
© Freescale Semiconductor, Inc., 2004. All rights reserved.

Freescale Semiconductor

The MPC8540 and MPC8560 PowerQUICC III™ processors
have an 8-bit parallel RapidIO interface. This document provides
guidance in the basic use of this interface; detailing the setup of
local and remote processors starting with basic verification and
discovery, then describing booting over RapidIO and conducting
simple memory tests.

Most of the guidance in this document applies to any RapidIO
enabled PowerQUICC III system. However, the concepts are
illustrated by a few specific examples.

1 Introduction
This document is designed to provide assistance to engineers
wishing to use the RapidIO interface on the MPC8540 and
MPC8560 PowerQUICC III processors. It summarizes some basic
aspects of the RapidIO specification, and the use of the RapidIO
interfaces on these processors. It also details a basic procedure to
bring up simple RapidIO systems; including the setup of the local
processor, simplified discovery, booting over RapidIO, and the
execution of simple memory reads/writes to the remote
processors.

Section 2, “Background Information,” provides background
information regarding the RapidIO specifications, the
implementation and usage of the RapidIO interface on the
MPC8540/60, and information regarding the example systems,
which are used to illustrate the steps of the procedure outlined in
Section 3, “Bring-up Procedure.”

AN2753
Rev. 1, 11/2004

Contents
1.Introduction 1
 1.1. Glossary .2
2.Background Information 3
 2.1. RapidIO. .3
 2.2. Using RapidIO on MPC8540 and MPC85606
 2.3. Example Target Hardware .8
3.Bring-up Procedure 11
 3.1. Configure the Local Processor12
 3.2. Discover Other Devices in the System20
 3.3. Enable Access to Remote Configuration Space27
 3.4. Boot over RapidIO .30
 3.5. Enable Memory Reads and Writes36
4.Output from Example Application 41
 4.1. Point-to-Point Example. .41
 4.2. Fabric Example .45
5.References 54
6.Revision History 54
Appendix A. Notes on Maintenance Transactions 55

RapidIO Bring-Up Procedure on
PowerQUICC III™
by Lorraine McLuckie and Colin Cureton

NCSD Platforms, East Kilbride

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

2 Freescale Semiconductor

Introduction

Section 3, “Bring-up Procedure,” describes a procedure for bringing up a basic MPC8540/60-based RapidIO
system. Both point-to-point and fabric-based systems are considered.

Section 4 provides example output from an application that follows the procedure outlined in Section 3, “Bring-up
Procedure,” executed on the example hardware systems described in Section 2, “Background Information.”

Appendix A contains additional information about maintenance transactions, paying particular attention to
the calculation of the maintenance offset used

1.1 Glossary
The following acronyms and terms are used throughout this application note.

Table 1. Glossary of Terms

Term Description

ATMU Address translation and mapping unit

BAR Base address register

CAR Capability attribute register

CCSR Configuration, control and status registers

CCSRBAR CCSR base address register

CSR Capability status register

DDR SDRAM Double data rate SDRAM

DIDCAR Device identity capability register

DMA Direct memory access

EEPROM Electrically erasable programmable read only memory

HBDIDLCSR Host base device lock ID CSR

I/O Input/Output

JTAG Joint test access group

LAW Local area window

LP-LVDS Link protocol, low voltage differential signaling

MAS MMU assist register

MMU Memory management unit

PowerQUICC III MPC85xx networking and communications processor

R/W Read/Write

RIO RapidIO

RIW RapidIO inbound window

ROW RapidIO outbound window

SBTG Software bring-up technical group

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 3

Background Information

2 Background Information
This section provides background information relevant to the bring-up procedure. Section 2.1, “RapidIO,” provides
a summary of the relevant aspects of the RapidIO specification. Section 2.2, “Using RapidIO on MPC8540 and
MPC8560,” describes the implementation of RapidIO on MPC8540/60 and considerations for its use. Section 2.3,
“Example Target Hardware,” provides information regarding the example systems which will be used to illustrate
the procedure.

2.1 RapidIO
The RapidIO interconnect architecture is a high-performance packet-switched interconnect technology. It addresses
the high-performance embedded industry's need for reliability, increased bandwidth, and faster bus speeds in an
intra-system interconnect. The RapidIO interconnect allows chip-to-chip and board-to-board communications at
performance levels scaling to 10 Gigabits per second and beyond.

This section summarizes some basic information about the RapidIO specification. Additional information can be
found in the RapidIO Interconnect Specification.1

2.1.1 RapidIO Layers
The RapidIO specification is written in a layered manner, to ensure flexibility and that changes to one layer do not
necessarily affect other layers.

The layers of the RapidIO architecture are as follows:

• Logical layer—Defines the overall protocol and packet formats, the types of transaction that can be carried
out with RapidIO and how addressing is handled.

• Transport layer—Provides the necessary route information for a packet to move from one point to another.

• Physical layer—Contains the device level interface such as packet transport mechanisms, flow control,
electrical characteristics, and low level error management.

The logical layer is split into two categories depending on the system model in use. The first part is the input/output
logical specification which defines the basic system architecture of RapidIO. The other is the message passing
logical specification which enables distributed I/O processing. This note concentrates on the input/output logical
specification.

2.1.2 Processing Element Models
There are several types of devices that can be used on a RapidIO based system. This note describes only two device
model types: the integrated processor-memory processing element and the switch processing element.

SDRAM Synchronous dynamic random access memory

TLB Translation lookaside buffer

Table 1. Glossary of Terms (continued)

Term Description

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

4 Freescale Semiconductor

Background Information

2.1.2.1 Integrated Processor-Memory Processing Element
One form of the processor-memory processing element is a fully integrated component that is designed to connect
to a RapidIO interconnect system as shown in Figure 1. This type of device integrates a memory system and other
support logic with a processor core on the same piece of silicon, or within the same package, and is one example of
a RapidIO end-point. In this note the processing element is an MPC8540/60 device.

Figure 1. Integrated Processor-Memory Processing Element

2.1.2.2 Switch Processing Element
A switch processing element is a device that allows communication with other processing elements through a
switch. A switch may be used to connect a variety of RapidIO compliant processing elements. Behavior of the
switches, and the interconnect fabric in general, is addressed in the RapidIO Common Transport Specification.1 In
this note the switch processing element used is the Tundra Tsi500™ 4-port switch.3

Figure 2. Switch Processing Element Model

2.1.2.3 RapidIO Transactions
In the logical layer, RapidIO defines a broad range of transaction types, ranging from simple transactions to access
an agent device’s memory space, to user defined and implementation dependent transactions. Throughout this note,
three different classes of request transactions and their associated responses are used, where a request is a transaction
that is issued by a processing element to accomplish some activity on a remote processing element. The three
transactions that are used in this note are detailed below. These sections detail the logical layer aspects of these
transaction; no consideration is given to the transport or physical layer interactions.

2.1.2.3.1 Maintenance Transaction
A maintenance transaction is a special system support request. It is used by a processing element to read or write
data to capability attribute registers (CARs) and capability status registers (CSRs), defined in the RapidIO

ProcessorMemory

RapidIO Based

System Interconnect

Switch

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 5

Background Information

specification.1 Maintenance requests do not contain addresses, but use a maintenance offset into the CAR/CSR
block to specify which register is to be read or written.

Maintenance transactions are used for system initialization and discovery and for altering system configuration.

Figure 3. Maintenance Transaction

2.1.2.3.2 NREAD Transactions
A read transaction, consisting of the NREAD and RESPONSE transactions, is used by a processing element to read
data from a specified address. The data is returned in a response packet and is of the size requested.

Figure 4. NREAD Transaction

2.1.2.3.3 NWRITE/NWRITE_R Transactions
The write transaction is used by a processing element to write data to a specified address. The write transaction can
take several forms including NWRITE and NWRITE_R.

The NWRITE request allows data writes, with no expected response.

Figure 5. NWRITE Transaction

1. Maintenance Request

DestinationRequestor

2. Maintenance Response

DestinationRequestor

1. NREAD

2. Response, data

DestinationRequestor

1. NWRITE, data

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

6 Freescale Semiconductor

Background Information

The NWRITE_R (write with response) transaction is identical to the NWRITE transaction except that it requires a
response to notify the sender that the write has completed at the destination. This transaction is useful for
guaranteeing read-after-write and write-after-write ordering through a system that can reorder transactions.

Figure 6. NWRITE_R Transaction

2.2 Using RapidIO on MPC8540 and MPC8560
This section provides information regarding the implementation of RapidIO on MPC8540/60 devices. It also
provides information on other parts of the MPC8540/60 devices (for example, the MMU), which although not part
of the RapidIO interface, must be considered in the use of RapidIO. Further information can be found in the
references.2

The MPC8540/60 has an 8-bit parallel RapidIO interface that conforms to the Parallel RapidIO Interconnect
Specification.1 This RapidIO interface can operate at up to 500 MHz. It has a theoretical unidirectional peak
bandwidth at 8 Gbps, and a theoretical bi-directional peak of 16 Gbps.

The RapidIO controller on the MPC8540/60 is partitioned into inbound and outbound blocks. These blocks are
further divided into three implementation layers which correspond loosely to the logical, common transport and
physical layers of the RapidIO interconnect specification. Users access the RapidIO interface mainly at the logical
layer and transport layers. The user does not control the physical layer directly.

The RapidIO implementation on MPC8540/60 also has a messaging unit which implements Part II of Parallel
RapidIO Interconnect Specification.1 See Freescale application note AN2741, Using the RapidIO Messaging Unit
on PowerQUICC III for more information.

2.2.1 Mapping Memory to the RapidIO Interface
The accesses to the RapidIO interface are memory mapped. Therefore, as well as considering the specifics of the
RapidIO interface, it is also necessary to examine the way in which memory accesses are re-directed to the RapidIO
interface.

2.2.1.1 Memory Management Unit
The MPC8540/60 supports demand paged virtual memory, as well as other memory management schemes that
depend on precise control of effective-to-physical address translation and flexible memory protection. To achieve
this, the memory management unit (MMU) makes use of software managed translation lookaside buffers (TLBs)
that support variable-size pages, with per-page properties and permissions.

The MMU is not part of the RapidIO interface. However, it is noted here, as it must be made aware of any area of
memory which is translated to any interface, including RapidIO. Therefore before being able to bring up a RapidIO
system, a TLB entry must exist to cover the area of the memory map which is used for RapidIO transactions. This

DestinationRequestor

1. NWRITE_R, Data

2. Response

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 7

Background Information

entry may be initialized by a bootloader, or a debugger. However, if a TLB entry has not been initialized to cover
the region of the memory map to be used for RapidIO, then it is the responsibility of the bring-up software to do this.

The TLB is initialized using the MMU assist registers (MAS0–MAS4 and MAS6). The MMU assist registers are
initialized with information about the TLB entry (for example the required address range, size, and permissions),
and the tlbwe instruction is used to write that information into the TLB.

2.2.1.2 Local Memory Map and Local Access Windows
The local memory map on the MPC8540/60 refers to the 32-bit address space seen by the processor and the internal
DMA engines as they access memory and I/O space. Within this map there exists memory mapped configuration,
control and status registers as well as all memory accessed by the DDR SDRAM, local bus memory controllers, and
other interfaces.

All addresses used by the system with the exception of configuration space (mapped by CCSRBAR), and the
on-chip SRAM regions (mapped by L2SRBAR), must be mapped by a local access window (LAW).

The local area windows are not specific to RapidIO. However they are noted here as a LAW must exist to cover the
area to be used by RapidIO. This may be initialized by a bootloader, or a debugger. However, if a LAW has not been
initialized to cover the region of the memory map to be used for RapidIO then it is the responsibility of the bring-up
software to do this.

A set of eight local access windows is used to define the local memory map. Each local window maps a region of
memory to a particular target interface, such as the DDR SDRAM controller or the RapidIO controller. No address
translation is performed by the local access windows. Each window can be configured in size from 4 Kbytes to
2 GBytes.

2.2.2 RapidIO ATMU (Address Translation and Mapping Unit)
The RapidIO controller on the MPC8540/60 is split into outbound and inbound blocks. The outbound block uses
RapidIO outbound windows (ROWs) to translate an address from the local address space to that of RapidIO. The
inbound block uses RapidIO inbound windows (RIWs) to translate an address from the external address space of
RapidIO to the local address space understood by the internal interfaces.

2.2.2.1 RapidIO Outbound ATMU Windows
RapidIO outbound ATMU windows (ROWs) perform the mapping from the internal 32-bit address space to the
34-bit address space of RapidIO. ROWs also attach attributes such as transaction type and priority level. There are
nine RapidIO outbound ATMU windows (0–8). Window 0 is always enabled and is used as the default window if
the address does not match one of the other eight.

The default RapidIO Outbound Window is defined by two registers: the translation address register (ROWTARn)
and the attributes register (ROWARn). The other ROWs also have a base address register (ROWBARn).

The ROWBAR register contains the base address of the window in the local memory address space. The ROWTAR
contains the RapidIO base address to which these transactions are translated. The ROWAR register contains
information about the window (for example, its size) and the types of transactions that are generated by it (for
example, NWRITE, NWRITE_R, or maintenance write).

The ROWTAR register takes one of two formats depending on the type of transaction to be executed. For regular
transactions (such as NREAD, NWRITE, and NWRITE_R) the ROWTAR contains the device ID of the target, and
bits 0–21 of the translated address. For maintenance transactions, which do not have an address, the ROWTAR

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

8 Freescale Semiconductor

Background Information

contains the device ID of the target, the hopcount, and the upper bits of the maintenance offset into the CAR/CSR
block.

