
AN2600/D
12/2003

A Simple Keypad Using LIN
with the MC68HC908QT/QY
MCU

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

By: David Svrcek and Zdenek Kaspar
Motorola Czech System Laboratories
Roznov p.R., Czech Republic

General Description

This document describes an implementation of a LIN slave simple keypad
based on the MC68HC908QY/QT Family of microcontroller units (MCUs).

LIN (local interconnect network) is a low-cost, serial communication system
intended for use in distributed electronic systems in vehicles. LIN’s features,
such as baud rate, cannot compete against much more sophisticated networks
such as CAN (controller area network) and MOST (media-oriented system
transport) or byteflight. However, LIN’s simplicity and very low module price
make it ideal for applications that do not require more sophisticated networks.

LIN applications are very common and located in numerous places throughout
a vehicle:

• Door — Mirrors, window lifting, door locks
• Engine — Sensors and small motors
• Roof — Rain or light sensors
• Steering wheel — Radio, cruise control, and lights
• Seats — Position motors, occupant sensors
• Dash board
• HVAC — Flap control, sensors, blower motor, and control panels

This implementation uses MC68HC908QY/QT, the smallest member of
Motorola 8-bit M68HC08 MCU Family. All family members use the enhanced
M68HC08 central processor unit (CPU08), and are available with a variety of
modules, memory sizes and types, and package types.

NOTE: With the exception of mask set errata documents, if any other Motorola document
contains information that conflicts with the information in the device data sheet, the
data sheet should be considered to have the most current and correct data.

Metrowerks and CodeWarrior are registered trademarks of Metrowerks Inc., a wholly owned subsidiary of Motorola Inc.
byteflight is a registered trademark of the BMW Group.
This product incorporates SuperFlash technology licensed from SST.
© Motorola, Inc., 2003

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
Rectangle

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Main LIN Features

The main features of the LIN network are:

• LIN is a single-master/multiple-slave protocol, which means that two
kinds of devices are present on the bus:
– Master — One more-powerful MCU that controls the slaves.
– Slaves — Numerous (maximum number of nodes is 15) inexpensive

MCUs that have minimal features and low complexity.

• Bus collisions are avoided because the master controls all messaging.
Therefore, there is no need for bus arbitration.

• Messages are treated according to their 6-bit identifiers, similar to the
CAN standard. Thus, multicast reception is possible for broadcast type
of messages.

• Only one bidirectional line of communication, allowing a communication
baud rate of up to 20 kbps. The other two connections are the positive
and negative supplies.

• Variable length of data part of the frame (up to 8 bytes).

• Synchronization data in every message frame, which allows low-cost
internal RC oscillators to replace crystals or ceramic resonators.

• Data checksum (in LIN 2.0, this also includes ID) and bit error checking
are for data integrity. Parity bits are for ID integrity check.

• Based on the common UART/SCI data encoding standard:
One dominant start bit, eight data bits (LSB first), and one recessive stop
bit. This allows easier debugging of errors and a better understanding of
the protocol.

Application Introduction

This implementation shows the usage of a 6-key keypad and one LED as an
output indicator. The MC68HC908QY/QT MCU has as many as 13
general-purpose input/output (GPIO) pins. Thus the number of application
inputs/outputs is only limited by this value and the keypad construction.
However, note that two pins are used for the LIN connectivity.

Although the communication baud rate of the LIN network is quite low (up to
20 kbps), this value is sufficient for a wide range of applications such as a
simple keypad. This particular demo application is tested for baud rates equal
to 9.6 kbps and 19.2 kbps, though Motorola LIN QY/QT driver software can be
used for any possible LIN baud rate.
2 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D
Keypad Construction

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The described implementation of the keypad is as a LIN slave, hence it cannot
initiate communication with the other nodes of the network, because this is the
responsibility of the LIN master. The master periodically requests the frame
from the slave by sending a master task. When this master task with the
defined identifier (ID) is received on the slave, the slave sends back a slave
task, in which data describing the status of the keypad is attached.

