
Freescale Semiconductor
Application Note

AN2575
Rev. 1, 11/2005

Table of Contents

1 Introduction . 1

2 MC68HC908EY16 Enhancements for LIN 2
3 Baud Rate Requirements for LIN 2

4 ICG Trimming . 3

5 ESCI Prescaler Baud Rate Adjustment 4
6 Hardware . 6

7 Software . 8

8 Alternative Strategies . 10
9 References . 11

10 Software Listing . 11

11 HC08EY16.h . 23
12 vector.c . 24

13 slave.cfg . 26

14 slave.id . 27

MC68HC908EY16 ESCI
LIN 1.3 Drivers
by: Wolfgang Bihlmayr

Freescale Semiconductor, Inc., Munich
and Peter Topping

Freescale Semiconductor, Inc., East Kilbride
1 Introduction
Reliable communication via the asynchronous LIN1
protocol requires an MCU with a bus clock accurate
enough to avoid errors. MCUs that use clocks based on
crystal or ceramic resonators easily provide very
accurate bus clocks. The LIN protocol was designed to
also allow more cost-effective solutions. MCUs with
on-chip oscillators can be successfully used, even though
the on-chip oscillators have accuracy poorer than a
crystal’s by several orders of magnitude.

The most significant change from normal UART timing
is the increase of the usual 10-bit break to 13 bits. This
allows an MCU with an inaccurate clock (up to ±14%) to
reliably distinguish a break from a data byte containing
eight zeros (nine including the start bit). Following this
break, the protocol specifies the inclusion of a
synchronization byte whose data is always $55. This
field includes five falling (recessive to dominant) edges
that can be used as a reference for clock and/or baud rate
adjustments.

1. Local Interconnect Network, see Section 9, “References”.
© Freescale Semiconductor, Inc., 2005. All rights reserved.

CodeWarrior is a registered trademark of Metrowerks, Inc., a wholly owned
subsidiary of Freescale Semiconductor, Inc.

This product incorporates SuperFlash® technology licensed from SST.

MC68HC908EY16 Enhancements for LIN
The MC68HC908EY16 is a high-performance MCU suitable for use in a low-cost LIN slave node. It can
be used with or without an external crystal. To enable use without a crystal or any other external clock
component, it incorporates an internal clock generator (ICG). The ICG can be programmed to any
frequency from 307.2 kHz to 32 MHz in increments of 307.2 kHz. As with all HC08 MCUs, the bus
frequency is one-quarter of this clock frequency. The use of the ICG reduces cost and eliminates the need
for pins dedicated to clock circuitry. Not putting the clock on external pins also greatly reduces
electro-magnetic emissions — see application note AN2344/D: HC908EY16 EMI Radiated Emissions
Results. (This document and other helpful documents are listed in the Section 9, “References”.)

NOTE
With the exception of mask set errata documents, if any other Freescale
document contains information that conflicts with the information in the
data sheet, the data sheet should be considered to have the most current and
correct data.

The downside of using the ICG is that the frequency is not as accurate as that of a crystal or resonator.
Parametric spreads during manufacture result in an overall untrimmed accuracy of ±25% from the
specified nominal reference frequency of 307.2 kHz. In many applications, this is acceptable and no
trimming is necessary. For LIN, however, greater accuracy is required. This application note describes a
method of achieving the required performance.

2 MC68HC908EY16 Enhancements for LIN
The MC68HC908EY16 includes an ESCI (enhanced serial communications interface) module that
incorporates three enhancements specifically for LIN (compared with the standard SCI used on many other
HC08 MCUs).

• The recognition of a 13-bit break
• A fractional-divide baud rate prescaler that allows fine adjustment of the baud rate
• An arbiter counter that has 10 bits (9 bits plus an overflow bit) and can be used as a mini-timer to

measure break and bit times

The ICG incorporates a digitally controlled oscillator (DCO) whose operation is fully described in
application note AN2498/D: Initial trimming of the MC68HC908 ICG. The DCO uses registers DDIV and
DSTG that are managed by the ICG hardware to make automatic corrections to the frequency of the clock.
The actual output frequency is determined by the user via the ICGTR and ICGMR registers. The output
frequency is set with the multiplier register, ICGMR. This register is set to 21 ($15) at reset, giving a
default clock frequency of 6.4512 MHz ±25% (21 times 307.2 kHz). The user can change this value as
required. In this application, a value of 64 is used to give a nominal bus frequency of 4.9152 MHz.

3 Baud Rate Requirements for LIN
The clock accuracy required for a LIN node using a crystal or ceramic resonator is ±1.5%. Although
slave-to-slave communications tighten this requirement, it is so easily met by a crystal that this rarely
causes a problem. The requirements for a node using an internal oscillator are more complex. The LIN
baud rate requirements are summarized in Table 1. Slave-to-slave communication using the LIN protocol
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor2

ICG Trimming
requires that no two nodes may differ by more than ±2%. Halving the individual requirement to ±1% is
the simplest way of achieving this level of accuracy. Doing this is necessary if there are two or more similar
nodes using internal clocks. If there is only one of this type of node, the better accuracy of the other nodes
may render ±1% unnecessarily tight.

Two separate trimming operations are required to meet these requirements. To meet the ±14% accuracy
required to reliably recognize the break signal, pre-trimming the ICG frequency is necessary. To achieve
the more precise ±1% or ±2% requirement for LIN communication, a further adjustment is required. These
adjustments are covered in the next two sections.

4 ICG Trimming
The untrimmed internal oscillator on the MC68HC908EY16 is only accurate to about ±25%. Therefore,
initial trimming is required to adjust the oscillator frequency near enough to the target frequency to allow
recognition of a LIN break symbol. Normally, this initial trimming would be done during production of
the application PCB. Then the trim value for the specific device would be stored in the nonvolatile memory
of the MCU. Each time the MC68HC908EY16 is powered up, the stored trim value would be copied from
nonvolatile memory into the working trim register to adjust the internal oscillator frequency. Most
production programming tools support trimming, but the exact implementation varies from one tool to
another. Because of that, refer to the documentation for your programmer for more information.

One method of initially trimming the ICG is fully described in AN2498/D (see Section 9, “References”).
This trimming would usually be done only on power-up with a value that is stored in FLASH and loaded
into the ICGTR register. This value can be either embedded into the code (as shown in the software listing)
or stored in a pre-defined FLASH location and transferred to ICGTR on power-up. With this pre-trimming
done on an MC68HC908EY16, the frequency is guaranteed to be within ±7% for 4.5 to 5.5 V VDD and
–40°C to +85°C (±10% for the full automotive temperature range). This is well within the ±14%
requirement to enable the MCU to recognize the 13-bit break.

