4 SP+2 [D] # of bad bytes - 0 on return means all were good
;* SP+5 SP+3 [C] Checksum - sum of all data values read
;* SP+6 SP+4 [B] Offset pointer into DATA array in RAM
;* SP+7 SP+5 [A] Verify/Read flag - 1=verify/0=read
;* | | |
;* | | +--reference label in square brackets
22 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
On-Chip Routines Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;* | +---SP offset when SADDR not on stack
;* +---------SP offset when SADDR on stack for temp storage
;***
RDVRRNG: psha ;Verify(1)/Read(0) flag to Stack [A]
 clra
 psha ;Offset pointer into DATA array in
 ; RAM [B] (initially 0)
 ; increments from $00 to ByteCount
 psha ;Initial Checksum to Stack [C]
 ;Calculate total # of bytes
 txa ;SADDR(lo) -> A
 sub LADDR+1 ;SADDR(lo) - LADDR(lo) -> A
 nega ;LADDR(lo) - SADDR(lo) -> A
 inca ;change to 1-oriented vs 0-oriented
 psha ;# of bytes to Stack [D] (# of bad)
 ; decrements to zero if all good
 psha ;ByteCount to Stack [E]
 ; counter - decrements to zero
ReadData:
 sta COPCTL ;Service COP
 lda ,x ;Data from a FLASH location @ 0,X
 tst 5,sp ;Check Read/Verify flag [A]
 beq Serial ;0 - send data through PTA0
 ;1 - verify against DATA in RAM
 pshx ;Push SADDR(lo) to Stack [F]
 pshh ;Push SADDR(hi) to Stack [G]
 ldx 6,sp ;DATA array Pointer(lo) -> X
 clrh ;H:X = 0:Pointer(lo)
 cmp DATA,x ;Compare FLASH data with DATA array
 bne NoDataMatch ;If not equal, skip decrement of [D]
 dec 4,sp ;Data matched so decrement # of bad
NoDataMatch: sta DATA,x ;Replace DATA array value with
 ; value read from FLASH
 pulh ;Restore SADDR(hi) pointer from [G]
 pulx ;Now H:X = SADDR, A is FLASH data
 bra Checksum ;Skip serial send if in Verify mode

Serial: jsr PutByte ;Read mode so send data to host

Checksum: add 3,sp ;FLASH data + checksum [C] -> A
 sta 3,sp ;Update checksum [C] on stack
 inc 4,sp ;Update offset into DATA array [B]
 aix #1 ;Update pointer into FLASH (H:X)
 dec 1,sp ;Decrement ByteCount [E]
 bne ReadData ;Loop until ByteCount=0

 pula ;Deallocate [E]
 pula ;# of bad [D] -> A, and deallocate
 ;If Verify OK, A = $00
 coma ;$00 -> $FF if verify OK
 add #1 ;$FF -> $00; C=1 if verify was OK
 pula ;Checksum [C] -> A, and deallocate
 ais #2 ;Deallocate [A] and [B]
 rts
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 23