In regular transactions, the RapidIO address is created by concatenating the translation address in the ROWTAR
with the transaction offset (that is, the offset of the transaction from the base address of the ROW). With the
maintenance transactions, the maintenance offset is created from a combination of the 12-bit configuration field in
the ROWTAR and the transaction offset. Further information on the operation of the maintenance window can be
found in Appendix A

2.2.2.2 RapidIO Inbound ATMU Windows
RapidIO Inbound ATMU windows (RIWs) perform the address translation from the 34-bit external RapidIO address
space to the 32-bit internal address space. These inbound ATMU windows also attach attributes such as transaction
type and target interface to the transaction. There are five inbound ATMU windows (0–4). Window 0 is always
enabled and is used as the default window if the address does not match one of the other four windows.

The default RapidIO inbound window is defined by two registers: the translation address register (RIWTARn) and
the attributes register (RIWARn). The other RIWs also have a base address register (RIWBARn).

The RIWBAR register contains the base address of the window in RapidIO address space. The RIWTAR contains
the local base address to which these transactions are translated. The RIWAR register contains information about
the window (size, for example) and the types of transactions which are generated by it (for example, snoop or not
snoop local processor).

2.2.2.3 Inbound ATMU Local Configuration Space Window
There is an additional inbound window that can be used by external RapidIO devices to access the local
configuration, control and status registers (CCSR) memory.2 The base address of this 1 Mbyte window is defined in
the local configuration space base address 1 command and status register (LBSBA1CSR). Incoming RapidIO reads
and writes, which match this window, are redirected, at the same offset, into the CCSR area. This local configuration
space window has the highest priority for incoming translation.

2.3 Example Target Hardware
In Section 3, “Bring-up Procedure,” this document outlines a procedure to bring up a basic RapidIO system.
Examples illustrate the steps in that procedure. This section gives information about the systems referenced in the
examples.

It is assumed that these systems either run a bootloader and then the bring-up application is downloaded and run
from this bootloader, or the systems are initialized by a debugger and the code is downloaded and run across JTAG.
It is therefore assumed that most of the setup and initialization of the system (for example, CCSRBAR, DDR, and
Flash) has already been completed. However, no assumptions are made regarding the initialization of the RapidIO
interface.

In both of these examples the agent processors boot over RapidIO. However, it should be noted that this is not a
requirement for RapidIO agents. In some system, the agent may have its own non-volatile memory from which to
boot.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 9

Background Information

2.3.1 Point-to-Point System
The simplest system that can be built using RapidIO consists of two RapidIO end-points directly connected. A
point-to-point system such as this is used to illustrate the examples in this application note. This system consists of
two MPC8540/60 devices communicating over 8-bit parallel RapidIO.

In this system, one of the MPC8540/60 processors is configured as a RapidIO host, processor 1. This is the processor
on which the bring-up application is executed. The other processor in the system, processor 2, is configured as a
RapidIO agent. The host processor has a Flash device attached to its local bus, containing the boot image for the host
and agent processors. The agent device is configured to boot across RapidIO and is in boot hold off mode, which
prevents the core from booting until the processor has been configured by an external master, in this case the host.

Figure 7. Point-to-Point Example System

The system architecture and configuration are fixed. So there is no requirement for a bring-up application for this
system to satisfy all the requirements of the RapidIO Trade Association SBTG discovery process.4 A software
application could take advantage of the fixed nature of the system and the resulting assumptions below, to greatly
simplify the discovery and bring-up process.

• There is only one host in the system.

• The host has a RapidIO device ID of 0x1.

• Both processors are MPC8540/60 devices.

• The agent device has a default RapidIO device ID of 0xFF.

• After discovery, processor 2 has a RapidIO device ID of 0x2.

The Flash device on the host processor contains one boot image for both processors. The 4 Mbyte boot image is at
address 0xFFC0_0000–0xFFFF_FFFF.

2.3.2 Fabric-Based System
In many applications, RapidIO endpoints do not communicate point-to-point as described in the previous section,
but through a RapidIO switch fabric. The fabric-based system used to illustrate the examples in this application note
consists of four MPC8540/60 devices connected to a Tundra Tsi500, four port 8-bit parallel RapidIO switch.3

In this system, one of the MPC8540/60 processors is configured as a RapidIO host, processor 1. It is the host
processor on which an application to bring up the system is run. This host processor has a Flash device attached to
its local bus, containing the boot images for the host and agent processors.

The remaining three processors (processors 2, 3 and 4) do not have any Flash associated with them, and must be
booted across RapidIO, accessing the contents of the host's Flash device. To achieve this, the processors are

RapidIO Host

MPC8540/60

DeviceID 1

MPC8540/60

DeviceID 2
RapidIO

Interconnect

Local Bus

Flash
Memory

RapidIO Agent

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

10 Freescale Semiconductor

Background Information

configured as RapidIO agents, are configured to boot across RapidIO, and are configured in CPU boot holdoff mode
which prevents the core from booting until the processor has been configured by an external master.

Figure 8. Fabric-Based Example Hardware and Configuration

The system architecture and configuration are fixed. So there is no requirement for a bring-up application on this
system to satisfy all the requirements of the RapidIO SBTG discovery process.4 An application could take advantage
of the fixed nature of the system, and the resulting assumptions listed below to greatly simplify the discovery and
bring-up process.

Assumptions:

1. There is only one host in the system

2. The host has a RapidIO device ID of 1

3. The host is connected to Port0 of the Tsi500 switch

4. There is only one switch in the system, and it is a Tsi500

5. All other processors are MPC8540/60 devices

6. The agents all have default RapidIO device ID of 0xFF

After the discovery process:

7. The agent on port 1 has RapidIO device ID 2

8. The agent on port 2 has RapidIO device ID 3

9. The agent on port 3 has RapidIO device ID 4

The Flash device on the host processor contains two boot images. The host’s 4 Mbyte boot image is at addresses
0xFFC0_0000–0xFFFF_FFFF, the agents' 4 Mbyte boot image is at addresses 0xFF80_0000–0xFFBF_FFFF.

Flash
memory

MPC8540/60
DeviceID 4

RapidIO Agent

MPC8540/60
DeviceID 1

RapidIO Host

MPC8540/60
DeviceID 2

RapidIO Agent

MPC8540/60
DeviceID 3

RapidIO Agent

PORT 2

PORT 0

P
O

R
T

 1

P
O

R
T

 3

Tsi500

8-bit
Parallel
RapidIO

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 11

Bring-up Procedure

3 Bring-up Procedure
This section describes a procedure which may be followed to bring up basic RapidIO capability on a MPC8540/60
system. This procedure may not apply to all possible systems, but an application using this procedure was created
and tested on both of the example hardware systems described in Section 2.3, “Example Target Hardware.” In both
cases, this procedure was executed on the host to discover and bring up the other elements in the system.

In the descriptions which follow, the steps are organized into 5 basic groups, each covered in a separate section.

Section 3.1, “Configure the Local Processor,” covers the steps required to configure and check the local processor
before any attempt is made to generate RapidIO traffic, namely: set up a TLB entry, set up a local area window, check
training, and set up a maintenance window.

Section 3.2, “Discover Other Devices in the System,” covers the discovery of all the other elements of the system.
This is achieved using only maintenance transactions. This section includes steps to identify adjacent devices, set
up switch (if required), and discover other endpoints. It is important to note that this section assumes a limited and
fixed configuration system (as described in Section 2.3, “Example Target Hardware”). The procedure described in
this section does not satisfy all the requirements of the RapidIO SBTG documentation.4

Section 3.3, “Enable Access to Remote Configuration Space,” describes the steps that must be taken to enable the
local processor (host) to access the local configuration space of the remote device (agent). This consists of steps to
set up the incoming window on the agent that re-directs RapidIO transactions to the local configuration space, and
sets up an outbound window on the host to map outgoing transactions onto that window.

Section 3.4, “Boot over RapidIO,” describes how an agent can be configured to permit it to boot over RapidIO (that
is, the agent boots from Flash attached to host). This includes steps to set up an inbound window on the host to
capture the incoming boot reads, and to configure and release the agent to execute its boot procedure.

Section 3.5, “Enable Memory Reads and Writes,” describes how the host and agent could be set up to enable host
access to the agent’s memory space. This section describes steps to set up the outbound window on the host and set
up the inbound window on the agent.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

12 Freescale Semiconductor

Bring-up Procedure

Figure 9. Outline of Procedure for Simple RapidIO System Bring-Up

3.1 Configure the Local Processor
Before any attempt can be made to generate RapidIO traffic, there are a number of steps that must be completed on
the local (host) processor.

Set up a Local Area Window

Check Training

Set Up Maintenance Window

Identify Adjacent Device

If Endpoint If Switch

Discover Adjacent Device Configure Switch

Discover Additional Devices

Set Up Host ROW for Access to Remote Configuration

Set Up Inbound LCS Window on Agent

Set Up Host RIW for Incoming Boot Reads

Set Up Agent ROW for Outgoing Boot Reads

Release Agent to Boot over RapidIO

Set Up Host ROW for Memory R/W

Set Up Agent RIW for Memory R/W

Execute Reads/Writes to Agent

Set up a TLB Entry

Configure the
Local Processor

Discover
other Devices
in the System

Enable Access
to Remote

Configuration
Space

Boot over
RapidIO

Enable Memory
Reads and Writes

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 13

Bring-up Procedure

3.1.1 Set up a TLB Entry
The first step in the procedure involves setting up a TLB entry to cover the area of memory used for RapidIO
accesses. This may or may not be necessary, depending on the configuration set by the bootloader or debugger.

In the example below, there is the minimum configuration for a 256 Mbyte entry, covering address range
0xC000_0000–0xCFFF_FFFF. This area is used throughout the examples to access RapidIO. In this example, entry
3 of TLB1 is used; however any unused entry in TLB1 (some entries are used by bootloader/debugger configuration
to cover CCSR, Flash, DDR and so forth) could be used for this purpose.

The TLB entry is created by initializing the MAS0–MAS4 registers with information regarding the area of memory,
then loading that information into the TLB.

MAS registers are special purpose registers, and should be initialized using the mtspr instruction. For example, to
load the value required into MAS0 (SPR 0x270), the following sequence may be required.

asm(“lis 3, 0x1003”);

asm(“ori 3, 3, 0x0000”);

asm(“mtspr 0x270, 3”);

3.1.1.1 Initialize MAS0

Figure 10. MAS0 Setting for RapidIO Mapping

MAS0 contains the MMU Read/Write and replacement control. The settings in the example have the following
definitions:

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field —
TLB
SEL

— ESEL

Setting 0x1 0x00 0x3

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field — NV

Setting 0x000 0x0

Table 2. MAS0 Field Descriptions and Settings

Bits Name Description and Setting

35 TLBSEL Selects TLB for access
1 TLB1

44–47 ESEL Entry select. Number of entry in selected array to be used for tlbwe. This field is also
updated on TLB error exceptions (misses), and tlbsx hit and miss cases.
0011 This becomes entry 3.

63 NV Next victim. Next victim bit value to be written to TLB0[NV] on execution of tlbwe. This field
is also updated on TLB error exceptions (misses), tlbsx hit and miss cases and on
execution of tlbre.
0 A next victim has not been identified.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

14 Freescale Semiconductor

Bring-up Procedure

3.1.1.2 Initialize MAS1

Figure 11. MAS1 Setting for RapidIO Window

MAS1 contains the descriptor context and configuration control. The settings in the example have the following
definitions:

3.1.1.3 Initialize MAS2
I

Figure 12. MAS2 Setting for RapidIO Window

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field V IPROT — TID

Setting 0x8 0x0 0x00

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field — TS TSIZE —

Setting 0x0 0x9 0x00

Table 3. MAS1 Field Descriptions and Settings

Bits Name Description and Setting

32 V TLB valid bit
1 This TLB entry is valid.

33 IPROT Invalidate protect. Set to protect this TLB entry from invalidate operations due the execution
of tlbiva[x] (TLB1 only).
0 Entry is not protected from invalidation

40–47 TID Translation identity. An 8-bit field that defines the process ID for this TLB entry.
All zeros. It is a global entry and can be used by any process.

51 TS Translation space. This bit is compared with the IS or DS fields of the MSR (depending on
the type of access) to determine if this TLB entry may be used for translation.
0 Bit is not set.

52–55 TSIZE Translation size. Defines the TLB entry page size.

1001 This entry has a page size of 256 Mbytes

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field EPN

Setting 0xC000

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field EPN — SHAREN — X0 X1 W I M G E

Setting 0x0 0x008

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 15

Bring-up Procedure

MAS2 contains the effective page number and page attributes. The settings have the following definitions:

3.1.1.4 Initialize MAS3

Figure 13. MAS3 Setting for RapidIO Window

Table 4. MAS2 Field Descriptions and Settings

Bits Name Description and Setting

32–51 EPN Effective page number. Depending on page size, only the bits associated with a page
boundary are valid. Bits that represent offsets within a page are ignored and should be
cleared.
0xC0000 Effective address of this space starts at address 0xC000_0000

54 SHAREN Enables cache fills to use shared cache state for this page.

0 Cache fills do not use shared cache for this page

57 X0 Implementation-dependent page attribute

58 X1 Implementation-dependent page attribute

59 W Write-through
0 This page is considered write-back with respect to the caches in the system.

60 I Caching-inhibited
1 The page is considered caching-inhibited. All loads and stores to the page bypass the

caches and are performed directly to main memory.

61 M Memory coherence required
0 Memory coherence is not required.

62 G Guarded

0 Accesses to this page are not guarded and can be performed before it is known if they
are required by the sequential execution model.

