
AN2690
03/2004

Low Frequency EEPROM
Emulation on the
MC68HLC908QY4

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 By Alan Devine
8/16-Bit Division
East Kilbride, Scotland

Introduction

To avoid the cost of using external EEPROM devices, the FLASH on Freescale
microcontrollers can be used in most applications to emulate EEPROM.

Techniques for emulating EEPROM on the MC68HLC908QY4 family are
discussed in application note AN2346. These techniques require the MCU to
be running with a minimum bus frequency of 1 MHz. This application note
discusses how to emulate EEPROM on the MC68HLC908QY4 when an
external 32768 Hz crystal oscillator is used to drive the application.

As the FLASH on the device requires a minimum program bus clock frequency
of 1 MHz, the crystal clock is too slow to successfully program the FLASH
array. A potential solution is to run the device from the internal oscillator
(typically 4 MHz) when programming the FLASH, and then to switch back to the
external crystal for the main application. However, due to the security
implemented on the MC68HLC908QY family, it is possible to write to the clock
selection register (change clock source) only once after reset. Thus, in order to
switch to the internal oscillator when running on the crystal clock, a reset of the
MCU must be forced. This can be done using one of the following methods:
Illegal Opcode, Illegal Address, COP Timeout and External Reset; however,
resuming execution of the application is more difficult, as the reset vector is
fetched and all modules and registers are reset to their default state, which
could be a limitation in some applications.

Two general methods are presented; Method 1, where a reset is forced at the
beginning of the loop; and Method 2, where a reset can be forced anywhere in
the loop. The advantages and disadvantages of the two methods are listed.
Although the particular methods may not fit the specific application exactly, it
should be possible to apply one of them. Before these methods are examined,
the techniques of forcing a reset are described.
© Motorola, Inc., 2004

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE: The appendix at the end of this document describes a sample application that
implements Method 1. It comprises a description of the application, a block
diagram of the hardware, and full details of the software.

Forced Reset Operation

This can be done using one of the following methods: Illegal Opcode, Illegal
Address, COP Timeout and External Reset. In the examples presented, the
Illegal Opcode Reset is used and is forced by executing the STOP instruction
when the STOP bit in the CONFIG1 is cleared. This method can only be used
when the application program does not use STOP mode. A more general
purpose method would be to use an actual illegal opcode, which can be easily
generated.

The source that caused the reset can be determined by checking the flags in
the SIM Reset Status Register (SRSR). i.e. An Illegal Opcode Reset sets the
ILOP bit (bit 4) in the SRSR register. To distinguish between a forced reset and
an actual illegal opcode, a specific bit pattern should be written to RAM prior to
forcing the reset and this pattern should be verified after the ILOP flag is
detected.

A reset causes the following actions to occur:

• Reset vector is fetched.

• Data registers are set to default conditions. (For example, in general,
outputs default to inputs, which could affect the application.)

• Internal registers are reset:
– Accumulator (A) - XXXXXXXX
– Index Register (H:X) - 00000000XXXXXXXX
– Stack Pointer (SP) - 0000000011111111
– Program Counter (PC) - Loaded from $FFFE - $FFFF
– Condition Code Register (CCR) - X11X1XXX

• Peripherals are set to default conditions (usually switched off).

Forcing a reset could be an issue in some applications, as register values are
changed. It is very important to put the application into a known state before
forcing the reset, and to restore the registers to their known state, as quickly as
possible. This can be achieved by copying critical register values to RAM, and
then restoring the values after the forced reset.
2 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Method 1 — Reset Forced at Start of Main Loop

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Method 1 — Reset Forced at Start of Main Loop

This is the simpler of the two methods, because the reset is always forced at
the start of the main loop. The application example in the appendix uses this
method; it forces the reset using an illegal opcode (STOP Instruction used to
generate an Illegal Opcode Reset); see the appendix for specific details.

Figure 1 shows a basic flow diagram of the operation. Out of reset, the MCU
runs from the internal RC (IRC) oscillator. The code performs some common
initialization tasks, which could include setting up ports and peripheral
configuration.

The code then checks for a Power On Reset (POR) condition, by reading the
SRSR. If the POR flag is set, the code executes the POR initialization, before
enabling and switching to the crystal clock source. If a 32768 Hz crystal is used,
switching to the external clock takes a relatively long time, as the crystal
requires up to 4096 cycles to stabilize.

Alternatively, if an illegal opcode (ILOP) was detected, the code performs some
specific initialization to restore the registers to the values prior to the reset. The
ProgEE flag is then checked and; if it is set, the EEPROM is then programmed
(see application note AN2346: “EEPROM Emulation using FLASH in
MC68HC908QY/QT”), the ProgEE Flag is cleared to indicate programming
was a success, the external crystal is enabled, and, finally, the main loop is
entered.

If another reset condition was detected or the ProgEE flag is clear, the code
jumps to the specific service routine, before switching to the external crystal
and entering the main loop.

Each iteration of the loop checks the status of the ProgEE flag, to see if
programming is to be performed, and then forces a reset, as required. This flag
could be set by an external condition (for example, a switch or IRQ).

In this application, the decision to program EEPROM is always taken at the
start of the loop. Thus, when the code starts up from the forced reset, it starts
executing at the same part of the code, once initialization is complete. There is
a latency from the event signalling to program EEPROM to the array being
programmed. The maximum latency equals the maximum loop iteration + time
to force reset + reset time and recovery + initialization + program time. The
example application gives a typical time for this latency.

NOTE: It could be necessary to save critical variables and/or internal registers before
forcing the reset, and to restore this setup information when the MCU comes
out of reset. This can be accomplished by storing the variables on the stack.
Method 2 demonstrates this.
Low Frequency EEPROM Emulation on the MC68HLC908QY4 3

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Advantages of
Method 1

• Low RAM requirements (will be higher if variables must be stored on the
stack)

• Simple implementation (especially if identical initialization code can be
used)

Disadvantages of
Method 1

• Code does not resume at the point where the reset occurred

• Relatively long time to switch from internal oscillator to crystal
(approximately 125 ms)

• All modules in reset condition
4 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Method 1 — Reset Forced at Start of Main Loop

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1. Method 1 — Flow Diagram

Start

Switch to Xtal clock ()

System Tick
Flag set?