The trimming adjustment involves measuring the actual bus frequency with the use of an external pulse of
known length. Then, the trim register is adjusted by the number that gives the required correction. (Note
that changing its value by 1 causes a frequency change of ~0.195%.) In the case of AN2498/D, the external
pulse is 1024 µs between successive rising edges. The number of 4915.2-kHz bus cycles that would occur
in this period is given by:

cnt1024 = (64 × 307.2 kHz × 1024 µs) ÷ 4 ÷ 1000 = 5033

Table 1. LIN Baud Rate Requirements

Sync. Status Requirement Accuracy Condition

Before synchronization Break recognition ±14%1

NOTES:
1 The pre-synchronization accuracy in rev. 1.3 is ±15%, but this will be tightened to ±14% in future revisions.

Master clock accuracy assumed
to be within ±0.5% of nominal

After synchronization
(master-slave)

LIN messaging with the master ±2% Relative to the master’s clock

After synchronization
(inc. slave-slave)

LIN messaging with the master and
other slaves

±1%
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 3

ESCI Prescaler Baud Rate Adjustment
The adjustment to the ICGTR is made using the following equation where delta0 is the actual number of
counts (measured by timer A channel 0) between successive rising edges of the external 1024 µs signal.

ICGTR = ICGTR + (512 × (delta0 – 5033)) ÷ 5033
Independent of how the initial trimming is done, the improved accuracy achieved by this initial ICG
pre-trimming allows the break to be recognized. It is, however, not sufficiently accurate to meet the ±2%
specification required to guarantee reliable LIN communication. Adjustment to within ±1% can be
achieved using the LIN message itself because the synchronization byte of $55 immediately following the
break has been incorporated for this purpose. Because the baud rate is always known, the time between
edges within this byte can be used to measure the precise bit-time relative to the actual clock frequency.
In particular, the time between two successive negative edges yields a known reference of two bit-times.
The use of the same edge for the start and finish of the measurement eliminates inaccuracies due to
asymmetry between rising and falling edges. The negative edge is preferred because it is generated by a
dominant, active-low logic level. This is more accurate than the use of positive edges which are generated
by pullup resistors.

5 ESCI Prescaler Baud Rate Adjustment
One possible method of adjusting the baud rate would be to use the timing information derived from the
LIN message to re-trim the ICG. However, the DCO can take several hundred microseconds to settle after
an adjustment. Thus, it is not always fast enough to facilitate the reception of the message whose
synchronization byte is being used. With this method, that message could be missed, although the
following message would be recognized. To adjust the receiving baud rate fast enough to respond to the
message whose synchronization byte is being used, the MC68HC908EY16 incorporates a fractional divide
prescaler. This prescaler is additional to the standard SCI prescaler. It allows a division ratio of 1 (bypassed
by default) or 2 to 8 31/32 programmable in increments of 1/32.

Adjustment of this prescaler could be carried out by using data derived from a timer channel connected to
the ESCI Rx pin. With the MC68HC908EY16, the use of this additional resource is not necessary because
the ESCI includes a small timer in the form of its arbiter counter. This is a 9-bit counter with a tenth bit to
indicate that an overflow has occurred. The arbiter counter/timer has two modes of operation:

• Measurement of the break signal — This requires counting from a negative edge to the following
positive edge. This mode is not used here because break recognition is guaranteed by the initial
ICG trimming.

• Measurement of time between two successive negative edges — This is intended for bit-time
measurement. It is the mode used here.

Figure 1 shows all the division ratios within the ESCI and its arbiter counter. The input clock to the arbiter
counter is selected according to the mode being used. In the bit-time measuring mode being used here, the
ACLK bit in the arbiter control register (SCIACTL) is 0 and the arbiter counter is clocked at one-quarter
of the ESCI input clock. This input clock is selectable in CONFIG2 to be either the bus clock or the
CGMXCLK clock, which is bus × 4. In the MC68HC908EY16 LIN drivers, the bus clock — in this case
4.9152 MHz — is used. BPD is fixed at 2 (÷4) and BD is fixed at 1 (÷2) for LIN communications at 9600
baud (see the technical data sheet MC68HC908EY16/D). In the equations below, FD is the fractional
divide prescaler ratio.
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor4

ESCI Prescaler Baud Rate Adjustment
Figure 1. ESCI Arbiter Counter Clock Selection

In two bit-times, the arbiter counter counts 2 × tBit × fBus ÷ 4
where tBit is in microseconds and fBus is in MHz.

Therefore tBit = 2 × count ÷ fBus
The required bit-time (1÷baud rate)=64×BPD×BD×FD÷fBus=128×FD÷fBus (see the technical data
sheet MC68HC908EY16/D).

The bit-times are equal when 2 × count = 128 × FD;
i.e., when FD = count ÷ 64.

The ESCI fractional divide prescaler register (SCPSC) is programmed in two parts as shown in Table 2.
The top three bits (PDS) constitute an integral divide ratio of 1 to 8. (1 is a special case where the prescaler
is bypassed and the bottom five bits are ignored.) The divide ratio is one larger than the value in the top
three bits of the register, and this must be taken into account when writing to SCPSC.

The bottom five bits (PSSB) contain the fractional part in increments of 1/32. Because the integral part is
five places to the left, the whole byte can be considered as 32 times the divide ratio. The only complication
is the offset of 1 in the top three bits. Because of this, the overall fractional divide prescaler divide ratio,

Table 2. Fractional Divide Prescaler Register (SCPSC)

7 6 5 4 3 2 1 0

PDS PSSB (not used if PDS = 0)

PDS

0
1
2
3
.
.
7

PD = PDS + 1

1 (bypass)
2
3
4
.
.
8

PSSB

0
1
2
3
.
.

31

PDFA = PSSB ÷ 32

0
1/32
2/32
3/32

.