63 E Endianness. Determines endianness for the corresponding page.

0 The page is accessed in big-endian byte order.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field RPN

Setting 0xC000

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field RPN — U0-U3 UX SX UW SW UR SW

Setting 0x0 0x03F

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

16 Freescale Semiconductor

Bring-up Procedure

MAS3 contains the real page number and access control. The settings in the example have the following definitions:

3.1.1.5 Load Information into the TLB
The final step is to execute a sync instruction to ensure that all the MAS registers have been written, a tlbwe
instruction to load the information into the TLB, and a final sync to ensure that the TLB entry has been created
before continuing. For example:

asm(“sync”);

asm(“tlbwe”);

asm(“sync”);

3.1.2 Set Up a Local Area Window
The next step is to set up a local area window (LAW) to re-direct memory accesses within a certain address range
to the RapidIO interface. This may or may not be necessary, depending on the configuration set by the bootloader
or debugger.

In the example, the LAWBAR and LAWAR registers are configured to ensure that a 256 Mbytes block of memory
space, covering address range 0xC000_0000–0xCFFF_FFFF, is re-directed to the RapidIO interface. The LAW
registers are memory mapped within the CCSR area, and therefore can be read and written using standard memory
reads and writes.

Table 5. MAS3 Field Descriptions and Settings

Bits Name Description and Setting

32–51 RPN Real page number.
The real address of this space starts at 0xC000_0000.
0xC000

54–57 U0-U3 User attribute bits. Associated with a TLB entry and can be used by system software.

All zeros

58 UX Permission bit.
1 User mode has execute permission.

59 SX Permission bit.
1 Supervisor mode has execute permission.

60 UW Permission bit.

1 User mode has write permission.

61 SW Permission bit.
1 Supervisor mode has write permission.

62 UR Permission bit.
1 User mode has read permission.

63 SR Permission bit.

1 Supervisor mode has read permission.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 17

Bring-up Procedure

3.1.2.1 Set LAWBAR

Figure 14. LAWBAR Register for RapidIO Window

The local area window base address (LAWBAR) sets the base address of this window. The setting in the example
has the following definition:

3.1.2.2 Set LAWAR

Figure 15. LAWAR Record for RapidIO Window

The local area window attributes register (LAWAR) enables this window, sets the interface that the transactions are
directed to, and sets the size of the window. The settings in the example have the following definitions:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BASE_ADDR

Setting 0x000 0xC

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BASE_ADDR

Setting 0x0000

Table 6. LAWBAR Field Description and Setting

Bits Name Description and Setting

12–31 BASE_ADDR Identifies the 20 most-significant address bits of the base of local access window n.
0xC000 The real address of this space starts at 0xC000_0000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TRGT_IF —

Setting 0x80 0xC 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — SIZE

Setting 0x00 0x1B

Table 7. LAWAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN 1 Window is enabled.

8–11 TRGT_IF Identifies the target interface ID when a transaction hits in the address range defined by this
window.
1100 Target interface is RapidIO

26–31 SIZE Identifies the size of the window from the starting address.
0x1B Window is 256 Mbytes.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

18 Freescale Semiconductor

Bring-up Procedure

3.1.3 Check Training
Before attempting to create any RapidIO traffic, it is necessary to ensure that the RapidIO interface has trained
successfully with the adjacent device.4 This is determined by examination of the port error and status command and
status register (PESCSR).

The PESCSR[PP] bit defines input clock toggling and the PESCSR[PO] bit defines port initialization. Both of these
bits are set if the RapidIO port has trained correctly. If these bits are not set, no further attempts should be made to
use the RapidIO interface.

3.1.4 Set Up Maintenance Window
The next step in the bring-up process is the creation of a RapidIO outbound window to generate RapidIO
maintenance transactions.

In the example, the ROWBAR, ROWTAR and ROWAR registers are configured to initialize a 4 Mbyte RapidIO
window at the very bottom of the area of the RapidIO space, that is, 0xC000_0000–0xC040_0000. Reads and writes
within this window then generate RapidIO maintenance read and write transactions.

3.1.4.1 Set ROWBAR

Figure 16. Maintenance Window ROWBAR Register

The base address register (ROWBAR), defines the start address of the window. The settings in the example have the
following definitions:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BADD

Setting 0x000 0xC

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0x0000

Table 8. ROWBAR Field Description and Setting

Bits Name Description and Setting

12–31 BADD Base address of outbound window. Source address that is the starting point for the
outbound translation window.
0xC0000 Window starts at address 0xC000_0000.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 19

Bring-up Procedure

3.1.4.2 Set ROWAR

Figure 17. Maintenance Window ROWAR Settings

The attributes register defines some attributes of the transactions that are created by this window; including the
priority and transaction types. It also defines the size of the window. The settings in the example have the following
definitions:

3.1.4.3 Set ROWTAR

Figure 18. Maintenance Window ROWTAR Settings

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TFLOV PCI — RDTYP

Setting 0x80 0x0 0x7

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x7 0x0 0x15

Table 9. ROWAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable.
1 This RapidIO outbound window is enabled.

4–5 TFLOV Transaction flow level priority of transaction

00 Lowest priority transaction request flow.

6 PCI Follow PCI transaction ordering rules
0 Do not follow PCI transaction ordering rules.

12–15 RDTYP Read transaction type.
0111 Transaction type to run on RapidIO interface if access is a read.

16–19 WRTYP Write transaction type.

0111 Transaction type to run on RapidIO interface if access is a write.

26–31 SIZE Outbound window size.
0x15 4 Kbytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRGTID — HOP_COUNT

Setting 0x3FC 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field HOP_COUNT CFG_OFFSET

Setting 0x0 0x000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

20 Freescale Semiconductor

Bring-up Procedure

The RapidIO outbound window translation address register (ROWTAR) defines the starting address in RapidIO
space for hits within this window. The ROWTAR takes different forms for different transaction types. For
maintenance transactions, it is of the form shown above. In the example, the settings have the following definitions:

NOTE
This is just an initial value for the ROWTAR. Users must ensure that the ROWTAR
contains the correct destination ID, hopcount and offset value for their transaction.

For further information on the operation of the maintenance window, refer to Appendix A

3.2 Discover Other Devices in the System
This application note does not cover all the requirements of the discovery process described in the RapidIO
specifications.4 It provides examples of simplified discovery processes that could be used with simple systems (that
is, with only one host, and not more than one switch). Two target hardware systems, described in Section 2.3,
“Example Target Hardware,” are used to illustrate the process.

3.2.1 Identify Adjacent Device
The first RapidIO transaction that should be executed is a maintenance read to the device identity capability register
(DIDCAR) of the adjacent device. The DIDCAR, at maintenance offset 0x00, contains a device identity field and a
device vendor identity field. The RapidIO consortium maintains a list of the assigned values. Reading this register
therefore enables the identification of the adjacent device. This is achieved by executing a read instruction within
the area covered by the maintenance window. The attributes of this maintenance read are as follows:

Destination ID = 0xFF. The RapidIO specifications state that non-boot-code and non-host devices
should initially have a device ID of 0xFF.4

Hopcount = 0x00. If adjacent device is a switch, it must be accessed with hopcount 0.

Maintenance offset = 0x00

This returned DIDCAR value should then be compared to the list of DIDCAR values of all the devices which are
recognized by the application. In the examples, this consists of PowerQUICC III processor and Tsi500 switch only.
If it is determined that the adjacent device is another processor (for example, a MPC8540/60) then the application
can discover that processor directly. If it is determined that the adjacent device is a switch (for example a Tsi500
switch) then this switch must be configured correctly before proceeding with the discovery of the processors beyond
it.

3.2.2 Discover other Devices—Point-to-Point
This section describes the procedure which could be followed if the adjacent device is a RapidIO endpoint.

Table 10. ROWTAR Field Descriptions and Settings

Bits Name Description and Setting

2–9 TRGTID 0xFF Target ID for RapidIO Packet

12–19 HOP_COUNT All zeros. Hop count of maintenance transaction

20–31 CFG_OFFSET All zeros. Upper bits of maintenance offset.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 21

Bring-up Procedure

3.2.2.1 Read Back the HBDIDLCSR of Adjacent Device
Each RapidIO end point has a host base device lock ID CSR (HBDIDLCSR) register, at Maintenance Offset 0x68,
which contains the device ID of the element in the system which is responsible for its configuration. This provides
a locking mechanism and a host should only proceed with the configuration of an agent device if it gains the lock.

The HBDIDLCSR can be read by executing a maintenance read with the following attributes:

Destination ID = 0xFF, This agent device has a Device ID of 0xFF.

Hopcount = 0xXX, Hopcount is ‘don’t care’ as there are no switches in the system.

Maintenance Offset = 0x68, HBDIDLCSR is at offset 0x68.

If the agent has not been locked, then the default value of this HBDIDLCSR is 0x0000_FFFF. If this HBDIDLCSR
is read back as any other value, it indicates that the device has already been discovered, and the mechanism to deal
with this situation is beyond the scope of this application note.

3.2.2.2 Attempt to Lock HBDIDLCSR of Adjacent Device
Assuming that the lock for the device has not already been taken, the processor running this application should
identify itself as the device responsible for initializing the agent. To achieve this it should copy its own device ID
(determined by reading its own, memory mapped, BDIDCSR) into the HBDIDLCSR of the agent device. This
maintenance write would have the following attributes:

Destination ID = 0xFF, This agent device has a Device ID of 0xFF.

Hopcount = 0xXX, Hopcount is ‘don’t care’ as there are no switches in the system.

Maintenance offset = 0x68, HBDIDLCSR is at offset 0x68.

3.2.2.3 Confirm That the Adjacent Device Has Accepted Lock.
The HBDIDLCSR should be read back to confirm that it has been updated to the host's device ID. If not, the lock
has not been accepted, the host should not proceed any further with the configuration of this device.

The attributes of this maintenance read are:

Destination ID = 0xFF, This agent device has Device ID of 0xFF.

Hopcount = 0xXX, Hopcount is ‘don’t care’ as there are no switches in the system.

Maintenance offset = 0x68, HBDIDLCSR is at offset 0x68.

If the lock has not been accepted, it suggests that there is another host in the system, which is beyond the scope of
this example. Refer to interoperability specification for information regarding the bring-up requirements for
multi-host systems.4

3.2.2.4 Update the Device ID
It is assumed that the agent device has an initial device ID of 0xFF. Once the agent device has been discovered by
the host, it must be allocated a permanent device ID. This is achieved by writing the desired device ID value into
the base device ID command and status register (BDIDCSR), at configuration offset 0x60.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

22 Freescale Semiconductor

Bring-up Procedure

In this example, it is assumed that the host device has a device ID of 0x01. The host allocates the agent a device ID
of 0x02. The maintenance write to achieve this update has the following attributes:

Destination ID = 0xFF, This agent device has Device ID of 0xFF.

Hopcount = 0xXX, Hopcount is ‘don’t care’ as there are no switches in the system.

Maintenance Offset = 0x60, BDIDCSR is at offset 0x60.

3.2.2.5 Read Back from Updated Device ID
Once the device ID has been set, it should be verified that the device can be accessed using that device ID as the
destination. The ROWTAR must be updated with the new device ID (as shown below) and some known value (for
example the BDIDCSR) should be read back from the agent. Software should confirm that this returns the expected
value.

The maintenance read should have the following attributes:

Destination ID = 0x02, This agent device has Device ID of 0x02.

Hopcount = 0xXX, Hopcount is ‘don’t care’ as there are no switches in the system.

Maintenance offset =0x60, BDIDCSR is at offset 0x60.

3.2.3 Discover Other Devices—Fabric

If there is a switch in a system, the discovery process is slightly different, as the switch must be configured before
the devices beyond it are discovered. The following section details the process which was followed for Tsi500
switch. Steps may need to be added or removed for other RapidIO switches.

3.2.3.1 Check Switch Port
It is necessary to determine to which port of the switch the device running the bring-up application is connected.

In the Tsi500 switch example, this is achieved by reading the switch port information CAR. A read to this register
returns the port number from which it was read. In the target hardware example the host processor responsible for
this discovery process is attached to Port 0.

The maintenance read has the following attributes:

Destination ID = 0xXX, ID is ‘don’t care’ when accessing first switch in the system.

Hopcount = 0x00, Transaction applies to first switch.

Maintenance offset = 0x14, Offset of switch port information CAR.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRGTID — HOP_COUNT

Setting 0x008 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field HOP_COUNT CFG_OFFSET

Setting 0x0 0x000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 23

Bring-up Procedure

3.2.3.2 Read Back the HBDIDLCSR of Switch
Each RapidIO device has a register which contains the device ID of the element in the system which is responsible
for its configuration. This provides a locking mechanism and a device should only proceed with the configuration
of a device if it gains the lock.

The HBDIDLCSR of the switch can be read using a maintenance read with the following attributes:

Destination ID = 0xXX, ID is ‘don’t care’ when accessing first switch in the system.

Hopcount = 0x00, Transaction applies to first switch

Maintenance offset = 0x68, Offset to HBDIDLCSR

If this device has not yet been discovered, the default value for the HBDIDLCSR is 0xFFFF.

3.2.3.3 Attempt to Lock HBDIDLCSR of Switch
To identify the processor running this application as the device responsible for initializing the switch, its device ID
should be written into the switch’s HBDIDLCSR. This is achieved using a maintenance write with the following
attributes:

Destination ID = 0xXX, ID is ‘don’t care’ when accessing first switch in the system.

Hopcount = 0x00, Transaction applies to first switch.

Maintenance offset = 0x68, Offset to HBDIDLCSR

3.2.3.4 Confirm that Switch has Accepted Lock
The HBDIDLCSR register should be read back to confirm that it has been updated to the host's device ID. If not,
the lock has not been accepted, the host should not proceed any further with the configuration of the switch.

