

1. Introduction
Technologies for complex high-end systems continue to drive demand for
higher performance and I/O expansion. One potential solution to this
increase in performance is the implementation of a dual processor system.

The configuration of a dual controller system would typically consist of a
MPC563 as a master device with onboard flash and a MPC561 as a slave
device.

The increase in hardware complexity for a dual processor system also
results in an increase in the software development complexity.

This applications note is intended to describe an environment that
minimises the software development complexity for a dual controller
application. The environment for this dual processor configuration uses
relocate-able code stored in the flash of the master device (MPC563) that
runs on the slave device (MPC561).

The software environment detailed in this applications note was developed
for the MPC561/2/3/4 Dual Controller EVB, using the Wind River
Systems’ DIAB C complier and linker.

For a hardware description refer to Multi-controller Hardware
Development for MPC5xx Family, AN2667.

2. Functional Overview
The configuration of the Dual Controller EVB uses a MPC563 master
device connected to a MPC561 slave device. The MPC563 master device
has on chip flash memory that contains the master code and the re-
locatable slave code. See Figure 1.

Application Note

AN2668/D
Rev. 0, 1/2004

Dual Controller Software
Development for
MPC561/MPC563 EVB

Neil Farnham
TECD Applications

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

RXZB30
Rectangle

Dual Controller Software Development for MPC561/MPC563 EVB 2

MPC563 MPC561

Address

Data

Control

20MHz
Osc

ExtClk

Reset

KaPwr

Gnd

POReset

Gnd

Slave Reset
Config Word

I/O

Flash

Master Reset
Config WordGeneral IO General IO

Figure 1

On system boot up the master device boots from its internal flash memory while holding
the slave device in reset. The master device uses the internal flash reset configuration
word (RCW) on system boot.

The master device releases the slave device from reset, which samples the reset
configuration word (RCW) from the external data bus. The RCW is setup via dip-
switches on the dual-controller EVB. The RCW is presented to the slave device on the
data bus with use of external logic that monitors the slave poreset and sreset signals.
Refer to Dual MPC561/2/3/4 Autotemp Evaluation Board User’s Manual,
MPC561AEVBUM/D for more detail on the hardware description.

The reset configuration word for the slave places the device in peripheral mode. In
peripheral mode the master has access to the internal memory map of the slave. The
master then configures the slave and loads the re-locatable code into the slave’s
CALRAM.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 3

The master releases the slave from peripheral mode into slave mode. The slave then
executes the loaded code. In this configuration the slave does not have access to the
master device.

The master executes it own code from its internal flash memory.

It is the advanced features of the linker that provide the ability to partition and relocate
the code.

3. Detailed Description

3.1. Hardware Configuration
For a hardware description refer to Multi-controller Hardware Development for MPC5xx
Family, AN2667.

The extclk input on the slave device is connected to the clkout pin of the master device.
The modck[1:3] pins for the slave device are set to 0b100 which selects extclk pin as a
1:1 clock source for the slave. This enables the clock on slave device to synchronise to
the clock on the master device.

Slave Device Configuration
The slave device reads the reset configuration word from the data bus, as the EXTCONF
pin is pulled low.

The reset configuration word sets up the following conditions:

• Address Map (D28:30 = 0b001): Selects the slave device to reside at address
0x40000- 0x7FFFFF. This is the IMMR[ISB0:2 = 0b001] settings.

• Peripheral Mode (D16= 0b1): Allows the Master device to access the internal
memory mapped address of the slave.

• External Arbitration(D0 = 0b1): Allows master device to control bus arbitration.

• Re-locatable Exception Table: The base address of the slave device is set to
0x400000 (IMMR[ISB0:2]=0b001) and the default location for the exception
table is expected at address 0x400000 through 0x402000. However, the Slave
MPC561 has no internal or external memory mapped to this address to store the
exception table. Therefore the exception table has to be relocated into the slave
internal CALRAM. This is achieved by setting the following bits:

• IP bit(D1 = 0b1) is required to be set.