.
31/32

Example: If SCPSC = 0×73 (01110011), PDS = 3 and PSSB = 19 so FD = 4 19/32
(in decimal, SCPSC is 115 so FD = 1 + 115/32 = 4 19/32)

÷1 OR 2 → 8.9687
(BYPASSED OR

2 → 831/32)
÷4 ÷1, 3, 4, or 13 ÷1, 2, 4, . . . 128 ÷16

9-BIT ARBITER COUNTER

÷4

FRACTIONAL DIVIDE
PRESCALER — FD SCI BAUD RATE

PRESCALER — BPD
BAUD RATE

DIVIDER — BD
ESCI CLOCK

(BUS OR 4 x BUS) fTx

fRx

ACLK = 1

ACLK = 0

ESCI Rx
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 5

Hardware
FD, is 1 + SCPSC ÷ 32. The integral part of the divide ratio (PDS + 1) is referred to as PD in the
MC68HC908EY16 data sheet and the fractional part (PSSB ÷ ³32) as PDFA, so the relationships are:

FD = PD + PDFA = 1 + PDS + PSSB ÷ 32 = 1 + SCPSC ÷ 32
As shown above, FD = count ÷ 64 therefore:

SCPSC = 32 × ((count ÷ 64) – 1) = count ÷ 2 – $20
From this equation, it can be seen that the arbiter count value should be divided by two and $20 subtracted
from it to get the value which should be loaded into the SCPSC register. The code shown below has been
extracted from the LIN driver software to illustrate how this can be done.

if(LIN_SCIACTL & LIN_SCIA_AFIN) // arbiter count finished ?
{
 if(LIN_CfgConst.LIN_BaudRate == 0) // 19200 baud
 {
 LIN_SCPSC = LIN_SCIADAT - 0x20; // count - 32
 }
 else if(LIN_CfgConst.LIN_BaudRate==1) // 9600 baud
 {
 LIN_SCPSC = (((LIN_SCIACTL&0x03)<<7)|LIN_SCIADAT>>1) - 0x20; // count/2 – 32
 }
}

The code includes the option of using 19,200 baud. This is simpler because there is no need to shift the
value before adding $20. Because there is no room for the ninth bit (it will be zero anyway), it is not used.
For 9600 baud, however, the ninth bit is relevant so the count value first has to be divided by two. This is
done by shifting the ninth bit (from SCIACTL) up to bit 7 and ORing this with the shifted down (divided
by two) value of the other eight bits (from SCIADAT). The least significant bit is discarded. After $20 is
added, this gives the data required for the SCPSC register.

6 Hardware
The LINkits LIN evaluation board described in AN2573/D1 is used for this application. A 2 × 16 character
LCD has been added using the same interface as that described in AN2498/D. The complete circuit
diagram used here is shown in Figure 2. Apart from the MCU and the MC33399, only a 5-volt regulator
(in this case an LT1121) is required to implement the simple LIN node. This chip count could be further
reduced by using the LIN system base chip (SBC), MC33689, because this chip incorporates a LIN
physical interface and a voltage regulator. The other components required are the LCD module and a few
resistors and decoupling capacitors (not shown).

To supply the required calibration pulse to the MC68HC908EY16’s PTD0 timer pin, some extra circuitry
built onto a plug-in top board is used. The LINkits evaluation boards incorporate two 20-pin connectors
using roughly the same pinout on all the boards. This allows the design of a top board that can be used on
any LINkits board. In this case, a 4-MHz oscillator has been fitted to the top board. Its output is divided
by an MC74HC4040 12-stage ripple counter to give the required 976.5625-kHz signal (1024 µs period).

1. See Section 9, “References” for a list of helpful documents, including the application notes cited here.
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor6

Hardware
Figure 2. Circuit Diagram of ESCI Baud-Rate Adjustment Application

The format of the LCD displayed data is shown below. The top line shows the current value of ICGTR in
decimal and hexadecimal. (The hexadecimal value is in brackets.) The “t” indicates that ICGTR is being
displayed. (This display can be changed to ICGMR if PTD1 is held low. In that case the “t” would be
replaced with an “m.”) The actual bus frequency is displayed on the top line. MCLK is enabled on PTC2
as an external check of this frequency. At the right-hand end of the top line, the integral part (PD) of the
current value of the fractional divide prescaler is shown.

The bottom line of the display shows the data from a sample LIN message (see AN2264/D listed in
Section 9, “References”). The two-digit temperature is displayed on the LCD if it is correctly received.
However, a default display of “**” is shown if the LIN function LIN_MsgStatus() does not recognize the
presence of the message. (This happens if the baud rate of the MCU is not accurate enough for the LIN
protocol to function correctly.) This data is followed by the bus frequency. It is expressed as a percentage

5 V
LT1121

27 kΩ

EN

Tx

Rx

2

4

1

9

23

24

B5

E0/Tx

E1/Rx

D1

VDD
VDDA
VREFHIRQ

MC68HC908EY16

A5 20

28
29
30

INHVSup

LIN

WAKE
GND

MC33399

LIN

7 8

6

3

2

100 kΩ

17

35

16
SELECT

VSS
VSSA
VREFL

27
26
25

18VBat

100 kΩ

RESET

5 V

47 kΩ

RESET 0.1 µF

13

5 V

47 kΩ

ICGTR/ICGMR

A6
C0
C1

B2
B1
B0

C2

19
22
21

12
14
18

8
MCLK

D0
15

A2 A3
1 32

TRIM ADJUST

47 kΩ

47 kΩ

5 V

MC74HC4040Q12 C1

11 8

10 4-MHz

7

OSC
8

5 V

D411

D5
D6
D7

RS
R/W
E

12
13
14

4
5
6

2 × 16 CHARACTER
DOT-MATRIX
LCD MODULE

VDD V0 VSS

2 3 1

10 kΩ
LCD

CONTRAST

1416

VDD

128(t80) 4915 3
42 100.0 9600 31

TEMPERATURE

VALUE

REGISTER
INDICATOR

HEX fBus PD
ICGTR

% fnom BAUD RATE PSSB
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 7

Software
of the nominal frequency that would be expected using the current value of ICGMR. The 16 most recent
measurements of the external pulse are stored in an array. The displayed percentage is the average of these
values (shown with a resolution of 0.1%). The next number on the bottom line is the internally calculated
baud rate of the ESCI. The baud rate will change when the bus frequency is changed (ICGTR is modified).
It soon readjusts to 9600 baud (within +150/–20 baud) as the ESCI fractional divide prescaler register
values are automatically adjusted by the LIN drivers. At the right-hand end of the bottom line, the
fractional part (PSSB) of the current value of the fractional divide prescaler is shown.

In addition to the reset button, two buttons (trim and adjust) are also included, as shown in Figure 2. They
perform the same functions as those described in AN2498/D (see Section 9, “References”). Pressing the
trim button causes a trim calculation and adjustment to take place. This function is debounced so that only
a single trim takes place even if the button is held down. The adjust button can be used to manually change
the value of ICGTR. It decrements this register and does so repeatedly if it is held down. If, when the adjust
button is pressed, the trim button is also pressed, ICGTR is incremented. The software incorporates an
interlock so that the buttons can be released in either order without causing an inadvertent trim operation
that would corrupt the deliberately modified value in ICGTR. If PTD1 is held low using the jumper shown,
ICGMR is displayed instead of ICGTR and the incrementing and decrementing functions of the buttons
are applied to ICGMR instead of ICGTR. This arrangement allows any value of either register to be
achieved and, if desired, a trim operation performed from that configuration. However, for the purposes of
demonstrating the baud rate adjustment, only a single trim is required and the value of ICGMR should not
be changed from its initially programmed value of 64.