If the lock is not accepted, it suggests that there is another host in the system, which is beyond the scope of this
example. Refer to SBTG specification for information regarding the bring-up requirements for multi-host systems.4

The HBDIDLCSR can be read using a maintenance read with the following attributes:

Destination ID = 0xXX, ID is ‘don’t care’ when accessing first switch in the system.

Hopcount = 0x00, Transaction applies to first switch.

Maintenance offset = 0x68, Offset to HBDIDLCSR

3.2.3.5 Route Responses Back to Host
To ensure that responses issued by the processors beyond the switch are correctly routed to the requesting processor,
it is necessary to initialize the routing information of the switch with that information.

In the example, the processor executing the bring-up software has a device ID of 1, and is attached to port 0.
Therefore it is necessary to update the routing tables to indicate that all packets for device ID 1 are routed to port 0.
Indeed, because the example hardware has a fixed configuration and a fixed device number allocation, it is possible
to update the routing tables with all the required information, even before the devices have been discovered.

In the Tsi500 switch example, each port has its own routing table, which is applied to all the packets arriving at that
port. Each routing table has 32, 32-bit entries. Each 32-bit entry routes the packets for 8 different destination IDs
(one nibble per destination ID). For example, DESTID_0_LKUP contains the routing information for all packets
with destination IDs 0–7.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

24 Freescale Semiconductor

Bring-up Procedure

The figure below shows a configuration that routes all packets with a destination ID of 1 to port 0, all those with a
destination ID of 2 to port 1, all those with a destination ID of 3 to port 2, and all those with a destination ID of 4 to
port 3. In this example, packets with destination ID 0,5,6 or 7 are not routed, and generate an error if received on
this port.

Figure 19. DESTID_0_LKUP Setting

The routing table for each of the four ports must be updated with this information using four maintenance write
transactions. These maintenance transactions have the following attributes:

Destination ID = 0xXX, ID is ‘don’t care’ when accessing first switch in the system.

Hopcount = 0x00, Transaction applies to first switch.

Maintenance offset = 0x10A00 (port0), 0x30A00 (port1), 0x50A00 (port2) and 0x70A00 (port4)

3.2.3.6 Discover the Devices beyond the Tsi500 Switch
The next step is to identify which devices are connected to the other ports of the RapidIO switch. If any of these
devices is another switch, or another RapidIO host then the full RapidIO discovery procedure must be executed.4
The example scenario is simplified by the assumption that there is only one switch, and all other processors are
configured as RapidIO agents.

The following steps should be executed for each of the ports on the switch (with the exception of the port to which
the processor running this application is attached). In the example, this is repeated for the Tsi500 ports 1, 2 and 3.

NOTE
In the Tsi500 switch, the registers for each port have maintenance offsets 0x10xxx
(port0), 0x30xxx (port1), 0x50xxx (port2) and 0x70xxx(port3).

3.2.3.6.1 Check Training on Port N
Ensure that the port under investigation (port n) is trained. If it is not trained, then the remaining steps are omitted
for this iteration.

In the Tsi500 switch example, each of the four ports has a port training status register. These registers can be
examined to determine if each port has successfully completed the RapidIO training procedure with an adjacent
device.1

This maintenance transaction has the following attributes:

Destination ID = 0xXX, ID is ‘don’t care’ when accessing first switch in the system.

Hopcount = 0x00, Transaction applies to first switch.

Maintenance offset =0x30068 (port1), 0x50068 (port2) or 0x70068 (port4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field DEST_ID_PORT_07 DEST_ID_PORT_06 DEST_ID_PORT_05 DEST_ID_PORT_04

Setting 0x8 0x8 0x8 0x3

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field DEST_ID_PORT_03 DEST_ID_PORT_02 DEST_ID_PORT_01 DEST_ID_PORT_00

Setting 0x2 0x1 0x0 0x8

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 25

Bring-up Procedure

3.2.3.6.2 Route Packets for Device ID 0xFF to Port N
The agents initially have a device ID of 0xFF. The routing table must be updated to ensure that packets with this
destination are directed to the port under investigation.

In the Tsi500 switch example, the routing table for port 0, which contains the routing information for packets
arriving at Port 0, must be updated. Entry DESTID_248_LKUP contains the routing information for destination IDs
0xF8 - 0xFF. It must be updated to direct the packets with destination ID of 0xFF to the Tsi500 port currently under
investigation (port n).

For example, to direct packets arriving at port 0, with destination ID of 0xFF to port 3, the port 0
DESTID_248_LKUP register should be updated as shown.

Figure 20. Port 0 DESTID_248_LKUP Setting while Discovering Device on Port 3

In this example, the routing information for packets with unexpected destination IDs is set to the default value of
0x8. These packets are not routed and the Tsi500 switch reports an error if they are received on this port.

This routing information update is achieved with a maintenance transaction with the following attributes:

Destination ID = 0xXX, ID is ‘don’t care’ when accessing first switch in the system.

Hopcount = 0x00, Transaction applies to first switch.

Maintenance offset = 0x10A7C (port0)

3.2.3.6.3 Read Back the DIDCAR of Device on Port N
The routing is now in place to permit access to the device which is connected to port n of the switch. The initial read
should be to the DIDCAR of that device, to identify what device it is.

Figure 21. ROWTAR Setting for Accessing DIDCAR of Device on Port N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field DEST_ID_PORT_FF DEST_ID_PORT_FE DEST_ID_PORT_FD DEST_ID_PORT_FC

Setting 0x3 0x8 0x8 0x8

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field DEST_ID_PORT_FB DEST_ID_PORT_FA DEST_ID_PORT_F9 DEST_ID_PORT_F8

Setting 0x8 0x8 0x8 0x8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRGTID — HOP_COUNT

Setting 0x3FC 0xF

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field HOP_COUNT CFG_OFFSET

Setting 0xF 0x000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

26 Freescale Semiconductor

Bring-up Procedure

The read of the DIDCAR can be achieved with a maintenance read with the following attributes:

Destination ID = 0xFF, Accessing the agent with destination ID 0xFF

Hopcount=0xFF, Transaction bypasses switch.

Maintenance offset = 0x00, Offset to DIDCAR

3.2.3.6.4 Read Back the HBDIDLCSR of Device on Port N
Each RapidIO device has a register which contains the device ID of the element in the system which is responsible
for its configuration. This provides a locking mechanism and a device should only proceed with the configuration
of a device if it gains the lock.

The HBDIDLCSR can be read using a maintenance read with the following attributes:

Destination ID = 0xFF, Accessing the agent with destination ID 0xFF

Hopcount = 0xFF, Transaction bypasses switch.

Maintenance offset =0x68, Offset to HBDIDLCSR

If this device has not yet been discovered, the default value for the HBDIDLCSR is 0xFFFF.

3.2.3.6.5 Attempt to Lock HBDIDLCSR of Device on Port N
To identify the processor running this application as the device responsible for initializing this device, its device ID
should be written into the HBDIDLCSR of the device on Port n. This is achieved using a maintenance write with
the following attributes:

Destination ID = 0xFF, Accessing the agent with destination ID 0xFF

Hopcount = 0xFF, Transaction bypasses switch.

Maintenance offset = 0x68, Offset to HBDIDLCSR

3.2.3.6.6 Confirm that Device on Port N Has Accepted Lock
The HBDIDLCSR register should be read back to confirm that it has been updated to the host’s device ID. If not,
the lock has not been accepted, and the host should not proceed any further with the configuration of the device on
this port.

If the lock is not accepted, it suggests that there is another host in the system, which is beyond the scope of this
example. Refer to SBTG specification for information regarding the bring-up requirements for multi-host systems.4

The HBDIDLCSR can be read using a maintenance read with the following attributes:

Destination ID = 0xFF, Accessing the agent with destination ID 0xFF

Hopcount = 0xFF, Transaction bypasses switch.

Maintenance Offset = 0x68, Offset to HBDIDLCSR

3.2.3.6.7 Update the Device ID
It is assumed that all the agents have an initial device ID of 0xFF. Once they have been discovered by the host, the
host must allocate a permanent device ID. This is achieved by writing the desired device ID value into the base
device ID command and status register (BDIDCSR).

In the example, it is assumed that the host device, connected to Port 0, has a device ID of 0x01. The host allocates
the device IDs of the other devices as follows: the device connected to port 1 is allocated a device ID of 0x02, the

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 27

Bring-up Procedure

device connected to port 2 is allocated a device ID of 0x03 and the device connected to port 3 is allocated a device
ID of 0x04.

The BDIDCSR can be updated by executing a maintenance write with the following attributes:

Destination ID = 0xFF, Accessing the agent with destination ID 0xFF

Hopcount = 0xFF, Transaction bypasses switch.

Maintenance Offset = 0x60, Offset to BDIDCSR

3.2.3.6.8 Update the Routing Table, All Ports
If the systems were operating with dynamic allocation of device IDs, the routing tables would have to be updated
with that information at this stage in the procedure. However, in this example, there is a fixed routing table, which
was initialized in Section 3.2.3.5, “Route Responses Back to Host,” therefore there is no action necessary here.

3.2.3.6.9 Read Back from Updated Device ID
Once the device ID has been set, it should be verified that the device can be accessed using that device ID as the
destination. That is, update the ROWTAR with the new device ID (example shown below) and read from the
BDIDCSR.

The read of the BDIDCSR should be executed with the following attributes:

Destination ID = 0x02, 0x03 or 0x04, Accessing the agent with updated Device ID

Hopcount = 0xFF, Transaction bypasses switch.

Maintenance Offset = 0x60, Offset to BDIDCSR

Software should confirm that this read returns the expected value.

Figure 22. ROWTAR for Accessing BDIDCSR on Device 3

3.3 Enable Access to Remote Configuration Space
There are two steps required to access the local configuration (CCSR) space on a remote processor: on the remote
processor set up the LCSBA1CSR to accept RapidIO transactions in a certain address range, and on the local
processor set up an outbound window with the correct address translation into the same range.

NOTE
Once the remote access to the remote configuration space has been enabled, it is
assumed that all further accesses to the agent devices are by this method, rather
than by maintenance transactions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRGTID — HOP_COUNT

Setting 0x00C 0xF

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field HOP_COUNT CFG_OFFSET

Setting 0xF 0x000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

28 Freescale Semiconductor

Bring-up Procedure

3.3.1 Setup Inbound LCS Window on Agent
In the example, the LCSBA1CSR of each of the processors is set up to redirect RapidIO arriving at the 1 Mbyte
window, starting at RapidIO address 0x0_0100_0000. This is achieved by setting the LCSBA1CSR register as
shown below.

Figure 23. LCSBA1CSR Settings

The settings in the example have the following definitions:

LCSBA = 0x0010, The 1 Mbyte LCS window starts at RapidIO address 0x0100_0000. (LCSBA
contains the most significant 14 bits of the 34-bit address, but the top 2 extended bits are ignored in
this example.)

The update of the LCSBA1CSR on the agent can be achieved using a maintenance write with the following
attributes:

Destination ID = 0x02, 0x03 or 0x04, Depending on which agent is being accessed

Hopcount = 0xFF, Transaction bypasses switch

Maintenance offset = 0x5C, Offset to LCSBA1CSR

3.3.2 Setup Outbound Window on Host
A RapidIO outbound window should be set up on the host for each of the agent processors, to map outbound
transactions into this address space, with the appropriate destination ID.

For example, a 1 Mbytes outbound window with base address 0xC400_0000 could be initialized on processor 1 to
map to the CCSR locations on processor 2. This would be achieved as shown below.

3.3.2.1 ROWBAR

Figure 24. Remote CCSR ROWBAR Settings

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — LCSBA —

Setting 0x0020

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Setting 0x0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BADD

Setting 0x000 0xC

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0x4000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 29

Bring-up Procedure

The base address register (ROWBAR), defines the start address of the window. The settings in the example have the
following definitions:

3.3.2.2 ROWAR

Figure 25. Remote CCSR Window ROWAR Settings

The attributes register defines attributes of the transactions which are created by this window. This includes the
priority and transaction types. It also defines the size of the window. The settings in the example have the following
definitions:

Table 11. ROBAR Field Description and Setting

Bits Name Description and Setting

12–31 BADD Base address of outbound window. Source address that is the starting point for the
outbound translation window.
0xC4000, Window starts at address 0xC400_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TFLOV PCI — RDTYP

Setting 0x80 0x0 0x4

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x4 0x0 0x13

Table 12. ROWAR Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable. Note that for ROWAR0 this bit is read-only and hardwired to 1.
1 Address translation enabled

4–5 TFLOV Transaction flow level priority of transaction

00 Lowest priority transaction request flow

6 PCI Follow PCI transaction ordering rules
0 Do not follow PCI transaction ordering rules.

12–15 RDTYP Read transaction type. Transaction type to run on RapidIO interface if access is a read.
0100 NREAD

16–19 WRTYP Write transaction type. Transaction type to run on RapidIO interface if access is a write.

0100 NWRITE

26–31 SIZE Outbound window size. Outbound window size n which is the encoded 2n+1-byte window size.
0x13 Window is 1 Mbyte

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

30 Freescale Semiconductor

Bring-up Procedure

3.3.2.3 ROWTAR

Figure 26. Remote CCSR ROWTARn Settings

The settings in the example have the following definitions:

3.3.3 Confirm Access to Remote LCS
The software should then verify that the agent’s local configuration space can be read in this manner. For example,
with the ROW on the host and the LCS window on agent 2 set up as shown in the figures above, the following
accesses should return the following values.

Reading the host processor’s address 0xC400_0000 should return the CCSRBAR of processor 2.