In the other direction of communication, the master is able to send both master
and slave tasks. Using this approach, it can send information to slaves. This
message is used to control the keypad LED.

Information to the bus is sent in fixed format messages of selectable length.
The maximum number of data bytes in every message frame is eight, but this
application uses 2-byte frames for both directions.

Keypad Construction

The keypad requirements may vary among applications; however, the number
of the inputs (keys) and outputs (e.g., indicators) is limited only by the number
of available GPIO pins on the MCU and the input/output interface designs.
There are many approaches to connecting the keys, and the actual solution
presented here uses direct interfacing to the switches. When a different key
configuration is used, such as a matrix or connection using A/D inputs, it is
possible to achieve a higher number of switches with the same number of pins.
In that case, the software handler for the keypad would have to be modified.

Hardware Concept

The target MCU for the keypad module is the MC68HC908QY/QT. This MCU
includes an internal oscillator, a power-on reset module, and selectable pullups
on all ports. Therefore, a power supply with a bypass capacitor is the only thing
necessary to connect to the MCU. The circuit diagram of this keyboard
application is shown in Figure 1.

Other than the MCU itself, two chips are required to implement a simple LIN
node. These are the LIN interface (in this case the Motorola MC33399) and a
5-V regulator. These chips could possibly be replaced by a single chip, for
example the Motorola MC33689 LIN SBC (system basis chip). As a regulator,
a 3-pin 7805 or an 8-pin LT1121 chip is used. This configuration has the
capability of forcing the LIN device into a low-power sleep mode under the
control of the MCU. This option is not used in this application. The MC33399
includes a 30-kΩ LIN pullup, so this does not need to be included on the PCB.
A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 3

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The LIN driver uses the pin PTA1 for LIN Rx channel. This is a fixed
configuration because PTA1 is the timer channel 1 (TCH1) pin. Any GPIO port
can be used for the LIN Tx channel. In this application, it is the PTB2 pin. The
switches are connected to port B with pull-up resistors activated. The signalling
LED is linked to pin PTA3.

Figure 1. Keypad Module Circuit Diagram

KEYPAD

Vbat

LIN

GND

KEY A

KEY B

KEY C

KEY D

KEY E

KEY F

MC68HC908QY

V
s
s

1
6

V
d
d

1

PTB72

PTB6 3

PTA5/OSC14

PTA4/OSC25

PTB5 6

PTB4 7

PTA3/RST8 PTA2/IRQ 9

PTB3 10PTB211

PTA1/AD1/TCH112

PTA0/AD0/TCH013

PTB1 14

PTB0 15

DIODE

MC33399

LIN6

Wake3

V
s
u
p

7

EN 2

TX 4

RX 1

IN
H

8
G

N
D

5

LT1121

IN8 OUT 1

G
N

D
3

SHDN5

47k

100n

1k

27k

10k

LED
4 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D
Application Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Application Software

The project software must serve the application keypad and share the keypad
status via the LIN network. Therefore, it is necessary to define a specific ID
(six-bits-long) for each message, which will be used for reception or
transmission. The message ID is written in a hexadecimal format with the parity
bits included. According to the LIN specification, the data field can be 1 to 8
bytes long (for LIN 1.2 and newer).

Because the application is for demo purposes only, it uses two LIN messages
(both 2-bytes long), one for reception and the second for transmission. In the
transmitted message, the first data byte corresponds to the buttons currently
pressed, and the second byte carries information about buttons pressed down
for longer than three seconds.

The slave also receives a respective message from the master. The LSB of the
first data byte is thus used to control the LED of the keypad.

This application is based on the Motorola LIN QY/QT driver software described
in AN2599/D: Generic LIN Driver for MC68HC908QY4. This driver establishes
all LIN connectivity related tasks within the project, and it is available free of
charge from the Motorola LIN website:
www.motorola.com/semiconductors/LIN.

An interface between the LIN driver and the application is done by using two
API functions:

• LIN_PutMsg() — loads data into message buffer to be sent to the master

• LIN_GetMsg() —used for receiving data from the master.

For more details about these two functions as well as the driver
implementation, please see AN2599/D.