• ETRE bit(D19 = 0b1). Exception Table Relocation Enable is set to enable the
BBCMCR[OERC] bits.

• OERC bits (D24:25 =0b11). This sets the bits in the BBCMCR which relocates
the Exception Table to the internal CALRAM at address 0x7FE000 for the slave
device. Note that the exception table is a list of branch absolute commands set at
double-word boundaries.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 4

Master Device Configuration
The master device uses the internal reset configuration word as UC3FCFG is erased
(0x00000000). This RCW is selected as the active low bit UC3FCFG[HC](RCW:D20) is
erased.

This sets the device to be master with internal memory space, mapped from 0x0000000 -
0x3FFFFFF (IMMR[ISB0:2] = 0b000) with internal bus arbitration enabled. The
exception table for the master device is at address 0x00000000-0x00002000.

Reference the MPC561/MPC563 User Manual and for a more detailed description of the
reset configuration word.

3.2. Single Processor Software
For single processor development the software structure is shown in Figure 2.

ert0etas.s

ex_tbl.s
Exception table

Single Processor Software
0x0000 0000
0x0000 0100

0x0000 2000

_start

0x003F 8000

0x003F FFFF

main code

_start
Init Device

FLASH

_start

POReset

ex_tbl_func.c
Exception Functions

Exception Functions

m563_setup

m563_setup.c

Const/Initialised Var

Unused Flash

0x0007 FFFF

Variables

m563_<Module.h>
Files

CALRAM

main.c
Main Code

M563_common.h
file

m563.h

M563 Memory Map

Memory
Mapped
Registers

Figure 2

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 5

Header Files
The header files contain definitions for registers defined within the device for each
module and are combined into a single device header file mpc563.h. These are defined as
structures that allow register, bit-group or bit-wise access. There is an additional
m563_common.h header file that holds global module definitions.

crt0.s
The crt0.s file is an assembler file that initialises the device.
The function _start is defined as the address to run at boot-up, which is called from the
reset vector by the branch absolute _start instruction.
The following diagram show the startup and termination control of the crt0.s file.

User’s Init Program

Crt0etas.s
Initialise .sdata/.sdata2 base address

_start:
…

void
setup_mpc563()
{
…
return();
}

Call setup_mpc563()

This file performs the standard DIAB crt0 actions. It is important to understand the
sequence for the single processor as this file needs to be modified for the dual processor
software. The following describes the operations in this file:

1. Initialize stack: Loads Register1 with the Stack Pointer
2. Loads Register13 with the SDA (Small Data Area) base address.

Global or static variables are accessed relative to the base address with a
16bit offset.

3. Loads Register2 with the SDA2 (Small Const Area) base address. Constant
initialised/uninitialised variables are accessed relative to the base address
with a 16bit offset.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 6

4. Calls the setup_mpc563 function in mpc563.c, which configures the device.
5. The file then calls __init_main function to initialize local variables which

then calls the users main() function. The main function in the demo code
never returns.

mpc563.c
The setup_mpc563 function call from the crt0.s file configures the device:

1. Disables the watchdog timer.
2. Sets the system clock frequency to 56MHz.
3. Disables the time base decrementor hardware.
4. Sets the IMB bus to run at full system clock frequency.
5. And finally configures the core special purpose registers.

Note

If you only use MPC563 internal flash memory as storage
you should not enable BBC burst in the dual processor
system. A master cannot burst internally when connected to
a slave device.

ex_tbl.s and ex_funcs.c
The assembler file ex_tbl.s uses the .org command to setup function calls for the
exception table at 0x100 byte intervals. The NMI/Reset (System Boot) function at
address location 0x100 calls the _start function. The branch instructions for all other
interrupts are defined in the ex_funcs.c file.

The exception functions in the ex_funcs.c file places the device into an endless loop
should an exception occur. This allows exceptions to be trapped. Alternatively the user
may define their exception handler functions in this file.

main.c
The main.c file contains the main code for the processor to run. The main code is the top
level user specific code.

makefile
This file defines the files to be compiled, assembled and linked to generate a .ELF file
that can be downloaded into FLASH memory.