Function1()

Function n()

Clear System Tick Flag

POR?

ILOP?

N

Y

ProgEE Flag
set?

N

Wait for
Reset?

POR Initialization()

Clear ProgEE Flag

PrepareForReset

ForceReset

CommonInit()

ProgEE flag

ProgEE()

Y

ServiceOtherRst () ILOP Initialization()

Init Timers()

Enable Interrupts

N

Y

Delay approx 125ms
for 32KHz osc (4096
cycles)

N

Y

N

Y

Low Frequency EEPROM Emulation on the MC68HLC908QY4 5

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Method 2 — Reset Forced Anywhere in Main Loop

This method is more flexible than Method 1, but is also more complicated. It
allows the program to call the ProgEEprom command at any point within the
application, and then to return to the next instruction after the call, when
EEPROM programming is complete.

Before calling the ProgEEprom routine, any critical variables should be pushed
onto the stack. The ProgEEprom routine also stores the internal registers on
the stack, before jumping to the ForceRst function. The JSR instruction
automatically pushes the return address (instruction after JSR ForceRst), so
that the program can return to this point in the application after the
programming is complete. The ForceRst routine copies the current stack
pointer and a ForceRst code to predefined RAM locations, before forcing the
reset with an illegal opcode. See Figure 2 for details.

When the application restarts after a forced reset, the previously stored data
registers should immediately be restored to the specific MCU registers. The
code retrieves the saved stack pointer from RAM and adjusts it to point to the
start of the copied data (see Figure 3).

Once the variables are restored and the other initialization performed, the
EEPROM emulation routine should be called.

The code then switches back to the external oscillator before returning to the
instruction following the forced reset. This is achieved by loading the original
Stack Pointer (use TXS instruction) and executing an RTS instruction, which
loads the PC with the address stored on the stack. This address is the address
of the instruction immediately following the JSR instruction that was executed
in the ProgEEpom routine. The process restores the contents of the internal
registers before executing a RTS, which returns to the main routine. See
Figure 3 for a general startup procedure.

Advantages of
Method 2

• Resumes code execution at the instruction after the forced reset

• Current program status saved and restored

Disadvantages of
this Method 2

• Additional RAM required to store program setup

• Relatively long time to switch from internal oscillator to crystal
(approximately 125 ms)

• All modules in reset condition.
6 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Method 2 — Reset Forced Anywhere in Main Loop

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2. Method 2 — Forcing a Reset

Force Reset:
Could use STOP instruction to force reset.
This would be easiest way if STOP mode
is not required in application.

Data Registers
temporary stored
on STACK

Disable Interrupts

ProgEEprom()

ForceRst()

Force a RST
COP

Illegal Opcode
Illegal Address

Wait?

Copy Stack
Pointer to RAM

Call ForceRst
(JSR ForceRst)

(puts PC on Stack)

Next instruction executed after
RTS

(Restore Internal registers from
STACK)

Enable Interrupts

ProgEEprom

RTS

Store Internal Registers on to
the Stack

(X, H, A, CCR)

Store critical data registers that
need to be restored after reset

onto the STACK

Cleanup Stack

Main Routine

Temporary Local
Variables

ProgEEPROM
call

PC_LSB

PC_MSB

X

H

A
CCR

PC_LSB

PC_MSB ForceRST
call

Stack Pointer

Store
ForcedRst

Code into RAM

{
{

{
{ Stack

Internal
Registers
Low Frequency EEPROM Emulation on the MC68HLC908QY4 7

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3. Method 2 — Recovering from Reset

Forced Reset
Detected

Internal Reset

Get SP from RAM and adjust.
Restore registers from STACK

Other required Initialization
(Application specific)

EEPROM Emulation
(AN2346)

Switch to XTAL Oscillator

Return to original program

Wait?

N

Y

ILOP && Forced
RST code
detected.

Delay approx 125ms for
32KHz osc (4096 cycles)

ldhx SP_RAM
txs

ldhx SP_RAM
txs

rts

Restore Original Stack pointer from
RAM
8 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Conclusions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Conclusions

It is feasible to emulate EEPROM on the MC68HLC908QY family, when the
main application is running from a 32768 Hz external crystal, by forcing a reset
at a specific part of the code, thereby causing a switch to the internal oscillator
and allowing the FLASH to be programmed.

However, in doing so, the MCU is reset and the data registers, internal registers
and modules are put into their default conditions. This could cause problems in
some applications, for example, where outputs change to inputs until initialized.

Another issue is the time required to switch back to the slow 32768 Hz external
crystal clock source, as the source should not be switched before the crystal
clock is stable, which can take up to 4096 cycles (125 ms for a 32 kHz crystal).
This time delay could be a problem in some real-time systems.

Method 2 is the more flexible solution, as it allows the code to return to the
instruction following the forced reset, whereas Method 1 is simpler and easier
to implement.

The following appendix shows a simple application that demonstrates
Method 1.
Low Frequency EEPROM Emulation on the MC68HLC908QY4 9

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Appendix A: Sample Application

The sample application uses a Freescale MC68HLC908QY4 “LIN kits” slave
board with an MC68HLC908LQY4 MCU installed.