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;* NAME: PRGRNGE
;* PURPOSE:
;* Program a FLASH address range. Bus frequency must be
;* between 2.0MHz and 8.4MHz.
;* ENTRY CONDITIONS:
;* H:X contains a start address of the FLASH address range
;* LADDR:LADDR+1 contains a last address of the FLASH address range
;* DATA array must be in the zero page and its size must match the
;* size of the range to be programmed.
;* CPUSPD equals bus frequency x 2 then rounded up
;* EXIT CONDITIONS:
;* H:X contains the next address past LADDR; I-bit set
;* SUBROUTINES CALLED: DELNUS, ClrPgmHven
;* VARIABLES READ: CPUSPD, LADDR:LADDR+1, DATA array
;* STACK SIZE: 11 bytes (including this routine's call)
;* SIZE: 198 bytes (including ClrPgmHven routine)
;* DESCRIPTION: Executed out of ROM
;* This routine allows passing of a range of addresses to PRGRNGE,
;* which does not have to be on page boundaries, either beginning or
;* end. i.e., passing $8010 to $8025 is valid. This is to prevent
;* program a non-FLASH address. However, the total number of bytes
;* to be programmed must be less or equal to the DATA array size.
;* This routine services the COP, but there could still be a
;* COP time out if the COP is not serviced within the proper period
;* in user software.
;***
PRGRNGE: sei ;set I bit to mask interrupts
 ;Calculate total # of bytes
 txa ;SADDR(lo) -> A
 sub LADDR+1 ;SADDR(lo) - LADDR(lo) -> A
 nega ;LADDR(lo) - SADDR(lo) -> A
 inca ;change to 1-oriented vs 0-oriented
 psha ;Byte Counter [A] (total bytes)
 clra ;
 psha ;DATA array index [B]
 pshx ;temp save addr(lo)
 pshh ;temp save addr(hi)
 ;Calculate total # of bytes in ROW
 txa ;SADDR(lo) -> A
 ldx #ROWSIZE ;ROWSIZE -> X
 clrh ;H:A = 0:SADDR(lo)
 div ;A=H:A/X;r->H SADDR(lo)/#ROWSIZE
 ;remainder = # of bytes left in ROW
 pshh ;remainder to stack for calculation
 txa ;ROWSIZE -> A
 sub 1,sp ;ROWSIZE - Remainder -> A
 pulh ;remainder not used, just deallocate
 pulh ;recover temp addr(hi)
 pulx ;recover temp addr(lo)
 psha ;ROW Counter [C] bytes left in ROW
 psha ;reserve space for COP Counter [D]

;* Current stack frame
;* SP+1 [D] COP Counter - when 0, service COP
24 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
On-Chip Routines Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;* SP+2 [C] ROW Counter - # bytes left in current row
;* SP+3 [B] DATA array index - offset into RAM DATA array
;* SP+4 [A] Byte Counter - # bytes left in program operation
;
;***
;* Loop top if 1st byte, time to service COP, or start of a new row
;* otherwise the loop top is at PRGstep7
;
PRGstep1: sta COPCTL ;service COP
 lda #LoopCOP ;initialize COP Counter [D]
 sta 1,sp ; counts down to 0
 lda #mPGM
 sta FLCR ;[..w.] set PGM (Prog Algo Step 1)
PRGstep2: lda FLBPR ;[4] read FLBPR (Prog Algo Step 2)

PRGstep3: sta ,x ;[2] Write to a Flash address [H:X]
 ; w/ any data (Prog Algo Step 3)
 pshx ;[2] temp save addr(lo) to free up X
PRGstep4: ldx #TNVS ;[2] Delay for time Tnvs
 lda CPUSPD ;[3]
 bsr DELNUS ;[4+(3*A*X)+5] (Prog Algo Step 4)
PRGstep5:
 lda #(mPGM+mHVEN) ;[2]
 sta FLCR ;[..w.] set HVEN (Prog Algo Step 5)
PRGstep6:
 ldx #TPGS ;[2] Delay for time Tpgs
 lda CPUSPD ;[3]
 bsr DELNUS ;[4+(3*A*X)+5] (Prog Algo Step 6)
 pulx ;[2] restore addr(lo)

;***
;* Loop top if this is not a new row and it is not time to service COP
;* PGM is already set and HVEN is already turned on
PRGstep7: pshh ;[2] temp save addr(hi) [E]
 pshx ;[2] temp save addr(lo) [F]
;* Current stack frame
;* SP+1 [F] Current addr (lo) temp store so H:X available
;* SP+2 [E] Current addr (hi) temp store so H:X available
;* SP+3 [D] COP Counter - when 0, service COP
;* SP+4 [C] ROW Counter - # bytes left in current row
;* SP+5 [B] DATA array index - offset into RAM DATA array
;* SP+6 [A] Byte Counter - # bytes left in program operation
;
 clrh ;[1] clear upper half of H:X
 ldx 5,sp ;[4] H:X = offset into DATA array
 lda DATA,x ;[3] Read data from a DATA array
 pulx ;[2] restore addr(lo) [F]
 pulh ;[2] restore addr(hi) [E]
 sta ,x ;[.w] write data to Flash addr
 ; (Prog Algo Step 7)
 pshh ;[2] temp save addr(hi) [E]
 pshx ;[2] temp save addr(lo) [F]
;*********************************
;* Compute Tprog based on bus speed
;* for slowest bus speeds (5 or 6), use in-line delays rather than
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 25