3.3. Dual Processor Software
For the dual processor configuration the master device stores the software in an unused
area of flash that is relocated to the slave device during execution initialisation. This is
shown in Figure 3.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

S
la

v
e

M
em

o
ry

M

ap
p

ed

R
eg

is
te

rs

er
t0

et
as

.s

ex
_

tb
l.

s
E

x
ce

p
ti

o
n

 t
ab

le
E

x
c

e
p

ti
o

n
 T

a
b

le

D
u

a
l

P
ro

c
e

ss
o

r
S

o
ft

w
a

re
0

x
0

0
0

0
 0

0
0

0
0

x
0

0
0

0
 0

1
0

0

0
x

0
0

0
0

 2
0

0
0

_
st

a
rt

0
x

0
0

3
F

 8
0

0
0

0
x

0
0

3
F

 F
F

F
F

m
a

in
 c

o
d

e

_
st

a
rt

In
it

 D
e

v
ic

e

F
L

A
S

H

_
st

a
rt

P
O

R
e

s
e

t

ex
_

tb
l_

fu
n

c.
c

E
x

ce
pt

io
n

 F
u

n
ct

io
ns

E
x

c
e

p
ti

o
n

 F
u

n
c

ti
o

n
s

m
5

6
3

_
se

tu
p

m
56

3
_

se
tu

p
.c

C
o

n
s

t/
In

it
ia

li
s

e
d

 V
a

r

U
n

u
s

ed
 F

la
sh

V
a

ri
a

b
le

s

m
5

63
_

<
M

od
u

le
.h

>
F

il
es

C
A

L
R

A
M

m
ai

n
.c

M
5

6
3

_c
o

m
m

o
n

.h
fi

le

m
5

6
3

.h

M
5

6
3

 M
em

o
ry

 M
ap

M
e

m
o

ry

M
a

p
p

ed

R
eg

is
te

rs

M
5

6
1

 M
em

o
ry

 M
ap

0
x

0
0

0
0

 0
00

0

0
x

0
0

7
F

 e
00

0

0
x

0
0

7
F

 F
F

F
F

m
a

in
 c

o
d

e

_
s

ta
rt

In
it

 D
e

v
ic

e

E
x

c
e

p
ti

o
n

 F
u

n
c

ti
o

n
s

m
5

6
1

_
se

tu
p

C
o

n
s

t/
In

it
ia

li
s

e
d

 V
a

r

N
o

 E
x

te
rn

a
l

M
e

m
o

ry

V
a

ri
a

b
le

s

0
x

0
0

0
7

 F
F

F
F

0
x

0
0

0
0

 7
0

0
0

U
n

u
s

ed
 F

la
sh

S
la

v
e

 C
o

d
e

E
x

c
e

p
ti

o
n

 T
a

b
le

_
s

ta
rt

0
x

0
0

0
7

 F
8

0
0

0
x

0
0

0
7

 F
F

F
F

R
e

lo
c

a
te

R
e

lo
c

a
te

C
A

L
R

A
M

R
el

oca
te

Rel
oca

te

E
n

te
r

S
la

v
e

M

o
d

e

In
it

 S
la

v
e

C
o

d
e

S
ta

rt
 S

la
v

e
 D

e
v

ic
e

F
ig

ur
e

3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 8

m563_common.h
The base address for slave device is defined in the m563_common.h header file:

#ifndef INTERNAL_MEMORY_BASE
#define INTERNAL_MEMORY_BASE 0x00000000
#endif
#ifndef SLAVE_INTERNAL_MEMORY_BASE
#define SLAVE_INTERNAL_MEMORY_BASE 0x00400000
#endif

The RCW base address (IMMR[ISB0:2]) for both the master and slave MUST match the
address defined in the m563_common.h file.