An additional external 32768 Hz crystal is located in the demo area of the
board. The board also has some additional resistors and jumpers, to provide
flexibility. The hardware block diagram is shown in Figure 4.
10 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

F
ig

u
re

 4
. H

ar
d

w
ar

e
B

lo
ck

 D
ia

g
ra

m

PT
B1

PT
B2

PT
B3

PT
B4

PT
B5

PT
B6

M
C

68
HC

90
8L

Q
Y4

PT
B0

VS
S

PT
A0

/A
D

0/
TC

H0
/K

BI
O

PT
A1

/A
D

1/
TC

H
1/

KB
I1

PT
A2

/IR
Q

#/
KB

I2

PT
A3

/R
ST

#/
KB

I3

PT
A4

/O
SC

2/
AD

2/
KB

I4

PT
A5

/O
SC

1/
AD

3/
KB

I5

VD
D

PT
B7

Vs
up

Vd
d

LT
11

21

3.
3V

Vd
d

Vd
d

1 15

2 16

9.
83

04
M

H
z

Vd
d

Vd
d

PT
A2

/IR
Q

#/
KB

I2
PT

A0
/A

D
0/

TC
H

0/
KB

IO
PT

A4
/O

SC
2/

AD
2/

KB
I4

PT
A1

/A
D

1/
TC

H
1/

KB
I1

PT
A0

/A
D

0/
TC

H
0/

KB
IO

PT
A1

/A
D

1/
TC

H
1/

KB
I1

PT
A2

/IR
Q

#/
KB

I2

PT
A3

/R
ST

#/
KB

I3

Cy
cl

on
e

He
ad

er

En
ab

le
 L

ED
s

Pr
og

ra
m

 E
EP

RO
M

S1

D
8

D
7

D
6

D
5

Vd
d

S1

Re
se

t S
w

itc
h

O
sc

Se
le

ct

9.
83

04
M

H
z

32
76

8H
z

PT
A5

/O
SC

1/
AD

3/
KB

I5

22
pF

22
pF

10
M

33
0R

10
0K

PT
B1

PT
B2

PT
B3

PT
B4

PT
B5

PT
B6

M
C

68
HC

90
8L

Q
Y4

PT
B0

VS
S

PT
A0

/A
D

0/
TC

H0
/K

BI
O

PT
A1

/A
D

1/
TC

H
1/

KB
I1

PT
A2

/IR
Q

#/
KB

I2

PT
A3

/R
ST

#/
KB

I3

PT
A4

/O
SC

2/
AD

2/
KB

I4

PT
A5

/O
SC

1/
AD

3/
KB

I5

VD
D

PT
B7

PT
B1

PT
B2

PT
B3

PT
B4

PT
B5

PT
B6

M
C

68
HC

90
8L

Q
Y4

PT
B0

VS
S

PT
A0

/A
D

0/
TC

H0
/K

BI
O

PT
A1

/A
D

1/
TC

H
1/

KB
I1

PT
A2

/IR
Q

#/
KB

I2

PT
A3

/R
ST

#/
KB

I3

PT
A4

/O
SC

2/
AD

2/
KB

I4

PT
A5

/O
SC

1/
AD

3/
KB

I5

VD
D

PT
B7

Vs
up

Vs
up

Vd
d

Vd
d

LT
11

21

3.
3V

Vd
d

Vd
d

Vd
d

Vd
d

1 15

2 16

1 15

2 16

9.
83

04
M

H
z

9.
83

04
M

H
z

Vd
d

Vd
d

Vd
d

Vd
d

PT
A2

/IR
Q

#/
KB

I2
PT

A0
/A

D
0/

TC
H

0/
KB

IO
PT

A4
/O

SC
2/

AD
2/

KB
I4

PT
A1

/A
D

1/
TC

H
1/

KB
I1

PT
A0

/A
D

0/
TC

H
0/

KB
IO

PT
A1

/A
D

1/
TC

H
1/

KB
I1

PT
A2

/IR
Q

#/
KB

I2

PT
A3

/R
ST

#/
KB

I3

Cy
cl

on
e

He
ad

er

En
ab

le
 L

ED
s

Pr
og

ra
m

 E
EP

RO
M

S1

D
8

D
7

D
6

D
5

Vd
d

Vd
d

S1

Re
se

t S
w

itc
h

O
sc

Se
le

ct

9.
83

04
M

H
z

9.
83

04
M

H
z

32
76

8H
z

PT
A5

/O
SC

1/
AD

3/
KB

I5

22
pF

22
pF

10
M

33
0R

10
0K

M
C6

8H
LC

90
8Q

Y4

K

Low Frequency EEPROM Emulation on the MC68HLC908QY4 11

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The application starts up from the internal 4 MHz IRC, switches to the external
32768 Hz crystal, and then runs in an infinite loop, controlling four LEDs on the
board.

Out of POR, with the emulated EEPROM page blank (FF), the first LED (D8) is
lit and the other 3 LED's, D7 to D5, are off. After 1 second, the pattern is shifted
to the left, such that D7 is now lit and D8, D6 and D5 are off. This pattern
continues until D5 is lit and the others are off. The next iteration reverses the
pattern, and this continues indefinitely.

The LEDs can be disabled by placing a jumper between pins PTB1 and GND.
This allows the MCU current to be measured without including the additional
current required to drive the LEDs. When the jumper is removed, the sequence
starts with the same pattern as when the jumper was installed. If a “program
EEPROM” request occurs when the jumper is installed, the LED off pattern is
stored in EEPROM. The direction is the same as when the jumper was
installed.

The code also checks the status of switch S1, which is used to signal a
“program EEPROM” request. If the switch is pressed, the current LED pattern
and the direction that the pattern is being shifted are stored to emulated
EEPROM, with a count byte that is incremented each time new data is stored.
Figure 5 shows details of the data that is stored and the FLASH area that is
reserved for EEPROM emulation.

Figure 5. EEPROM Configuration

EEStart: $EE00 PORT B First
EEPROM
Data
Store

ApplicationFlags

CountByte

PORT B Second
EEPROM
Data
Store

ApplicationFlags

CountByte+1

$EE3F
12 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The code checks the PROG_EEPROM_FLAG at the start of the each iteration
of the loop. If this bit is set, it forces a reset, starts up from the internal oscillator,
programs EEPROM, switches back to the external crystal, and resumes
execution from the start of the loop. If the application is powered down and then
switched back on, the last saved pattern is restored. This demonstrates that
data was actually stored to emulated EEPROM. If the power was removed
before the switch was pressed, the code starts by switching on the first LED
(D8). The application has been implemented such that any other reset returns
the LED sequence to the start (LED D8 on).