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PRGstep8: ldx #2 ;[2] initial default X value
 lda CPUSPD ;[3] bus speed const for comparisons
Case1:
 cmp #5 ;[2] If CPUSPD=5, Tprog=75 cycles
 bls SkipDELNUS ;[3] skip to end of case
Case2:
 cmp #6 ;[2] If CPUSPD=6, Tprog=90 cycles
 bhi Case3 ;[3] if not, skip to Case3
 dbnzx * ;[6] X*3~ or 2*3~ = 6~
 nop ;[1] 1-cycle delay
 bra SkipDELNUS ;[3] skip to end of case
Case3:
 cmp #8 ;[2] check for CPUSPD=7 or 8
 bhi Case4 ;[3] if not, skip to Case4
 ldx #1 ;[2]
 bra DelayTprog ;[3] Tprog=99+3*CPUSPD cycles
Case4:
 cmp #11 ;[2] check for CPUSPD=9,10, or 11
 bhi Case5 ;[3] if not, skip to Case5
 ldx #2 ;[2]
 bra DelayTprog ;[3] Tprog=104+6*CPUSPD cycles
Case5:
 ldx #$03 ;[2] If CPUSPD=12,13,14,15 or 16
 ; Tprog=101+9*CPUSPD cycles
DelayTprog: bsr DELNUS ;[4+(3*A*X)+5]
;*
;*********************************
SkipDELNUS: pulx ;[2] restore addr(lo) [F]
 pulh ;[2] restore addr(hi) [E]

;* Current stack frame
;* SP+1 [D] COP Counter - when 0, service COP
;* SP+2 [C] ROW Counter - # bytes left in current row
;* SP+3 [B] DATA array index - offset into RAM DATA array
;* SP+4 [A] Byte Counter - # bytes left in program operation
;
;*********************************
;* Byte programmed. Update pointers and counters on stack & check for
;** Done - go to RANGEstep10, turn off PGM & HVEN, cleanup stack & RTS
;** End-of-row - go PAGEstep10, turn off PGM & HVEN, loop to PRGstep1
;** More-in-row/not time for COP service - loop to PRGstep7
;** COP count=0 - turn off PGM & HVEN, loop to PRGstep1
;
;* balance timing from prev Flash write, to PGM bit clear
; (Prog Algo Step 9)
PRGstep9: aix #1 ;[2] point to next FLASH address
 inc 3,sp ;[5] Increment DATA array index [B]
 dec 2,sp ;[5] Decrement Row Counter [C]
 dec 1,sp ;[5] Decrement COP Counter [D]
 dec 4,sp ;[5] Decrement Byte Counter [A]

 beq RANGEstep10 ;[3] 0 if done programming last byte

 tst 2,sp ;[4] Row Counter=00? (end of a row)
26 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
On-Chip Routines Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 beq PAGEstep10 ;[3] if so, cycle HVEN then continue

 tst 1,sp ;[4] COP Counter=00?
bne PRGstep7 ;[3] If no, just continue programming

;* Bottom of loop; not done, not new row, and not time to service COP
;*********************************

;*********************************
;* time to service COP so cycle HVEN off and go to Prog Algo Step 1
 nop ;[1] 1~ delay to adjust timing
 sei ;[2] 2~ delay, I was already set
 bsr ClrPgmHven ;[4+11] time to write cycle that
 ; clears PGM in ClrPgmHven
 ;ClrPgmHven clears PGM then HVEN
 jmp PRGstep1 ; then continue programming

;NOTE: DELNUS placed here to allow BSR instead of JSR for most calls
;***
;* NAME: DELNUS
;* PURPOSE: Generate delay (3 * A * X) + 5 [cycles]
;* ENTRY CONDITIONS:
;* A contains an integer value equal to 4 or higher
;* X contains an integer value equal to 1 or higher
;* STACK USED: 3 bytes (including this routine's call)
;* SIZE: 10 bytes
;* DESCRIPTION: EXECUTED OUT OF ROM
;* This routine is called from PRGRNGE and ERARNGE routines.
;* For example when bus frequency = 8MHz, A=16, and X=17, the
;* delay time is:
;* delay time = (3 x 16 x 17) + 5 = 821 cycles (102.625us)
;* remember to consider delays associated with setup and JSR/BSR
;***
DELNUS: deca ;[1] A - 1