The header files were modified to define the slave hardware registers in addition to the
master hardware registers. An examples is shown for definition of the slave UISU
module:

struct USIU_tag *USIU = (struct USIU_tag *) (INTERNAL_MEMORY_BASE + 0x2FC000);
struct USIU_tag *SLAVE_USIU = (struct USIU_tag *) (SLAVE_INTERNAL_MEMORY_BASE +
0x2FC000));

crt0.s
The crt0.s file for the dual controller is the same as for the single processor, except that
the function setup_mpc563 has been renamed to setup_master. And the file containing
this function has been renamed from mpc563.c to setup_master.c file.

setup_master.c
This file is the same as the mpc563.c for the single processor development with some
extended functions detailed below.

In the dual processor application the master device also configures the slave device with
memory-mapped accesses. In addition to setting up the master device the code also
performs the following:

1. Configures Master IO for Slave Reset control.
2. Waits for the master PLL to lock on set frequency.
3. Disables the slave device watchdog timer.
4. Sets up TSIZE to be driven by external data bus. Master/Slave mode

requirement.
5. Retry function enabled. When an external master owns the bus and the

internal bus on the slave initiates access to the external bus at the same time as
the master, this signal is used to cause the external master to relinquish the bus
for one clock to solve the contention. This is a Master/Slave mode
requirement.

6. Sets IMB bus to run at system frequency as default is half the system
frequency.

The following operations relocate code from the master internal FLASH memory to the
slave CALRAM. The master internal FLASH memory address location and size and the
slave CALRAM address are provided by user define variables defined in the linker file.

7. Copies the exception table to the slave CALRAM at - 8 -

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 9

8. Copies the code to the slave CALRAM at address 0x07F8000.
9. Copies the data section to the slave CALRAM following the Code section.

This contains DATA, CONST and STRING data types.

main.c
The main.c file contains the code to start the slave processor running.
The additional files required for the dual controller are depicted in Figure 4.

start_slave.s

ex_ tbl _slave.s
Exception table

Dual Processor Software

ex_ tbl _ func _slave.c
Exception Functions

setup _slave.c

m563_<Module.h>
Files

main_slave.c

M563_common.h
file

m563.h

M561 Memory Map

0x0000 0000

0x007F e000

0x007F FFFF

main code

_start
Init Device

Exception Functions

m561_ setup

Const/Initiali sed Var

No External Memory

Variables

0x0007 FFFF

Exception Table
_start

0x0007 F800

CALRAM Enter
Slave
Mode

. section “.text_slave”,,c

slave.h

Slave
Memory
Mapped
Registers

. section “.text_slave”,,c

Figure 4

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 10

slave.h
The slave.h file contains linker information that is used to partition the slave and master
software. The default complier sections names are used to define sections for the master
device and the user defines section names are used to define sections for the slave device

Section Names Section Description

Default User Defined

CODE code generated in functions .text .test_slave

DATA static and global variables size in bytes > -
Xsmall-data:

.data .data_slave

SDATA Variables, size in bytes <= -Xsmall-data: .sdata/.sbss .sdata_slave/
.sbbs_slave

CONST const variables, size in bytes > -Xsmall-const: .text .text_slave

SCONST const variables, size in bytes <= -Xsmall-const: .sdata2 .sdata2_slave

STRING string constants: .text .text_slave

Figure 5

The slave.h file is included into all .c files that are specific to the slave device. These files
use pragma statements to section the code:
#pragma section CODE ".text_slave"
#pragma section DATA ".data_slave"
#pragma section SDATA ".sdata_slave" ".sbss_slave"
#pragma section CONST ".text_slave" ".text_slave"
#pragma section SCONST ".sdata2_slave" ".sdata2_slave"
#pragma section STRING ".data_slave"

Refer to Figure 5 and the Diab Users’ Manual for further information.

The slave .s assembler files were modified directly with an explicit section command:
.section “.text_slave”,,c

There is an option in linker to generate and combine sections together by using file
names. However individual files have to be specified in the linker file as no method exists
to use “wild-star” characters to identify files by type.

start_slave.c
The slave device does not use a crt0.s file. The slave device uses a file called
start_slave.c. This file contains the _start_slave routine. This is the routine, called from
the reset vector, to run the slave at boot-up.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 11

This file:

1. Loads Register1 with the Slave Stack Pointer.
2. Loads Register13 with the Slave SDA (Small Data Area) base address. Global

or static variables are accessed relative to the base address with a 16bit offset.
The base address is calculated by adding 0x7FF0 to the slave address of the
small data area which is provided by the dual.dld linker file.