7 Software
The software for the ESCI baud rate adjustment demonstration application was written and debugged
using the LINkits evaluation PCB and the Metrowerks’ CodeWarrior® development environment with a
P&E Multilink interface. The application incorporates the Freescale LIN drivers (1.3) whose baud rate
adjustment method is described in this application note.

The main software flow chart is Figure 3. After the CONFIG and port registers have been initialized,
ICGMR is given the value 64. This gives the nominal bus speed of 4.9152 MHz. The LIN drivers are
configured (in file slave.cfg) for 9600 baud. The time base module is programmed with its maximum
divide ratio of 4,194,304 to give a slow (4 Hz) repetition rate through the loop. This was done because the
LCD is written to at this rate and there is no reason to update it at a rate faster than the changing digits can
be read. Timer A channel 0 is then set up to measure the time between successive rising edges of the
external reference signal coming from the MC74HC4040. The display module and the LIN drivers are then
initialized and interrupts enabled.

The main loop is timed by polling the time base module’s interrupt/overflow flag. The buttons on bits 2
and 3 of port A are then read to determine whether a trim operation or register adjustment is being
requested. This is handled by the function Read_buttons and incorporates a simple debounce and interlock
using the flag bounce. This flag prevents multiple trims from occurring if the trim button is held down. It
also prevents a trim if both buttons are pressed to increment ICGTR or ICGMR and are then released in
such a way that the trim button is held down after the adjust button has been released.
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor8

Software

Figure 3. Flow Chart of Main Software Loop

The LIN message is then read using function Read_LINtemp(). This is similar to the code used in
AN2264/D (see Section 9, “References”) and the format of the message is described in detail there. In this
application, the message is only being used to indicate whether the baud rate is accurate enough for the
LIN protocol to function correctly. Because of the low repetition rate through the main loop, the buffer
may be read less often than the arrival rate of the message on the LIN bus. This is why a
LIN_MsgStatus(0x0A) return of LIN_MSG_OVERRUN is regarded as normal, along with LIN_OK.

START

INITIALIZE CONFIG, PORTS, TBM,

YES

TBIF FLAG SET
?

TIMER A, AND ICG MULTIPLIER

NO

INITIALIZE LIN DRIVERS AND THE
LCD MODULE.

ENABLE INTERRUPTS.

CLEAR TIMEBASE INTERRUPT FLAG
TOGGLE “TICK” LED

NO

ADJUST BUTTON
?

YES

NO

TRIM BUTTON
?

YES

YES

LIN MESSAGE OKAY
?

NO

ADJUST ICGTR OR
ICGMR

TRIM ICG

DISPLAY **

READ AND DISPLAY LIN DATA

CALCULATE CONSTANT cnt1024

FORMAT DATA AND UPDATE
LCD MODULE
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 9

Alternative Strategies
The main loop then performs the calculation of the constant cnt1024. This is a constant for a given value
of ICGMR (5033 for an ICGMR of 64 in this application) but is calculated each time around the loop in
case ICGMR has been changed using the adjust button. This is followed by the two functions
Format_line1() and Format_line2(), which convert the various numbers that must be displayed into the
ASCII format required for the LCD module. Adding 0x30 is all that is required for the decimal numbers.
The array ASCIIconv[16] is used to convert hexadecimal digits. The averaging calculations for the bottom
line display are performed within Format_line2().

The last function performed within the loop is actually writing the data for display to the LCD module
using the function Display_Data(data, mode). This function in turn uses functions LCD_busy(),
Write_Nibble(data), and Clock_LCD(). Write_Nibble(data) is required because of the somewhat
inconvenient choice of port lines used to drive the LCD. (They were chosen to be consistent with
AN2498/D).

The interrupt service routine TimerA() uses channel 0 as an input capture to read the number of timer
counts between successive rising edges of the external timing reference. The difference between the
current value and the previous value is calculated. Then that delta is put into the array of 16 values that are
used for the average frequency display.

8 Alternative Strategies
1. In the current implementation, FD reverts back to 4 before the reception of each message. As an

alternative, it would be possible to retain the adjusted value of FD and change it only when required
(e.g., due to temperature change causing a drift in the ICG frequency). To do this without risk of
getting stuck on an incorrect value, the range of FD should be limited to ±14% of its nominal value
(i.e., if the nominal is 4., the acceptable FD range is between 3 14/32 and 4 18/32).

2. To incorporate other bus frequencies and baud rates, leave BPD at 1 and select the most
appropriate values of BD and nominal FD to suit the required combination.
Let R = bus clock ÷ (64 × baud rate), divide R by 2N so that 2<R÷2N<4
Then BD = N and FDnom = R ÷ 2N
Calculate x = (R ÷ 2N – 2) ÷ 32 to nearest integer to get
FDnom = PS + 1 = 2 x/32
When the arbiter count is being transferred to SCPCS, it should be shifted to the right N times.

3. If the methods described in 1 and 2 above are both used, FD should be limited to the following
values:
SCPSCmin = INT (0.86 × (SCPSCnom + 32) – 32)
SCPSCmax = INT (1.14 × (SCPSCnom + 32) – 32)

4. Avoid uncontrolled overflow of the arbiter counter. Although the overflow bit can be used as a
tenth bit, it is safer to limit the maximum acceptable count to 511 (nine bits) and leave the
overflow bit for use as an indication of an error. The maximum count = 1.1 × nominal fBus ÷ 2 ×
baud rate. At 9600 baud, this gives a count of 458 at a bus clock of 8 MHz. This is acceptable, but
is near the limit. Therefore, the use of lower baud rates necessarily implies the use of lower bus
speeds.
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor10

References
9 References
[1] LIN Protocol Specification, Version 1.3, 12 December 2002.
[2] AN2498/D, Initial trimming of the MC68HC908 ICG.
[3] MC68HC908EY16/D, MC68HC908EY16 Technical Data Sheet.
[4] AN2264/D, LIN Node Temperature Display.
[5] AN2344/D, HC908EY16 EMI Radiated Emissions Results.
[6] AN2573/D, LINkits LIN Evaluation Boards.