The following sections list the code, which has been written in assembly
language for the HC08, and provide flow diagrams for each function. The flow
diagrams are shown first to help the reader understand the software.

Main Flow Diagram The main function starts operating from the internal oscillator and performs
general initialization of registers, checks the source of reset and, depending on
the source, provides additional specific configuration. It then switches the clock
source to the external crystal, initializes the timers, enables the global interrupt
before entering an indefinite loop. The loop is timed by a 100 Hz timer overflow.

During each iteration of the loop, the status of the program EEPROM switch is
checked and, if a valid signal is detected, the PROG_EEPROM_FLAG is set
and a reset is forced using the STOP command. In addition, the LEDs are
updated every second to demonstrate that the program is running properly.

NOTE: This flow diagram shows a specific implementation of the general flow diagram
shown in Figure 1.
Low Frequency EEPROM Emulation on the MC68HLC908QY4 13

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6. Main Flow (Part 1)

Start

Initialize
 SP, H, A, X

CommonInit()
Initializes Config1,

Config2timeouts, PortsA&B

POR?

Read , clear and copy SRSR

Byte = FF?

Get 1st Byte of EEPROM
page

1st POR

Clear ApplicationFlags

Set PTB3 (Switch on LED)

Init EEPROM
Byte0 = 8 - Led Status

Byte1=0 - ApplicationFlags
Byte=1 - Count

ILOP?

Program
EEPROM?

ProgEE()

Clear
PROG_EEPROM_FLAG

PROG_EEPROM_FLAG =1

SwitchToXtal()

Init Timer()

Read EEPROM()

Restore
PORTB data

 DIRECTION _FLAG
SW_ENABLE_FLAG

Enable Interrupts

N Y

Y

N

Y

N

Clear
ApplicationFlags

Set PTB3
 (Switch on LED)

N

Y

14 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7. Main Flow (Part 2)

SystemTick?

Switch
Pressed?

Enable Switch
Switch

Enabled?

Y

Dec DebounceCount

Count=0?

Valid Switch Press
Set PROG_EEPROM

Disable Switch

Reset DebounceCount

Update LED?

UpdateLED()

Clear
UPDATE_LED_TICK

Clear
SYSTEM_TICK_FLAG

N

Y

N

Y

Y

N

Y

N

N

Disable LED?
(PTB=0)

Restore LED
Pattern?

N

Restore LED pattern to
PortB

Y

Clear
DISABLE_LED_FLAG

LED'S
Disabled?

Y

Disable LEDs

Set
DISABLE_LED_FLAG

N

N

Y

LED Update
Enabled?

Y

N

ProgEeprom?

Force IIOP
(STOP Inst)

Wait for RST

N

Y

Low Frequency EEPROM Emulation on the MC68HLC908QY4 15

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CommonInit Flow
Diagram

This routine initializes common registers that must be configured irrespective
of the reset source. It also initializes the EEPROM driver for operation from a
1 MHz bus.

Figure 8. Common Initialization

CommonInit

Initialize
DEBOUNCE_TIME to 30ms
LED_TIMEOUT to 500ms

Initialize
Config1 (#$39)
Config2 (#$99)

Initialize
PortA and PortB

Initialize
 EEPROM programming speed
for operation with 4.0MHz IRC

RTS
16 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SwitchToXtal Flow
Diagram

This function switches the oscillator source from the internal 4 MHz oscillator to
the external 32768 Hz oscillator, which is used to drive the application.

Figure 9. Switch to External Crystal

SwitchToXtal

Precharge External Crystal circuit
(Set PTA4)

Enable external clock generator

RTS

Xtal Stabilization delay
complete?

External clock source
engaged?

N

Y

Y

N

Low Frequency EEPROM Emulation on the MC68HLC908QY4 17

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ProgEEPROM Flow
Diagram

This routine reads the last data written into EEPROM, increments the count
value and reprograms the EEPROM with the current LED status, the current
ApplicationFlags and an updated count value.

Figure 10. Program EEPROM

ProgEE

load H:X with start address of
EEPROM block

Load accumulator with block size
and save a copy on the Stack

RdBlock()
Gets pointer to last saved
block and returns first data

byte in accumulator

Get and increment count value

Store count, ApplicationFlags and
current PortB in RAM block in
preparation for programming

EEPROM

Load accumulator with block size

load H:X with start address of
EEPROM block

WrtBlock()
Program next EEPROM

block

RTS
18 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

InitTimer Flow
Diagram

This routine sets up a timer overflow (rate = 100 Hz (10 ms)), which is used to
pace the main loop. The bus clock is approximately 8 kHz, as the MCU is driven
from the external 32768 Hz clock. This gives an overflow of 10 ms with
prescaler = 1 and modulo value set to 80d.

Figure 11. Initialize Timer

InitTimer

Stop Timer, Reset Timer and
disable overflow

Set modulo to #$0050
(counter tick = 10ms)

Clear TOF

Start Timer

RTS

Set prescaler to 1 and enable
TOF interrupt
Low Frequency EEPROM Emulation on the MC68HLC908QY4 19

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LedDriver Flow
Diagram

This routine controls the position of the illuminated LED. At reset, D8 (PTB3) is
lit. This is shifted to the left after each timeout (1000 ms). When D5 (PTB6) is
lit, the sequence is reversed, and the bit is shifted back to the right. This pattern
continues indefinitely.

Figure 12. LED Driver

LedDriver

DIRECTION =
LEFT?

PTB6=1?

Shift Bit to Left

Y

N

Y

 DIRECTION =
RIGHT

Shift Bit to Right

PTB3=1?