This 0x7FF0 offset permits any variable in either section to accessed with a
single instruction using a 16-bit offset from the r13 register. Note that this
limits the combined size of the two sections to 64KB - 0x10 (the 0x10
facilitates certain optimizations). Refer to the Diab Tools Suite Users’ Manual
for more information.

3. Loads Register2 with the Slave SDA2 (Small Const Area) base address.
Constant initialised/uninitialised variables are accessed relative to the base
address with a 16bit offset. The base address is calculated by adding 0x7FF0
to the slave address of the small data area which is provided by the dual.dld
linker file.

4. The file then calls the setup_slave function in setup_slave.c, which configures
the device special purpose registers, non memory-mapped functions, which
need to be executed by the slave.

5. Calls the main_slave function. The main_slave function in our demo code
never returns.

setup_slave.c
Not all the setups required for the slave are memory mapped. The special purpose
registers in the core need to be setup from the slave itself. This function is called during
the slave startup.

ex_tbl_slave.s
This file contains the re-locatable exception table. This assembler file contains the branch
absolute commands to the functions defined in ex_funcs_slave.c and the _start_slave
function defined in the start_slave.c file.

This file was generated using an “.align 3” assembler directive to ensure an 8byte
boundary for the branch calls. (Compressed code can use all 8bytes as instructions can be
> 4bytes). This code can then be directly copied into the relocated exception table in the
slave CALRAM at 0x7FE000. An alternative method would be to use the .word
command to align the vector branch instructions.

NOTE

The use of the .org statement cannot be used to generate the
vector table because the code has to be re-locatable.

ex_funcs_slave.c
The example exception functions in the ex_funcs_slave.c file place the device into an
endless loop should an undefined exception occur in the slave device. The loop allows
exception to be trapped. Alternatively the user may define their exception handler
functions in this file.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 12

main_slave.c
The main_slave.c file contains the main code for the processor to run.

The makefile
This file defines the files to be compiled, assembled and linked to generate a .ELF file
that can be downloaded into FLASH.

3.4. Dual Processor Software Compiler Options
The dual processor code is compiled with the following additional options:

• -Xpragma-section-last
Normally the pragma section returns to the default section when a definition or
declaration is seen in the compiled code. Setting the option -Xpragma-section-last
allows prototype definitions or declarations within the *.c code, without reverting
to the default pragma section. This allows the use of the “pragma section”
statements to be defined once in the slave.h header file. Including this header into
any slave code *.c file will automatically define to code in the slave section for
the linker. Refer to Diab 4.4b release note for further information and slave.h
description.

• -Xcode-relative-far-all
Required for short variable definitions that are out-with the 64K offset boundary.
This is used for variables that are relocated in the slave device which has a
0x400000 base address offset.

3.5. Dual Processor Linker File
The linker file, dual.dld, is used to generate the .ELF file by placing code and data into
the appropriate memory mapped locations for both the master and the slave and resolving
all addressing.
The linker file defines the memory map areas area:
MEMORY

{
 rom_vtbl: org = 0x000000, len = 0x2000 /* Master Vector Table */
 rom: org = 0x002000, len = 0x5000 /* Master Flash - Master Code
*/
 ram: org = 0x3f8000, len = 0x2000 /* Master RAM */
 stack: org = 0x3fa000, len = 0x5000 /* Master Stack */
 rom2: org = 0x007000, len = 0x5000 /* Master Flash - Slave Code
*/
 ram_vtbl_slave: org = 0x7fe000, len = 0x2000 /* Slave Vector Table */
 ram_slave: org = 0x7f8000, len = 0x4000 /* Slave RAM */
 stack_slave: org = 0x7fc000, len = 0x2000 /* Slave Stack */
}

The linker file then extracts all slave code from the object files of the types defined with
the section definitions. All default section code is considered to be master code.