10 Software Listing
/**

* (c) Freescale Inc. 2003 all rights reserved. *

* *

* *

* MC68HC908EY16 ESCI baud rate trimming demonstration program. *

* == *

* *

* Originator: P. Topping *

* Date: 22nd June 2003 *

* Revision: 1.0 *

* Function: LCD display of the ESCI prescaller settings which are *

* automatically adjusted by the LIN drivers (1.3), The *

* code includes the ability to adjust or trim the ICG to *

* force changes to the fractional divide prescaler value. *

* The hardware is based in the EY16 "LINkits" eval.board. *

* *

**/

#pragma DATA_SEG SHORT _DATA_ZEROPAGE

/**

*

* Header file includes

*

**/

#include "HC08EY16.h"

#include <linapi.h>

/**

*

* Function prototypes

*

**/

void Initialise_Display (void);

void Display_Data (unsigned char, unsigned char);

void Write_Nibble (unsigned char);

void Clock_LCD (void);

unsigned char LCD_busy (void);

void Read_buttons (void);
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 11

Software Listing
void Format_line1 (void);

void Format_line2 (void);

void Read_LINtemp (void);

/**

*

* Global variables

*

**/

unsigned char LIN_data[2];

unsigned char error_count = 3;

unsigned char ASCIIconv[] = {48,49,50,51,52,53,54,55,56,57,65,66,67,68,69,70};

unsigned char Line1[] = "---(---) ---- -";

unsigned char Line2[] = "-- ---.- ---- --";

unsigned char Power_of2 [8] = {1, 2, 4, 8, 16, 32, 64, 128};

unsigned char Prescaler [8] = {1, 3, 4, 13};

unsigned char count;

unsigned char tick;

unsigned char bounce;

unsigned char bpoint;

int delta_buffer[16];

int tcount0;

int delta0;

long thousand = 1000;

long cnt1024;

int bus_freq;

unsigned char PD;

unsigned char tmpSCPSC;
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor12

Software Listing
/**

*

* Function name: Main

* Originator: P. Topping

* Date: 21th March 2003

* Function: Initialise CONFIG registers, ICGMR, Ports and Timers.

* Initialise LCD module & LIN drivers and enable interrupts.

* Pace a slow loop (~4Hz for a 4MHz bus) using the timebase

* module. Within this loop the keys are read, the LIN buffer

* is read and the LCD module is updated. If requested by

* pressing the PTA2 key, a trimming operation is performed.

* ICGTR or ICGMR are incremented or decremented (according to

* the level of PTA2) once per loop if the PTA3 key is pressed

* PTD1 selects ICGTR or ICGMR for display and inc./dec.

*

**/

void main (void)

{

 CONFIG1 = 0x01; /* dissable COP */

 CONFIG2 = 0x45; /* slow clock for TBM */

 ICGMR = 64; /* ICG nominal 15.9744 MHz */

 DDRA = 0x70; /* port A 5-6, port B 0-2 */

 DDRB = 0x27; /* and port C 0-1 for LCD */

 DDRC = 0x83; /* port B bit 5 for LPI */

 PTB = 0x20; /* enable MC33399 LPI */

 TBCR = 0x00; /* divide by 2**22: ~4Hz @ */

 TBCR = 0x02; /* 4MHz bus & enable TBM */

 TASC = 0x30; /* reset timer A */

 TASC0 = 0x44; /* IC TAch0 - rising edges */

 TASC = 0x00; /* and start timer A */

 Initialise_Display(); /* initialise LCD module */

 asm cli; /* enable interrupts */

 LIN_Init(); /* initialise LIN drivers */

while (1)

{

 if (TBCR & 0x80) /* is TBM flag set? */

 {

 TBCR |= 0x08; /* yes, clear it */

 tick++;

 if (tick & 0x01) /* check bit 0 of tick */

 {

 PTA |= 0x10; /* tick LED (PTA4) off */

 }

 else

 {

 PTA &= ~(0x10); /* tick LED (PTA4) on */

 }

 Read_buttons(); /* read buttons on A2 & A3 */

 Read_LINtemp(); /* check for LIN message */

 cnt1024 = (ICGMR * 307.2 * 256) / 1000; /* constant for this ICGMR */

MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 13

Software Listing
 Format_line1(); /* data for LCD line 1 */

 Format_line2(); /* data for LCD line 2 */

 Display_Data(0x80, 0x00); /* DDRAM address to line 1 */

 for (count = 0; count < 16; count++)

 {

 Display_Data(Line1[count], 0x01); /* and write LCD line 1 */

 }

 Display_Data(0xC0, 0x00); /* DDRAM address to line 2 */

 for (count = 0; count < 16; count++)

 {

 Display_Data(Line2[count], 0x01); /* and write LCD line 2 */

 }

 }

}

}

MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor14

Software Listing
/**

*

* Function name: Read_buttons

* Originator: P. Topping

* Date: 26th March 2003

* Function: PTA3 PTA2 PTD1 PTA2 & 3 are low if their key is pressed

* 1 1 x no key function (release debounce lock)

* 1 0 x calculate trim and adjust ICGTR

* 0 1 0 decrement multiplier register ICGMR

* 0 1 1 decrement trim register ICGTR

* 0 0 0 increment multiplier register ICGMR

* 0 0 1 increment trim register ICGTR

*

**/

void Read_buttons (void)

{

 if ((PTA & 0x08) == 0) /* PTA3 key pressed ? */

 {

 if ((PTA & 0x04) == 0) /* yes, PTA2 key pressed ? */

 {

 if (PTD & 0x02) /* yes, check PTD1 */

 {

 ICGTR += 1; /* inc. trim if high */

 }

 else

 {

 ICGMR += 1; /* or multiplier if low */

 }

 }

 else /* PTA3 but not PTA2 */

 {

 if (PTD & 0x02) /* check PTD1 */

 {

 ICGTR -= 1; /* decrement trim if high */

 }

 else

 {

 ICGMR -= 1; /* or multiplier if low */

 }

 }

 bounce = 1; /* inhibit trimming */

 }

 else /* PTA3 key not pressed */

 {

 if (((PTA & 0x04) == 0) && (bounce == 0)) /* PTA2 key pressed ? */

 {

 ICGTR += (512*(delta0-cnt1024))/cnt1024; /* yes, trim */

 bounce = 1; /* and inhibit repeat */

 }

 else if ((PTA & 0x04) != 0) /* neither pressed so */

 {

 bounce = 0; /* re-enable trimming */

 }

 }

}

MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 15

Software Listing
/**

*

* Function name: Format_line1

* Originator: P. Topping

* Date: 26th March 2003

* Function: Format display of ICGTR (or ICGMR) in decimal and hex

* and bus frequency in kilohertz (blanking a leading zero).