Table 1. Application Messages

ID ID with
Parity Sender Length

[Bytes]
Message

Data

0x1A 0x1A Master 2 See Table 3

0x1B 0x5B Keypad slave 2 See Table 2
A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 5

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Main Programming
Loop

In the main loop of the application (depicted in Figure 2), Read_Button() and
LIN_Msg() functions are called.

Figure 2. Main Loop Flowchart

The first function (Read_Button()) reads the port B values (where the switches
are connected). They are compared to the previous values. If both values are
equal, the counter keypadcount is used for the debouncing delay and also to
decide if the same state has been present for long enough. For a short key
press, the state of the keypad is saved to data1 variable (keypad status 1),
while for a long key press, the keypad value is latched and stored in data2
(keypad status 2). The mapping of the keypads within the status variables is
shown in Table 2.

CLEAR OVERFLOW FLAG

START main()

INITIALIZATION OF THE

TIMER
OVERFLOW?

N

READ KEYPAD STATUS

Read_Button()

MCU PERIPHERALS

INIT LIN DRIVER

LIN_Init()

LIN Rx and Tx

LIN_Msg()

Y

6 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D
Application Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

These status variables are then used in the second function LIN_Msg().
Because they contain data to be sent by the LIN slave node, they are stored by
the LIN_PutMsg() function into the buffer linked with the message to be
transmitted.

LIN_GetMsg() reads the buffer associated with the message to be received.
Out of the two received bytes, only the LSB of the first data byte is used by the
application; when it is set, the LED on the PTA3 pin is switched on. The format
of the received message is shown in Table 3.

FLASH/RAM
Memory Occupation

The size of the code in the FLASH memory depends on the application
functionality, and can be as low as 1400 bytes (with minimum functionality) and
about 1900 bytes supporting the keypad functions.

The driver and presented application use about 100 bytes of the RAM memory.

CodeWarrior
Project

The presented project is structured as shown in Figure 3. The subfolder
Sources contains:

• Application source code (also at LIN_Keypad_QY.c)

• vector.c files

• Driver source with files of the Motorola LIN QY/QT driver software

• Driver config contains LINmsg.c and TxConfig.h files

The last two mentioned files for the driver determine the behavior of the slave
node. LINmsg.c is used for the LIN frames definition, as provided in LIN
Message Configuration File section. TX_Config.h specifies which pin of the
MCU is used as a LIN transmit pin. The remaining files in Driver Source folder

Table 2. Format of Keypad Status Variables

Description Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Short key press
Keypad status 1
(data1 variable)

— Key F Key E Key D Key C — Key B Key A

Long key press
Keypad status 2
(data2 variable)

— Key F Key E Key D Key C — Key B Key A

Table 3. Format of the Received Command Message

Function Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Enable LED
Received message,

lower byte
— — — — — — — LED

Not assigned
Received message,

higher byte
— — — — — -— — —
A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 7

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

contain the LIN driver implementation code, which should not normally be
modified by the user.

The subfolder Prm contains the project parameter files (.prm), to define the
ROM/RAM memory locations of the MCU.

In folders Startup Code and Libs are the header/implementation files and the
necessary libraries — Start08.c, MC68HC908QY4.c, MC68HC908QY4.h and
ansi.lib.

Figure 3. CodeWarrior Project Tree

LIN Message
Configuration File

The LIN message frames used in the application are defined in the file called
LINmsg.c. This is where specific IDs must be defined by the user for each
application message. This file also contains information that indicates whether
the message is designated for reception or for transmission.

The message ID is written in hexadecimal format with the parity bits included.
The data field can be 1 to 8 bytes long. For this application, two message IDs
are used, as shown in Table 1.

• The message ID equal to 0x1A (0x1A with the parity bits included) is
used for reception.