Reading the host processor’s address 0xC40C_0000 should return the DIDCAR of processor 2.

Reading the host processor’s address 0xC40C_005C should return the LCSBA1CSR of processor 2.

3.4 Boot over RapidIO
If a device is to boot over RapidIO, the cfg_rom_loc configuration signal must be configured to direct accesses to
the boot vector and default boot ROM region to the RapidIO interface, and the cfg_cpu_boot configuration signal
must be configured to put the processor in boot holdoff mode

Given these configurations, there is a sequence of steps which must be completed by the host to configure the system
and initiate the booting of the agent processor.

3.4.1 Prepare the Host Processor for Incoming Boot Reads
The host processor must provide an inbound RapidIO window that accepts the boot code reads arriving over
RapidIO and re-directs them to the appropriate area of Flash memory.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRGTID TREXAD TRAD

Setting 0x008 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0x1000

Table 13. ROWTARn Descriptions and Settings

Bits Name Description and Setting

2–9 TRGTID Target ID for RapidIO packet

0x02 Transactions have destination ID of 2.

10–11 TREXAD Translation extended address of outbound window
00 The 2 extended address bits are both zero.

12–31 TRAD Translation address of outbound window
0x01000 Outbound transactions start at address 0x0_0100_0000.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 31

Bring-up Procedure

With opportunities to adjust window sizes, translate addresses on the outgoing window of the agent and on the
incoming window of the host, there are many different configurations that would permit the agent to boot over
RapidIO. This section details one possibility.

The default boot ROM address range is 8 Mbytes; however in this example, the complete boot image for one
processor is contained within 4 Mbytes. Therefore, a 4 Mbytes RapidIO inbound window captures the boot reads
coming from the agent processors. It is assumed that there is no translation of these reads on the outbound window
of the agent, therefore they appear in the RapidIO address range 0x0_FFC0_0000–0x0_FFFF_FFFF. In the inbound
window these reads must be re-directed to the appropriate area of Flash.

3.4.1.1 RIWBAR

Figure 27. RIWBAR Settings on Host for Incoming Boot Reads

The RapidIO inbound window base address register (RIWBAR) contains the base RapidIO address of the incoming
window. The settings in the example have the following definitions:

The combined meaning of these two fields is that the base address of the inbound RapidIO window is
0x0_FFC0_0000.

3.4.1.2 RIWAR

Figure 28. RIWAR Settings on Host for Incoming Boot Reads

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BEXAD BADD

Setting 0x00 0x0 0xF

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0xFC00

Table 14. RIWBAR Field Descriptions and Settings

Bits Name Description and Setting

10–11 BEXAD Base extended address of inbound window.

00 Extended bits in the base address are both 0

12–31 BADD Base address of inbound window. Source address that is the starting point
for the inbound translation window.

0xF_FC00 Base address bits 2–21 are 0xF_FC00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TGINT RDTYP

Setting 0x8 0x0 0xF 0x4

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x0 0x0 0x15

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

32 Freescale Semiconductor

Bring-up Procedure

The RapidIO inbound window attributes register (RIWAR) defines the window size and other attributes for the
translation. The settings in the example have the following definitions:

3.4.1.3 RIWTAR
The RapidIO inbound window translation address register (RIWTAR) contains the translation address for the
incoming transactions. The setting of the RIWTAR is different for the two scenarios.

Figure 29. RIWTAR Settings on Host for Incoming Boot Reads (Point-to-Point)

In the point-to-point system, the 4 Mbyte image required to boot the agent is at local address
0xFFC0_0000–0xFFFF_FFFF. Therefore the base address of the translation is 0xFFC00000.

The RIWTAR defines the translation on the address of the access:

Table 15. RIWAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable
1 Address translation enabled

8–11 TGINT Target interface
1111 Incoming transactions are re-directed to the local memory

12–15 RDTYP Read transaction type. Transaction type to run if access is a read
0100 Do not snoop local processor

16–19 WRTYP Write transaction type. Transaction type to run if access is a write.
0000 Reserved (effectively makes this window read only)

26–31 SIZE Inbound window size.

0x15 4 Mbyte window

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRAD

Setting 0x000 0xF

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0xFC00

Table 16. RIWTAR Field Description and Setting

Bits Name Description and Setting

12–31 TRAD Translation address of inbound window. System address that
represents the starting point of the inbound translated address.
0xF_FC00, translated window starts at 0xFFC0_0000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 33

Bring-up Procedure

Figure 30. RIWTAR Settings on Host for Incoming Boot Reads (Fabric)

In the fabric example, the boot image for the agent is at local address 0xFF80_0000–0xFFBF_FFFF. Therefore, all
transactions arriving at the incoming window should be shifted down the memory map by 4 Mbytes, and the base
address of the translation is 0xFF80_0000.

The RIWTAR defines the translation on the address of the access:

TRAD = 0xF_F800, translated window starts at 0xFF80_0000

3.4.2 Configure the Agent Processor
This step configures and releases a single processor, to enable it to boot. In order for this step to be possible, the
access to the internal memory map of the agent through the LCSBA1CSR, as described in Section 3.3, “Enable
Access to Remote Configuration Space,” must be enabled. This is due to the need to access registers in the agent
processor that are not part of the RapidIO interface and are therefore not available through maintenance transactions.

3.4.2.1 Configure the Agent’s RapidIO Outbound Window
The boot location configuration signal cfg_rom_loc, determines that all accesses to the default boot location are
directed to the RapidIO interface. Before releasing the agent to boot, it is necessary to create an outbound RapidIO
window to direct all those accesses to the host processor, at the correct RapidIO address.

In this particular example the default outbound RapidIO window is used for this purpose. The default outbound
window does not have a base address, as it accepts all outgoing transactions which do not map to any other outbound
window. It does have attribute and translation registers which must be initialized.

3.4.2.1.10 ROWTAR

Figure 31. ROWTAR on Agent for Boot Reads

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRAD

Setting 0x000 0xF

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0xF800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRGTID TREXAD TRAD

Setting 0x004 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0x0000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

34 Freescale Semiconductor

Bring-up Procedure

The settings in the example have the following definitions:

This results in the outbound transactions being directed to the host processor, with no address translation. For
example, the first boot read comes out of the agent processor with a RapidIO address of 0x0_FFFF_FFFC.

3.4.2.1.11 ROWBAR

The settings in the example have the following definitions:

3.4.2.2 Create LAW on Agent for the Boot Area on RapidIO
This step may or may not be required, depending on the operation of the bootloader program which is being executed
over RapidIO.

Table 17. ROWTAR Field Descriptions and Settings

Bits Name Description

2–9 TRGTID Target ID for RapidIO packet
0x01 Transactions have destination ID of 1 (host).

10–11 TREXAD Translation extended address of outbound window
00 The 2 extended address bits are both zero

12–31 TRAD Translation address of outbound window

All zeros. There is no translation on the outbound transactions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TFLOV PCI — RDTYP

Setting 0x80 0x0 0x4

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x4 0x0 0x1F

Table 18. ROWBAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable
1 This is default window, always enabled, read-only bit

4–5 TFLOV Transaction flow level priority of transaction
00 Transactions have low priority.

6 PCI Follow PCI transaction ordering rules
0 PCI transaction ordering is not followed.

12–15 RDTYP Read transaction type. Transaction type to run on RapidIO interface if access is a read.

0100 Reads within this window generate NREAD transactions.

16–19 WRTYP Write transaction type. Transaction type to run on RapidIO interface if access is a write.
0100 Writes within this window generate NWRITE transactions

26–31 SIZE Window size
0x17 This window is 16 Mbytes

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 35

Bring-up Procedure

The mapping of the local area window (LAW) has priority over the default boot location set up by cfg_rom_loc.
Therefore, if the agent’s bootloader program sets up a LAW which covers the same area as the address range used
for booting, then booting over RapidIO fails after the instructions to create that LAW have been executed.

Assuming that the bootloader does not use the highest priority LAW (LAW0), then this LAW should be used to direct
the appropriate area of memory to the RapidIO interface. If the bootloader uses LAW0 for its own memory setup it
has to be amended to permit booting over RapidIO. If the bootloader does not create a LAW which covers the same
area of the local map as the boot instructions, then the setting up of this LAW is not required; the cfg_boot_loc is
enough to re-direct the boot operations to the correct area.

In this example, the local area window is set up to cover the top 16 Mbytes of memory
(0xFF00_0000–0xFFFF_FFFF).

3.4.2.2.12 LAWBAR

Figure 32. Agent LAWBAR Setting for RapidIO Window

The local area window base address (LAWBAR) sets the base address of this window. The settings in the example
have the following definitions:

BASE_ADDR = 0xFF000 indicates that the start address of this window is 0xFF00_0000.

3.4.2.2.13 LAWAR

Figure 33. Agent LAWAR Settings for RapidIO Window

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BASE_ADDR

Setting 0x000 0xF

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BASE_ADDR

Setting 0xF000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TRGT_IF —

Setting 0x80 0xC 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — SIZE

Setting 0x00 0x17

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

36 Freescale Semiconductor

Bring-up Procedure

The local area window attributes register (LAWAR) enables this window, sets the interface that the transactions are
directed to and sets the size of the window. The settings in the example have the following definitions:

3.4.2.3 Provide Agent Processor with Access to the RapidIO Bus
The processors which are configured as RapidIO agents are not enabled to issue RapidIO requests into the system.
An agent’s PGCCSR[ME],master enable bit, must be set by the host before the booting process is initiated. This must
be accessed through the memory mapped LCSBA1CSR mechanism described in Section 3.3, “Enable Access to
Remote Configuration Space.”

3.4.2.4 Enable the CPU
The processor was configured in boot holdoff mode which means the agent's CPU has been prevented from booting.
To initiate the booting process the host processor must set the agent’s EEBPCR[CPU_EN],CPU port enable bit, to
permit the CPU to start executing its boot sequence. This must be accessed through the memory mapped
LCSBA1CSR mechanism described in Section 3.3, “Enable Access to Remote Configuration Space.”

Once this CPU port enable bit has been set, the agent should boot from the host’s Flash memory.

3.5 Enable Memory Reads and Writes
Now that the processors have been booted, many simple tests can be run to check functionality and benchmark
RapidIO performance. This note describes how memory reads and writes can be executed between the host
processor and processor 2, information can be extrapolated for other tests.

Before the host can access the agent’s memory, more ATMU windows have to be initialized. A RapidIO outbound
window must be set up on the host to direct normal reads and writes to the agent processor, and a RapidIO inbound
window must be set up on the agent to capture these accesses and direct them to the appropriate area of the agent’s
memory.

This example sets up a 16 Mbyte outbound window on the host and a 16 Mbyte inbound window on agent 2. These
windows direct accesses to the host’s memory (in the range 0xC100_0000–0xC1FF_FFFF) to the agent’s memory
(in the range 0x0100_0000–0x01FF_FFFF). This area of agent memory was chosen to protect the lowest 16 Mbytes
of agent memory, which contain interrupt vectors and so forth.

To achieve this mapping, the registers should be set up as shown next.

Table 19. LAWAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable
1 This window is enabled.

8–11 TRGT_IF Identifies the target interface ID when a transaction hits in the address range defined by
this window.

1100 Target interface is RapidIO

26–31 SIZE Window size
0x17 Window is 16 Mbytes.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 37

Bring-up Procedure

3.5.1 Host Setup
A RapidIO outbound window is set up on the host to direct local accesses in the range 0xC100_0000–0xC1FF_FFFF
to processor 2 with RapidIO address 0x0_0000_0000–0x0_00FF_FFFF.

3.5.1.1 ROWBAR

Figure 34. Remote Memory ROWBAR Settings

The base address register (ROWBAR), defines the start address of the window. The settings in the example have the
following definitions:

3.5.1.2 ROWAR

Figure 35. Remote Memory Window ROWAR Settings

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BADD

Setting 0x000 0xC

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0x1000

Table 20. ROWBAR Field Description and Setting

Bits Name Description and Setting

12–31 BADD Base address of outbound window. Source address that is the starting point for the
outbound translation window.
0xC1000 Window starts at address 0xC100_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TFLOV PCI — RDTYP

Setting 0x80 0x0 0x4

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x4 0x0 0x17

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

38 Freescale Semiconductor

Bring-up Procedure

The attributes register defines attributes of the transactions which are created by this window. This includes the
priority and transaction types. It also defines the size of the window. The settings in the example have the following
definitions:

3.5.1.3 ROWTAR

Figure 36. Remote Memory ROWTAR Settings

The settings in the example have the following definitions:

Table 21. ROWAR Field Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable

1 This RapidIO outbound window is enabled.

4–5 TFLOV Transaction flow level priority of transaction
00 The transactions are low priority.

6 PCI Follow PCI transaction ordering rules
0 PCI transaction ordering is not followed.

12–15 RDTYP Read transaction type. Transaction type to run on RapidIO interface if access is a read.

0100 Reads to this window generate RapidIO NREAD transactions.

16–19 WRTYP Write transaction type. Transaction type to run on RapidIO interface if access is a write.
0100 writes to this window generates RapidIO NWRITE transactions

26–31 SIZE Outbound window size.
0x17 This window is 16 Mbytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRGTID TREXAD TRAD

Setting 0x008 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0x0000

Table 22. ROWTAR Field Descriptions and Settings

Bits Name Description and Setting

2–9 TRGTID Target ID for RapidIO packet
0x02 Transactions have destination ID of 2.