* PTD1 selects between the display of ICGTR or ICGMR

*

**/

void Format_line1 (void)

{

int remain;

 if (PTD & 0x02) /* check PTD1 */

 {

 remain = ICGTR; /* high so display ICGTR */

 Line1[4] = 0x74; /* "t" */

 }

 else

 {

 remain = ICGMR; /* low so display ICGMR */

 Line1[4] = 0x6D; /* "m" */

 }

 Line1[5] = ASCIIconv [remain/16]; /* upper nibble in HEX */

 Line1[6] = ASCIIconv [remain & 0x0F]; /* lower nibble in HEX */

 for (count = 3; count != 0; count--)

 {

 Line1[count-1] = (remain%10) + 0x30; /* display also in decimal */

 remain = remain/10;

 }

 if (Line1[0] == 0x30) { Line1[0] = 0x20; } /* leading 0 becomes space */

 bus_freq = (delta0*thousand)/1024; /* calc. freq. from delta */

 remain = bus_freq;

 for (count = 12; count >= 8; count--)

 {

 Line1[count] = (remain%10) + 0x30; /* display frequency */

 remain = remain/10;

 }

 if (Line1[8] == 0x30) { Line1[8] = 0x20; } /* leading 0 becomes space */

 if (SCPSC != 0x60) tmpSCPSC = SCPSC;

 PD = 1 + tmpSCPSC/32; /* ESCI prescaller reg. */

 Line1[15] = PD + 0x30; /* upper three bits (+1) */

}

MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor16

Software Listing
/**

*

* Function name: Format_line2

* Originator: P. Topping

* Date: 26th March 2003

* Function: Format display of average frequency as a percentage of the

* nominal frequency (0.1% resolution) and baud rate.

* (the LIN temperature display is added by Read_LINtemp())

*

**/

void Format_line2 (void)

{

int remain;

long total;

volatile unsigned char BPD;

volatile unsigned char BD;

unsigned char PDFA;

 total = 0;

 for (count = 0; count < 16; count++)

 {

 total += delta_buffer[count]; /* sum 16 deltas */

 }

 remain = (thousand * total)/16/cnt1024; /* average as % of nominal */

 Line2[7] = (remain%10) + 0x30; /* display tenths */

 for (count = 3; count != 0; count--)

 {

 remain = remain/10;

 Line2[count+2] = (remain%10) + 0x30; /* and percentage */

 }

 if (Line2[3] == 0x30) { Line2[3] = 0x20; } /* leading 0 becomes space */

 PDFA = tmpSCPSC & 0x1F; /* ESCI pre. lower 5 bits */

 remain = PDFA; /* ESCI pre. lower 5 bits */

 Line2[15] = (remain%10) + 0x30; /* display PSSB in decimal */

 remain = remain/10;

 Line2[14] = remain + 0x30;

 if (Line2[14] == 0x30) Line2[14] = 0x20; /* leading 0 becomes space */

 BPD = Prescaler [(SCBR/16) & 3];

 BD = Power_of2 [(SCBR & 7)];

 remain = (bus_freq * thousand)/(2 * BPD * BD * (PD*32 + PDFA));

 for (count = 12; count >= 8; count--)

 {

 Line2[count] = (remain%10) + 0x30; /* display baud rate */

 remain = remain/10;

 }

 if (Line2[8] == 0x30) { Line2[8] = 0x20; } /* leading 0 becomes space */

}
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 17

Software Listing
/**

*

* Function name: Read_LINtemp

* Originator: P. Topping

* Date: 26th March 2003

* Function: Check for LIN message, if there decode and put temperature

* into display array, if not enter **

*

**/

void Read_LINtemp (void)

{

unsigned char bits;

unsigned char units;

unsigned char tens;

unsigned char negative;

 bits = LIN_MsgStatus (0x0A);

 if ((bits != LIN_OK) && (bits != LIN_MSG_OVERRUN)) /* has there been */

 { /* an ID 0A message ? */

 if (error_count < 5) /* no, error counter */

 { /* already 5 ? */

 error_count ++; /* no, inc. error counter */

 }

 }

 else

 {

 error_count = 0; /* yes, new data available */

 }

 if (error_count > 4) /* data in last second ? */

 { /* (needs approx 4MHz bus) */

 Line2[2] = 0x20; /* no, display "** " */

 Line2[0] = 0xA5; /* to signify no valid */

 Line2[1] = 0xA5; /* LIN data available */

 }

 else /* yes, data available */

 {

 LIN_GetMsg (0x0A, LIN_data); /* read sensor message */

 bits = LIN_data[0]; /* and extract temp. byte */

 if (bits < 60) /* negative ? */

 {

 bits = 60 - bits; /* yes,convert to positive */

 negative = 1; /* but remember it wasn't */

 }

 else

 {

 bits = bits - 60; /* no, remove offset and */

 negative = 0; /* clear negative flag */

 }

MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor18

Software Listing
 bits = bits/2; /* lose LS bit */

 tens = bits/10; /* find tens digit */

 units = bits%10; /* and units digit */

 Line2[1] = units + 0x30; /* units digit */

 Line2[0] = 0x20; /* clear tens digit */

 Line2[2] = 0x20; /* and "-" */

 if (tens != 0) /* tens digit zero ? */

 {

 Line2[0] = tens + 0x30; /* no, display it */

 if (negative) /* negative ? */

 {

 Line2[2] = 0xB0; /* yes display "-" */

 }

 }

 else if (negative) /* tens zero, negative ? */

 {

 Line2[0] = 0xB0; /* yes, put "-" in tens */

 }

 }

}

/**

Function Name : Display_Data

Engineer : C. Culshaw

Date : 06/09/02

Parameters : data - byte to be written to display

 : regsel - RS (0 = command mode, 1 = data mode)

**/

void Display_Data (unsigned char data, unsigned char regsel)

{

 while (LCD_busy() == 0x01); /* read LCD busy status */

 if (regsel == 1)

 {

 PTB |= 0x04; /* data, RS high */

 }

 else

 {

 PTB &= ~(0x04); /* command, RS low */

 }

 Write_Nibble (data/16); /* MS nibble */

 Clock_LCD(); /* clock display */

 Write_Nibble (data & 0x0F); /* LS nibble */

 Clock_LCD(); /* clock display */

}

MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 19

Software Listing
/**

*

* Function name: Write_Nibble

* Originator: P. Topping

* Date: 21st March 2003

* Parameters: nibble - 4-bit data to be written to display

*

**/

void Write_Nibble (unsigned char nibble)

{

 PTA = (PTA & 0x9F) | nibble * 0x20; /* format bits for LCD */

 PTC = (PTC & 0xFC) | nibble / 4; /* interface */

}

/**

*

* Function name: LCD_busy

* Originator: P. Topping

* Date: 10th February 2003

*

**/

unsigned char LCD_busy (void)

{

 unsigned char busy;

 unsigned char wait;