• The message ID 0x1B (0x5B with the parity) is used for transmission.
8 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D
Application Software

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A list of all the operations necessary to setup the LINmsg.c file is presented
here:

1. Create a message buffer for the frame data field of each application
message.

U8 volatile Message0x1A[2]; // ID 0x1A = 0x1A with parity
U8 volatile Message0x5B[2]; // ID 0x1B = 0x5B with parity

2. Define a pointer array MessagePointerTbl[] containing pointers to all
message buffers of the application.

U8 volatile * MessagePointerTbl[] = {Message0x1A, Message0x5B};

3. Create an identifier table (array) IdTbl[] containing all IDs relevant to this
node. Note that it must be set up in the same order as in the case of
MessagePointerTbl[] and MessageCountTbl[]. Furthermore, message
IDs must have parity bits included.

U8 const near IdTbl[] = {0x1A, 0x5B};

4. Finally, it is necessary to define an array variable MessageCountTbl[]. It
is a table which defines (for each existing message) a length of the frame
data and the checksum fields. It also indicates whether the specific
message should be sent or received. The least significant half-byte of
each entry denotes the length of the data and checksum fields (length of
the checksum field is equal to 1), and the most significant half-byte is
equal to 1 for message reception and 0 for transmission. In addition, it
could also be equal to 0xF (ignore), which means that the message is
ignored unless it has been updated since it was last read/written.

U8 const near MessageCountTbl[] = {0x13, 0x03};

Project Creation This section is a brief description of how to create a new project based on the
Motorola LIN QY/QT driver software. For more detail, see AN2599/D.

1. Create a new project in Metrowerks CodeWarrior development system.

2. Copy the Motorola LIN QY/QT driver software into the folder structure of
the project (for example into the folders lin_src and lin_inc). The driver
consists of LINapi.c, LINdriver.c, LINdriver.h, LINmsg.c, and
Tx_Config.h files.

3. Add the Motorola LIN QY/QT driver software into the CodeWarrior
project tree (for example into the folders Sources\Driver source and
Sources\Driver config).

4. In the application source file (e.g., LIN_Keypad_QY.c), include the LIN
driver with:
#include "LINdriver.h"

5. Define the messages in the LINmsg.c file as described in LIN Message
Configuration File.
A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 9

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6. Define the transmit pin of the LIN node in the Tx_Config.h file; default is
pin 2 of port B (PTB2).

7. Update the vectors of the project in vector.c file. Specifically, it is
necessary to define interrupt service routine (ISR) TimA1ISR() as a
VECTOR 5 (0xFFF4).

NOTE: The driver uses only timer channel 1, but usage of the timer modulus counter
is prohibited because the driver assumes that the overflow value of the timer is
set to 0xFFFF. No ISR is allowed other than the one used by the LIN driver
during communication. The reason for this is that both the Tx and Rx pins are
software driven and must have a predictable latency for the ISR response.

NOTE: The use of the LDA/modify/STA sequence for the control of port B in this
interrupt-driven bit-banged driver is strongly discouraged because one pin of
this port (PTB2) is used as a Tx pin of the LIN driver. If the level of this Tx pin
is changed by an interrupt occurring during the sequence, the wrong level will
be restored. The solution is to use only BSET and BCLR instructions when
writing to port B.

NOTE: For maximum benefit, please see the Application Source Code.

CPU Usage

This section provides estimated values of CPU usage during the LIN
communication. The MCU uses some of its power when executing the LIN
reception/transmission functions of the LIN driver. The demand on the CPU
time will depend linearly on the baud rate of the LIN network and the bus
frequency of the MCU.

To provide these estimates, the following measurements were taken. Because
all LIN driver communication activities are executed within the ISR of timer A
channel 1 [TimA1ISR()], it is possible to use one unused pin of the MCU, set
this pin high on the interrupt entry, and clear it to low just before the rti
instruction of the ISR.

Several scope screen captures were created. These measurements indicate
that an average CPU usage during the LIN communication measured over one
received byte is approximately 30% at a 9600 bps baud rate, and
approximately 53% at a 19,200 bps baud rate. And over one relevant frame
(two data bytes long), CPU usage is approximately 24% (for a 9600 bps baud
rate) and 41% (for a 19,200 bps baud rate).