Loop: psha ;[2] temp save
 deca ;[1] original A - 2
 deca ;[1] original A - 3
 dbnza * ;[3(orig A - 3)] (inner loop)
 pula ;[2] recover original A - 1
 dbnzx Loop ;[3] (bottom of outer loop)
;* outer loop = (X(2+1+1+(3(A-3))+2+3)) = (X(9+(3A-9)) = 3 * X * A

 rts ;[4]
;***

RANGEstep10: nsa ;[3] total 7~ delay to match timing
 nsa ;[3] from beq RANGEstep10 to
 nop ;[1] PRGstep10

PAGEstep10: lda #2 ;[2] total 10~ delay -
 dbnza * ;[6] (2x3~) part of time Tprog
 sei ;[2] 2~ delay, I was already set
 bsr ClrPgmHven ;[4+11] time to write cycle that
 ; clears PGM in ClrPgmHven
 ;ClrPgmHven clears PGM then HVEN
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 27

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;* SP+1 [D] COP Counter - when 0, service COP
;* SP+2 [C] ROW Counter - # bytes left in current row
;* SP+3 [B] DATA array index - offset into RAM DATA array
;* SP+4 [A] Byte Counter - # bytes left in program operation
;
 lda 2,sp ;check Row Counter=00? (end-of-row?)
 bne CheckAddr ;If not, check Byte Counter
 lda #ROWSIZE ;new row, init ROW Counter = ROWSIZE
 sta 2,sp ;update Row Counter [C] on stack

CheckAddr: lda 4,sp ;check Byte Counter=00? (done?)
 bne GoPRGstep1 ;if not done, go program next byte
;*********************************
;* Programming complete, cleanup stack and return
;
 ais #4 ;deallocate A, B, C and D
 rts ;return from PRGRNGE
;* PRGRNGE DONE ******************

;*********************************
;* End of a row, go to Prog Algo Step 1 to start programming next row
;
GoPRGstep1: jmp PRGstep1 ;to top of loop
;***

;***
;* NAME: ClrPgmHven
;* This local sub-routine is a part of the FLASH programming
;* algorithm and called from PRGRNGE. In this routine, PGM bit is
;* cleared, time Tnvh is waited and then HVEN bit is cleared.
;***
ClrPgmHven: pshx ;[2] temp save Addr(lo) to free up X
PRGstep10:
 sei ;[2] 2~ delay, I was already set
 sei ;[2] 2~ delay, I was already set
 lda #mHVEN ;[2] clear PGM, leave HVEN=1
 sta FLCR ;[..w.] Clear PGM bit in FLCR
 ; (Prog Algo Step 10)
PRGstep11: ldx #TNVH ;[2] delay for time Tnvh
 lda CPUSPD ;[3] (Prog Algo Step 11)
 bsr DELNUS ;[4+(3*A*X)+5]
PRGstep12: clra ;[1] pattern to clear HVEN
 sta FLCR ;[..w.] clr HVEN (Prog Algo Step 12)
 pulx ;restore Addr(lo)
 rts

;***
;* NAME: ERARNGE
;* PURPOSE:
;* Erase a page or a whole array in FLASH memory. The bus frequency
;* range must be between 2.0MHz and 8.4MHz.
;* ENTRY CONDITIONS:
;* H:X contains a FLASH address within a page or an array to be
;* erased
28 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
On-Chip Routines Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;* Bit 6 in CTRLBYT selects MASS erase (1) or PAGE erase (0)
;* CPUSPD equals bus frequency x 2 then rounded up
;* EXIT CONDITIONS:
;* The contents of H:X (address passed) is preserved; I-bit set
;* SUBROUTINES CALLED: DELNUS
;* VARIABLES READ: CTRLBYT, CPUSPD
;* STACK USED: 7 (including the call to this routine)
;* SIZE: 70 bytes
;* DESCRIPTION: Executed out of ROM
;* Does not check for a blank range before (to see if erase is
;* necessary) or after (to see if erase was successful). This
;* routine services the COP, (but the COP could still time out if
;* it is not serviced correctly in the user software)
;***
ERARNGE: sei ;block interrupts during erase
 pshx ;temp save addr(lo) to free up X