 DDRA &= ~(0x60); /* make LCD data pins MCU */

 DDRC &= ~(0x03); /* inputs */

 PTB &= ~(0x04); /* RS low */

 PTB |= 0x02; /* RW high */

 PTB |= 0x01; /* E high */

 busy = (PTC & 0x02); /* check busy output */

 PTB &= ~(0x01); /* E low */

 Clock_LCD(); /* clock second nibble */

 PTB &= ~(0x02); /* RW low */

 DDRC |= 0x03; /* put LCD data pins back */

 DDRA |= 0x60; /* to MCU outputs */

 wait = 0; while (wait++ < 10); /* wait ? */

 return (busy);

}

MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor20

Software Listing
/**
*
* Function name: Clock_LCD
* Originator: P. Topping
* Date: 10th February 2003
*
**/

void Clock_LCD (void)
{
 PTB |= 0x01; /* E high */
 asm NOP; /* slow down for > 8MHz */
 asm NOP;
 PTB &= ~(0x01); /* E low */
}

/**
*
* Function name: Initialise_Display
* Originator: P. Topping
* Date: 10th February 2003
*
**/

void Initialise_Display (void)
{

PTB &= ~(0x06); /* RW and RS low */
count = 0;

while (count < 8)
{
 if (TBCR & 0x80) /* is TBM flag set? */
 {
 TBCR |= 0x08; /* yes, clear it */

 switch (count)
 {
 case 1:
 Write_Nibble (0x03); /* Function set (8 bits) */
 Clock_LCD(); /* and clock */
 break;
 case 2:
 Clock_LCD(); /* wait and clock again */
 break;
 case 3:
 Clock_LCD(); /* and again */
 break;
 case 4:
 Write_Nibble (0x02); /* Function set 4 bit mode */
 Clock_LCD();
 break;
 case 5:
 Display_Data (0x28, 0x00); /* 2 line display */
 break;
 case 6:
 Display_Data (0x08, 0x00); /* display off */
 break;
 case 7:
 Display_Data (0x0C, 0x00); /* display on */
 PTB |= 0x04; /* RS high */
 break;
 }
 count++;
 }
}
}

MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 21

Software Listing
/**
*
* Function name: TimerA0
* Originator: P. Topping
* Date: 19rd March 2002
* Function: Timer A, channel 0 interrupt service routine
* Read timer, subtract from previous value and save delta
* in global "delta0" and in 16 result array "delta_buffer[]"
*
**/

#pragma TRAP_PROC

void TimerA0 (void)
{
 unsigned char thigh;
 int tcount;

 TASC0 &= ~(0x80); /* clear interrupt flag */
 thigh = TACH0H; /* read high byte first */
 tcount = ((thigh*256) + TACH0L); /* update counter */
 delta0 = tcount - tcount0; /* calculate delta */
 tcount0 = tcount; /* save timer value */

 delta_buffer[bpoint & 0x0F] = delta0; /* put delta into buffer */
 bpoint++; /* of 16 for averaging */
}

/**
* Function: LIN_Command
*
* Description: User call-back. Called by the driver after transmission or
* reception of the Master Request Command Frame (ID: 0x3C).
*
**/

void LIN_Command()
{
 while(1)
 {
 }
}

MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor22

HC08EY16.h
11 HC08EY16.h
/***
 HC08EY16.H
 Register definitions for the 908EY16

 P. Topping 24-01-02
***/

#define PTA *((volatile unsigned char *)0x0000)
#define PTB *((volatile unsigned char *)0x0001)
#define PTC *((volatile unsigned char *)0x0002)
#define PTD *((volatile unsigned char *)0x0003)
#define PTE *((volatile unsigned char *)0x0008)

#define DDRA *((volatile unsigned char *)0x0004)
#define DDRB *((volatile unsigned char *)0x0005)
#define DDRC *((volatile unsigned char *)0x0006)
#define DDRD *((volatile unsigned char *)0x0007)
#define DDRE *((volatile unsigned char *)0x000A)

#define SCBR *((volatile unsigned char *)0x0016)
#define SCPSC *((volatile unsigned char *)0x0017)

#define CONFIG1 *((volatile unsigned char *)0x001F)
#define CONFIG2 *((volatile unsigned char *)0x001E)

#define TBCR *((volatile unsigned char *)0x001C)

#define TASC *((volatile unsigned char *)0x0020)
#define TACNTH *((volatile unsigned char *)0x0021)
#define TACNTL *((volatile unsigned char *)0x0022)
#define TAMODH *((volatile unsigned char *)0x0023)
#define TAMODL *((volatile unsigned char *)0x0024)
#define TASC0 *((volatile unsigned char *)0x0025)
#define TACH0H *((volatile unsigned char *)0x0026)
#define TACH0L *((volatile unsigned char *)0x0027)
#define TASC1 *((volatile unsigned char *)0x0028)
#define TACH1H *((volatile unsigned char *)0x0029)
#define TACH1L *((volatile unsigned char *)0x002A)

#define TBSC *((volatile unsigned char *)0x002B)
#define TBCNTH *((volatile unsigned char *)0x002C)
#define TBCNTL *((volatile unsigned char *)0x002D)
#define TBMODH *((volatile unsigned char *)0x002E)
#define TBMODL *((volatile unsigned char *)0x002F)
#define TBSC0 *((volatile unsigned char *)0x0030)
#define TBCH0H *((volatile unsigned char *)0x0031)
#define TBCH0L *((volatile unsigned char *)0x0032)
#define TBSC1 *((volatile unsigned char *)0x0033)
#define TBCH1H *((volatile unsigned char *)0x0034)
#define TBCH1L *((volatile unsigned char *)0x0035)

#define ICGCR *((volatile unsigned char *)0x0036)
#define ICGMR *((volatile unsigned char *)0x0037)
#define ICGTR *((volatile unsigned char *)0x0038)

#define DDIV *((volatile unsigned char *)0x0039)
#define DSTG *((volatile unsigned char *)0x003A)

#define VECTF (void(*const)()) /* Vector table function specifier */
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 23

vector.c
12 vector.c
#define VECTOR_C
/**
*
* Copyright (C) 2001 Freescale, Inc.
*
* Functions: Vectors table for LIN08 Drivers with Freescale API
*
* Description: Vector table and node's startup for HC08.
* The users can add their own vectors into the table,
* but they should not replace LIN Drivers vectors.
*
* Notes:
*
**/

#if defined(HC08) /* for HC08 */

#if defined(HC08EY16)
extern void LIN_ISR_SCI_Receive(); /* ESCI receive ISR */
extern void LIN_ISR_SCI_Error(); /* ESCI error ISR */
extern void TimerA0(); /* Timer Module A Channel 0 ISR */
extern void TimerA1(); /* Timer Module A Channel 1 ISR */
// extern void TimerB(); /* Timer Module B Overflow ISR */
// extern void BREAK_Command(); /* SWI ISR */
#endif /* defined(HC08EY16) */