Figure 4, Figure 5, and Figure 6 were measured at a 9600 bps baud rate.
Figure 7, Figure 8, and Figure 9 were measured at a 19,200 bps baud rate.

Figure 4, Figure 5, Figure 7, and Figure 8 show a reception of one data byte.
Figure 6 and Figure 9 display reception of a full message.
10 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D
CPU Usage

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4. Reception of One Data Byte (0x00), 9600 bps Baud Rate

Figure 5. Reception of One Data Byte (0x00) — Detail, 9600 bps Baud Rate

INTERRUPT ENTRY
(RISING EDGE) AND
EXIT (FALLING EDGE)

LIN BUS ACTIVITY

INTERRUPT ENTRY
(RISING EDGE) AND
EXIT (FALLING EDGE)

LIN BUS ACTIVITY
A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 11

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6. Reception of a Full Message — Sync Break, a Sync Field,
ID 0x1A, Two Data Bytes (Both of 0x00) and a Checksum Field, 9600 bps

Figure 7. Reception of One Data Byte (0x00), 19200 bps Baud Rate

INTERRUPT ENTRY
(RISING EDGE) AND
EXIT (FALLING EDGE)

LIN BUS ACTIVITY

INTERRUPT ENTRY
(RISING EDGE) AND
EXIT (FALLING EDGE)

LIN BUS ACTIVITY
12 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D
CPU Usage

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 8. Reception of One Data Byte (0x00) — Detail,
19200 bps Baud Rate

Figure 9. Reception of a Full Message — Sync Break, a Sync Field,
ID 0x1A, Two Data Bytes (Both of 0x00) and a Checksum Field, 19200 bps

INTERRUPT ENTRY
(RISING EDGE) AND
EXIT (FALLING EDGE)

LIN BUS ACTIVITY

INTERRUPT ENTRY
(RISING EDGE) AND
EXIT (FALLING EDGE)

LIN BUS ACTIVITY
A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 13

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

References

1. MC68HC908QY/QT Data Sheet,
Motorola document number: MC68HC908QY4/D

2. LIN Specification Package, Revision 1.3, 12 December 2002

3. Generic LIN Driver for MC68HC908QY4,
Motorola document number: AN2599/D

4. LINkits LIN Evaluation Boards,
Motorola document number: AN2573/D

5. Car Door Keypad Using LIN,
Motorola document number: AN2205/D

Acronyms

LIN Local interconnect network

CAN Controller area network

MOST Media-oriented system transport

GPIO Genera-purpose input/output

PCB Printed circuit board

ID Identifier

A/D Analog-to-digital

MCU Microcontroller unit

LSB Least significant bit

ISR Interrupt service routine
14 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D
Application Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Application Source Code

LIN_Keypad_QY.c

/**
* (c) MOTOROLA Inc. 2003 all rights reserved. *
* *
* *
* LIN keypad slave node for MC68HC908QY4 *
* ====================================== *
* *
* Originator: David Svrcek *
* Date: 11th September 2003 *
* $Version: 1.1.4.0$ *
* Function: Slave keypad receives a 2-byte message and supplies *
* a 2-byte response. The MCU sends in the first byte *
* the value corresponding to the pressed buttons, and *
* in the second byte the value corresponding with longer *
* pressed buttons (those pressed down for longer *
* than 3 seconds). If bit 0 in the first receiving byte *
* is set, then the LED on pin PTA3 is enabled. *
* All the other bits are zero. *
* *
**/

/**
* *
* Includes, defines, globals and function prototypes *
* *
**/

#include “MC68HC908QY4.h”
#include “LINdriver.h”
#include “LIN_Keypad_QY.h”

#define KEEPCOUNT 145 /* 20.5ms x (145+1) = 3s */
#define BUTTONS (~PTB) & 0x7B /* define buttons on pins */
#define ID_RECEIVE 0x1A /* ID for receiving */
#define ID_SEND 0x5B /* ID for sending */
#define LED_STATUS 0x01 /* bit 0 in data st. reg.1 */
#define LED_SET PTA |= 0x08; /* set LED on PTA3 pin */
#define LED_CLEAR PTA &= 0xF7; /* clear LED on PTA3 pin */
#define EVER (;;) /* forever loop */