The memory map in Figure 6 shows where the code sections will be located and user
defined memory pointers.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 13

/* This block specifies where and how the linker should locate different

 * modules of the system.
 *
 * This example will allocate according to the following map:
 *
 * 0x0: +-------------------------------+
 * | Exception Routines |
 * 0x2000 +-------------------------------+
 * "rom" | Program code(1) |
 * | (2) |
 * +-------------------------------+ <- __DATA_ROM
 * | ROM Image of initialized data |
 * | (3) |
 * +-------------------------------+
 * | (Unused portion of "rom") |
 * 0x7000 +-------------------------------+ <- __VTBL_ROM_SLAVE
 * "rom2" | Slave Exception Routines |
 * +-------------------------------+ <- __CODE_ROM_SLAVE
 * | Slave Program code |
 * | |
 * +-------------------------------+
 * | ROM Image of Constants |
 * +-------------------------------+ <- __DATA_ROM_SLAVE
 * | ROM Image of initialized |
 * | Slave data |
 * +-------------------------------+
 * | (Unused portion of "rom") |
 * +-------------------------------+
 *
 * Gap -- Not used
 *
 * 0x3f8000: +-------------------------------+ <- __DATA_RAM
 * "ram" | Memory reserved for |
 * | initialized data |
 * +-------------------------------+ <- __DATA_END, __BSS_START
 * | Uninitialized data |
 * | |
 * +-------------------------------+ <- __BSS_END, __HEAP_START
 * | Memory reserved for the heap |
 * | (all unused "ram") |
 * 0x3fa000: +-------------------------------+ <- __HEAP_END (3) & __SP_END (3)
 * "stack" | Memory reserved for the stack |
 * | (all of the "stack") |
 * 0x400000: +-------------------------------+ <- __SP_INIT
 *
 *

 * SLAVE DEVICE

 * 0x7f8000 +-------------------------------+ <- __CODE_START_SLAVE
 * "ram" | Slave Program code |
 * | |
 * +-------------------------------+ <- __CODE_END_SLAVE,__DATA_RAM_SLAVE
 * | Memory reserved for |
 * | initialized data |
 * +-------------------------------+ <- __DATA_END_SLAVE, __BSS_START_SLAVE
 * | Uninitialized data |
 * | |
 * +-------------------------------+ <- __BSS_END_SLAVE, __HEAP_START_SLAVE
 * | Memory reserved for the heap |
 * | (all unused "ram") |
 * 0x3fa000: +-------------------------------+ <- __HEAP_END_SLAVE, __SP_END_SLAVE
 * "stack" | Memory reserved for the stack |
 * | (all of the "stack") |
 * 0x3fe000: +-------------------------------+ <- __SP_INIT_SLAVE,VTBL_START_SLAVE
 * | Relocated Vector Table |
 * 0x400000: +-------------------------------+ <- VTBL_END_SLAVE

Figure 6

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 14

The linker file uses the LOAD command to place all the slave sections into the virtual
memory of the slave device. This is shown in Figure 6.

The slave vector table is stored in to the internal flash memory of the master device at
address 0x7000(rom2) and loaded into the virtual (run time) address 0x7FE000
(ram_vtbl_slave) of the slave CALRAM.
 .text_vtbl_slave (TEXT) LOAD(ADDR(rom2)) :
 { ex_tbl_slave.o(.text_slave) } > ram_vtbl_slave

The CODE and DATA sections are stored in the master device internal flash memory
following the slave vector table and loaded into the virtual(run time) address 0x7F8000
(ram_slave) of the slave CALRAM. The syntax *(.<type>) identifies all files in the
current directory where the code <type> matches. The data types are defined in Figure 5.
 GROUP : {
 .text_slave (TEXT) LOAD(ADDR(rom2)+SIZEOF(.text_vtbl_slave)):
 {
 *(.text_slave)
 }