ERAstep1: lda #mERASE
 brclr MASSBIT,CTRLBYT,PageErase
 ;if MASSBIT is set in the CTRLBYT,
 ora #mMASS ; sets MASS and ERASE bits in A
PageErase: sta FLCR ;[..w.] (Erase Algo Step 1)
 ; set ERASE only, or MASS and ERASE

ERAstep2: lda FLBPR ;[4] (Erase Algo Step 2)

ERAstep3: sta ,x ;[.w] (Erase Algo Step 3)
 ;latch addr for Flash page or block

ERAstep4: ldx #TNVS ;[2] delay Tnvs (Erase Algo Step 4)
 lda CPUSPD ;[4]
 bsr DELNUS ;[4+(3*A*X)+5)]

ERAstep5: lda FLCR ;[4] leave MASS and ERASE as is
 ora #mHVEN ;[2] set HVEN
 sta FLCR ;[..w.] (Erase Algo Step 5)

ERAstep6: ;delay Terase (Erase Algo Step 6)
 ;slit up to allow COP service
 lda #ELOOPS ;[2] initialize Loop Counter
 psha ;[2] Loop Count on stack for calcs
 ; using ' dec 1,sp' instruction

ServiceCOP: sta COPCTL ;[4] service COP
 ldx #TERASE ;[2] about 100us delay
 lda CPUSPD ;[4]
 bsr DELNUS ;[4+(3*A*X)+5)]
 dec 1,sp ;[5] decrement Loop Counter
 bne ServiceCOP ;[3] loop if Loop Count not zero
;* bottom of COP service loop
;* total Terase time = setup from HVEN=1 + loop + overhead to ERASE=0
;* = 5 + (ELOOPS(3*A*X + 27)) + 11 33,739~ @8MHz (Terase=4.217mS)

 pula ;[2] deallocate Loop Counter
ERAstep7: ; (Erase Algo Step 7)
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 29

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 and #($FF-mERASE) ;[2] clear ERASE bit only
 sta FLCR ;[..w.]

ERAstep8: ; (Erase Algo Step 8)
 ldx #TNVHL ;delay for time Tnvhl
 lda CPUSPD ; Tnvhl is used for both
 jsr DELNUS ;[4+(3*A*X)+5)] page and mass erase

ERAstep9: ; (Erase Algo Step 9)
 clra ;[1] clear all bits in FLCR
 sta FLCR ;[..w.] next 3 instructions
 ; including last cycle of this
 ; instruction make at least 1us
 ; delay for Trcv
ERAstep10: ; (Erase Algo Step 10)
 pulx ;[2] recover original addr(lo)
 sei ;[2] 2~ delay, I was already set
 rts ;[4] return from ERARNGE
;* ERARNGE DONE ******************

Software This application note has a companion software file, AN2545SW.zip, available
from the Motorola semiconductor website, http://motorola.com/sps.
30 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
 Go to: www.freescale.com

AN2545/D
On-Chip Routines Source Code

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 31

This page is intentionally blank.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2545/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

RXZB30
reachhibbert

RXZB30
reachhibbert

RXZB30
disclaimer

RXZB30
logo

	Introduction
	FLASH Overview

	Routines Supported in ROM
	GetByte
	RDVRRNG
	PRGRNGE
	ERARNGE
	DELNUS

	Variables Used in the Routines
	CTRLBYT
	CPUSPD
	LADDR
	DATA
	Registers H:X

	How to Use the Routines
	GetByte
	Entry Condition
	Exit Condition

	RDVRRNG
	Send-Out Option
	Verify Option
	Carry (C) Bit
	Entry Condition
	Exit Condition

	PRGRNGE
	Entry Condition
	Exit Condition

	ERARNGE
	Entry Condition
	Exit Condition

	DELNUS
	Initialization
	Exit Condition

	On-Chip Routines Flowcharts
	On-Chip Routines Source Code
	Software