#pragma DATA_SEG SHORT _DATA_ZEROPAGE

unsigned char data1 = 0; /* keypad status 1 */
unsigned char data2 = 0; /* keypad status 2 */

unsigned char MsgSent [2]; /* transmitted data */
A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 15

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

unsigned char MsgRcvd [2]; /* received data */

#pragma DATA_SEG DEFAULT

/**
* *
* Function name: Main *
* Originator: D.Svrcek *
* Date: 8th August 2003 *
* Function: The microprocessor is configured and initialized. *
* In the main never ending loop two functions are called, *
* ‘Read-Button’ and ‘LIN_Msg’. *
* *
**/

void main (void)
{
 CONFIG1 = 0x09; /* disable COP */
 CONFIG2 = 0x00; /* default (int. osc.) */

 DDRA = 0x08; /* enable port A outputs */
 /* LED: PTA3 */

 DDRB = 0x04; /* enable port B outputs */
 /* KEYS: B0,B1,B3,B4,B5,B6 */
 /* TX: PTB2 */
 PTBPUE = 0x7B; /* enable pullup on port B */

 TSC = 0x00; /* timer prescaler/1,start */

 OSCTRIM = 0; /* trim to max. frequency */

 asm cli; /* enable interrupts */

 LIN_Init(); /* initialise LIN drivers */
 PTA = 0x00; /* clear port A */

 for EVER
 {
 if (TSC_TOF) /* is overflow flag set? */
 {
 TSC_TOF = 0; /* yes, clear it */
 Read_Button (); /* read buttons on PTB */
 LIN_Msg (); /* send and receive LIN msg*/
 }
 }
}

16 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D
Application Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/**
* *
* Function name: Read_Button *
* Originator: D.Svrcek *
* Date: 8th August 2003 *
* Function: *
* The port line is read and its level is compared to *
* previous values. If the value is the same, the counter *
* ‘keypadcount’ is used for delay and to decide if the same *
* state has been present for long enough (3 seconds). For a *
* short key press, the value is saved from port B to data1 *
* variable. For a long key press, the value is latched from *
* port B and stored to data2 variable. *
* If the status of switch is changed, the counter is reset *
* and the data variables are cleared. *
* *
**/

void Read_Button (void)
{
unsigned char keypad; /* auxiliary variable */
static int keypadcount = 0; /* the number of interval */
static unsigned char keypad_last = 0; /* previous value of keys */

 keypad = BUTTONS; /* read buttons on PTB */

 if (keypad == keypad_last) /* same as last time ? */
 {
 if (keypadcount == 1) /* yes, third time ? */
 {
 if (keypad) /* key pressed? */
 {
 data1 = keypad; /* yes, store buttons to */
 /* keypad status 1 */
 }
 else
 {
 data1 = 0; /* no, clear keypad status1*/
 }
 keypadcount++;
 }
 else if (keypadcount < KEEPCOUNT) /* prevents wraparound */
 {
 keypadcount++;
 }
 else if (keypadcount == KEEPCOUNT) /* time for save data1, */
 /* key is pressed for long?*/

 {
 if (keypad) /* yes, key pressed ? */

 {
 data2 = keypad; /* yes, store buttons to */
 /* keypad status 2 */

 }
 }

 }
A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 17

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 else
 {
 keypadcount = 0; /* no, different, so reset */
 keypad_last = keypad; /* count and save status */
 data1 = 0; /* clear keypad status 1 */
 data2 = 0; /* clear keypad status 2 */
 }
}

/**
* *
* Function name: LIN_Msg *
* Originator: D.Svrcek *
* Date: 8th August 2003 *
* Function: The keypad status variables are saved to the buffer used *
* by the drivers for sending. The function ‘LIN_GetMsg’ *
* receive two bytes, if bit 0 in the first byte is set, *
* then the LED on the PTA3 pin is enabled. *
* *
**/

void LIN_Msg (void)
{
 MsgSent[0] = data1;
 MsgSent[1] = data2;