These link commands select the CODE section at the rom2(slave code) address in the
master device offset by the size of the VECTOR TABLE. Refer to block description
above.
 .sdata2_slave (TEXT) LOAD(ADDR(.text_slave)+SIZEOF(.text_slave)):
 {
 *(.sdata2_slave)
 }

These link commands select the SCONT section at the rom2(slave code) address in the
master device offset by the size of the VECTOR TABLE and CODE.
 /* This will reserve space for the .data in the beginning
 * of "ram" but actually place the image at the end of
 * .text segment
 */
 .data_slave (DATA) LOAD(ADDR(.sdata2_slave)+SIZEOF(.sdata2_slave)) :
 {
 *(.data_slave)
 }

These link commands select the DATA section at the rom2(slave code) address in the
master device offset by the size of the VECTOR TABLE, CODE and SCONT.
 /* .sdata contains small address data */
 .sdata_slave (DATA) LOAD(ADDR(.data_slave)+SIZEOF(.data_slave)) :
 {
 *(.sdata_slave)
 }

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 15

These link commands select the .SDATA section at the rom2(slave code) address in the
master device offset by the size of the VECTOR TABLE, CODE, SCONT and DATA

 /* This will allocate the .bss symbols */
 /* LOAD command not need for un-initialised
variables codes initialises RAM to 0x00 */
 .sbss_slave (BSS) :
 {
 *(.sbss_slave)
 }
 .bss_slave (BSS) :
 {
 *(.bss_slave)
 }

These link commands select the .SBSS and .BSS un-initialised variables section at the
rom2(slave code) address in the master device offset by the size of the VECTOR
TABLE, CODE, SCONT, DATA and SDATA.
 /* Any space left over will be used as a heap */
 } > ram_slave

Place all CODE and DATA identified above into the virtual address of the slave
CALRAM defined by ram_slave.

The remaining sections defined in the object files are placed into the master device.
 GROUP : {
 .text (TEXT) : {
 *(.text) *(.rodata) *(.rdata) *(.init) *(.fini)
 }
 /* Next take all small CONST data */
 .sdata2 (TEXT) : {}
 } > rom

 /* The second section will allocate space for the initialized data
 * (.data/.sdata) and the unititialized data (.bss/.sbss) in the "ram" section.
 *
 * Initialized data is actually put at the end of the .text section
 * with the LOAD command. The function __init_main() moves the
 * initialized data from ROM to RAM.
 */
 GROUP : {
 /* This will reserve space for the .data in the beginning
 * of "ram" but actually place the image at the end of
 * .text segment
 */
 .data (DATA) LOAD(ADDR(.sdata2)+SIZEOF(.sdata2)) : {}
 /* .sdata contains small address data */
 .sdata (DATA) LOAD(ADDR(.sdata2)+SIZEOF(.sdata2)+SIZEOF(.data)) : {}

 /* This will allocate the .bss symbols */
 .sbss (BSS) : {}
 .bss (BSS) : {}

 /* Any space left over will be used as a heap */
 } >ram

The linker also sets up memory pointers based on the size and location of the sections.
These pointers are used in the object files to setup:

1. Master and Slave Stack Pointers
2. Base Address Locations for Slave short data sections
3. Slave relocation routines for code, data and Exception Table.

4. Library Functions
Common functions MUST be defined ONLY once for the dual processor application,
otherwise the complier generates a function redefinition error.

To resolve this on the dual controller board the hardware needs to be configured to allow
both processors to access the same executable code. In the current configuration the
Master device can access the internal address space of the Slave device however the

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 16

Slave device has no access to the internal address space of the Master device as this is
configured for master mode.

Configuring the Master device in a slave configuration allows the Slave device to access
the internal address space of the Master device.

This method is very inefficient from a performance point of view. For performance
critical functions separate functions should be defined for the slave and master device.

Refer to Section 7 of Multi-controller Hardware Development for MPC5xx Family,
AN2667.