N

 DIRECTION =
LEFT

Shift Bit to Left Shift Bit to Right

N

Y

RTS

mask bits 6,5,4,3

Get PortB data
20 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TimerISR Flow
Diagram

This routine is the interrupt service routine (ISR) for the timer overflow. The
SYSTEM_TICK_FLAG is set on every entry of the ISR to indicate a 10 ms
timeout. The ISR also sets the UPDATE_LED_TICK every second to time the
update rate for the LEDs. Finally, the interrupt is serviced by clearing the TOF
flag, before exiting the ISR.

Figure 13. Timer Interrupt Service Routine

Timer_isr

save H onto stack

Dec LedTimeOutCount

RTI

LedTimeOutCount = 0?

Set
UPDATE_LED_FLAG

Y

Reset
LedTimeOutCounter

Set
 SYSTEM_TICK_FLAG

Clear TOF Flag

N

Low Frequency EEPROM Emulation on the MC68HLC908QY4 21

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Software Listing

;/**
; (c) Freescale 2004 all rights reserved.
;
;File Name : main.asm

;Engineer : r29414 (Alan Devine 8/16bit systems)

;Location : EKB

;Date Created : 05/03/2004

;Description : Example of Flash programing when application on 908QY4 is
; running from 32768Hz watch crystal. The application
; forces an illigal opcode reset using the STOP command,
; programs the FLASH when bus is being driven by an internal
; 1MHz Osc and then switch back to external 32768Hz clock.

; Rev Issue Date Author Change Description
; --- ---------- ------ ------------------
; 0.0 08/01/2004 A.D. Initial release to P.T
; 1.0 05/03/2004 A.D. Version included in Application note.
; Add function to disable Leds
; Simplify Freescale disclaimer

;************************************** export symbols *************************************
 XDEF Entry, main, Timer_isr

;**************************** include derivative specific macros ***************************
 Include 'qy4_registers.inc'

;*************************************** Equates **
;Bit defs for ApplicationFlags
SYSTEM_TICK_FLAG EQU 0 ; Loop timeout flag. Set in Timer_isr
UPDATE_LED_FLAG EQU 1 ; Indicates that LED's sequence to be updated
PROG_EEPROM_FLAG EQU 2 ; Program Flash when set (set when S1 pushed)
DIRECTION_FLAG EQU 3 ; Direction that Leds move. Left=0, Right=1
SW_ENABLE_FLAG EQU 4 ; Switch enable. Clear = Enabled; Set = Disabled
 ; Switch is enabled after a transition 0 -->1 or
 ; POR occurs
DISABLE_LED_FLAG EQU 5 ; Indictes if LED's are to be disabled. 0 - Leds
 ; enabled. 1 - Leds disabled

;Bit masks for ApplicationFlags
mSYSTEM_TICK_FLAG EQU %00000001
mUPDATE_LED_FLAG EQU %00000010
mPROG_EEPROM_FLAG EQU %00000100
mDIRECTION_FLAG EQU %00001000
mSW_ENABLE_FLAG EQU %00010000
mDISABLE_LED_FLAG EQU %00100000

; Equates for ROM Subroutines and start of RAM
EraRnge EQU $2806 ;FLASH erase routine in ROM
PgrRnge EQU $2809 ;FLASH programming routine in ROM
CtrlByt EQU $88 ;control byte for ROM subroutines
22 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPUSpd EQU $89 ;CPU speed in units of 0.25MHz
LstAddr EQU $8A ;last FLASH address to be programmed

; Equates for Flash address used for EEPROM
EeStart EQU $EE00 ;Start of EEPROM page in FLASH

;Bit defs for SRSR
LVI EQU 1
MODRST EQU 2
ILAD EQU 3
ILOP EQU 4
COP EQU 5
PIN EQU 6
POR EQU 7

;Bit masks for SRSR register
mLVI EQU %00000010
mMODRST EQU %00000100
mILAD EQU %00001000
mILOP EQU %00010000
mCOP EQU %00100000
mPIN EQU %01000000
mPOR EQU %10000000

;Bit defs for PortA
PTA0 EQU 0
PTA1 EQU 1
PTA2 EQU 2
PTA3 EQU 3
PTA4 EQU 4
PTA5 EQU 5
PTA6 EQU 6
PTA7 EQU 7

;Bit defs for DDRA
DDRA0 EQU 0
DDRA1 EQU 1
DDRA2 EQU 2
DDRA3 EQU 3
DDRA4 EQU 4
DDRA5 EQU 5
DDRA6 EQU 6
DDRA7 EQU 7

;Bit defs for PortB
PTB0 EQU 0
PTB1 EQU 1
PTB2 EQU 2
PTB3 EQU 3
PTB4 EQU 4
PTB5 EQU 5
PTB6 EQU 6
PTB7 EQU 7

;Bit defs for DDRB
Low Frequency EEPROM Emulation on the MC68HLC908QY4 23

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DDRB0 EQU 0
DDRB1 EQU 1
DDRB2 EQU 2
DDRB3 EQU 3
DDRB4 EQU 4
DDRB5 EQU 5
DDRB6 EQU 6
DDRB7 EQU 7

;Bit defs for OSCSTAT register
ECGST EQU 0
ECGON EQU 1

;Constants
LED_TIMEOUT_PERIOD EQU 100 ; Led update rate = 100 x System tick(10ms) = 1000ms
DEBOUNCE_TIME EQU 3 ; Debounce time = 3 x System tick = 30ms

;********************************** variable/data section **********************************
MY_ZEROPAGE0: SECTION SHORT ; Section bytes $80-$87
ApplicationFlags ds.b 1 ; Flags used in application
CopySRSR ds.b 1 ; Temp copy of SRSR register
DebounceCounter ds.b 1 ; Used to time debounce period
LedTimeOutCount ds.b 1 ; Used to time LED update rate
CopyLedPattern ds.b 1 ; Temp copy of Led pattern. Could CopySRSR be used