10–11 TREXAD Translation extended address of outbound window

00 The 2 extended address bits are both zero

12–31 TRAD Translation address of outbound window
All zeros. Outbound transactions start at address 0x0_0000_0000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 39

Bring-up Procedure

3.5.2 Agent Setup
A 16 Mbyte RapidIO inbound window is set up on the agent to capture RapidIO transactions with the address range
0x0_0000_0000–0x000FF_FFFF and redirect them to the agent’s local memory space in the address range
0x0100_0000–0x01FF_FFFF.

3.5.2.1 RIWBAR

Figure 37. RIWBAR Settings on Host for Incoming Boot Reads

The settings in the example have the following definitions:

The combined meaning of these two fields is that the base address of the inbound RapidIO window is
0x0_0000_0000.

3.5.2.2 RIWAR

Figure 38. RIWAR Settings on Host for Incoming Boot Reads

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — BEXAD BADD

Setting 0x00 0x0 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BADD

Setting 0x0000

Table 23. RIWBAR Field Descriptions and Settings

Bits Name Description and Setting

10–11 BEXAD Base extended address of inbound window.

00 Extended bits in the base address are both 0

12–31 BADD Base address of inbound window. Source address that is the starting point for the inbound
translation window.

All zeros

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EN — TGINT RDTYP

Setting 0x8 0x0 0xF 0x5

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field WRTYP — SIZE

Setting 0x5 0x0 0x17

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

40 Freescale Semiconductor

Bring-up Procedure

The settings in the example have the following definitions:

3.5.2.3 RIWTAR

Figure 39. RIWTAR Settings on Host for Incoming Boot Reads (Point-to-Point)

The RIWTAR defines the translation on the address of the access:

3.5.3 Confirming Operation
After the agent and host are configured, tests can be run to verify the ability to read/write memory between the two
processors. These tests can take various forms.

For a simple test, requiring transactions to have 32 bits of payload or less, simple reads and writes to the 16 Mbyte
address range 0xC100_0000–0xC1FF_FFFF on the host result in RapidIO transactions to processor 2. When
processor 2 receives those requests they are translated to the 16 Mbyte address range 0x0100_0000–0x01FF_FFFF.
To confirm correct operation, these memory locations can be examined directly on processor 2, or read back and
compared with the value written.

Table 24. RIWAR Descriptions and Settings

Bits Name Description and Setting

0 EN Window address translation enable
1 Address translation enabled

8–11 TGINT Target interface

1111 Incoming transactions are re-directed to the local memory

12–15 RDTYP Read transaction type. Transaction type to run if access is a read.
0101 Snoop local processor

16–19 WRTYP Write transaction type. Transaction type to run if access is a write.
0101 Received write. Snoop local processor

26–31 SIZE Inbound window size. Inbound window size N which is the encoded
2n+1 bytes window size.
01_0111 16 Mbyte window

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — TRAD

Setting 0x000 0x0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TRAD

Setting 0x1000

Table 25. RIWTAR Description and Setting

Bits Name Description and Setting

12–31 TRAD Translation address of inbound window. System address that
represents the starting point of the inbound translated address.
0x01000 Translated window starts at 0x0100_0000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 41

Output from Example Application

If the test requires larger transactions, the DMA engine can be used. The same address mapping applies, that is, if
the DMA source/destination is set up as 0xC100_0000, this generates RapidIO read/writes to processor 2. Using the
DMA can generate RapidIO reads and writes with payload greater than 32 bits. Therefore, this provides a more
efficient way of passing large amounts of data between devices and is useful for benchmarking.

4 Output from Example Application
This section contains example text output from an application to bring up basic RapidIO systems, using the
procedure described previously. Section 4.1, “Point-to-Point Example,” contains a sample output, obtained when the
application was executed on the point-to-point system described in Section 2.3.1, “Point-to-Point System.”
Section 4.2, “Fabric Example,” contains a sample output, obtained when the application was executed on the fabric
based system described in Section 2.3.2, “Fabric-Based System.”

4.1 Point-to-Point Example
Starting application at 0x00040004 ...

Check LAWs before setting up

lawbar0 = 0x00000000, lawar0 = 0x00000000

lawbar1 = 0x00000000, lawar1 = 0x80f0001b

lawbar2 = 0x000fe000, lawar2 = 0x80400018

lawbar3 = 0x000fd000, lawar3 = 0x8040000c

lawbar4 = 0x00000000, lawar4 = 0x00000000

lawbar5 = 0x00000000, lawar5 = 0x00000000

lawbar6 = 0x00000000, lawar6 = 0x00000000

lawbar7 = 0x00000000, lawar7 = 0x00000000

Completed the setup of TLBs and lawbars

lawbar5 = 0x000c0000, lawar5 = 0x80c0001b

This device is configured as a RIO host

This device has RIO device ID 0x00000001

RapidIO port is trained OK

Set up the outbound rio maintenance window

rowbar1 = 0x000c0000, rowar1 = 0x80077015, rowtar1 = 0x3fc00000

 ---- rio_local_config() completed successfully ----

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

42 Freescale Semiconductor

Output from Example Application

Identified adjacent device as MPC8540/60

Executing the point-to-point discovery process

Original HBDIDL =0x0000ffff

Updated HBDIDL =0x00000001

Original deviceID = 0x000000ff

Updated deviceID = 0x00000002

 ---- rio_discovery() completed successfully ----

Created a local ROW for CCSR access to proc 2

rowbar5 = 0x000c4000, rowar5 = 0x80044013, rowtar5 = 0x00801000

Read back data from device 2 through lcsbacsr

didcar= 0x00020002

lcsbacsr = 0x00200000

 ---- set up remote LCS access to all trained processors ----

Set up inbound window on host to re-direct incoming rio to ’safe’ area

riwbar1 = 0x00000000, riwar1 = 0x80f55017, riwtar1 = 0x00001000

 ---- Provided LCSBASCR and memory access back to local processor ----

Options :

b = boot another processor

h = print this list of options

q = quit this application

r = read rioport information

t = run one of the tests

Attempting to boot processor 2

Booting processor 2

Before booting :

ccsrbar = 0x000ff700

eebpcr = 0x00000000

agent LAWBAR0 = 0x000ff000

agent LAWAR0 = 0x80c00017

agent LAWBAR1 = 0x00000000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 43

Output from Example Application

agent LAWAR1 = 0x00000000

agent LAWBAR2 = 0x00000000

agent LAWAR2 = 0x00000000

agent LAWBAR3 = 0x00000000

agent LAWAR3 = 0x00000000

agent LAWBAR4 = 0x00000000

agent LAWAR4 = 0x00000000

agent LAWBAR5 = 0x00000000

agent LAWAR5 = 0x00000000

agent LAWBAR6 = 0x00000000

agent LAWAR6 = 0x00000000

agent LAWBAR7 = 0x00000000

agent LAWAR7 = 0x00000000

Press any key to continue

AFTER BOOT Read back data from device 2 through lcsbacsr

didcar= 0x00020002

lcsbacsr = 0x00200000

bdidcsr= 0x00020000

ccsrbar = 0x000e0000

eebpcr = 0x01000000

agent LAWBAR0 = 0x000ff000

agent LAWAR0 = 0x80c00017

agent LAWBAR1 = 0x00000000

agent LAWAR1 = 0x80f0001a

agent LAWBAR2 = 0x000fe000

agent LAWAR2 = 0x8040000c

agent LAWBAR3 = 0x000fd000

agent LAWAR3 = 0x8040000c

agent LAWBAR4 = 0x00000000

agent LAWAR4 = 0x00000000

agent LAWBAR5 = 0x00000000

agent LAWAR5 = 0x00000000

agent LAWBAR6 = 0x00000000

agent LAWAR6 = 0x00000000

agent LAWBAR7 = 0x00000000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

44 Freescale Semiconductor

Output from Example Application

agent LAWAR7 = 0x00000000

Now setup window to access 16MBytes memory of device 2

rowbar2=0x000c1000, rowtar2=0x00800000, rowar2=0x80044017

Set up IB window on agent to permit host to access its memory

Agent riwbar1=0x00000000, riwtar1=0x00001000, riwar1=0x80f55017

>T. Which test do you want to run ?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

Running test A on processor 2

Running test A for deviceid 2

Executing 100 32-bit writes into agent memory

Executing 100 32-bit reads, and comparing

Test completed successfully

>T. Which test do you want to run ?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

Running test B on processor 2

Running test B for deviceid 2

About to DMA transfer 65536 bytes to the agent

DMA transfer of 65536 bytes to the agent has completed

DMA transfer back from host has completed

Comparing data sent with data received

Test completed successfully

>R. Read RIO information for which device number 1 or 2 ? 1

Rio port information from device 1

didcar = 0x00020002 bdidcsr = 0x00010000

lcsbacsr = 0x00200000 pescsr = 0x0002000a

plascsr = 0x07000003 pgccsr = 0xe0000000

predr = 0x00000000 pnfedr = 0x00000000

row0 : tar=0x00000000, ar=0x8004401f

row1 : bar=0x000c0000, tar=0x008ff000, ar=0x80077015

row2 : bar=0x000c1000, tar=0x00800000, ar=0x80044017

row3 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row4 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row5 : bar=0x000c4000, tar=0x00801000, ar=0x80044013

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 45

Output from Example Application

row6 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row7 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row8 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw0 : tar=0x00000000, ar=0x8004401f

riw1 : bar=0x00000000, tar=0x00001000, ar=0x80f55017

riw2 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw3 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw4 : bar=0x000ffc00, tar=0x000ffc00, ar=0x80f50015

>R. Read RIO information for which device number 1 or 2 ? 2

Rio port information from device 2

didcar = 0x00020002 bdidcsr = 0x00020000

lcsbacsr = 0x00200000 pescsr = 0x0002020a

plascsr = 0x01000003 pgccsr = 0x40000000

predr = 0x00000000 pnfedr = 0x00000000

row0 : tar=0x00400000, ar=0x8004401f

row1 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row2 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row3 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row4 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row5 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row6 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row7 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row8 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw0 : tar=0x00000000, ar=0x8004401f

riw1 : bar=0x00000000, tar=0x00001000, ar=0x80f55017

riw2 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw3 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw4 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

4.2 Fabric Example
Starting application at 0x00040004 ...

Check LAWs before setting up

lawbar0 = 0x00000000, lawar0 = 0x00000000

lawbar1 = 0x00000000, lawar1 = 0x80f0001b

lawbar2 = 0x00080000, lawar2 = 0x8000001c

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

46 Freescale Semiconductor

Output from Example Application

lawbar3 = 0x000ff000, lawar3 = 0x80400017

lawbar4 = 0x000e2000, lawar4 = 0x80000017

lawbar5 = 0x00000000, lawar5 = 0x00000000

lawbar6 = 0x00000000, lawar6 = 0x00000000

lawbar7 = 0x00000000, lawar7 = 0x00000000

Completed the setup of TLBs and lawbars

lawbar5 = 0x000c0000, lawar5 = 0x80c0001b

This device is configured as a RIO host

This device has RIO device ID 0x00000001

RapidIO port is trained OK

Set up the outbound rio maintenance window

rowbar1 = 0x000c0000, rowar1 = 0x80077015, rowtar1 = 0x3fc00000

 ---- rio_local_config() completed successfully ----

Identified adjacent device as Tsi500

Executing the fabric version of the discovery code

swport = 0x00000400

Original Tsi500 HBDIDL =0x0000ffff

Updated HBDIDL on Tsi500 =0x00000001

Examining port 1 of the TSI500

Port 1 training reg = 0x00000800, This port is not trained

Examining port 2 of the TSI500

Port 2 training reg = 0xff800800, Trained successfully

Changed the Port 0 Tsi500_DESTID_248_LKUP to 0x22222222

Device attached to port 2, DIDCAR=0x00030002

Original HBDIDL =0x0000ffff

Updated HBDIDL =0x00000001

Original deviceID = 0x000000ff

Updated deviceID = 0x00000003

Examining port 3 of the TSI500

Port 3 training reg = 0xff800800, Trained successfully

Changed the Port 0 TSI500_DESTID_248_LKUP to 0x33333333

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 47

Output from Example Application

Device attached to port 3, DIDCAR=0x00030002

Original HBDIDL =0x0000ffff

Updated HBDIDL =0x00000001

Original deviceID = 0x000000ff

Updated deviceID = 0x00000004

 ---- rio_discovery() completed successfully ----

Created a local ROW for CCSR access to proc 3

rowbar6 = 0x000c5000, rowar6 = 0x80044013, rowtar6 = 0x00c01000

Read back data from device 3 through lcsbacsr

didcar= 0x00030002

lcsbacsr = 0x00200000

Created an local ROW for CCSR access to proc 4

rowbar7 = 0x000c6000, rowar7 = 0x80044013, rowtar7 = 0x01001000

Read back data from device 4 through lcsbacsr

didcar= 0x00030002

lcsbacsr = 0x00200000

 ---- set up remote LCS access to all trained processors ----

Set up inbound window on host to re-direct incoming rio to ’safe’ area

riwbar1 = 0x00000000, riwar1 = 0x80f55017, riwtar1 = 0x00001000

 ---- Provided LCSBASCR and memory access back to local processor ----

Options :

b = boot another processor

h = print this list of options

q = quit this application

s = read back info from tsi500

r = read rioport information

t = run one of the tests

B. Boot processor 2, 3, or 4 ? 3

Booting processor 3

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

48 Freescale Semiconductor

Output from Example Application

Before booting :

ccsrbar = 0x000ff700

eebpcr = 0x00000000

agent LAWBAR0 = 0x000ff000

agent LAWAR0 = 0x80c00017

agent LAWBAR1 = 0x00000000

agent LAWAR1 = 0x00000000

agent LAWBAR2 = 0x00000000

agent LAWAR2 = 0x00000000

agent LAWBAR3 = 0x00000000

agent LAWAR3 = 0x00000000

agent LAWBAR4 = 0x00000000

agent LAWAR4 = 0x00000000

agent LAWBAR5 = 0x00000000

agent LAWAR5 = 0x00000000

agent LAWBAR6 = 0x00000000

agent LAWAR6 = 0x00000000

agent LAWBAR7 = 0x00000000

agent LAWAR7 = 0x00000000

Press any key to continue

AFTER BOOT Read back data from device 3 through lcsbacsr

didcar= 0x00030002

lcsbacsr = 0x00200000

bdidcsr= 0x00030000

ccsrbar = 0x000e0000

eebpcr = 0x01000000

agent LAWBAR0 = 0x000ff000

agent LAWAR0 = 0x80c00017

agent LAWBAR1 = 0x00000000

agent LAWAR1 = 0x80f0001c

agent LAWBAR2 = 0x00080000

agent LAWAR2 = 0x80400017

agent LAWBAR3 = 0x000ff000

agent LAWAR3 = 0x80400017

agent LAWBAR4 = 0x000e2000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 49