This is accomplished by setting SLVM bit in the EMCR register from the Master device
code.
//**
// Function : master_to_slave_mode
// Description : switches MASTER Device from MSTR to SLVM mode.
// Parameters : none
// Returns : none
// **
void master_to_slave_mode()
{
 USIU.EMCR.B.SLVM = 0x1;
}

In addition to configuring the Master device to slave mode, the BDIS bit is also set to
ensure the memory controller on the slave device is not active after reset. This is
accomplished by setting the DBIS bit on the data bus reset configuration word (RCW)
(D4 = 0x1).

Slave inter communication with the master does NOT require chip select. On system boot
the slave code is run from its internal CALRAM.

The example code was modified to use the Slave device to call an external function
defined in the internal flash memory of the master device. This function was used switch
an LED on and off by accessing the master PortQA pin PQA7.

This function subsequently called an external function on the slave to delay the turn on-
off time of the LED.

The Slave device used a similar function to call its own local function to flash the slave
LED on PortQA pin PQA7.

Slave Code:

External definition:
// *** External function prototype definitions *************************
extern void flash_master_led();

Slave device main function:
void main_slave(void)
{
 // Function to Flash Slave LED
 SLAVE_QADC_A.DDRQA.B.DDQA7 = 1; /* setup QADC A port A7 as output */
 while(1){
 SLAVE_QADC_A.PORTQA.B.PQA7 = 0;
 delay(100);
 SLAVE_QADC_A.PORTQA.B.PQA7 = 1;
 delay(100);
 flash_master_led();
 }
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 17

Master Code:

External definition:
// *** External function prototype definitions *************************
extern void delay(UINT8);

Master Device function:
void flash_master_led()
{
 // Function to Flash Slave LED
 QADC_A.DDRQA.B.DDQA7 = 1; /* setup QADC A port A7 as output */
 QADC_A.PORTQA.B.PQA7 = 0;
 delay(100);
 QADC_A.PORTQA.B.PQA7 = 1;
 delay(100);
}

5. Limitations
The Diab compiler/linker used for the code compilation has a limitation with global
variable assignments definitions for the slave device. The compiler/linker allocates
memory location but does not initialize the contents.

That is,
// *** Global Variable Definition ***********************************
UINT32 delay_value = 0x0007FFFF;

The work around for global variables assignments is to assign the global variable at run
time.

That is,
 // *** Global Variable Definition ***********************************
UINT32 delay_value;

void init_gvars(void)
{
 delay_value = 0x0007FFFF;
}

Local function global variables assignments are not affected.

6. Conclusion
This application note demonstrates one method in developing code for a dual master and
slave device using the linker to relocate the code from the master device to the slave
device. This method allows simple generation of dual processor code that shares common
library functions. For increased performance common functions can be defined by the
user for each processor. The proposed method minimises code depth but with
performance trade offs.

Alternative methods are available that include writing separate code for the master and
slave. A runtime loader would need to be developed for the master device to relocate a
separately generated s-record into the slave at startup. This method would minimise inter-
processor communication but maximise code size.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 18

THIS PAGE INTENTIONALLY LEFT BLANK

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 19

THIS PAGE INTENTIONALLY LEFT BLANK

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dual Controller Software Development for MPC561/MPC563 EVB 20

 HOW TO REACH US:

USA / EUROPE / Locations Not Listed:

Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:

Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo, 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:

http://motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use
Motorola products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the information in this document.
Motorola reserves the right to make changes without further notice to any products herein. Motorola
makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data
sheets and/or specifications can and do vary in different applications and actual performance may vary
over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola
products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. The
described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM
Corp. and used under license. The described product is a PowerPC microprocessor. The PowerPC
name is a trademark of IBM Corp. and used under license. The described product is a PowerPC
microprocessor core. The PowerPC name is a trademark of IBM Corp. and is used under license. The
PowerPC name is a trademark of IBM Corp. and is used under license. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative
Action Employer.

© Motorola, Inc. 2004

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

RXZB30
Rectangle

RXZB30
logo

RXZB30
hibbertleft

RXZB30
disclaimer