ROM_ROUTINES_RAM: SECTION SHORT ; Reserved RAM for ROM Routines ($88-$8F)
Reserved0 ds.b 1 ; CtrlByt $88
AppCPUSpd ds.b 1 ; CPUSpd $89
Reserved1 ds.b 2 ; LstAddr $8A-$8B
RamBfrStrt ds.b 3 ; data buffer size - BfrStrt $8C-$8E

MY_ZEROPAGE1: SECTION SHORT ; Section bytes $90-$FF

;************************************** code section ***************************************
MyCode: SECTION ; Code Starts at $EE40
main:
Entry:
 rsp ; Reset SP to $FF. Stacksize $30
 clrh
 clra
 clrx

 jsr CommonInit ;Initialise common variables:Config1,Config2
 ;Debounce and LED timeout, PortA and PortB
 lda SRSR ;Read and clear reset status register
 sta CopySRSR ;Copy to temp variable, as read clears flags
 ;Check for POR
 brset POR, CopySRSR, PORset

 ;Check for ILOP
 brset ILOP, CopySRSR, ILOPset
 ;****Include other reset checks here ****

OtherRst:
24 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 ;catches all other reset sources
 mov #$08, PORTB ;Initilise LED sequence
 clr ApplicationFlags
 bra SwXtal

PORset:
 ;Check for first POR
 lda EeStart ;Get 1st byte in EEpage
 cmp #$FF ;Check that its blank
 bne EEnotBlank ;Not Blank

 clr ApplicationFlags ;Switch enabled

 ;Init PortB
 mov #$08,PORTB ;Initilise LED sequence

 ;Init EEPROM
 mov #$08, RamBfrStrt ;Initilise LED sequence
 clr RamBfrStrt+1 ;ApplicationFlags Clear - DIR Left
 mov #$01, RamBfrStrt+2 ;Count = 1

 ldhx #EeStart
 lda #$3 ;3 Bytes to be programmed
 jsr WrtBlock ;Go program EEPROM

 bra SwXtal

EEnotBlank:
 ldhx #EeStart ;Get current count value
 lda #3
 psha ;save buffer size on stack
 jsr RdBlock ;gets pointer to latest data block: Returns start address
 ;of most recent data in H:X and 1st Byte in accumulator

 sta PORTB ;Restore PortB
 lda 1,x ;get stored ApplicationFlags
 and #mDIRECTION_FLAG ;Only interested in Direction
 sta ApplicationFlags ;Restore saved Direction bit; Switch Enabled

 bra SwXtal
ILOPset:
 ;Check if EEprom to be programmed
 brclr PROG_EEPROM_FLAG, ApplicationFlags, OtherRst

 bsr ProgEE ;PROG_EPROM_FLAGS = 1
 ;Reset flag for next program request
 bclr PROG_EEPROM_FLAG, ApplicationFlags
SwXtal:
 bsr SwitchToXtal ;Configures QY4 for operation from 32768Hz Xtal

 jsr InitTimer ;Init Timer1 overflow

 cli ;enable interrupts

Low Frequency EEPROM Emulation on the MC68HLC908QY4 25

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MainLoop: ;Wait for interrupt
 brclr SYSTEM_TICK_FLAG,ApplicationFlags, MainLoop

 brset PROG_EEPROM_FLAG, ApplicationFlags, ProgEeprom
 ;Are Leds to be disabled. Disable if PTB1 = 0
 brclr PTB1, PORTB, DisableLEDs
 ;Are Leds to be restored. Restore if DISABLE_LED_FLAG =1
 brclr DISABLE_LED_FLAG,ApplicationFlags, ChkSw1
 ;Restore Led pattern
 mov CopyLedPattern, PORTB ;Clear disable LED flags
 bclr DISABLE_LED_FLAG, ApplicationFlags

 bra ChkSw1

DisableLEDs: ;Are Leds already disabled. Disabled if DISABLE_LED_FLAG =1
 brset DISABLE_LED_FLAG, ApplicationFlags, ChkSw1

 lda PORTB
 sta CopyLedPattern ;Store Current LED pattern
 and #%10000111 ;Clear bits 6,5,4,3
 sta PORTB
 ;Indicate Leds are diabled
 bset DISABLE_LED_FLAG, ApplicationFlags

ChkSw1:
 brclr PTB0, PORTB, ChkSwEn ;Switch pressed - PTB0 = 0
 bclr SW_ENABLE_FLAG, ApplicationFlags;Enable switch
 bra RstDebounce
ChkSwEn: ;Look to see if switch is enabled
 brset SW_ENABLE_FLAG, ApplicationFlags,ChkLedUpdate
 dec DebounceCounter
 bne ChkLedUpdate ;Check for Timeout?
 bset PROG_EEPROM_FLAG, ApplicationFlags ;Timeout
 bset SW_ENABLE_FLAG, ApplicationFlags;Disable switch

RstDebounce: ;Reset debounce counter for next itereation
 mov #DEBOUNCE_TIME, DebounceCounter

ChkLedUpdate:
 brclr UPDATE_LED_FLAG, ApplicationFlags, EndMainLoop
 ;Are leds disabled?
 brset DISABLE_LED_FLAG, ApplicationFlags, SkipLedDriver

 bsr LedDriver

SkipLedDriver: ;Reset LED update flag for next iteration
 bclr UPDATE_LED_FLAG, ApplicationFlags

EndMainLoop: ;Reset for next iteration
 bclr SYSTEM_TICK_FLAG,ApplicationFlags

 bra MainLoop

ProgEeprom:
26 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 ;prepare for reset
 STOP ;Force Ilegal Opcode reset