Output from Example Application

agent LAWAR4 = 0x80000017

agent LAWBAR5 = 0x000c0000

agent LAWAR5 = 0x80c0001c

agent LAWBAR6 = 0x00000000

agent LAWAR6 = 0x00000000

agent LAWBAR7 = 0x00000000

agent LAWAR7 = 0x00000000

Now setup window to access 16MBytes memory of device 3

rowbar3=0x000c2000, rowtar3=0x00c00000, rowar3=0x80044017

Set up IB window on agent to permit host to access its memory

Agent riwbar1=0x00000000, riwtar1=0x00001000, riwar1=0x80f55017

>B. Boot processor 2, 3, or 4 ? 4

Booting processor 4

Before booting :

ccsrbar = 0x000ff700

eebpcr = 0x00000000

agent LAWBAR0 = 0x000ff000

agent LAWAR0 = 0x80c00017

agent LAWBAR1 = 0x00000000

agent LAWAR1 = 0x00000000

agent LAWBAR2 = 0x00000000

agent LAWAR2 = 0x00000000

agent LAWBAR3 = 0x00000000

agent LAWAR3 = 0x00000000

agent LAWBAR4 = 0x00000000

agent LAWAR4 = 0x00000000

agent LAWBAR5 = 0x00000000

agent LAWAR5 = 0x00000000

agent LAWBAR6 = 0x00000000

agent LAWAR6 = 0x00000000

agent LAWBAR7 = 0x00000000

agent LAWAR7 = 0x00000000

Press any key to continue

AFTER BOOT Read back data from device 4 through lcsbacsr

didcar= 0x00030002

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

50 Freescale Semiconductor

Output from Example Application

lcsbacsr = 0x00200000

bdidcsr= 0x00040000

ccsrbar = 0x000e0000

eebpcr = 0x01000000

agent LAWBAR0 = 0x000ff000

agent LAWAR0 = 0x80c00017

agent LAWBAR1 = 0x00000000

agent LAWAR1 = 0x80f0001c

agent LAWBAR2 = 0x00080000

agent LAWAR2 = 0x80400017

agent LAWBAR3 = 0x000ff000

agent LAWAR3 = 0x80400017

agent LAWBAR4 = 0x000e2000

agent LAWAR4 = 0x80000017

agent LAWBAR5 = 0x000c0000

agent LAWAR5 = 0x80c0001c

agent LAWBAR6 = 0x00000000

agent LAWAR6 = 0x00000000

agent LAWBAR7 = 0x00000000

agent LAWAR7 = 0x00000000

Now setup window to access 16MBytes memory of device 4

rowbar4=0x000c3000, rowtar4=0x01000000, rowar4=0x80044017

Set up IB window on agent to permit host to access its memory

Agent riwbar1=0x00000000, riwtar1=0x00001000, riwar1=0x80f55017

>T. Which test do you want to run ?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

A. On which device do you want to run test A : 2, 3, or 4 ?3

Running test A for deviceid 3

Executing 100 32-bit writes into agent memory

Executing 100 32-bit reads, and comparing

Test completed successfully

>T. Which test do you want to run ?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 51

Output from Example Application

B. On which device do you want to run test B: 2, 3, or 4 ?3

Running test B for deviceid 3

About to DMA transfer 65536 bytes to the agent

DMA transfer of 65536 bytes to the agent has completed

DMA transfer back from host has completed

Comparing data sent with data received

Test completed successfully

>T. Which test do you want to run ?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

A. On which device do you want to run test A : 2, 3, or 4 ?4

Running test A for deviceid 4

Executing 100 32-bit writes into agent memory

Executing 100 32-bit reads, and comparing

Test completed successfully

>T. Which test do you want to run ?

A = execute 100 32bit writes to agent, read back and compare

B = DMA transfer 64kbytes block to agent, read back and compare

B. On which device do you want to run test B: 2, 3, or 4 ?4

Running test B for deviceid 4

About to DMA transfer 65536 bytes to the agent

DMA transfer of 65536 bytes to the agent has completed

DMA transfer back from host has completed

Comparing data sent with data received

Test completed successfully

>R. Read RIO information for which device number 1,2,3 or 4 ? 1

Rio port information from device 1

didcar = 0x00030002 bdidcsr = 0x00010000

lcsbacsr = 0x00200000 pescsr = 0x0002000a

plascsr = 0x02000002 pgccsr = 0xe0000000

predr = 0x00000000 pnfedr = 0x00000000

row0 : tar=0x00000000, ar=0x8004401f

row1 : bar=0x000c0000, tar=0x010ff000, ar=0x80077015

row2 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row3 : bar=0x000c2000, tar=0x00c00000, ar=0x80044017

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

52 Freescale Semiconductor

Output from Example Application

row4 : bar=0x000c3000, tar=0x01000000, ar=0x80044017

row5 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row6 : bar=0x000c5000, tar=0x00c01000, ar=0x80044013

row7 : bar=0x000c6000, tar=0x01001000, ar=0x80044013

row8 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw0 : tar=0x00000000, ar=0x8004401f

riw1 : bar=0x00000000, tar=0x00001000, ar=0x80f55017

riw2 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw3 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw4 : bar=0x000ffc00, tar=0x000ff800, ar=0x80f50015

>R. Read RIO information for which device number 1,2,3 or 4 ? 3

Rio port information from device 3

didcar = 0x00030002 bdidcsr = 0x00030000

lcsbacsr = 0x00200000 pescsr = 0x0002000a

plascsr = 0x01000003 pgccsr = 0x40000000

predr = 0x00000000 pnfedr = 0x00000000

row0 : tar=0x00400000, ar=0x8004401f

row1 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row2 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row3 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row4 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row5 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row6 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row7 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row8 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw0 : tar=0x00000000, ar=0x8004401f

riw1 : bar=0x00000000, tar=0x00001000, ar=0x80f55017

riw2 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw3 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw4 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

>R. Read RIO information for which device number 1,2,3 or 4 ? 4

Rio port information from device 4

didcar = 0x00030002 bdidcsr = 0x00040000

lcsbacsr = 0x00200000 pescsr = 0x0002000a

plascsr = 0x05000007 pgccsr = 0x40000000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 53

Output from Example Application

predr = 0x00000000 pnfedr = 0x00000000

row0 : tar=0x00400000, ar=0x8004401f

row1 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row2 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row3 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row4 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row5 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row6 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row7 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

row8 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw0 : tar=0x00000000, ar=0x8004401f

riw1 : bar=0x00000000, tar=0x00001000, ar=0x80f55017

riw2 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw3 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

riw4 : bar=0x00000000, tar=0x00000000, ar=0x0004401f

>S. Print Switch info

 Port0 Port1 Port2 Port3

Training registers : 0xff800800 0x00000800 0xff800800 0xff800800

Routing 0 registers: 0xfff3210f 0xfff3210f 0xfff3210f 0xfff3210f

IB Packet count : 0x007c11f3 0x00000000 0x003e0857 0x003e06ab

IB Read pkt cnt 0 : 0x000003a4 0x00000000 0x003e068d 0x003e04e1

IB Read pkt cnt 1 : 0x00000000 0x00000000 0x00000005 0x00000005

IB Read pkt cnt 2 : 0x00000000 0x00000000 0x00000000 0x00000000

IB Read pkt cnt 3 : 0x00000000 0x00000000 0x00000000 0x00000000

IB Write pkt cnt 0 : 0x000002e5 0x00000000 0x00000000 0x00000000

IB Write pkt cnt 1 : 0x00000000 0x00000000 0x00000003 0x00000003

IB Write pkt cnt 2 : 0x00000000 0x00000000 0x00000000 0x00000000

IB Write pkt cnt 3 : 0x00000000 0x00000000 0x00000000 0x00000000

Non recov err : 0x00000000 0x00000000 0x00000000 0x00000000

Recoverable err : 0x00000000 0x00000000 0x00000000 0x00000000

Inbound err stat 3 : 0x00000000 0x00000000 0x00000000 0x00000000

Outbound err stat 1: 0x00000000 0x00000000 0x00000000 0x00000000

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

54 Freescale Semiconductor

References

5 References
1. RapidIO Trade Association, RapidIO Interconnect Specification, Rev. 1.2, 6/2002.

2. MPC8540 PowerQUICC III Integrated Host Processor Reference Manual, Rev. 1, 7/2004.
or MPC8560 PowerQUICC III Integrated Communications Processor Reference Manual, Rev. 1, 7/2004.

3. Tsi500 Parallel RapidIO Multi-port Switch User Manual, April 2004.

4. RapidIO Interconnect Specification Annex I: Software/System Bring Up Specification, Rev. 1.0, 12/2003.

5. Freescale application note AN2741, Using the RapidIO Messaging Unit on PowerQUICC III, Rev. 1,
8/2004.

6 Revision History
Table 26 provides a revision history for this application note.

Table 26. Document Revision History

Revision Date Substantive Change(s)

1 11/15/2004 Initial release

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 55

Revision History

Appendix A Notes on Maintenance Transactions

A.1 Overview
Throughout this document, all maintenance transactions are described as a list of maintenance parameters (for
example, destination ID, hopcount, and maintenance offset), but no attempt is made to describe how these
maintenance transactions are created. A full description of the operation of the maintenance window, and the
generation of maintenance transactions is described in this appendix. In addition, it describes the operation of
maintenance transactions in a multi-switch environment.

A.2 Terminology
In this Appendix, specific terminology is used to describe the different aspects of the maintenance transaction.

NOTE
This table contains clarifications of terms specific to this Appendix. It should not
be assumed that this is commonly known or used terminology.

Table 27. Maintenance Transaction Terminology

Term Description

Maintenance offset This is the logical offset of a maintenance transaction. The maintenance offset closely resembles the
way in which the RapidIO specification represents the offsets to the CAR/CSR block. Maintenance
offsets are always 16-bit word aligned.
For example:
The RapidIO specification describes the source operations CAR as offset 0x18, word 0. This
document would describe that as maintenance offset 0x18.
The RapidIO specification describes the destination operations CAR as offset 0x18, word 1. This
document would describe that as maintenance offset 0x1C.

The maintenance offset is represented by 24-bits (although 2 LSBs are always 0). Therefore, the
maximum maintenance offset is 0x7F_FFFC.

Configuration offset This is a 21-bit field within the RapidIO maintenance packet. This is a double-word pointer and is
equivalent to the maintenance offset shifted 3 bits to the right.
For Example:
For accesses to the source operations CAR (maintenance offset 0x18), the configuration offset field
in the RapidIO maintenance transaction would be 0x03.
For accesses to the destination operations CAR (maintenance offset 0x1C), the configuration offset
field in the RapidIO maintenance transaction would also be 0x03.

Word pointer This is a single bit field in the maintenance packet that defines which word to access within the
double word indicated by the configuration offset.

For Example:
For accesses to the source operations CAR (maintenance offset 0x18), the word pointer in the
RapidIO maintenance transaction would be 0x0.
For accesses to the destination operations CAR (maintenance offset 0x1C), the word pointer in the
RapidIO maintenance transaction would be 0x1.

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

56 Freescale Semiconductor

Revision History

A.3 Example 1: 4 Mbytes Maintenance Window
In this example (used in the main document) the maintenance window is set up to 4 Mbytes, which permits a
transaction offset of 0x0–0x3FFFFF.

In a 4 Mbytes maintenance window, the bottom 22 bits of the maintenance offset are determined from the transaction
offset, and only the 2 MSBs of the CFG_OFFSET field are significant.

To allow for access to maintenance offsets greater than 0x3F_FFFC, the MSBs of the offset must be masked off from
the calculation of the transaction address, and placed correctly within the CFG_OFFSET field.

Maintenance transactions within a 4 Mbytes window can be achieved using the following macros.

/***

MACRO definitions

***/

#define MAINT_READ_4M(device_id, hopcount, offset , ptrvalue) \

 rioport->rowtar1 = ((device_id) << ROW_DEV_ID_Shift) \

 |((hopcount) << ROW_HOPCNT_Shift) | ((offset) >> 12); \

 asm ("sync");\

 ptrvalue = *((volatile uint32*)(START_OF_RIO_WINDOW + ((offset)& 0x3FFFFF)));\

 asm ("sync");

#define MAINT_WRITE_4M(device_id, hopcount, offset , value) \

 rioport->rowtar1 = ((device_id) << ROW_DEV_ID_Shift) \

 |((hopcount) << ROW_HOPCNT_Shift) | ((offset) >> 12); \

 asm ("sync");\

 *((volatile uint32 *) (START_OF_RIO_WINDOW + ((offset) & 0x3FFFFF))) = value; \

 asm ("sync");

A maintenance read to destination ID 0x02, hopcount 0xFF, and maintenance offset 0x68, could then be achieved
using the macro as follows.

uint32 value_read;

MAINT_READ_4M (0x02, 0xFF, 0x68, value_read);

CFG_OFFSET This is a field within the ROWTAR for maintenance transactions. A variable number of bits
(depending on the size of the window) is taken from this field to build the configuration offset.