/**
 NODE STARTUP
 By default compiler startup routine is called.
 User is able to replace this by any other routine.
**/

#if defined(HICROSS08)
#define Node_Startup _Startup
extern void _Startup(); /* HiCross compiler startup routine declaration */
#endif /* defined(HICROSS08) */

/**
 INTERRUPT VECTORS TABLE
 User is able to add another ISR into this table instead NULL pointer.
**/

#if !defined(NULL)
#define NULL (0)
#endif /* !defined(NULL) */

#undef LIN_VECTF

#if defined(HICROSS08)
#define LIN_VECTF (void (*const) ())
#pragma CONST_SEG VECTORS_DATA /* vectors segment declaration */
void (* const _vectab[])() =
#endif /* defined(HICROSS08) */
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor24

vector.c
#if defined(HC08EY16)

/***/
/* */
/* HC08EY16 */
/* */
/* These vectors are appropriate for the 2L31N mask set of the */
/* MC68HC908EY16 and all subsequent versions. */
/* */
/* Older mask sets, e.g. 0L38H, 1L38H, 0L31N and 1L31N had a fault */
/* in their interrupt vector table and hence in the priorities. */
/* For these older mask sets the order of the SCI vectors was: */
/* */
/* SCI_Error_ISR, // 0xFFE6 ESCI error */
/* SCI_Transmit_ISR, // 0xFFE8 ESCI transmit */
/* SCI_Receive_ISR, // 0xFFEA ESCI receive */
/* */
/* All other vectors are unchanged. */
/* */
/***/

{
 LIN_VECTF NULL, /* 0xFFDC Timebase */
 LIN_VECTF NULL, /* 0xFFDE SPI transmit */
 LIN_VECTF NULL, /* 0xFFE0 SPI receive */
 LIN_VECTF NULL, /* 0xFFE2 ADC */
 LIN_VECTF NULL, /* 0xFFE4 Keyboard */

#if defined(MASTER) /* (used for Master node only)*/
 LIN_VECTF LIN_ISR_SCI_Transmit, /* 0xFFE6 ESCI transmit */
#endif /* defined(MASTER) */
#if defined(SLAVE)
 LIN_VECTF NULL, /* 0xFFE6 ESCI transmit */
#endif /* defined(SLAVE) */
 LIN_VECTF LIN_ISR_SCI_Receive, /* 0xFFE8 ESCI receive */
 LIN_VECTF LIN_ISR_SCI_Error, /* 0xFFEA ESCI error */

 LIN_VECTF NULL, /* 0xFFEC TIMER B overflow */
 LIN_VECTF NULL, /* 0xFFEE TIMER B channel 1 */
 LIN_VECTF NULL, /* 0xFFF0 TIMER B channel 0 */
 LIN_VECTF NULL, /* 0xFFF2 TIMER A overflow */
 LIN_VECTF NULL, /* 0xFFF4 TIMER A channel 1 */
 TimerA0, /* 0xFFF6 TIMER A channel 0 */
 LIN_VECTF NULL, /* 0xFFF8 CMIREQ */
 LIN_VECTF NULL, /* 0xFFFA IRQ */
// LIN_VECTF BREAK_Command, /* 0xFFFC SWI */
 LIN_VECTF NULL, /* 0xFFFC SWI */
 LIN_VECTF Node_Startup /* 0xFFFE RESET */
};

#endif /* defined(HC08EY16) */

#if defined(HICROSS08)
#pragma CONST_SEG DEFAULT
#endif /* defined(HICROSS08) */

#endif /* defined(HC08) */
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 25

slave.cfg
13 slave.cfg
#ifndef LINCFG_H
#define LINCFG_H

/**
*
* Copyright (C) 2001 Freescale, Inc.
*
* Functions: LIN Driver static configuration file for LIN08 Slave sample
* with Freescale API
*
* Notes:
*
**/

#if defined (HC08)

/* This definition configures the ESCI Prescaler divide ratio */

#define LIN_SCIPRESCALER 0x60u /* divide by 4 */

/* This definition configures the LIN bus baud rate. This value */
/* shall be set according to target MCU SCI register usage. */
/* HC08EY16: the 8-bit SCBR value will be masked by 0x37. */
/* The following numbers assume that the ESCI prescaller = 4 */

/* Selects 9600 baud for a nominal 2.4576 MHz clock (ICGMR=32) */
//#define LIN_BAUDRATE 0x00u

/* Selects 9600 baud for a nominal 4.9152 MHz clock (ICGMR=64) */
#define LIN_BAUDRATE 0x01u

/* Enable ESCI (fractional divide prescaler) baudrate synch. */

#define LIN_SYNC_SLAVE

/* The following numbers assume that the ESCI prescaller = 1 */

/* Selects 9600 baud rate if using a 4.9152MHz crystal */
//#define LIN_BAUDRATE 0x03u

/* Selects 9600 baud rate if using a 9.8304MHz crystal */
//#define LIN_BAUDRATE 0x04u

/* Selects 9600 baud rate if using an 8.000MHz crystal */
//#define LIN_BAUDRATE 0x30u

/* Selects 9600 baud rate if using a 16.000MHz crystal */
//#define LIN_BAUDRATE 0x31u

/* Selects 9600 baud rate if using a 32.000MHz crystal */
//#define LIN_BAUDRATE 0x32u

/* This definition sets the number of user-defined time clocks
 (LIN_IdleClock service calls), recognized as "no-bus-activity"
 condition. This number shall not be greater than 0xFFFF. */

#define LIN_IDLETIMEOUT 500u

#endif /* defined (HC08) */

#endif /* !define (LINCFG_H) */
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor26

slave.id
14 slave.id
#ifndef LINMSGID_H
#define LINMSGID_H
/**
*
* Copyright (C) 2001 Freescale, Inc.
*
* Functions: Message Identifier configuration for LIN08 Slave sample
* with Freescale API
*
*
* Notes:
*
**/

#define LIN_MSG_0A LIN_RECEIVE

/* this string is not necessary - just as an example */

#define LIN_MSG_0A_LEN 2 /* standard length */

#endif /* defined(LINMSGID_H)*/
MC68HC908EY16 ESCI LIN Drivers, Rev. 1

Freescale Semiconductor 27

AN2575
Rev. 1, 11/2005

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

	1 Introduction
	2 MC68HC908EY16 Enhancements for LIN
	3 Baud Rate Requirements for LIN
	4 ICG Trimming
	5 ESCI Prescaler Baud Rate Adjustment
	6 Hardware
	7 Software
	8 Alternative Strategies
	9 References
	10 Software Listing
	11 HC08EY16.h
	12 vector.c
	13 slave.cfg
	14 slave.id
	MC68HC908EY16 ESCI LIN Drivers