WaitForReset:
 bra WaitForReset

;***
;* Name: CommonInit
;* Description: Initialises the registers that are not Reset specific. The registers
;* initialised are CONFIG1,CONFIG2, PORTA,DDRA, PORTB, and DDRB. The
;* EEPROM driver speed is also configured in this routine
;*
;*
;* Calling Convention: bsr CommonInit
;* Inputs: none
;* Outputs: none
;* Routines used: none
;* Stack usage: none
;***
CommonInit:

 mov #DEBOUNCE_TIME, DebounceCounter ;Init debounce counter for next itereation
 mov #LED_TIMEOUT_PERIOD, LedTimeOutCount ;Init Led TimeOut

 ;**** Config Registers *****
 mov #$39,CONFIG1 ;COPRS = 0 - COP Reset Period = (2^18-2^4)xBUSCLKK4 cycles
 ;LVISTOP = 0 - LVI Disabled during STOP Mode
 ;LVIRSTD = 1 - LVI Module resets disabled
 ;LVIPWRD = 1 - LVI Module power disabled
 ;LVDLVR = 1 - LVI trip voltage level set to LVR trip voltage
 ;SSREC = 0 - Stop mode recovery after 4096 BUSCLKX4 cycles
 ;STOP = 0 - STOP Instruction treated as illegal opcode
 ;COPD = 1 - COP Disabled

 mov #$99,CONFIG2 ;IRQPUD = 1 - IRQ Internal pullup disconnected
 ;IRQEN = 0 - IRQ Pin function disabled
 ;R = 0
 ;OSCOPT1:0= 11 - Xtal Crystal
 ;R = 0
 ;R = 0
 ;RSTEN = 1 - RST Pin function Active

 mov #$00,PORTA ;PortA inputs
 mov #$10,DDRA ;PTA4 set as output.

 mov #$78,DDRB ;PORTB7 = 0 - Input
 ;PORTB6 = 1 - Output (D5)
 ;PORTB5 = 1 - Output (D6)
 ;PORTB4 = 1 - Output (D7)
 ;PORTB3 = 1 - Output (D8)
 ;PORTB2 = 0 - Input
 ;PORTB1 = 0 - Input
 ;PORTB0 = 0 - Input (S1)
 mov #$4,AppCPUSpd ;Init EEPROM programming driver for operation
 with 1MHz bus. (4x0.25MHz)
Low Frequency EEPROM Emulation on the MC68HLC908QY4 27

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 rts ; return

;***
;* Name: SwitchToXtal
;* Description: Switches the osc source from the internal Oscillator to the external
;* 32768Hz oscillator.
;*
;* Calling Convention: bsr SwitchToXtal
;* Inputs: none
;* Outputs: none
;* Routines used: none
;* Stack usage: none
;***
SwitchToXtal:
 bset PTA4, PORTA ; Precharge external crystal circuit
 nop
 nop

 lda #$A2 ;Wait 4096 cycles of 32KHz crystal.
 clrx ;= 125ms = 125000cycles of 1meg bus

stxL1:
 dbnzx stxL1 ;Inner loop = 256 x 3 cycles = 768 cycles
 dbnza stxL1 ;Outer loop = 3 x 162 (A2h) + 162 x 768 cycles = 124902 cycles

 bset ECGON, OSCSTAT ; External clock generator enabled

stxL2:
 brclr ECGST, OSCSTAT, stxL2 ; Wait for external clock source to be engaged

 bclr PTA1, PORTA ; clear external osc engaged flag
 bset DDRA1, DDRA ; PortA, bit1 is an output

 rts ;return

;***
;* Name: ProgEE
;* Description: This routine reads the last data written into EEPROM, increments the
;* count value and reprograms the EEPROM with the current led status
;* the ApplicationFlags and the updated count value.
;*
;* Calling Convention: bsr ProgEE
;* Inputs: none
;* Outputs: none
;* Routines used: RdBlock, WrtBlock
;* Stack usage: 1 byte
;***
ProgEE:
 ldhx #EeStart ;Get start address of EEprom Block
 lda #3 ;number of bytes in EEPROM
 psha ;save buffer size on stack
 jsr RdBlock ;gets pointer to latest data block
 lda 2,x ;get count value
 inca ;inc count
 sta RamBfrStrt+2 ;store in buffer
28 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 mov ApplicationFlags, RamBfrStrt+1 ;Store current application flags
 lda PORTB ;get PortB
 and #%01111000 ;only interested in Ptb6 - ptb3
 sta RamBfrStrt ;Copy port status variable into ram location
 pula ;get buffer size back
 ldhx #EeStart
 jsr WrtBlock

 rts ; return

;***
;* Name: InitTimer
;* Description: Sets up a timer overflow rate = 100Hz (10ms).For bus clock = 8KHz
;* Pre-Scale = 1, Modulo = 80 (50H)
;*
;* Calling Convention: bsr InitTimer
;* Inputs: none
;* Outputs: none
;* Routines used: none
;* Stack usage: none
;***
InitTimer:
 mov #$30,TSC ; Stop timer, Reset Timer,
 ; Disable timer overflow interrupt
 mov #$00,TMODH ; set modulo to 80 (50H)
 mov #$50,TMODL
 lda TSC ; Clear TOF flag - Read then write 0 to TOF
 bclr 7,TSC
 mov #$60,TSC ; Enable TOF Interrupt, Timer stopped, PS = 1 (000)
 bclr 5,TSC ; Start timer
 rts ;return

;***
;* Name: LedDriver
;* Description: This routine controls the position of the illuminated LED. At
;* reset the D8 (PTB3) is iluminated. This is shifted to the left
;* after each timeout (1000ms). When D5 (PTB6) is lit the sequence
;* is reversed and the bit is shifted back to the right.
;*
;* Calling Convention: bsr LedDriver
;* Inputs: none
;* Outputs: none
;* Routines used: none
;* Stack usage: none
;***
LedDriver:
 lda PORTB
 and #%01111000 ;Only Interested in bits 6,5,4,3
 ; DIRECTION = 0 (LEFT)
 brset DIRECTION_FLAG, ApplicationFlags, Right
Left:
 brset PTB6, PORTB, Ptb6Set
 lsla
 sta PORTB
 bra ledend
Low Frequency EEPROM Emulation on the MC68HLC908QY4 29