 LIN_GetMsg (ID_RECEIVE, MsgRcvd); /* read LIN message */
 if (MsgRcvd[0] & LED_STATUS) /* if first bit is set */
 /* enable LED */
 {
 LED_SET; /* yes, set LED */
 }
 else
 {
 LED_CLEAR; /* no, clear LED */
 }

 LIN_PutMsg (ID_SEND, MsgSent); /* LIN response to 0x1B */
 /* 0x1B with parity = 0x5B */
}

/**
* Function: LIN_Command *
* Description: User call-back. Called by the driver after transmission or *
* reception of the Master Request Command Frame (ID: 0x3C). *
**/

void LIN_Command()
{
 for EVER
 {
 }
}

18 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D
Application Source Code

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LINmsg.c

/**
*
* Copyright (C) 2003 Motorola, Inc.
* All Rights Reserved
*
* Filename: $RCSfile: LINmsg.c,v $
* Author: $Author: r57404 $
* Locker: $Locker: $
* State: $State: Exp $
* Version: $Version: 1.3.5.0$
*
* Functions: LIN header file for message configuration
*
* History: Use the RCS command log to display revision history
* information.
*
* Description:
*
* Notes: Users should alter this file to define the required LIN messages
*
*
**/
//includes
#include <MC68HC908QY4.h>
#include “LINdriver.h”

/*************** LIN Frame setup dependant variables *************************/
/* This is where the user will define the frames used in the application. */
/***/
/* Define what messages will be used in the application, as “Message0xID”, */
/* where ID is the message id in hex with the parity bits included. */
/* Define the frame data field for each message - the data field can be 2, 4 */
/* or 8 bytes long. */

U8 volatile Message0x1A[2];// id 0x1A = 0x1A with parity
U8 volatile Message0x5B[2];// id 0x1B = 0x5B with parity

/* Pointer array pointing to all frames, must be setup in the same order */
/* as IdTbl[] and MessageCountTbl[] */
U8 volatile * MessagePointerTbl[] = {Message0x1A, Message0x5B};

/* Relevant identifier table (array), must be setup in the same order */
/* as *MessagePointerTbl[] and MessageCountTbl[] */
/* Remember that the id must have parity bits included. */
U8 const near IdTbl[] = {0x1A, 0x5B};

/* Table below defines number of bytes in the message data and shows if */
/* the message should be sent or received. */
/* The LSHB is the length of data frame +1 (checksum) */
/* (e.g. Message0x20[4]=> LSHB= 5) */
/*LSHB = Byte count incl Checksum; MSHB =>F=Ignore, 1 = Receive,0 = Send;*/
/* Must be setup in the same order as */
U8 const near MessageCountTbl[] = {0x13, 0x03};
A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 19

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/* LIN_LIST_SIZE is the number of Id:s in the IdTbl[] */
#define LIN_LIST_SIZE ((sizeof(IdTbl)) / sizeof(IdTbl[0]))

/* No_of_Ids is the number of Ids in IdTbl[] */
U8 const No_of_Ids = LIN_LIST_SIZE;

/* to store message status, e.g. LIN_MSG_NODATA or LIN_MSG_UPDATED */
U8 volatile LinMsgStatus[LIN_LIST_SIZE];

/**************** END LIN Frame setup dependant variables. *******************/
20 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 21

For More Information On This Product,
 Go to: www.freescale.com

AN2600/D

22 A Simple Keypad Using LIN with the MC68HC908QT/QY MCU

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2600/D

A Simple Keypad Using LIN with the MC68HC908QT/QY MCU 23

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2600/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

rxzb30
hibbertleft

	General Description
	Main LIN Features
	Application Introduction
	Keypad Construction
	Hardware Concept
	Application Software
	Main Programming Loop
	FLASH/RAM Memory Occupation
	CodeWarrior‚ Project
	LIN Message Configuration File
	Project Creation

	CPU Usage
	References
	Acronyms
	Application Source Code
	LIN_Keypad_QY.c
	LINmsg.c