Transaction offset This is the offset of the untranslated address from the base address of the window.
For example:
If the base address of the maintenance window is 0xC000_0000, then an access to address
0xC000_001C has a transaction offset of 0x1C.

Table 27. Maintenance Transaction Terminology (continued)

Term Description

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 57

Revision History

A maintenance write of the value 0xFFF3_210F to destination ID 0xFF, hopcount 0x00, maintenance offset
0x70A00 can be achieved using the macro as follows.

MAINT_WRITE_4M (0xFF, 0x00, 0x70A00, 0xFFF3210F);

A.4 Example 2: 4 Kbytes Maintenance Window
In this example the maintenance window is only 4 Kbytes, which permits a transaction offset of 0x0–0xFFF.

In a 4 Kbytes maintenance window, the bottom 12 bits of the maintenance offset are determined from the transaction
offset, and all 12 bits of the CFG_OFFSET field are significant.

To allow for access to maintenance offsets greater than 0xFFC, the MSBs of the offset must be masked off from the
calculation of the transaction offset, and placed correctly within the CFG_OFFSET field.

Maintenance transactions within a 4 Kbytes window can be achieved using the following macros.

/***

MACRO definitions

***/

#define MAINT_READ_4k(device_id, hopcount, offset , ptrvalue) \

 rioport->rowtar1 = ((device_id) << ROW_DEV_ID_Shift) \

 |((hopcount) << ROW_HOPCNT_Shift) | ((offset) >> 12); \

 asm ("sync");\

 ptrvalue = *((volatile uint32 *) (START_OF_RIO_WINDOW + ((offset)& 0xFFF)));\

 asm ("sync");

#define MAINT_WRITE_4k(device_id, hopcount, offset , value) \

 rioport->rowtar1 = ((device_id) << ROW_DEV_ID_Shift) \

 |((hopcount) << ROW_HOPCNT_Shift) | ((offset) >> 12); \

 asm ("sync");\

 *((volatile uint32 *) (START_OF_RIO_WINDOW + ((offset) & 0xFFF))) = value; \

 asm ("sync");

A maintenance read to destination ID 0x02, hopcount 0xFF, maintenance offset 0x68, could then be achieved using
the macro as follows.

uint32 value_read;

MAINT_READ_4k (0x02, 0xFF, 0x68, value_read);

A maintenance write of the value 0xfff3210f to destination ID 0xFF, hopcount 0x00, maintenance offset 0x70a00
can be achieved using the macro as follows.

MAINT_WRITE_4k (0xFF, 0x00, 0x70A00, 0xFFF3210F);

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

58 Freescale Semiconductor

Revision History

A.5 Maintenance Transactions within Multi-Switch Systems
This document assumes that a system consists of no more that one RapidIO switch. For multi-switch systems,
consideration must be given to the way in which the maintenance window can be used to direct accesses to the
different switches. This section describes how the destination ID and hopcount are both used to determine which
switch is accessed.

When the hopcount of a transaction is greater than 0, the switch uses the destination ID to determine which port the
request is forwarded to, and then decrements the hopcount by one.

In the example above, assume that the routing tables on all switches are set up to direct transactions to the correct
RapidIO endpoints. Table 28 shows the resulting switch for a given hopcount and destination ID.

Table 28. Maintenance Transactions and Resultant Accessed Switch

Hopcount Destination ID Switch Accessed

0x00 any switch A

0x01 0x3 or 0x4 switch B

0x02 0x4 switch C

0x01 0x5 switch D

P
O

R
T

 3

MPC8540/60
DeviceID 1

RapidIO Host

MPC8540/60
DeviceID 2

RapidIO Agent

PORT 2

PORT 0

P
O

R
T

 1

P
O

R
T

 3

Tsi500 A

8-bit
Parallel
RapidIO

PORT 2

PORT 0

P
O

R
T

 1

P
O

R
T

 3

Tsi500 B

MPC8540/60
Device ID 3

RapidIO Agent

PORT 2

P
O

R
T

 1

Tsi500 D

MPC8540/60
DeviceID 5

RapidIO Agent

PORT 2

PORT 0

P
O

R
T

 1

P
O

R
T

 3

Tsi500 C

MPC8540/60
Device ID 4

RapidIO Agent

PORT 0

Flash
Memory

RapidIO Bring-Up Procedure on PowerQUICC III™, Rev. 1

Freescale Semiconductor 59

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

AN2753
Rev. 1
11/2004

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
(800) 521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-0047 Japan
0120 191014
+81 3 3440 3569
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@
 hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to

use Freescale Semiconductor products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the

information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any

products herein. Freescale Semiconductor makes no warranty, representation or guarantee

regarding the suitability of its products for any particular purpose, nor does Freescale

Semiconductor assume any liability arising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation consequential or

incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor

data sheets and/or specifications can and do vary in different applications and actual performance

may vary over time. All operating parameters, including “Typicals” must be validated for each

customer application by customer’s technical experts. Freescale Semiconductor does not convey

any license under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for surgical

implant into the body, or other applications intended to support or sustain life, or for any other

application in which the failure of the Freescale Semiconductor product could create a situation

where personal injury or death may occur. Should Buyer purchase or use Freescale

Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates,

and distributors harmless against all claims, costs, damages, and expenses, and reasonable

attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. TUNDRA,
the Tundra logo, Tsi500, and Silicon Behind the Network are all trademarks of Tundra
Semiconductor Corporation. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2004.

	RapidIO Bring-Up Procedure on PowerQUICC III™
	1 Introduction
	1.1 Glossary
	Table 1. Glossary of Terms

	2 Background Information
	2.1 RapidIO
	2.1.1 RapidIO Layers
	2.1.2 Processing Element Models
	2.1.2.1 Integrated Processor-Memory Processing Element
	Figure 1. Integrated Processor-Memory Processing Element

	2.1.2.2 Switch Processing Element
	Figure 2. Switch Processing Element Model

	2.1.2.3 RapidIO Transactions
	Figure 3. Maintenance Transaction
	Figure 4. NREAD Transaction
	Figure 5. NWRITE Transaction
	Figure 6. NWRITE_R Transaction

	2.2 Using RapidIO on MPC8540 and MPC8560
	2.2.1 Mapping Memory to the RapidIO Interface
	2.2.1.1 Memory Management Unit
	2.2.1.2 Local Memory Map and Local Access Windows

	2.2.2 RapidIO ATMU (Address Translation and Mapping Unit)
	2.2.2.1 RapidIO Outbound ATMU Windows
	2.2.2.2 RapidIO Inbound ATMU Windows
	2.2.2.3 Inbound ATMU Local Configuration Space Window

	2.3 Example Target Hardware
	2.3.1 Point-to-Point System
	Figure 7. Point-to-Point Example System

	2.3.2 Fabric-Based System
	Figure 8. Fabric-Based Example Hardware and Configuration

	3 Bring-up Procedure
	Figure 9. Outline of Procedure for Simple RapidIO System Bring-Up
	3.1 Configure the Local Processor
	3.1.1 Set up a TLB Entry
	3.1.1.1 Initialize MAS0
	Figure 10. MAS0 Setting for RapidIO Mapping
	Table 2. MAS0 Field Descriptions and Settings

	3.1.1.2 Initialize MAS1
	Figure 11. MAS1 Setting for RapidIO Window
	Table 3. MAS1 Field Descriptions and Settings

	3.1.1.3 Initialize MAS2
	Figure 12. MAS2 Setting for RapidIO Window
	Table 4. MAS2 Field Descriptions and Settings

	3.1.1.4 Initialize MAS3
	Figure 13. MAS3 Setting for RapidIO Window
	Table 5. MAS3 Field Descriptions and Settings

	3.1.1.5 Load Information into the TLB

	3.1.2 Set Up a Local Area Window
	3.1.2.1 Set LAWBAR
	Figure 14. LAWBAR Register for RapidIO Window
	Table 6. LAWBAR Field Description and Setting

	3.1.2.2 Set LAWAR
	Figure 15. LAWAR Record for RapidIO Window
	Table 7. LAWAR Field Descriptions and Settings

	3.1.3 Check Training
	3.1.4 Set Up Maintenance Window
	3.1.4.1 Set ROWBAR
	Figure 16. Maintenance Window ROWBAR Register
	Table 8. ROWBAR Field Description and Setting

	3.1.4.2 Set ROWAR
	Figure 17. Maintenance Window ROWAR Settings
	Table 9. ROWAR Field Descriptions and Settings

	3.1.4.3 Set ROWTAR
	Figure 18. Maintenance Window ROWTAR Settings
	Table 10. ROWTAR Field Descriptions and Settings

	3.2 Discover Other Devices in the System
	3.2.1 Identify Adjacent Device
	3.2.2 Discover other Devices-Point-to-Point
	3.2.2.1 Read Back the HBDIDLCSR of Adjacent Device
	3.2.2.2 Attempt to Lock HBDIDLCSR of Adjacent Device
	3.2.2.3 Confirm That the Adjacent Device Has Accepted Lock.
	3.2.2.4 Update the Device ID
	3.2.2.5 Read Back from Updated Device ID

	3.2.3 Discover Other Devices-Fabric
	3.2.3.1 Check Switch Port
	3.2.3.2 Read Back the HBDIDLCSR of Switch
	3.2.3.3 Attempt to Lock HBDIDLCSR of Switch
	3.2.3.4 Confirm that Switch has Accepted Lock
	3.2.3.5 Route Responses Back to Host
	Figure 19. DESTID_0_LKUP Setting

	3.2.3.6 Discover the Devices beyond the Tsi500 Switch
	Figure 20. Port 0 DESTID_248_LKUP Setting while Discovering Device on Port 3
	Figure 21. ROWTAR Setting for Accessing DIDCAR of Device on Port N
	Figure 22. ROWTAR for Accessing BDIDCSR on Device 3

	3.3 Enable Access to Remote Configuration Space
	3.3.1 Setup Inbound LCS Window on Agent
	Figure 23. LCSBA1CSR Settings

	3.3.2 Setup Outbound Window on Host
	3.3.2.1 ROWBAR
	Figure 24. Remote CCSR ROWBAR Settings
	Table 11. ROBAR Field Description and Setting

	3.3.2.2 ROWAR
	Figure 25. Remote CCSR Window ROWAR Settings
	Table 12. ROWAR Descriptions and Settings

	3.3.2.3 ROWTAR
	Figure 26. Remote CCSR ROWTARn Settings
	Table 13. ROWTARn Descriptions and Settings

	3.3.3 Confirm Access to Remote LCS

	3.4 Boot over RapidIO
	3.4.1 Prepare the Host Processor for Incoming Boot Reads
	3.4.1.1 RIWBAR
	Figure 27. RIWBAR Settings on Host for Incoming Boot Reads
	Table 14. RIWBAR Field Descriptions and Settings

	3.4.1.2 RIWAR
	Figure 28. RIWAR Settings on Host for Incoming Boot Reads
	Table 15. RIWAR Field Descriptions and Settings

	3.4.1.3 RIWTAR
	Figure 29. RIWTAR Settings on Host for Incoming Boot Reads (Point-to-Point)
	Table 16. RIWTAR Field Description and Setting
	Figure 30. RIWTAR Settings on Host for Incoming Boot Reads (Fabric)

	3.4.2 Configure the Agent Processor
	3.4.2.1 Configure the Agent's RapidIO Outbound Window
	Figure 31. ROWTAR on Agent for Boot Reads
	Table 17. ROWTAR Field Descriptions and Settings
	Table 18. ROWBAR Field Descriptions and Settings

	3.4.2.2 Create LAW on Agent for the Boot Area on RapidIO
	Figure 32. Agent LAWBAR Setting for RapidIO Window
	Figure 33. Agent LAWAR Settings for RapidIO Window
	Table 19. LAWAR Field Descriptions and Settings

	3.4.2.3 Provide Agent Processor with Access to the RapidIO Bus
	3.4.2.4 Enable the CPU

	3.5 Enable Memory Reads and Writes
	3.5.1 Host Setup
	3.5.1.1 ROWBAR
	Figure 34. Remote Memory ROWBAR Settings
	Table 20. ROWBAR Field Description and Setting

	3.5.1.2 ROWAR
	Figure 35. Remote Memory Window ROWAR Settings
	Table 21. ROWAR Field Descriptions and Settings

	3.5.1.3 ROWTAR
	Figure 36. Remote Memory ROWTAR Settings
	Table 22. ROWTAR Field Descriptions and Settings

	3.5.2 Agent Setup
	3.5.2.1 RIWBAR
	Figure 37. RIWBAR Settings on Host for Incoming Boot Reads
	Table 23. RIWBAR Field Descriptions and Settings

	3.5.2.2 RIWAR
	Figure 38. RIWAR Settings on Host for Incoming Boot Reads
	Table 24. RIWAR Descriptions and Settings

	3.5.2.3 RIWTAR
	Figure 39. RIWTAR Settings on Host for Incoming Boot Reads (Point-to-Point)
	Table 25. RIWTAR Description and Setting

	3.5.3 Confirming Operation

	4 Output from Example Application
	4.1 Point-to-Point Example
	4.2 Fabric Example

	5 References
	6 Revision History
	Table 26. Document Revision History
	Table 27. Maintenance Transaction Terminology
	Table 28. Maintenance Transactions and Resultant Accessed Switch