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Ptb6Set: ; DIRECTION = 1 (RIGHT)
 bset DIRECTION_FLAG, ApplicationFlags
 lsra
 sta PORTB
 bra ledend

Right:
 brset PTB3, PORTB, Ptb3Set
 lsra
 sta PORTB
 bra ledend

Ptb3Set: ; DIRECTION = 0 (LEFT)
 bclr DIRECTION_FLAG, ApplicationFlags
 lsla
 sta PORTB

ledend:
 rts

;***
;*
;* RdBlock - Reads a block of data from FLASH and puts it in RAM
;*
;* Calling convention: ldhx #Blk1page
;* lda #Blk1Size
;* jsr RdBlock
;*
;* Inputs: H:X - pointing to start of FLASH page used for data
;* A - block size
;*
;* Returns: H:X - pointing to start of FLASH block containing data
;* A - data from first byte of block
;*
;* Uses: FindClear
;*
;***

RdBlock:
 psha ;save block size
 bsr FindClear ;find first erased block

 cmp #$FF ;was an erased block found ?
 bne skipdec ;if not then don't go back a block
 txa ;get LS byte of address
 and #$3F ;only look at address within page
 beq skipdec ;if 0 then no data so don't go back
 txa ;if not get LS byte of address again
 sub 1,sp ;and subtract block size to point
 tax ;to start of valid data block

skipdec:
 lda ,x ;get first byte of data
 ais #1 ;de-allocate stack
30 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 rts

;***
;*
;* WrtBlock - Writes a block of data into FLASH from RAM buffer
;*
;* Calling convention: ldhx #Blk1page
;* lda #Blk1Size
;* jsr WrtBlock
;*
;* Inputs: H:X - pointing to start of FLASH page used for data
;* A - block size
;*
;* Returns: nothing
;*
;* Uses: FindClear, EraRnge (ROM), PgrRnge (ROM)
;*
;***

WrtBlock:
 mov #13,CPUSpd ;3.2MHz/0.25MHz = 13
 clr CtrlByt ;page (not mass) erase
 psha ;save block size
 bsr FindClear ;find first available erased block
 cmp #$FF ;erased block found ?
 beq blkfnd ;if so write to it
 jsr EraRnge ;if not then erase page
 txa ;get LS byte of FLASH address
 and #$C0 ;and reset it to start of page
 tax ;H:X now pointing to first block

blkfnd:
 pula ;get block size
 pshx ;save start address LS byte
 add 1,sp ;add block size to LS byte
 deca ;back to last address in block
 tax ;last address now in H:X
 sthx LstAddr ;save in RAM for use by ROM routine
 pulx ;restore X (H hasn't changed)
 jmp PgrRnge ;program block (includes RTS)

;***
;*
;* FindClear - Finds first erased block within page
;*
;* Inputs: H:X - pointing to start of page used for required data
;* Stack - block size last thing on stack
;*
;* Returns if erased block found:
;* H:X - pointing to start of first erased block in page
;* A - $FF
;* Returns if no erased block found (page full):
;* H:X - pointing to start of last written block
;* A - $00
;*
Low Frequency EEPROM Emulation on the MC68HLC908QY4 31

For More Information On This Product,
 Go to: www.freescale.com

AN2690

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;***

FindClear:
 lda #$40 ;number of bytes in a page
 sub 3,sp ;less number in first block
 psha ;save bytes left

floop:
 lda ,x ;get first data byte in block
 cmp #$FF ;erased byte ?
 beq finish1 ;if so then exit, otherwise try next

 pula ;bytes left
 sub 3,sp ;less number in next block
 psha ;resave bytes left
 bmi finish2 ;enough for another block ?

 txa ;yes, get LS byte of address
 add 4,sp ;add block size
 tax ;put it back (can't be a carry)
 bra floop ;and try again

finish2:
 clra ;no room (A shouldn't be $FF)
finish1:
 ais #1 ;fix stack pointer
 rts

;***
;* Name: Timer_isr
;* Description: ISR for overflow timer. Systemtick flag set to indicate that timeout
;* has occured. The TOF flag is also cleared before exiting ISR
;*
;* Calling Convention: bsr Timer_isr
;* Inputs: none
;* Outputs: none
;* Routines used: none
;* Stack usage: none
;***
Timer_isr:
 pshh ; save H reg.
 *
 dec LedTimeOutCount ; dec count
 bne SetSystemTick ; Look for LedTimeOut = 0
 bset UPDATE_LED_FLAG, ApplicationFlags ; Set LED flag
 mov #LED_TIMEOUT_PERIOD, LedTimeOutCount ; Reset Led TimeOut

SetSystemTick:
 bset SYSTEM_TICK_FLAG,ApplicationFlags ;Interrupt occured
 lda TSC
 bclr 7,TSC ; clear TOF
 *
 pulh ; get H back
 rti
;***
32 Low Frequency EEPROM Emulation on the MC68HLC908QY4

For More Information On This Product,
 Go to: www.freescale.com

AN2690
Appendix A: Sample Application

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Low Frequency EEPROM Emulation on the MC68HLC908QY4 33

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2690
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Forced Reset Operation
	Method 1 - Reset Forced at Start of Main Loop
	Advantages of Method 1
	Disadvantages of Method 1

	Method 2 - Reset Forced Anywhere in Main Loop
	Advantages of Method 2
	Disadvantages of this Method 2

	Conclusions
	Appendix A: Sample Application
	Main Flow Diagram
	CommonInit Flow Diagram
	SwitchToXtal Flow Diagram
	ProgEEPROM Flow Diagram
	InitTimer Flow Diagram
	LedDriver Flow Diagram
	TimerISR Flow Diagram
	Software Listing

